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Abstract We study two sequential, response-adaptive randomized designs for
clinical trials; one has been proposed in Bandyopadhyay and Biswas (Biometri-
ka 88: 409–419, 2001) and in Biswas and Basu (Sankhya Ser B 63:27–42, 2001),
the other stems from the randomly reinforced urn introduced and studied in
Muliere et al. (J Stat Plan Inference 136:1853–1874, 2006a). Both designs can
be used in clinical trials where the response from each patient is a continuous
variable. Comparison is conducted through numerical studies and along a new
guideline for the evaluation of a response-adaptive design.

Keywords Response adaptive designs · Clinical trials · Urn schemes

1 Introduction

In this paper we compare two sequential, response-adaptive randomized
designs suitable for clinical trials where the observed response from each patient
is a continuous variable.

Suppose patients enter the trial sequentially; a sequential, response-adap-
tive randomized design assigns each new patient in the trial to a treatment
with a probability that changes along the trial according to the data that have
already accrued about treatment effects. Aiming, for ethical reasons, at maxi-
mizing the patient’s personal experience while treated in the trial, sequential
response-adaptive designs incline to assign more patients to the better treat-
ment, while seeking to keep randomness as a basis for statistical inference; for a
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foundational description of this approach to sequential design see Flournoy and
Rosenberger (1995), Rosenberger (1996, 2002) and the book by Rosenberger
and Lachin (2002).

Most of the literature on sequential, response-adaptive designs deals with
the case where responses are binary variables. Among the few exceptions, are
the design proposed by Bandyopadhyay and Biswas (2001), further explored
in Biswas and Basu (2001), and the design based on the randomly reinforced
urn introduced in Muliere et al. (2006a). In this paper we will compare these
two adaptive designs for clinical trials with responses on the continuous scale:
details on the designs and their definitions are given in the next section after
setting the probabilistic stage for the analysis.

The comparison is carried along a guideline that we introduce in Sect. 3. We
believe that the analysis generated by this procedure is deeply rooted in two
foundational motivations, moving most research on response-adaptive designs:

1. to generate experimental data adequate for statistical inference on treat-
ment effects;

2. to randomly allocate patients to treatments, using the information about
treatments generated along the trial for biasing the allocation probabilities
toward the better treatment.

This point of view is very much in the spirit of Hu and Rosenberger (2003).
The quantities we propose in Sect. 3 for the evaluation of a response-adaptive
design, are difficult to compute analytically. Hence in Sect. 4, for both designs
object of this paper, we conduct a numerical study for eliciting them in differ-
ent illustrative instances; this put us in the position to construct a comparative
analysis for the two designs. A discussion on the two designs merits concludes
the paper.

2 Two response-adaptive designs for continuous responses

We indicate with Mi and Ni the response for patient i = 1, 2, . . . , depending on
whether the patient has been allocated to treatment A or treatment B respec-
tively. We assume that the random variables M1, M2, . . . , Mi, . . . are i.i.d. with
probability distribution function µ, that the random variables N1, N2, . . . , Ni, . . .
are i.i.d. with probability distribution function ν and that the two sequences are
independent. Furthermore we assume that the expected values of the response
distributions,

mµ =
∫

xµ(dx) and mν =
∫

xν(dx),

respectively, exist and are finite.

Definition 1 A sequential design ρ is a sequence (ρ0, ρ1, . . . , ρi, . . .) such that
ρ0 ∈ [0, 1] while, for i ≥ 1, ρi is a measurable function from the space ({0, 1}×R)i

to the space [0, 1].
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If patients enter the trial sequentially, the design ρ describes the strategy
followed by the experimenter for allocating patients to treatments. In fact, for
i = 1, 2, . . . , let us indicate with Xi the indicator function which takes value 1 if
patient i is allocated to treatment A and 0 if patient i is allocated to treatment
B; moreover, let Fi be the sigma-field generated by

X1, X1M1 + (1 − X1)N1, . . . , Xi, XiMi + (1 − Xi)Ni,

i.e. the sigma-field representing the information available to the experimenter
before the allocation of the (i + 1)th patient to a treatment. We assume that X1
has Bernoulli(ρ0) distribution and that, for i ≥ 1, the conditional distribution
of Xi+1, given Fi, is

Bernoulli(ρi(X1, X1M1 + (1 − X1)N1, . . . , Xi, XiMi + (1 − Xi)Ni)).

When the trial sample size is fixed a priori and the target number of patients
that are going to be treated is n, specification of the elements ρn, ρn+1, . . . of ρ

becomes irrelevant.
In this paper we will consider and compare two different sequential designs.

Both designs are randomized and response-adaptive; that is, both modify, along
the trial, the probabilities of allocation to treatments according to the informa-
tion provided by past data. Furthermore, both designs can be used in clinical
trials where responses are continuous variables and the ultimate goal is to
decide the treatment generating the response with highest mean.

2.1 A response-adaptive design generated by a randomly reinforced urn

Fix 0 < λ ≤ υ < ∞, a transformation function φ : R → [λ, υ] and a couple of
positive real numbers (b0, w0). Define the design σ by setting σ0 = b0/(b0 +w0)

and, for i ≥ 1 and (x1, e1, . . . , xi, ei) ∈ ({0, 1} × R)i, let

σi(x1, e1, . . . , xi, ei) = b0 + ∑i
j=1 xjφ(ej)

b0 + w0 + ∑i
j=1 φ(ej)

.

