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Abstract The forecasts generation from nonlinear time series models is inves-
tigated under general loss functions. After presenting the main results and
some relevant features of these functions, the Linex loss has been used to
generate multi-step forecasts from threshold autoregressive moving average
models showing their main properties and some results connected to a proper
transformation of the forecast errors. A simulation exercise highlights inter-
esting properties of the proposed predictors, both in terms of their bias and
their distribution, further clarifying how the Linex predictor can be helpful in
empirical applications.
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1 Introduction

The forecasts generation from nonlinear time series models has been differently
faced and in some cases their predictive ability, evaluated in terms of forecast
accuracy, has been widely discussed. In this context, among the others, Tong
(1990), Fan and Yao (2003) present the main features of nonlinear predictors
further comparing their properties with those well known in the linear domain.

It is common practice in nonlinear context to make use of quadratic loss
functions to generate predictors even when more general functions should be
preferred.
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The motivation behind this choice is often related to analytical problems
that arise when closed-form predictors are generated. In fact they are more
easily obtained in the presence of quadratic losses even if the symmetry of
these loss functions can disregard some properties of the process upon which
the model has been estimated. For example when nonlinear models are used
to catch asymmetric effects in the data, even asymmetric loss functions should
be selected to generate predictors that differently treat positive and negative
forecast errors.

In this paper we discuss the use of general loss functions to generate fore-
casts from nonlinear time series models. The seminal paper on this topic is quite
dated even if the interest and the main results of the literature are relatively
recent. In fact Granger (1969) firstly states the limit of the classical prediction
theory based only on the use of quadratic loss functions and hopes for more
general loss functions.

In particular, after the presentation of some general results and assumptions
upon which the paper is founded, in Sect. 2 the main loss functions used in
the forecasting literature are presented and compared. Section 3 introduces
the nonlinear Self Exciting Threshold Autoregressive Moving Average model
whose h-step ahead predictor, obtained though the Linex loss function, is shown
and discussed in Sect. 4. Section 5 studies, in a Monte Carlo simulation, the
properties of the proposed predictor and describes how it can be of interest in
empirical studies.

Given a univariate time series Y = {y1, y2, . . .} denote with ŷt+h|t the h-
step ahead predictor conditional to the information set �t = {yt, . . . , y2, y1}.
After the selection of a convex and differentiable loss function L(·), such that
L(0) = 0, L(x) > 0, ∀x ∈ R − {0}, with first derivative L′(x) ≥ 0, for x > 0, and
L′(x) ≤ 0 for x < 0, ŷt+h|t is obtained minimizing Et

[
L(yt+h − ŷt+h|t)

]
:

min
ŷt+h|t

Et
[
L

(
yt+h − ŷt+h|t

)]
, (1)

where Et[·] denotes the conditional expectation to the information set �t, h is
the lead time, yt+h is the observed value at time t + h and yt+h − ŷt+h|t = êt+h|t
is the forecast error.

Under the further assumptions:

A1. Y is a compact set of R

A2. Et
[
L

(
yt+h − ŷt+h|t

)] = ∫
L(yt+h − ŷt+h|t)ft+h|t(y)dy < ∞, with ft+h|t(y) the

conditional density function of yt+h
A3.

∂Et
[
L

(
yt+h − ŷt+h|t

)]

∂ ŷt+h|t
= Et

[
∂L

(
yt+h − ŷt+h|t

)

∂ ŷt+h|t

]

< ∞,

the predictor which minimizes function (1) is obtained from the following first
order condition:
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∫
L′(yt+h − ŷt+h|t)ft+h|t(y)dy = 0, (2)

whose properties are widely described in Christoffersen and Diedold (1997)
and Granger (1999), among the others.

Starting from this general framework different forms can be assumed by L(·)
and in some context the use of loss functions different from the Square Errors is
even related to the empirical application of the forecasts. For example in finance
the choice of L(x) is based on the risk aversion of the operators that, when high,
leads to prefer a negative exponential function (Pesaran and Skouras 2002) that
gives more weight to negative forecast errors. On the contrary, a positive expo-
nential function can be properly used in hydrology to prevent underprediction
of river flows. In other settings Elliott et al. (2005) applies general loss func-
tions to establish forecast rationality so extending, in a wider context, results
traditionally based on square losses.

