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Abstract It is known that the Henderson Method III (Biometrics 9:226–252,
1953) is of special interest for the mixed linear models because the estimators
of the variance components are unaffected by the parameters of the fixed factor
(or factors). This article deals with generalizations and minor extensions of the
results obtained for the univariate linear models. A MANOVA mixed model
is presented in a convenient form and the covariance components estimators
are given on finite dimensional linear spaces. The results use both the usual
parametric representations and the coordinate-free approach of Kruskal (Ann
Math Statist 39:70–75, 1968) and Eaton (Ann Math Statist 41:528–538, 1970).
The normal equations are generalized and it is given a necessary and sufficient
condition for the existence of quadratic unbiased estimators for covariance
components in the considered model.

Keywords Linear operator · Orthogonal projection · Quadratic form ·
Generalized least squares estimator · Estimable parametric function

1 Introduction

The purpose of this article is to extend the Henderson Method III (based on
the fitting constants method) to multivariate mixed linear models in order to
obtain quadratic unbiased estimators for covariance components.
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The study of variance components estimation in univariate linear models
has been of interest to statisticians for the last six decades: Henderson (1953)
proposed three methods for obtaining unbiased estimates of variance com-
ponents; Zyskind (1967) gave necessary and sufficient conditions for ordi-
nary least squares estimators (OLSE) to be best linear unbiased estimators
(BLUE); Rao (1971a,b, 1976) developed minimum norm quadratic unbiased
estimators (MINQUE) and minimum variance quadratic unbiased estima-
tors (MIVQUE) for variance components; Hultquist and Atzinger (1972)
obtained MIVQUE for parameters of the fixed effects and variance com-
ponents. Complete surveys of MIVQUE, LSE, maximum likelihood estima-
tors (MLE) and BLUE for parameters in linear models were presented by
Kleffe (1977), Rao and Kleffe (1988) and Robinson (1991). Watson (1967)
and Milliken (1971) treated algebraically the generalized least squares estima-
tors (GLSE) of regression parameters. Olsen et al. (1976) obtained a minimal
complete class of invariant quadratic unbiased estimators for two variance com-
ponents. Klonecki and Zontek (1992) provided a method of constructing admis-
sible biased non-negative estimators of variance components in unbalanced
models.

The GLSE and MLE were obtained for parameters of some multivariate
mixed linear models: Biorn (2004) provided that GLSE can be interpreted as
a matrix weighted average of a group of GLSE where the weights are the
inverse of their covariance matrices; Cossette and Luong (2003) used GLSE of
covariance components for constructing Bayes estimators; Calvin and Dykstra
(1991), and Bates and DebRoy (2004) used MLE or restricted MLE as itera-
tive algorithms in which some steps were expressed as GLS problems. Beganu
(1987a,b, 1992) obtained Gauss–Markov estimators of regression coefficients
and covariance components for a multivariate mixed linear model in the bal-
anced case.

The methods of estimation of covariance components in univariate linear
models can also be employed in the multivariate corresponding models, but the
implementation and computational techniques are very hard to use.

Therefore it is convenient that the multivariate mixed linear models be put
into an appropriate form using a coordinate-free approach. Section 2 contains
some definitions and notation required for this form.

In Sect. 3 submodels of the initial model are constructed and OLSE for
parameters corresponding to submodels are derived. Section 4 deals with
determining the estimating equations of the Henderson Method III in the
multivariate case. The real finite dimensional inner product spaces and the
linear operators are chosen according to considered model and some results
obtained by Baksalary and Kala (1976) are used in Sect. 5. A generalization
of some results developed by Seely (1970a,b) for some univariate fixed and
mixed linear models is given in multivariate case and it is proved that neces-
sary and sufficient conditions for estimability of parametric functions are the
same. The covariance components estimators provided by this method are qua-
dratic unbiased estimators which do not depend on the parameters of the fixed
factors.
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2 The multivariate mixed linear model

Consider the multivariate mixed linear model

Y = Xβ0 +
k∑

h=1

Zhβh + e, (1)

where Y is a matrix of N observations on the response variables which are row
vectors of dimension p, X and Zh are known N×m, N×nh matrices respectively,
β0 is an m × p matrix of unknown parameters, βh an nh × p matrix of random
variables, h = 1, 2, . . . , k, and e is an N × p matrix of unobservable random
errors. It is assumed that the rows of βh and e in (1) are independent and iden-
tically normal distributed random vectors with zero means and corresponding
non-negative covariance matrices �h, h = 1, . . . , k and �e = �k+1.