That is, according to σ , given the past allocations X1, . . . , Xi and the observed
responses X1M1+(1−X1)N1, . . . , XiMi+(1−Xi)Ni, the experimenter allocates
the next patient i + 1 to treatment A with probability

σi(X1, X1M1 + (1 − X1)N1, . . . , Xi, XiMi + (1 − Xi)Ni)

= b0 + ∑i
j=1 Xjφ(Mj)

b0 + w0 + ∑i
j=1 Xjφ(Mj) + ∑i

j=1(1 − Xj)φ(Nj)
.

The sequential design σ is randomized and response-adaptive; it is implemented
by an urn containing initially b0 balls of color A and w0 balls of color B. When
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patient i = 1, 2, . . . enters the trial, the experimenter allocates him to a treatment
by sampling a ball from the urn. After the treatment effect XiMi + (1 − Xi)Ni
is observed, and before allocating the (i + 1)th patient, the urn composition is
reinforced with a number φ(XiMi + (1 − Xi)Ni) of balls of the same color as
that of the last one sampled.

In Muliere et al. (2006a) it is proved that, if

∫
φ(x)µ(dx) >

∫
φ(x)ν(dx), (1)

then, whatever the initial composition (b0, w0),

P[ lim
i→∞ σi(X1, X1M1 + (1 − X1)N1, . . . , Xi, XiMi + (1 − Xi)Ni) = 1] = 1; (2)

that is, asymptotically, with probability one the design σ assigns patients to
treatment with φ-transformed response with highest mean. For instance, if
treatment effects are positive and bounded real quantities with different mean
values and we let φ to be the identity function, the design σ asymptotically
allocates patients to the treatment with highest mean value.

The design σ crucially depends on the transformation φ : this can be taken
to be a utility function as argumented in Muliere et al. (2006b). In fact, assume
that the response distributions µ and ν belong to a class P of probability dis-
tributions on �. The experimenter is able to express preferences among the
elements of P ; the preference pattern is represented by a bounded utility func-
tion φ : � → � such that if P1 and P2 are in P then P1 is preferred to P2 if and
only if

∫
φ(x)P1(dx) >

∫
φ(x)P2(dx)

while P1 and P2 are equivalent if and only if
∫

φ(x) P1(dx) = ∫
φ(x) P2(dx).

Conditions which guarantee the existence of a bounded utility function φ such
that expected utilities of the elements of P are ordered in the same way as the
true preferences among the P ∈ P can be found, for instance, in DeGroot (1970)
and Fishburn (1981). It is to be noted that if φ is such a utility, then φ1 = bφ + c,
with b > 0, is also a utility function that represents the same preference pattern
among the elements of P : hence, without loss of generality, we assume that
0 < λ ≤ φ(x) ≤ υ < ∞ for all x ∈ �. Moreover, by letting φ to be a bounded
utility function defined on �k, k ≥ 1, we may easily implement the design σ

even in situations, more general than those considered in this paper, where
responses are multivariate and µ and ν are probability distributions on �k.

If the trial sample size is fixed to be a very large n, (2) supports the claim that
σ will bias the allocation probabilities of the n patients toward the treatment
associated with the φ-transformed response with highest mean—i.e. with highest
utility—whatever the initial urn composition (b0, w0). However, since conver-
gence in (2) is typically slow, for small n the effect of the initial composition
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(b0, w0) on the allocation probabilities will be relevant. In this paper we follow
this simple rule for setting it; first we allocate an equal number k of patients to
treatment A and to treatment B and we observe the responses M1, . . . , Mk and
Nk+1, . . . , N2k respectively. Then we set

b0 =
k∑

i=1

φ(Mi), w0 =
k∑

i=1

φ(Nk+i)

and we proceed to allocate patient 2k + 1, 2k + 2, . . . to treatments following
the design σ with initial composition (b0, w0). The integer number k is called
the initialization parameter: in the numerical studies illustrated in this paper it
will be set equal to a small fraction of the trial sample size n.

Remark 1 Rate of convergence in (2) is a very interesting and still open prob-
lem: a stimulating challenge for the authors.

Remark 2 In a Bayesian analysis, different choices of b0 and w0 would incor-
porate different prior believes about the better treatment.

Remark 3 In the special case where the φ-transformed responses after treat-
ment, φ(M1) and φ(N1), are equally distributed and the common reinforcement
distribution is degenerate at a point mass m > 0, the randomly reinforced urn
implementing the design σ is in fact a Polya urn and the infinite sequence
of allocations X1, X2, . . . is exchangeable with de Finetti measure equal to a
Beta. For general transformation function φ and response distributions µ and
ν with bounded support, the allocation sequence {Xn} is only asymptotically
exchangeable with associated de Finetti measure equal to the distribution of
the almost sure limit of the sequence of allocation probabilities {σn(X1, X1M1 +
(1 − X1)N1, . . . , Xn, XnMn + (1 − Xn)Nn)}; this limit distribution is generally
unknown, but it is characterized in Aletti et al. (2005) as the unique solution
of a functional equation involving unknown distributions on [0,1]. For a more
detailed study of the theoretical properties of the design σ , see also May et al.
(2005) and Muliere et al. (2006a).