2 General loss functions

In the forecasting literature numerous proposals have been made in the con-
text of loss functions that are called general in order to distinguish them from
the traditional Square function L(yt+h − ŷt+h|t) = (yt+h − ŷt+h|t)2. The motiva-
tion is often based on a widely shared need turned to give weight, of different
magnitude, to positive and negative forecast errors.

Among them, the most applied in practice are the so called Lin–Lin, Quad–
Quad or Linex functions where the first two can be considered as generalizations
of the Absolute and Square loss functions respectively.

In particular, the Lin–Lin function, discussed in Christoffersen and Diedold
(1997), is:

L(yt+h − ŷt+h|t) =
{

a|yt+h − ŷt+h|t| if (yt+h − ŷt+h|t) > 0
b|yt+h − ŷt+h|t| if (yt+h − ŷt+h|t) ≤ 0,

(3)

where the parameters a > 0 and b > 0 regulate the asymmetry of the function.
The Quad–Quad function (Christoffersen and Diedold 1996) is:

L(yt+h − ŷt+h|t) =
{

a(yt+h − ŷt+h|t)2 if (yt+h − ŷt+h|t) > 0
b(yt+h − ŷt+h|t)2 if (yt+h − ŷt+h|t) ≤ 0,

(4)

with the two positive constants a and b properly chosen to give different weight
to positive and negative forecast errors.

The Linex loss (Varian 1975) is slightly different from (3) and (4):

L(yt+h − ŷt+h|t) = b{exp[a(yt+h − ŷt+h|t)] − a(yt+h − ŷt+h|t) − 1}, (5)
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Fig. 1 Lin–Lin, Quad–Quad and Linex loss functions compared with the Square loss. In frame (a)
the Lin–Lin function (3) is plotted with a = 0.4 and b = 0.7. The Quad–Quad loss (4) is shown in
frame (b) with a = 0.4 and b = 0.7. The last two frames show the Linex function (5) with b = 1 and
a = 0.4 in (c) and a = −0.3 in (d)

with a �= 0 and b > 0. This function has been widely discussed in Zellner (1986)
and it can be easily observed that b is just a scale parameter whereas the shape
(and so the asymmetry) of the function is regulated by the parameter a.

In Fig. 1 is shown the behavior of the three loss functions (3), (4) and (5) to
better appreciate their asymmetry and to compare them with the Square loss
function.

Using 2000 values generated from a standard Gaussian distribution, the two
frames (a) and (b) of Fig. 1 show the Lin–Lin and the Quad–Quad loss func-
tions with a = 0.4 and b = 0.7 whereas the Linex loss with b = 1 is presented
in frames (c) and (d) with parameter a = 0.4 and a = −0.3 respectively. It is
interesting to note that small changes of |a| in the Linex case, greatly affect the
shape of the function that becomes more flat as |a| decreases.

The problem that can arise when general loss functions are used is related to
the generation of closed form predictors obtained from (1). Further, when they
exist, they are strongly based on well defined assumptions on the conditional
distribution of the process.

For example Christoffersen and Diedold (1997) propose analytic solutions
for the predictor ŷt+h|t under Lin–Lin and Linex functions assuming that the
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conditional distribution of yt+h is Gaussian with conditional mean µt+h|t and
conditional variance σ 2

t+h|t. In particular they show that the “optimal” Linex
predictor is:

ŷLX
t+h|t = µt+h|t + a

2
σ 2

t+h|t with b = 1 and a �= 0,

whereas the “optimal” Lin–Lin predictor is:

ŷLL
t+h|t = µt+h|t + σ 2

t+h|t�
−1

(
a

a + b

)
,

with a, b > 0 and �(·) the cumulative distribution of the standard Normal
random variable.

More recently, Christodoulakis (2005) provides an analytical Linex predic-
tor under non-normality using the class of Gram-Charlier densities, whereas
in more general settings, the “optimal” predictor can be instead approximated
choosing proper series expansions.

In some cases the Normality assumption can be considered acceptable as
shown in the following example.