The parameter space of this model is

� = {
θ = (β ′

0, �1, . . . , �k+1)
′, β0 ∈ Lp,m, �h ∈ Sp, h = 1, . . . , k + 1

}
,

where Lp,m is the set of m×p real matrices while Sp is the set of p×p symmetric
non-negative matrices.

Then the random matrix Y in (1) has the expected value

E(Y | θ) = Xβ0 (2)

and the covariance matrix

cov (vec Y ′ | θ) =
k∑

h=1

(ZhZ′
h) ⊗ �h + I ⊗ �e (3)

for θ arbitrary in � (vec Y ′ is an Np column vector obtained by rearranging
the transposed rows of Y one below the other). I denotes the identity N × N
matrix and “⊗” stands for the Kronecker matrix product defined as usual: if A
and B are elements from Lp1,p2 and Lq1,q2 , respectively, then A ⊗ B = (aijB) is
an element in Lp1q1,p2q2 .

Let A ⊂ Lp,N be a finite dimensional linear space endowed with the inner
product 〈A, B〉 = tr(AB′) for all A, B ∈ A. (The same trace inner product will
be used for all linear spaces Lp1,p2 .)

Using the linear operators (2) and (3) it can be written that

E(〈A, Y〉 | θ) = 〈A, E(Y | θ)〉 = 〈A, Xβ0〉 (4)

cov(〈A, Y〉, 〈B, Y〉 | θ) = tr(A�B′) = 〈A, B�〉 (5)

for all θ ∈ � and A, B ∈ A, where � is the common covariance matrix of the
rows of Y.
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Hence Xβ0 and � are the unique operators on A and on Sp, respectively,
that satisfy (4) and (5) for all A, B, ∈ A and θ ∈ �.

Concerning linear operator notions we use the following terms: let (L, 〈·, ·〉)
be a finite dimensional inner product space and let T be a linear operator
from L to A. The range of T is denoted by R(T) and the null space of T by
N(T). The adjoint of T is the linear operator T∗ from A into L which takes
an element A ∈ A into the unique element T∗A in L having the property
〈T∗A, B〉 = 〈A, TB〉 for all B ∈ L. The rank of T is denoted by r(T). The same
notations are used for matrices except a prime for the transpose of a matrix.

3 The OLSE corresponding to submodels

In the sequel we consider that all the factors of the model (1) are fixed. The
submodel i of the initial model (1) has a design matrix Ui = (X, Z1, . . . , Zi) ∈
L(m+∑i

h=1 nh),N and the corresponding parameter space

�i = {
θi = (β ′

0, β ′
1, . . . , β ′

i )
′ : β0 ∈ Lp,m, βh ∈ Lp,nh , h = 1, . . . , i

}
(6)

for i = 1, 2, . . . , k. The random matrix Y in the submodel i has expectation

E(Y | θi) = Xβ0 +
i∑

h=1

Zhβh = Uiθi (7)

and covariance matrix

cov(vec Y ′ | θi) = I ⊗ �e (8)

for all θi ∈ �i, i = 1, . . . , k.
If we denote U0 = X ∈ LN,m and �0 = {

θ0 = β0 : β0 ∈ Lp,m
}

then we can
form k + 1 submodels of the model (1) all of them being considered linear
models with fixed effects.

The normal equations U′
iUiθi = U′

iY are solved to obtain OLSE

θ̂i = (U′
iUi)

−U′
iY (9)

of θi, corresponding to the i submodel under assumptions (6), (7) and (8),
i = 0, 1, . . . , k. (U′

iUi)
− is a generalized inverse of U′

iUi when Ui is not of full
column rank. Therefore θ̂i exists, satisfies the normal equations and 〈λi, θ̂i〉 is a
BLUE for parameter function 〈λi, θi〉 if λi ∈ R(U′

i) (Seely and Zyskind 1971).
Then there exists A ∈ A such that 〈λi, θ̂i〉 = 〈U∗

i A, θ̂i〉 = 〈A, Uiθ̂i〉 =
= 〈A, PiY〉, where the linear operator

Pi = Ui(U′
iUi)

− U′
i (10)
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from A into A is the orthogonal projection onto R(Ui), i.e. Pi is symmet-
ric, idempotent and uniquely determined operator regardless of the choice of
(U′

iUi)
−. Hence, by (10) and (7), E(〈λi, θ̂i〉 | θi) = 〈A, PiUiθi〉 = 〈A, Uiθi〉 =

〈λi, θi〉 and covariance matrix of θ̂i is minimum in the class of all linear unbiased
estimators of 〈λi, θi〉, (cov (vecθ̃i

′ | θi) − cov (vecθ̂i
′ | θi) is non-negative definite

for all θ̃i verifying E(〈λi, θ̃i〉 | θi) = 〈λi, θi〉)i = 0, 1, . . . , k.
It is known (Rao 1973) the result:

Lemma 1 Let Pi be the linear operator (10). Then Pi is an orthogonal projection
on R(Ui), if and only if Pi is an orthogonal projection on R(X)+∑i

h=1 R(Zh), i =
1, . . . , k.