Remark 4 The design σ is a conceptual extension of a response adaptive design
proposed by Durham et al. (1998) for clinical trials with dichotomous responses;
its definition has been influenced by the popular randomized-play-the-winner
(RPW) design by Wei and Durham (1978). When responses are dicothom-
ous, the main difference between RPW and σ is that with RPW a successful
response to the currently allocated treatment increases the probability of allo-
cating the same treatment to the next patient in the study, whereas a failure
increases the probability of allocating the next patient to the alternative treat-
ment. With σ allocation probabilities are reinforced when successes to treat-
ment are observed, but they remain unchanged after failures. As a consequence,
the target allocation for σ , i.e. the limit probability of allocating a patient to a
treatment, is degenerate on the treatment with highest probability of success
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whereas RPW targets a proportion in (0,1) function of both treatment success
probabilities.

2.2 The triple-B response-adaptive design

In Bandyopadhyay and Biswas (2001) and in Biswas and Basu (2001) a sequen-
tial design τ for comparing mean responses after treatments is proposed which
accommodates for robust estimates of the means of response distributions.

Let G be a continuous cumulative distribution function, symmetric about
0, like, for instance, the cumulative distribution Φ of a standard normal. Set
τ0 = 0, τ1(x1, e1) = 1 for all (x1, e1) ∈ {0, 1} × R and, for i = 2, 3, . . . , and
(x1, e1, . . . , xi, ei) ∈ ({0, 1} × R)i define

τi(x1, e1, . . . , xi, ei) = G

(
Mi − Ni

c

)
,

where

Mi =
∑i

j=1 xjej∑i
j=1 xj

, Ni =
∑i

j=1(1 − xj)ej∑i
j=1(1 − xj)

and c is an appropriate scaling constant. Hence, according to τ , the first patient
in the trial is allocated to treatment A, the second to treatment B and then, from
the third patient on, having observed past allocations X1 = 0, X2 = 1, X3, . . . , Xi
and responses M1, N2, X3M3 + (1 − X3)N3, . . . , XiMi + (1 − Xi)Ni, the (i + 1)th
patient is allocated to treatment A with probability G((Mi − Ni)/c) where

Mi =
∑i

j=1 XjMj∑i
j=1 Xj

and Ni =
∑i

j=1(1 − Xj)Nj∑i
j=1(1 − Xj)

(3)

represent the current estimates of the mean of the distributions µ and ν respec-
tively. The sequential design τ is randomized and response-adaptive.

Remark 5 Modifications in the definition of τ when one wants robust estimates
of the means, instead of sample means as in (3), are easily implemented and
have been considered in Biswas and Basu (2001). Analogously, a suitable choice
of the φ transformation in the design σ would meet robustness concerns. We do
not elaborate further on this theme; it will be the topic of future research.

Clearly, the design τ favors the treatment which has led to larger responses
on average in the past. In point of fact, Biswas and Basu (2001) claim that

P
[

lim
i→∞ τi(X1, M1, . . . , Xi, XiMi + (1 − Xi)Ni) = G

(
mµ − mν

c

)]
= 1; (4)
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see also Bandyopadhyay and Biswas (2001). Parallel to the choice of the
initialization parameter k for the sequential design σ described in the previ-
ous subsection, an important question for the determination of τ is the choice
of the scaling constant c. Small values of c make the design sensitive to outliers
particularly during the early stages of the experiment. Larger values of c will
cause the design to be less and less adaptive to the information provided by the
experiment while it is carried on, eventually pulling the allocation ratio toward
the 50:50 pattern. For σ , this happens when the initialization parameter k is set
equal to half the trial sample size n.

Remark 6 Rate of convergence in (4) is also unknown.

Remark 7 The design τ could be extended to handle situations where responses
to treatments are observed along with covariates playing the rôle of prognos-
tic factors: see Bandyopadhyay and Biswas (2001) and Atkinson and Biswas
(2005). Similar modifications to σ have yet to be studied.

3 A guideline for evaluating and comparing different response-adaptive
designs

The goal of a randomized, response-adaptive sequential design is twofold:

1. to generate experimental data adequate for statistical inference on treat-
ment effects;

2. to randomly allocate patients to treatments, using the information about
treatments generated along the trial for biasing the allocation probabilities
toward the better treatment.

When considering a response-adaptive design for a particular clinical trial,
a standard, non-adaptive alternative is usually available; generally speaking,
this is the default design that the experimenter would implement for carrying
on the trial in the absence of a response-adaptive competitor, to be followed
by a default inferential analysis applied to the data generated by the design.
Default design and default inferential analysis represent the experimenter’s
default plan. We believe that the experimenter might be persuaded to use a
response-adaptive design, instead of the default design, if we show that:

(a) the response-adaptive design makes it possible to perform an inferential
analysis with the same optimality characteristics as those guaranteed by
the default plan; and

(b) the number of patients allocated in the trial to the worse treatment by the
response-adaptive design is less than that provided by the default design.

Remark 8 Condition (b) could be modified by focusing on a different optimal-
ity criterion. For instance, when responses are survival times, the sum of the
survival times of the patients involved in the trial could generate more concern
than the number of patients allocated to the worse treatment.
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Informed by (a) and (b), we propose a guideline for the evaluation and
comparison of a response-adaptive design: the idea is to focus on a bench-
mark, a basic inferential problem often encountered in practice, and to base
the design’s evaluation on the conditions for which requirements (a) and (b)
are simultaneously satisfied. As a seminal example, in this paper we will fix our
benchmark to be the problem of comparing the means of two normal distribu-
tions, with same known variance, in order to test if one mean is greater than the
other: the method is however easily extendable to more complex benchmarks.