Example 1 Consider the Threshold Moving Average model (De Gooijer 1998)
or order (2;1,1):

yt =
{

φ
(1)
0 + ε

(1)
t + θ

(1)

1 ε
(1)

t−1 if yt−1 ≥ c

φ
(2)
0 + ε

(2)
t + θ

(2)

1 ε
(2)

t−1 if yt−1 < c,
(6)

where |c| < +∞ is the threshold parameter, φ
(1)
0 and φ

(2)
0 are two constants,

ε
(i)
t = σiεt, with εt ∼ NID(0, 1) and σi > 0, i = 1, 2. Under the assumptions given

on εt, the distribution of yt+1|t is Normal with conditional mean and conditional
variance respectively:

µ
(1)

t+1|t = φ
(1)
0 + θ

(1)

1 ε
(1)
t , σ

2(1)

t+1|t = σ 2
ε
(1)

t+1|t
+ θ

2(1)
2 σ 2

1 if yt ≥ c

µ
(2)

t+1|t = φ
(2)
0 + θ

(2)

1 ε
(2)
t , σ

2(2)

t+1|t = σ 2
ε
(2)

t+1|t
+ θ

2(2)
2 σ 2

2 if yt < c,

where σ 2
ε
(i)
t+1|t

= Et[(ε(i)
t+1)

2].
These results highlight that the hypothesis under which Christoffersen and

Diedold (1997) obtain “optimal” Linex predictors are completely fulfilled from
model (6) and so:

ŷLX
t+1|t =

{
µ

(1)

t+1|t + a
2σ

2(1)

t+1|t if yt ≥ c

µ
(2)

t+1|t + a
2σ

2(2)

t+1|t if yt < c.
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In the following, the Linex loss is used to generate predictors form nonlinear
models that belong to the threshold class (Tong 1990). In particular, the atten-
tion is focused on the forecasts generation from the Self Exciting Threshold
AutoRegressive Moving Average model (SETARMA), introduced in Tong
(1983), which can be considered as direct generalization, in nonlinear context,
of the ARMA model (Box and Jenkins 1976). The predictor has been derived
through the Linex loss function that, with its asymmetric behaviour, takes into
account the (asymmetric) effects caught from the SETARMA model, as widely
discussed in Amendola et al. (2006).

3 The SETARMA model

Following the notation in Tong (1990) the Self Exciting Threshold Autoregres-
sive Moving Average model of order (k; p, q) can be written as:

Yt = φ
(Jt)
0 + �(Jt)Yt−1 − �(Jt)et, (7)

where Jt : R → N identifies the generating process of each observation in
Yt = (yt, yt−1, . . . , yt−p+1)

′ such that Jt = j, for j = 1, . . . , k, if yt−d ∈ Rj with
Rj = (rj−1, rj] ⊆ R and −∞ = r0 ≤ r1 ≤ · · · ≤ rj−1 ≤ rj ≤ · · · ≤ rk = ∞,
with yt−d the threshold variable, d the threshold delay and rj the threshold
parameter. The other terms in (7):

φ
(j)
0 = (φ

(j)
0 , 0, . . . , 0)′(p×1), et = (et, et−1, . . . , et−q)′[(q+1)×1],

�(j) =
(

φ
(j)
1 φ

(j)
2 . . . φ

(j)
p

I(p−1) 0[(p−1)×1]

)
, �(j) =

(
θ

(j)
0 θ

(j)
1 . . . θ

(j)
q

0[q×(q+1)]

)
,

with θ
(j)
0 = −1, q = p − 1 and j = 1, . . . , k.

Simplifying the notation (7), the SETARMA model can be written in a more
simple and, at the same time, more general form:

yt = φ
(j)
0 + φ′(j)Yt−1 − θ ′(j)et, for yt−d ∈ Rj, (8)

where φ
(j)
0 is a constant , φ(j) = (φ

(j)
1 , φ(j)

2 , . . . , φ(j)
pj )′, θ (j) = (−1, θ(j)

1 , . . . , θ(j)
qj )′

with pj and qj two integers that can be different in each regime j and with the
vectors Yt = (yt, . . . , yt−pj+1)

′ and et = (et, et−1, . . . , et−qj)
′.

In the following pages the notation of model (8) is used under the assump-
tions that the process yt is strictly stationary and the errors et are Gaussian white
noise such that {et} is a sequence of i.i.d. random variables with et ∼ N(0, σ 2),
for t = 1, 2, . . ..
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In particular, under these assumptions and following the theoretical back-
ground of the previous sections, Linex predictors are generated for model (8).

4 The Linex SETARMA predictor

The generation of forecasts through the Linex loss function has been differently
applied: to forecast volatility in the parametric domain of the ARCH models
family (Hwang et al. 2001), to generate forecasts from a Gaussian mixture
model with constant mean (Patton and Timmermann 2006a) or even to testing
forecast rationality (Elliott et al. 2005).