Using the definition and the properties of an orthogonal projection (see
Halmos 1957) onto a vectorial space endowed with an inner product and
Lemma 1 we can find the following results:

Lemma 2 Let Pi be the linear operator (10). Then Pi is an orthogonal pro-
jection on R(Ui), if and only if it is an orthogonal projection on R(XX ′) +∑i

h=1 R(ZhZ′
h), i = 1, . . . , k.

Corollary 1 Pi given by (10) is an orthogonal projection on R(X)+∑i
h=1 R(Zh)

iff it is an orthogonal projection on R(XX ′) + ∑i
h=1 R(ZhZ′

h), i = 1, . . . , k.

Lemma 3 If Pi is an orthogonal projection on R(Ui), then R(XX ′), R(ZhZ′
h) ⊂

N(Pk − Pi), h = 1, . . . , i; i = 0, 1, . . . , k − 1.

Proof It follows from Lemma 1 and Corollary 1 that Pi and Pk are orthogonal

projections on R(XX ′) +
∑i

h=1
R(ZhZ′

h) and, on R(XX ′) +
∑k

h=1
R(ZhZ′

h),
respectively, where i = 1, . . . , k − 1.

If ZhZ′
hAh is arbitrary in R(ZhZ′

h) with Ah ∈ A we have (Pk−Pi)ZhZ′
hAh = 0

for h = 1, . . . , i and i = 1, . . . , k − 1. A similar result is obtained for (Pk −
Pi)XX ′A = 0 for all A ∈ A and i = 0, 1, . . . , k − 1.

4 The generalized fitting constants method

Henderson’s three methods for estimating variance components in some univar-
iate linear models were generalized to obtain unbiased estimators for covariance
components in some multivariate linear regression models.

Using a matrix formulation Searle (1971) showed that Henderson Method
III can be the preferred estimation procedure for the mixed linear models but
it has three major shortcomings:

– There are no necessary and sufficient conditions for the existence of vari-
ance and covariance estimators,

– There are too many equations and
– The provided estimators can be negative definite quadratic forms.
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The purpose of this section is to show that the first two shortcomings can be
removed for the multivariate mixed linear model (1). Thus under assumptions
expressed by (2) and (3) of the initial model let Y ′PiY be generalized quadratic
forms corresponding to the symmetric matrix Pi given by (10), i = 0, 1, . . . , k.
Their expected values can be derived under normality assumption by using the
results obtained by Magnus and Neudecker (1979) and Neudecker (1990) as

E(Y ′PiY | θ) = β ′
0X ′PiXβ0 +

k∑

h=1

tr(PiZhZ′
h) · �h + trPi · �e

for θ ∈ � and i = 0, 1, . . . , k. Then the expected values

E[Y ′(Pk − Pi)Y | θ ] = β ′
0X ′(Pk − Pi)Xβ0 +

k∑

h=1

tr[(Pk − Pi)ZhZ′
h] · �h

+tr(Pk − Pi) · �e,

become

E[Y ′(Pk − Pi)Y | θ ] =
k∑

h=i+1

tr[(Pk − Pi)ZhZ′
h] · �h + [r(Uk) − r(Ui)] · �e

(11)

since, using Lemma 3, we have that (Pk − Pi)Xβ0 = 0 for all β0 ∈ Lp,m and
tr[(Pk−Pi)ZhZ′

h] = 〈(Pk−Pi)Zh, Zh 〉 = 0 for h = 1, . . . , i and i = 0, 1, . . . , k−1.
As Pk is aan orthogonal projection on R(Uk), the mean of the difference of the
quadratic forms Y ′Y and Y ′PkY under the initial conditions, i.e. θ ∈ �, is

E[Y ′(I − Pk)Y | θ ] = [N − r(Uk)] · �e (12)

The Henderson Method III consists in equating each difference of two qua-
dratic forms to its expected value which is calculated under the assumptions of
the initial model.