Hence, assume that the goal of the experiment is to test whether the mean
response generated by treatment A is equal to the mean response generated
by treatment B against the alternative hypothesis that A generates a response
with greater mean. In symbols:

H0 : mµ = mν vs. H1 : mµ > mν . (5)

Moreover, assume that the response distributions µ and ν are Normal with
common known variance v2

0.
A standard design and inferential analysis for the problem (5) are to ran-

domly allocate nA patients to treatment A, nB patients to treatment B and,
at the end of the experiment, to perform a one-sided z-test. For any given
level α ∈ (0, 1) and any even trial sample size n ≥ 2, the power of the test is
maximized if nA = nB = n/2; we refer to this design and inference with the
expression a balanced, one-sided z-test. In the following pages, it is going to play
the role of default plan.

Suppose that the level α of the test is assigned and that n has been chosen so
that the balanced, one-sided z-test has a given power 1 − β when

δ = mµ − mν

is greater than or equal to a specific, clinically relevant difference δ0 > 0. In
order to convince the experimenter to switch from the default design to a
competitor response-adaptive design, we need:

(a) to elicit an α-level test, function of the experimental data generated by
the response-adaptive design, for proving H0 versus H1. For a trial sample
size n∗, the power of the test must be at least 1 − β when δ ≥ δ0;

(b) to show that, when the trial sample size is n∗ and δ ≥ δ0, the random
number NB of patients allocated to treatment B is less than or equal to
n/2, with high probability.

If (a) and (b) hold simultaneously, the experimenter adopting the response-
adaptive design knows that the probability that a significant result will be
obtained if a clinically relevant difference between the two treatments exists
(i.e. the power of the test) is not less than the power of the test in the default
plan at the smallest clinically relevant difference; this might happen at the cost
of a number n∗ of patients in the trial greater than or equal to n, but with the
assurance that, if there is a clinically relevant difference between the treatments,
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with high probability less patients than those allocated by the default design
will in fact experience the worse treatment.

The numerical studies illustrated in this paper evaluate and compare the
two response-adaptive designs described in the previous section in the light of
the benchmark inferential problem described above. To explore conditions for
which requirements (a) and (b) are simultaneously met, we will in fact consider
two different analysis.

3.1 First analysis

We fix the trial sample size n of the default plan and a level α ∈ (0, 1) and we
compute, as a function of the difference δ = mµ −mν , the power 1−β(δ) of the
balanced, one-sided z-test of level α. Next, for the competitor response-adaptive
design and for different values of δ, we compute through simulation the smallest
trial sample size n∗ = n∗(δ) such that a given α-level test (to be specified in the
next section) has power greater than or equal to the power 1−β(δ) of the z-test.
We also compute through simulation the distribution of the random number
NB of patients allocated to treatment B by the response-adaptive design when
the trial sample size is n∗ = n∗(δ). The typical situation is summarized in Fig. 1.

Inspection of Fig. 1 shows the existence of three different regions for the val-
ues of δ. For small values of δ, n∗ is larger than n but NB is not smaller than n/2
with high probability: this is the “red zone” where condition (a) above is met,
but not (b). That is: in order to get the same power as that of the default plan
with sample size n, the response-adaptive design needs a sample size n∗ > n,
but the higher cost due to a larger sample size is not compensated by a gain
in terms of less patients allocated to the worse treatment. Moderate values of
δ fall in the “yellow zone”: (a) and (b) are met at the cost of a larger sample
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Fig. 1 First analysis the picture on the left represents the function n∗ = n∗(δ) by means of the
values determined by simulation and a loess curve interpolating them; the horizontal dotted line
corresponds to the sample size n, while the vertical line indicates the value δG

1 . On the right picture,
the first quartile, the median and the third quartile of the distribution of NB are represented as a
function of δ; the horizontal dotted line corresponds to the value n/2 while the vertical line indicates
the value δY

1
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size n∗ for the response-adaptive design. Finally, large values of δ belong to the
“green zone”: (a) and (b) are satisfied and n∗ is less than or equal to n + 1.

If the experimenter believes that values of δ in the “red zone” are clinically
relevant, he shouldn’t exchange the default design for the response-adaptive
design. If the smallest clinically relevant value δ0 for δ falls in the “yellow zone”,
the experimenter might switch from the default design to the response-adaptive
design, at a cost of a larger trial sample size. Finally, when δ0 falls in the “green
zone” it seems unreasonable not to use the response-adaptive design.

To make these ideas more precise, we define two crucial δ-values. The first is

δY
1 = inf{δ > 0 : q3(NB(δ)) ≤ n/2},

where q3(NB(δ)) represents the third quartile of the distribution of the random
number of patients NB allocated to the worse treatment B by the response-
adaptive design when the trial sample size is n∗(δ). The second crucial δ-value is

δG
1 = inf{δ ≥ δY

1 : n∗(δ) ≤ n}.

Assuming that q3(NB(δ)) is a decreasing function of δ, if δ0 is the smallest clini-
cally relevant difference for the means of µ and ν and δ0 < δY

1 , it is not advisable
to switch from the default design with sample size n to the response-adaptive
design; if δ0 ≥ δY

1 switching to the response-adaptive design will put less patients
on the worse treatment with high probability, while preserving the same power
as the balanced z-test. This however happens at the cost of a larger trial sample
size if δY

1 ≤ δ0 < δG
1 .