In some context, the prediction of the time series level can be of more inter-
est than to forecast its volatility (e.g. in macroeconomy, hydrology). This is the
reason why in the following we focus the attention on the SETARMA predictor
generated under function (5), with scale parameter b = 1, and assuming the
model parameters known, in order to avoid the effect of parameters estimation.

Taking advantage of the local linearity of the SETARMA model, it is further
assumed that the conditional distribution:

yt+h|t ∼ N
(
µ

(j)
t+h|t, σ

2(j)
t+h|t

)
, (9)

with yt+h−d|t ∈ Rj, 0 < h ≤ d and j = 1, 2, . . . , k.
The optimal h-step ahead predictor of model (8) which minimizes the condi-

tional expectation (1) under Linex loss:

min
ŷt+h|t

Et{exp[a(yt+h − ŷt+h|t)] − a(yt+h − ŷt+h|t) − 1}, (10)

is presented in the following proposition.

Proposition 1 Given the strictly stationary SETARMA model (8) with condi-

tional distribution yt+h|t ∼ N
(
µ

(j)
t+h|t, σ

2(j)
t+h|t

)
, the optimal Linex predictor is:

ŷt+h|t = µ
(j)
t+h|t + a

2
σ

2(j)
t+h|t =

= φ
(j)
0 +

h−1∑

i=1

φ
(j)
i Et(yt+h−i) +

pj∑

i=h

φ
(j)
i yt+h−i +

qj∑

i=h

θ
(j)
i et+h−i + a

2
σ

2(j)
t+h|t, (11)

with yt+h−d|t ∈ Rj, for j = 1, 2, . . . , k, and 0 < h ≤ d.

Proof See Appendix. 	

The result (11) shows that the Linex predictor of model (7) is the sum of

the conditional mean of yt+h with a term related to the conditional variance of
the process. This completely agrees with Proposition 1 of Christoffersen and
Diedold (1997):
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Proposition 2 (Christoffersen and Diedold 1997) If yt+h|t ∼ N(µt+h|t, σ 2
t+h|t) is

a conditionally Gaussian process and L(êt+h|t) is any loss function defined on
the h-step ahead prediction error êt+h|t, then the optimal predictor is of the form
ŷt+h|t = µt+h|t + αt+h|t, where αt+h|t depends only on the loss function and the
conditional prediction error variance σ 2

t+h|t = var(yt+h|�t) = var(et+h|�t).

Coming back to the Linex predictor (11), the conditional mean µ
(j)
t+h|t is

explicitly presented whereas the conditional variance, σ
2(j)
t+h|t, needs to be prop-

erly estimated.

Corollary 1 Given the strictly stationary SETARMA model (8) with conditional

distribution yt+h|t ∼ N
(
µ

(j)
t+h|t, σ

2(j)
t+h|t

)
, the conditional variance σ

2(j)
t+h|t is:

σ
2(j)
t+h|t =

h−1∑

i=1

(
φ

(jh)
i

)2
σ

2(j)
t+i|t +

h−1∑

i=0

(
θ

(jh)
i

)2
σ 2

+ 2
h−2∑

i=1

h−1∑

w=i+1

Et[ẽt+h−i|t ẽt+h−w|t]φ(jh)
i φ

(jh)
w

− 2
h−1∑

i=1

h−1∑

w=i

Et[ẽt+h−i|tet+h−w]φ(jh)
i θ

(jh)
w , (12)

with 0 < h ≤ d, jh is the regime from which the h-step ahead forecast is generated,
θ

(jh)

0 = 1 and ẽt+h−i = yt+h−i − µ
(j)
t+h−i|t.

Proof See Appendix. 	