Thus a linear system in the covariance components �1, . . . , �k and �e is
obtained in the form

⎧
⎪⎪⎨

⎪⎪⎩

k∑

h=i+1

tr(Qi+1ZhZ′
h) · �h+[r(Uk)−r(Ui)] · �e =Y ′Qi+1Y, i = 0, 1, . . . , k−1

[N − r(Uk)] · �e = Y ′Qk+1Y

(13)
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where

Qi+1 = Pk − Pi, Qk+1 = I − Pk (14)

are the matrices of the quadratic forms (11) and (12).
Hence the estimating system (13) obtained in Henderson Method III for

linear model (1) has k + 1 equations and �1, . . . , �k, �e = �k+1 unknown
p × p symmetric non-negative matrices representing the components of the
covariance matrix (3).

5 Consistency and estimability

In most references to the Henderson Method III it was assumed that the esti-
mating equations are consistent so that no complications arise with regard to
estimability. In the sequel it will be shown that even if �1, . . . , �k+1 are estima-
ble it does not follow that the Eqs. (13) are consistent.

Denote by

�k+1 = {
�θ = (�1, . . . , �k+1)

′, �h ∈ Sp, h = 1, . . . , k + 1
}

the set of parameters representing the covariance components in model (1). A
linear parametric function

(
(λ, �θ)

) = ∑k+1
h=1 λh�h with λ = (λ1, . . . , λk+1)

′ ∈
Rk+1 is said to be estimable if there exists a linear function of Y ′Y whose
expectation is equal to

(
(λ, �θ)

)
for all �θ ∈ �k+1.

Let H and W be linear operators from Rk+1 to LN,N such that

Hρ =
k+1∑

h=1

(ZhZ′
h)ρh =

k+1∑

h=1

Vhρh, Wρ =
k+1∑

h=1

Qhρh

for ρ ∈ Rk+1, where Vk+1 = I and Qh are given by (14), h = 1, . . . , k + 1. Then
the adjoint operator W∗ of W from LN,N to Rk+1

p is defined by

W∗A = (〈Q1, A〉, . . . , 〈Qk+1, A〉)′

for arbitrary A ∈ LN,N . Hence form of W∗Hρ will be

W∗Hρ =
⎛

⎝
k+1∑

h=1

〈Q1, Vh〉ρh, . . . ,
k+1∑

h=1

〈Qk+1, Vh〉ρh

⎞

⎠
′

(15)

for ρ ∈ Rk+1.
It is easy to notice from (14) and Lemma 3 that 〈Qi+1, Vh〉 = 〈(Pk −

Pi)Zh, Zh〉 = 0 for h = 1, . . . , i; i = 0, 1, . . . , k − 1 and 〈Qk+1, Vh〉 = 〈(I −
Pk)Zh, Zh〉 = 0 for h = 1, . . . , k. Then the coefficients of �h in the estimating
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Eqs. (13) are the same as the coefficients corresponding to ρh in (15), h =
1, . . . , k + 1.

Writing the entries (i, j) of �h, the second terms of the Eqs. (13) become
Y ′

iQhYj, h = 1, . . . , k + 1, where Yi is the i column of the random matrix Y.
Then it is obtained a vector of quadratic forms

W∗(YjY ′
i) = (〈Q1, YjY ′

i〉, . . . , 〈Qk+1, YjY ′
i〉)′

for all i, j = 1, . . . , p. Therefore, if �θ verifies Eqs. (13) then �θ(i, j) =
(�1(i, j), . . . , �k+1(i, j))′ will verify the equations

W∗H�θ(i, j) = W∗(YjY ′
i) (16)

for i, j = 1, . . . , p.
It follows that the conditions regarding consistency and estimability for the

multivariate mixed linear model without interactions (1) are similar to condi-
tions for the corresponding univariate model (Seely 1970b).

Theorem 1 The estimating Eqs. (13) are consistent if

R(W′H) = R(W′). (17)

Proof The relation R(W) ∩ N(H∗) = {0} is equivalent to (17). Let A ∈
R(W) ∩ N(H∗). Then there exists δ(i, j) ∈ Rk+1 such that H∗Wδ(i, j) = 0.
By adding the k + 1 equations of (16) and denoting

∑k+1
h=1 Vh = V, we have

∑k+1
h=1〈V, Qh〉δh(i, j) = 〈V, Wδ(i, j)〉 = 0, that is Wδ(i, j) = 0. Then the Eqs. (16)

and (13) and consistent.
A necessary and sufficient condition for parametric functions to be estimable

found by Seely (1970b) can be developed for model (1) as follows:

Theorem 2 Let W be a linear operator such that

R(W) + N(H∗) = R(XX ′)⊥ (18)

The parametric function ((λ, �θ)) is estimable if and only if there exists ρ ∈ Rk+1

such that H∗Wρ = λ.