Remark 9 When defining δY
1 , a less restrictive analysis would consider a smaller

quantile than q3 of the distribution of the random number of patients NB allo-
cated to the worse treatment B by the response-adaptive design when the trial
sample size is n∗(δ). For instance,

δY
1 = inf{δ > 0 : q2(NB(δ)) ≤ n/2},

where q2 is for the median.

3.2 Second analysis

We fix a level α ∈ (0, 1) and a large power 1 − β. As a function of δ = mµ − mν ,
we compute the smallest sample size n such that a balanced, one-sided z-test
of level α for the hypothesis in (5) has power greater than or equal to 1 − β.
Next, through simulation, we compute the smallest sample size n∗ = n∗(δ) for
which a test (to be specified in the next section) based on the data generated by
the competitor response-adaptive design, has power greater than or equal to
1 − β when mµ − mν = δ. We then compute, again through simulation, the dis-
tribution of the random number NB of patients allocated to treatment B, when
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Fig. 2 Second analysis for the picture on the left, the black dotted line represents n = n(δ) while
the function n∗ = n∗(δ) is represented by the continuous black line.The vertical line corresponds
to the value δG

2 . On the right picture, the black dotted line represents n/2 for different values of δ,
while the three continuous red lines represent, respectively, the third quartile, the median and the
first quartile of the distribution of NB. The vertical value corresponds to the value δY

2

the response-adaptive design is adopted and the trial sample size is n∗ = n∗(δ).
Figure 2 illustrates the typical situation.

Define

δY
2 = inf

{
δ > 0 : q3(NB(δ)) ≤ n(δ)

2

}

where q3(NB(δ) represents the third quartile of the distribution of the random
number NB of patients allocated by the response-adaptive design to the worse
treatment B and the trial sample size is n∗ = n∗(δ). Moreover set

δG
2 = inf

{
δ ≥ δY

2 : n∗(δ) ≤ n(δ)
}

.

As in our first analysis, we identify three different regions for the values of δ; as
before they are called the “red zone”, the “yellow zone” and the “green zone”
and they are represented by the, possibly void, intervals (0, δY

2 ), [δY
2 , δG

2 ) and
[δG

2 , ∞). To illustrate, assume that δ0 is the smallest clinically relevant value for
the difference δ = mµ − mν . If δ0 < δY

2 , the experimenter using the response-
adaptive design will obtain a significant result for δ = δ0 with probability at
least 1 − β by enrolling n∗ = n∗(δ0) patients in the trial. However with such a
sample size, there is a probability greater than 0.25 that the number of patients
in the trial allocated to the worse treatment B is larger than n/2, the number of
patients allocated to B by the default design. Hence, values of δ0 less than the
value δY

2 falls in the “red zone” where the experimenter would be wise not to
abandon the default design in favor of the response-adaptive competitor. For
values of δ0 ≥ δG

2 the smallest trial sample size for the default plan with power
greater than or equal to 1−β is negligibly different from the smallest sample size
for the response-adaptive design guaranteeing a power greater than or equal to
1 − β : these values of δ0 belong to the “green zone”. When δY

2 ≤ δG
2 , a value
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of δ0 in the green zone denounces as unreasonable the adoption of the default
design since, at no higher cost in terms of sample size, the response-adaptive
design would put the experimenter in the position to perform an α-level test
with the same power 1−β for δ = δ0 as the test belonging to the default plan, but
allocating a smaller number of patients to the worse treatment with probability
greater than 0.75. Finally, for values of δ0 in the “yellow zone” [δY

2 , δG
2 ), switch-

ing from the default design to the response-adaptive competitor will allocate
less patients to the worse treatment with high probability but at the cost of a
larger trial sample size.

4 Numerical studies

We are now ready to evaluate and compare the response-adaptive designs σ

and τ defined in Sect. 2, along the guideline illustrated in the previous pages
and using as benchmark inferential problem the balanced, one-sided z-test for
testing the hypothesis (5).

Before proceeding, we need to specify a test statistic and a rejection region
for the testing problem (5) when data are acquired according to one of the two
response-adaptive designs under scrutiny. For a given trial sample size n, an
obvious candidate for the test function is:

Z0 = M̄ − N̄

v0

√
1

NA
+ 1

NB

,

where NA = ∑n
i=1 Xi and NB = n − NA are the random number of patients

allocated by the design to treatment A and B, respectively, and

M̄ = 1
NA

n∑
i=1

XiMi, N̄ = 1
NB

n∑
i=1

(1 − Xi)Ni

are the observed sample means for the responses of patients allocated to treat-
ment A and treatment B respectively. (Recall that v2

0 is the known common
variance of the Normal distributions µ and ν.)

Proposition 1 For both response-adaptive designs σ and τ , when H0 is true and
the means of µ and ν are the same, the test statistic Z0 is asymptotically standard
normal, as the trial sample size n goes to infinity.

Proof For the asymptotic normality of Z0 when the design τ is adopted, equa-
tion (4) in Bandyopadhyay and Biswas (2001) presents a result without proof
conditional on the treatment assignments. Formally, the unconditional result
follows from Hu and Zhang (2004).
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In order to prove that Z0 is asymptotically normal when the design σ is
adopted and H0 is true, we need two facts that are proved in May et al. (2005):

(i) As n goes to infinity, NA/n converges almost surely to a random variable
Z∞ ∈ [0, 1]. The distribution of Z∞ has no point masses.