Example 2 In order to illustrate how σ
2(j)
t+h|t is computed, consider the three

following cases.
Case 1: h = 1.
This is the simplest case where the conditional variance is equal to the variance
of the error et:

σ
2(j)
t+1|t = Et{[yt+1 − Et(yt+1)]2} =

= Et[(yt+1 − µ
(j)
t+1|t)

2] =
= Et[ẽ2

t+1] = Et[e2
t+1] = σ 2, (13)

where yt+1−h ∈ Rj, j = 1, 2, . . . , k, ẽt+1 = yt+1 − µ
(j)
t+1|t that, given the definition

of µ
(j)
t+h|t in (11), corresponds to et+1.
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Case 2: h = 2.
In this case we have:

σ
2(j)
t+2|t =

[(
φ

(j2)
1 − θ

(j2)
1

)2 + 1
]

σ 2 with yt+2−h ∈ Rj, (14)

for j = 1, 2, . . . , k.
Case 3: h = 3.
The form of the conditional variance becomes more complex as h grows. When
h = 3:

σ
2(j)
t+3|t = Et[(yt+3 − yt+3|t)2]

= Et[(φ(j3)
1 ẽt+2|t + φ

(j3)
2 ẽt+1|t + at+3 − θ

(j3)
1 at+2 − θ

(j3)
2 )2]

(after eliminating all terms with null conditional expected value)

=
2∑

i=1

(
φ

(j3)
i

)2
σ

2(j)
t+i|t +

2∑

i=0

(
θ

(j3)
i

)2
σ 2 + 2φ

(j3)
1 φ

(j3)
2 Et[ẽt+2|tẽt+1|t]

− 2φ
(j3)
1 θ

(j3)
1 Et[ẽt+2|tet+2] − 2φ

(j3)
1 θ

(j3)
2 Et[ẽt+2|tet+1]

− 2φ
(j3)
2 θ

(j3)
2 Et[ẽt+1|tet+1], (15)

where:

• Et[ẽt+2|tẽt+1|t] =
[
φ

(j2)
1 − θ

(j2)
1

]
σ 2;

• Et[ẽt+i|tet+i] = σ 2, for i = 1, 2;
• Et[ẽt+2|tet+1] = Et[ẽt+2|tẽt+1|t] because ẽt+1|t = et+1 in model (8).

	


The forecast error of the Linex predictor ŷt+h|t, denoted êt+h|t, is given as:

êt+h|t = yt+h − ŷt+h|t

=
h−1∑

i=1

φ
(j)
i yt+h−i −

h−1∑

i=1

φ
(j)
i Et(yt+h−i) −

h−1∑

i=0

θ
(j)
i et+h−i − a

2
σ

2(j)
t+h|t, (16)

with expected value:

E[êt+h|t] = −a
2
σ

2(j)
t+h|t, (17)

that highlights the biasedness of the Linex predictor (11), whose amount de-
pends on the conditional variance.

This is not new in the context of asymmetric loss functions where, as shown
in Patton and Timmermann (2006a), some properties established in the MSE
framework cannot be recognized.
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Proper transformations of the forecast error can be used to obtain null
expected value for (16). Granger (1999) calls these transformed errors as gener-
alized forecast errors, êg

t+h|t, that fulfill the classical properties of the prediction
errors and let properly compare forecasts. It is obtained from the minimization
of the loss function L

(
yt+h − ŷt+h|t; a

)
, where ŷt+h|t is the optimal predictor

generated from (10) and with the generalized forecast error, êg
t+h|t, obtained

from:

êg
t+h|t = ∂L

(
yt+h − ŷt+h|t; a

)

∂ ŷt+h|t
, such that Et[êg

t+h|t] = 0. (18)

It can be shown that the conditions (18) are met, with the Linex SETARMA
predictor, when:

êg
t+h|t = a − a · exp(aêt+h|t), (19)

whose conditional and unconditional expectations are null. In fact:

Et[êg
t+h|t] = Et[a − a exp(aêt+h|t)]

= Et[a − a exp(ayt+h − aŷt+h|t)]
= a − aEt[exp(ayt+h)] exp(−aŷt+h|t)

= a − a exp

(
aµ

(j)
t+h|t + a2

2
σ

2(j)
t+h|t

)
exp(−aŷt+h|t)

(from the definition of ŷt+h|t)
= a − a = 0,

whereas E[êg
t+h|t] = 0 from the law of iterated expectation.

The variance of êg
t+h|t is given in the following proposition.

Proposition 3 The unconditional variance of the generalized prediction error
(19), obtained from the Linex predictor (11) of the SETARMA model (8), is:

Var(êg
t+h|t) = a2

[
exp(a2σ

2(j)
t+h|t) − 1

]
with a �= 0. (20)

Proof See Appendix. 	