Corollary 2 If ρ and λ verify the equation H∗Wρ = λ, then
∑k+1

h=1 ρhY ′QhY is a
quadratic unbiased estimator of the parametric function ((λ, �θ)).
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Proof For i and j fixed in {1, 2, . . . , p} the corresponding element of the estima-
tor has expectation

E

⎡

⎣
k+1∑

h=1

ρh(i, j)Y ′
iQhYj

⎤

⎦ =
k+1∑

h=1

ρh(i, j)E(W′YjY ′
i)

= (ρ(i, j), W∗H�θ(i, j)) = (λ(i, j), �θ(i, j))

where (.,.) is the usual inner product in Rk+1.

Corollary 3 If the linear operator W satisfies the relations (17) and (18) and if
�̂θ is the solution of (13), then ((λ, �̂θ )) is a quadratic unbiased estimator of
((λ, �θ)) for λ ∈ R(H′W).

Proof From Theorem 1 it follows that Eqs. (13) have a unique solution �̂θ .
If λ ∈ R(H′W), then there exists a ρ such that λ = H∗Wρ, which means that
((λ, �θ)) is estimable by Theorem 2. Then Corollary 2 can be used.
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Lőwner order restrictions with applications to balanced multivariate variance components mod-
els. Ann Statist 19:850–869

Cossette H, Luong A (2003) Generalized least squares estimators for covariance parameters for
credibility regression models with moving average errors. Insurance Math Econ 32:281–291

Eaton ML (1970) Gauss–Markov estimation for multivariate linear models: a coordinate-free
approach. Ann Math Statist 41:528–538

Halmos PR (1957) Finite dimensional vector spaces. Princeton, New Jersey
Henderson CR (1953) Estimation of variance and covariance components. Biometrics 9:226–252
Hultquist R, Atzinger EM (1972) The mixed effects model and simultaneous diagonalization of

symmetric matrices. Ann Math Statist 43:2024–2030
Kleffe J (1977) Invariant methods for estimating variance components in mixed linear models.

Math Operationsforsch Statist Ser Statistics 8:233–250
Klonecki W, Zontek S (1992) Admissible estimators of variance components obtained via submod-

els. Ann Statist 20:1454–1467
Kruskal W (1968) When are Gauss–Markov and least squares estimators identical? A coordinate-

free approach. Ann Math Statist 39:70–75
Magnus JR, Neudecker H (1979) The commutation matrix: some properties and applications. Ann

Statist 7:381–394
Milliken GA (1971) New criteria for estimability of linear models. Ann Math Statist 42:1588–1594



356 G. Beganu

Neudecker H (1990) The variance matrix of a matrix quadratic form under normality assumptions.
A derivation based on its moment-generating function. Math Operationsforsch Statist Ser Statist
3:455–459

Olsen A, Seely J, Birkes D (1976) Invariant quadratic unbiased estimation for two variance com-
ponents. Ann Statist 4:878–890

Rao CR (1971a) Estimation of variance covariance components-MINQUE theory. J Multivariate
Anal 1:257–276

Rao CR (1971b) Minimum variance quadratic unbiased estimation of variance components.
J Multivariate Anal 1:445–456

Rao CR (1973) Linear statistical inference and its application. Wiley, New York
Rao CR (1976) Estimation of parameters in a linear model. Ann Statist 4:1023–1037
Rao CR, Kleffe J (1988) Estimation of variance components and applications. North-Holland,

Amsterdam
Robinson GK (1991) That BLUP is a good think: the estimation of random effects. Stat Sci 6:15–51
Searle SR (1971) Topics in variance components estimation. Biometrics 27:1–76
Seely J (1970a) Linear spaces and unbiased estimation. Ann Math Statist 41:1725–1734
Seely J (1970b) Linear spaces and unbiased estimation. Application to the mixed linear model.

Ann Math Statist 41:1735–1748
Seely J, Zyskind G (1971) Linear spaces and minimum variance unbiased estimation. Ann Math

Statist 42:691–703
Watson GS (1967) Linear least squares regression. Ann Math Statist 38:1679–1699
Zyskind G (1967) On canonical forms, non-negative covariance matrices and best and simple least

squares linear estimators in linear models. Ann Math Statist 38:1092–1109


	Quadratic estimators of covariance componentsin a multivariate mixed linear model
	Abstract
	Introduction
	The multivariate mixed linear model
	The OLSE corresponding to submodels
	The generalized fitting constants method
	Consistency and estimability
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