(ii) The sequence of allocation variables {Xn} is asymptotically exchangeable
with de Finetti measure Z∞. Hence: for all j ≥ 0, conditionally on Z∞, the
random variables (Xn, . . . , Xn+j) are asymptotically i.i.d. with distribution
Bernoulli(Z∞), as n grows to infinity.

From (i) and (ii) it follows that, given Z∞, the asymptotic conditional distribu-
tion of Z0 is standard normal. Hence, the unconditional asymptotic distribution
of Z0 is also standard normal. ��

For α ∈ (0, 1) and a large trial sample size n, the previous result supports the
rejection region

Rα ={
X1, X1M1+(1 − X1)N1, . . . , Xn, XnMn+(1 − Xn)Nn : Z0 >z1−α

}
(6)

for testing the hypothesis (5) at a level α; z1−α is the (1−α)th quantile of a stan-
dard normal distribution. The simulations conducted for our first analysis will
show that, even for small and moderate sample sizes (n = 20, 40, 100), P(Rα) is
close to α when H0 is true.

For δ = mµ − mν ≥ 0 and a trial sample size n, let

πα(n, δ) = P[Z0 > z1−α]

be the power function of the test with rejection region Rα . Recall that the power
function for a balanced, one-sided z-test for the hypothesis (5) is equal to

1 − Φ

(
z1−α − δ

2v0

√
n
)

.

The simulations for the first and the second analysis, described in their gen-
eralities in the previous section, are carried out for the designs σ and τ with the
following common settings:

• µ and ν are normal distribution with means mµ and mν respectively and
common known variance v2

0;
• v0 = 0.25;
• mµ ∈ [1, 1.8], mν = 1;
• the level of the test is set to be α = 0.05;
• for the design σ , the transformation function

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

0.1 if x ≤ 0.1,

x if 0.1 < x < 10,

10 if x ≥ 10;
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Fig. 3 Design σ , first analysis n = 20, k = 1, 3, 5. Pictures on the left side represent the function
n∗ = n∗(δ) by means of the values determined by simulation and a loess curve interpolating them;
the horizontal dotted line corresponds to the sample size n, while the vertical line indicates the value
δG

1 . On the right side, the first quartile, the median and the third quartile of the distribution of NB
are represented as a function of δ; the horizontal dotted line corresponds to the value n/2 while the
vertical line indicates the value δY

1

hence φ is morally the identity, given that, for all admissible choices of their
means, both µ and ν assign probability close to 1 to the interval [0.1, 10].
The initialization parameter k is set equal to 1, 3, 5;

• for the design τ , G is set equal to the cumulative distribution function Φ of
a standard normal and the normalizing constant c = 1, 5, 10.

4.1 Simulations for the first analysis

We fix n = 20, 40, 100. For both response-adaptive designs σ and τ , δ ∈ [0, 0.8],
first we find the smallest n∗ = n∗(δ) such that

π(n∗, δ) ≥ 1 − Φ

(
z1−α − δ

2v0

√
n
)

(7)

with δ ∈ [0, 0.8].
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Fig. 4 Design σ , first analysis n = 40, k = 1, 3, 5. Pictures on the left side represent the function
n∗ = n∗(δ) by means of the values determined by simulation and a loess curve interpolating them;
the horizontal dotted line corresponds to the sample size n, while the vertical line indicates the value
δG

1 . On the right side, the first quartile, the median and the third quartile of the distribution of NB
are represented as a function of δ; the horizontal dotted line corresponds to the value n/2 while the
vertical line indicates the value δY

1

Table 1 First analysis: values of δG
1 and δY

1

Design σ δG
1 δY

1 Design τ δG
1 δY

1

n = 20, k = 1 >0.8 0.8 n = 20, c = 1 0.725 0.325
n = 20, k = 3 0.7 0.625 n = 20, c = 5 0.8 0.8
n = 20, k = 5 0.65 0.65 n = 20, c = 10 >0.8 >0.8
n = 40, k = 1 >0.8 0.75 n = 40, c = 1 0.350 0.225
n = 40, k = 3 0.5 0.45 n = 40, c = 5 0.625 0.625
n = 40, k = 5 0.475 0.425 n = 40, c = 10 >0.8 >0.8
n = 100, k = 1 >0.8 0.6 n = 100, c = 1 0.275 0.125
n = 100, k = 3 0.375 0.325 n = 100, c = 5 0.45 0.45
n = 100, k = 5 0.325 0.25 n = 100, c = 10 >0.8 >0.8

The integer n∗ is found via simulation: for δ ∈ {0, 0.025, 0.05, . . . , 0.775, 0.8},
we begin the simulation by setting n∗ = n and we estimate the power π(n∗, δ) by
iteratively running an experiment where n∗ patients are sequentially allocated
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Fig. 5 Design σ , first analysis n = 40, k = 1, 3, 5. Pictures on the left side represent the function
n∗ = n∗(δ) by means of the values determined by simulation and a loess curve interpolating them;
the horizontal dotted line corresponds to the sample size n, while the vertical line indicates the value
δG

1 . On the right side, the first quartile, the median and the third quartile of the distribution of NB
are represented as a function of δ; the horizontal dotted line corresponds to the value n/2 while the
vertical line indicates the value δY