The positivity of the variance (20) is is always guaranteed (because σ

2(j)
t+h|t > 0

and a �= 0) whereas its behaviour is related to that one of σ
2(j)
t+h|t. In fact,

Var(êg
t+h|t) is monotonically increasing with h when this property is even ful-

filled by σ
2(j)
t+h|t.

5 Forecast evaluation

The point forecasts just presented need to be evaluated and compared with
forecasts generated from different models or alternative loss functions.
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In a similar context where the classical predictors features cannot be always
recognized, some indexes of forecast accuracy such as mean square error, mean
absolute error, cannot be helpful. On the contrary the study of the predic-
tors distribution can give potentially more relevant results when, for example,
interval or density forecasts are of interest.

This implies the estimation of the distribution of ŷt+h|t that for nonlinear time
series is not easy to perform analytically and so computer intensive methods
can be applied.

In the following, empirical distributions of the SETARMA Linex and Least
Squares predictors are obtained through a Monte Carlo exercise in order to
present some features of the predictors introduced in the previous section and
to compare them to the traditional Least Squares predictors widely discussed
in Amendola et al. (2005). Given the SETARMA(2;1,1) model:

yt =
{

0.5yt−1 + et − 0.4et−1 yt−2 ≥ 0
−0.41yt−1 + et − 0.12et−1 yt−2 < 0,

(21)

the empirical distributions of ŷLX
t+h|t and ŷLS

t+h|t (where LX refers to Linex pre-
dictors and LS to Least Squares predictors) are obtained from 1000 Monte
Carlo replications with series length 500, et ∼ N(0, 1.5), h = 1, 2 and fur-
ther considering, for the Linex case, four different parameters of asymmetry
a = 0.3, 0.7, −0.3, −0.7.

Starting from the results of Amendola et al. (2005) that show the unbiased-
ness of the Least Square predictor, the empirical distributions of ŷLX

t+h|t and ŷLS
t+h|t

are presented in Fig. 2 where the bias of the Linex predictor is emphasized. It
can be appreciated in frames (a), (c), (e), (g) when h = 1 and more deeply in
the remaining frames when h = 2.

The empirical distributions of the Linex and Least Squares prediction errors
are instead given in Fig. 3. They have symmetric shapes when h = 1 and,
as expected in nonlinear context, they become increasingly asymmetric when
h = 2 and as |a| grows.

To better clarify the advantages of the Linex predictor, and making use of
the results of the 1000 Monte Carlo replications, in Fig. 4 the mean values of
the generated yt+h, ŷLS

t+h|t and ŷLX
t+h|t (with a = 0.3, 0.7, −0.3, −0.7) are plotted,

for h = 1, 2.
The straight line represents ȳt+h whereas the other dotted and dashed lines

are ¯̂yLS
t+h|t and ¯̂yLX

t+h|t. The Linex forecasts can be intended as lower and upper
bounds for the Least Squares forecasts that can be used to evaluate the results
of different weights, given to positive and negative forecast errors, on the gen-
erated predictions.

In other terms, when ŷLX
t+h|t is greater than ŷLS

t+h|t (and consequently a > 0)
the forecaster believes to have advantages from overpredictions whereas in the
opposite case (with a < 0) yt+h is underestimated and so it can be of interest to
forecasters with more cautious attitudes.
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Fig. 2 Empirical distribution of Linex (LX) and Least Squares (LS) predictors from model (21)
with h = 1 and h = 2. The parameter a of function (5) is a = 0.3 in frames (a)–(b); a = 0.7 in frames
(c)–(d); a = −0.3 in frames (e)–(f); a = −0.7 in frames (g)–(h)
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Fig. 3 Empirical distribution of Linex (LX) and Least Squares (LS) prediction errors from model
(21) with h = 1 and h = 2. The parameter a of function (5) is a = 0.3 in frames (a)–(b); a = 0.7 in
frames (c)–(d); a = −0.3 in frames (e)–(f); a = −0.7 in frames (g)–(h)

The bias combined with the skewness of the two predictors (and even mul-
timodality in frame (h) of Fig. 2), makes no longer pertinent the use of classical
tools, widely considered with linear time series models, to construct interval
forecasts or to estimate predictive density.

In order to cope with these features, predictive sets with minimum length
(in terms of Lebesgue measure) proposed in Polonik and Yao (2000) can be
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Fig. 4 Mean values of 1000 Monte Carlo replications generated from model (21) for yt+h, ŷLS
t+h|t

and ŷLX
t+h|t(a), with a = 0.3, 0.7, −0.3, −0.7 and h = 1, 2

used, among the others, or high density regions (Hyndman 1995) can be built
in presence of multimodality.