1

Table 2 Second analysis: values of δG
2 and δY

2

Design σ δG
2 δY

2 Design τ δG
2 δY

2

1 − β = 0.8, k = 1 >0.5 >0.5 1 − β = 0.8, c = 1 0.2 0.2
1 − β = 0.8, k = 3 0.41 0.41 1 − β = 0.8, c = 5 0.57 0.57
1 − β = 0.8, k = 5 0.32 0.32 1 − β = 0.8, c = 10 0.67 0.67
1 − β = 0.9, k = 1 >0.5 >0.5 1 − β = 0.9, c = 1 0.22 0.2
1 − β = 0.9, k = 3 0.42 0.42 1 − β = 0.9, c = 5 0.64 0.64
1 − β = 0.9, k = 5 0.36 0.36 1 − β = 0.9, c = 10 0.79 0.79
1 − β = 0.95, k = 1 >0.5 >0.5 1 − β = 0.95, c = 1 0.29 0.2
1 − β = 0.95, k = 3 0.46 0.46 1 − β = 0.95, c = 5 0.74 0.74
1 − β = 0.95, k = 5 0.38 0.38 1 − β = 0.95, c = 10 >0.8 >0.8

to treatment A or treatment B according to the response-adaptive design while,
at the end of the experiment, the hypothesis H0 is rejected or accepted accord-
ing to the test statistic Z0 and the rejection region Rα in (6). The experiment is
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Fig. 6 Design τ , first analysis n = 20, c = 1, 5, 10. Pictures on the left side represent the function
n∗ = n∗(δ) by means of the values determined by simulation and a loess curve interpolating them;
the horizontal dotted line corresponds to the sample size n, while the vertical line indicates the value
δG

1 . On the right side, the first quartile, the median and the third quartile of the distribution of NB
are represented as a function of δ; the horizontal dotted line corresponds to the value n/2 while the
vertical line indicates the value δY

1

iterated 1,000 times and the frequency of rejection is considered as an estimate
of π(n∗, δ); if this frequency is strictly smaller than 1 − Φ(z1−α − δ

2v0

√
n), the

integer n∗ is increased by one and a new experiment, with the new value for
n∗, is iteratively run. And so on until an n∗ satisfying (7) is found. Next, for
δ ∈ {0, 0.025, 0.05, . . . , 0.775, 0.8}, the distribution of NB when the trial sample
size is n∗ = n∗(δ) is approximated by the empirical distribution generated by
running for 1,000 times the experiment where n∗ patients are allocated to treat-
ment A or B according to the response-adaptive design; the first quartile, the
median and the third quartile of the empirical distribution of the 1,000 deviates
thus obtained are considered to be estimates of the corresponding quantiles
for the distribution of NB. Results of these simulations for the design σ are
illustrated in Figs. 3, 4, 5, those for τ in Figs. 6, 7, 8; all the empirical points have
been interpolated by means of a polynomial local regression using a loess of
degree 2: fitting is by weighted least square, with span equal to 0.55 and tricubic
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Fig. 7 Design τ , first analysis n = 40, c = 1, 5, 10. Pictures on the left side represent the function
n∗ = n∗(δ) by means of the values determined by simulation and a loess curve interpolating them;
the horizontal dotted line corresponds to the sample size n, while the vertical line indicates the value
δG

1 . On the right side, the first quartile, the median and the third quartile of the distribution of NB
are represented as a function of δ; the horizontal dotted line corresponds to the value n/2 while the
vertical line indicates the value δY

1

weight. The quantities δY
1 and δG

1 have been computed on the loess curves; their
values appear in Table 1.

4.2 Simulations for the second analysis

We fix 1 − β = 0.8, 0.9, 0.95. For δ ∈ [0.025, 0.8] we find the smallest value of
n = n(δ) such that

1 − Φ

(
z1−α − δ

2v0

√
n
)

≥ 1 − β

and the smallest n∗ = n∗(δ) such that

π(n∗, δ) ≥ 1 − β. (8)
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Fig. 8 Design τ , first analysis n = 100, c = 1, 5, 10. Pictures on the left side represent the function
n∗ = n∗(δ) by means of the values determined by simulation and a loess curve interpolating them;
the horizontal dotted line corresponds to the sample size n, while the vertical line indicates the value
δG

1 . On the right side, the first quartile, the median and the third quartile of the distribution of NB
are represented as a function of δ; the horizontal dotted line corresponds to the value n/2 while the
vertical line indicates the value δY

1

The integer n∗ is found via simulation. For δ ∈ {0.025, 0.05 . . . , 0.775, 0.8}, we
begin by setting n∗ = n0 : for σ the initial value n0 = max(n, 2k) while for τ we
let n0 = max(n, 2). We then estimate the power π(n∗, δ) by iteratively running
an experiment where n∗ patients are sequentially allocated to treatment A or
treatment B according to the response-adaptive design and the hypothesis H0
is rejected or accepted according to the test statistic Z0 and the rejection region
Rα in (6). The experiment is iterated 5,000 times and the frequency of rejection
is considered as an estimate of π(n∗, δ); if this frequency is strictly smaller than
1 − β, the integer n∗ is increased by one and a new experiment is iteratively
run. And so on until an n∗ satisfying (8) is found. Simulations than proceed as
before: the third quartile, the median and the first quartile of the distribution
of NB = NB(δ), when the trial sample size is n∗(δ), are estimated by means
of the corresponding empirical quantiles based on 5,000 deviates generated by
the distribution of NB(δ), for δ ∈ {0.025, 0.05 . . . , 0.775, 0.8}. Results of these
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Fig. 9 Design σ , second analysis 1 − β = 0.8, k = 1, 3, 5. Pictures on the left: the black dotted
line represents n = n(δ) while the function n∗ = n∗(δ) is represented by the continuous black line.
Vertical lines correspond to the value δG