The study of forecast evaluation in presence of asymmetric loss functions is
only at its first steps. In fact, the results developed in literature to asses fore-
cast accuracy, such as tests or statistical indexes, are often based on the use of
quadratic losses and so have to be properly revised to help even in this more
general context. Some early results can be found in Patton and Timmermann
(2006b) whose extension can be a very interesting object of future research.
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Appendix

Proof of Proposition 1

The predictor (11) can be derived using the first order condition of (10) and fur-
ther making use of the moment generating function of yt+h|t ∼ N(µ

(j)
t+h|t, σ

2(j)
t+h|t),

with yt+h−d ∈ Rj, j = 1, . . . , k.
In particular:

Et[L(yt+h − ŷt+h|t)] = Et{exp[a(yt+h − ŷt+h|t)] − a(yt+h − ŷt+h|t) − 1}
= exp(−aŷt+h|t) exp

(
aµ

(j)
t+h|t + a2

2
σ

2(j)
t+h|t

)
− aµ

(j)
t+h|t + aŷt+h|t − 1. (22)
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The first order condition with respect to ŷt+h|t of (22) is:

exp(−aŷt+h|t) exp

(
aµ

(j)
t+h|t + a2

2
σ

2(j)
t+h|t

)
= 1, (23)

with µ
(j)
t+h|t = φ

(j)
0 + ∑h−1

i=1 φ
(j)
i Et(yt+h−i) + ∑pj

i=h φ
(j)
i yt+h−i + ∑qj

i=h θ
(j)
i et+h−i.

The logarithm of (23) allows to obtain the Linex SETARMA predictor:

ŷt+h|t = φ
(j)
0 +

h−1∑

i=1

φ
(j)
i Et(yt+h−i) +

pj∑

i=h

φ
(j)
i yt+h−i +

qj∑

i=h

θ
(j)
i et+h−i + a

2
σ

2(j)
t+h|t.

Proof of Corollary 1

Starting from the definition of conditional variance:

σ
2(j)
t+h = Et[yt+h − Et(yt+h)]2 = Et[yt+h − µ

(j)
t+h)]2 (24)

the result (12) is obtained after a quite long, but easy, algebra using in (24) the
model definition (8) and the conditional mean µ

(j)
t+h explicitly given in (11).

Proof of Proposition 2

The unconditional variance of the generalized prediction error is strictly related
to the assumptions given on the conditional distribution of yt+h.

In particular, given êg
t+h|t = a − a · exp(aêt+h|t), with E[êg

t+h|t] = 0, it follows
that:

Var(êg
t+h|t) = E[(a − a exp(aêt+h|t))2]

= a2 · E[1 + exp(2aêt+h|t) − 2 exp(aêt+h|t)]. (25)

From the error êt+h|t = yt+h − ŷt+h|t and using the law of iterated expectations:

E[exp(2aêt+h|t)] = E[Et(exp(2aêt+h|t))]
= E{Et[exp(2a(yt+h − µ

(j)
t+h|t − a

2
σ

2(j)
t+h|t))]}

= E

⎧
⎨

⎩
Et[exp(2ayt+h)]

exp[2a(µ
(j)
t+h|t + a

2σ
2(j)
t+h|t)]

⎫
⎬

⎭

= exp[2aµ
(j)
t+h|t − a2σ

2(j)
t+h|t]−1 exp[2aµ

(j)
t+h|t + 2a2σ

2(j)
t+h|t]

= exp(a2σ
2(j)
t+h|t), (26)
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whereas

E[exp(aêt+h|t)] = E
{

Et[exp(a(yt+h − µ
(j)
t+h|t + a

2
σ

2(j)
t+h|t))]

}

= E

⎧
⎨

⎩

exp[aµ
(j)
t+h|t + a2

2 σ
2(j)
t+h|t]

exp[aµ
(j)
t+h|t + a2

2 σ
2(j)
t+h|t]

⎫
⎬

⎭
= 1. (27)

From the combination of the results (26) and (27) in (25), it follows that:

Var(êg
t+h|t) = a2[exp(a2σ

2(j)
t+h|t) − 1]. (28)
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