2 . Pictures on the right: the black dotted line represents
n/2 for different values of δ, while the three continuous red lines represent, respectively, the third
quartile, the median and the first quartile of the distribution of NB. Vertical lines correspond to the
value δY

2

simulations, for the design σ are illustrated in Figs. 9, 10, 11 and for τ in Figs. 12,
13, 14; for graphical convenience we focus the figures on suitable ranges for δ.
These results suggest that both functions n∗(δ) and q3(NB(δ)) are monotoni-
cally decreasing with δ; we interpolated the empirical points by joining them
with linear segments. The quantities δY

2 and δG
2 have been computed on the

interpolated curves; their values appear in Table 2. For the design σ , notice that
n∗(δ) ≥ 2k for all values of δ, where the integer k is the initialization parameter.

5 Discussion

The simulations studies described in the previous section give important infor-
mation about the two designs σ and τ and the parameters k and c determining
them.
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Fig. 10 Design σ , second analysis 1 − β = 0.9, k = 1, 3, 5. Pictures on the left: the black dotted
line represents n = n(δ) while the function n∗ = n∗(δ) is represented by the continuous black line.
Vertical lines correspond to the value δG

2 . Pictures on the right: the black dotted line represents
n/2 for different values of δ, while the three continuous red lines represent, respectively, the third
quartile, the median and the first quartile of the distribution of NB. Vertical lines correspond to the
value δY

2

5.1 First analysis

Larger values of the initialization parameter k for σ , or of the scaling constant
c for τ , move the corresponding design toward a balanced allocation; as a con-
sequence we might expect that both δG

1 (σ ) and δG
1 (τ ) are decreasing functions

of k and c, respectively, for all sample sizes n of the reference default plan. This
fact is confirmed by the simulations as long as δG

1 > δY
1 . However, the analogies

between the roles of the two parameters stop here.
In fact higher values of c for the design τ imply more robustness to outliers,

as has been pointed out in Biswas and Basu (2001), but also larger values for
δY

1 (τ ); in other words, since δY
1 (τ ) is an increasing function of c, for a large c the

number NB of patients allocated to the inferior treatment is smaller than n/2
with high probability only when the difference δ between the means of the two
treatments is large, maybe larger than the smallest clinically relevant difference
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Fig. 11 Design σ , second analysis 1 − β = 0.95, k = 1, 3, 5. Pictures on the left: the black dotted
line represents n = n(δ) while the function n∗ = n∗(δ) is represented by the continuous black line.
Vertical lines correspond to the value δG

2 . Pictures on the right: the black dotted line represents
n/2 for different values of δ, while the three continuous red lines represent, respectively, the third
quartile, the median and the first quartile of the distribution of NB. Vertical lines correspond to the
value δY

2

δ0. The variability of the distribution of NB, measured by its interquartile range,
is also affected by changes in the values of c, larger values of c implying a smaller
IQR for the distribution of NB.

The role that the initialization parameter k plays in the determination of the
critical value δY

1 (σ ) is more complicated. The simulations show that for small
values of k, δY

1 (σ ) is a decreasing function of k. However for larger values of k,
δY

1 (σ ) must be an increasing function of k and δY
1 (σ ) = ∞ in the limit case when

k = n/2. In fact, when the reference sample size of the default plan is n = 20,
the simulation supports the conjecture that δY

1 (σ ), as a function of k, reaches
its minimum for k close to 3. For n = 40 and n = 100, the value of k for which
δY

1 (σ ) is minimum is conjectured to be larger than 5, hence in both cases we
observe a decreasing sequence of values for δY

1 (σ ), for k = 1, 3, 5. Moreover;
the IQR of the distribution of NB seems to be a decreasing function of k. Both
facts discourage the use of very small values, like k = 1, for the initialization



Comparing two response-adaptive designs 343

0.20 0.25 0.30 0.35 0.40

5
15

25
35

1 − beta = 0.8, c = 1

1 − beta = 0.8, c = 5

1 − beta = 0.8, c = 10

1 − beta = 0.8, c = 1

1 − beta = 0.8, c = 5

1 − beta = 0.8, c = 10

Delta

S
am

pl
e 

si
ze

0.20 0.25 0.30 0.35 0.40

0
5

10
15

20

Delta

N
_B

0.40 0.45 0.50 0.55 0.60

2
4

6
8

10

Delta

S
am

pl
e 

si
ze

0.40 0.45 0.50 0.55 0.60

0
2

4
6

8
Delta

N
_B

0.50 0.55 0.60 0.65 0.70

2
4

6
8

10

Delta

S
am

pl
e 

si
ze

0.50 0.55 0.60 0.65 0.70

0
2

4
6

Delta

N
_B

Fig. 12 Design τ , second analysis 1 − β = 0.8, c = 1, 5, 10. Pictures on the left: the black dotted
line represents n = n(δ) while the function n∗ = n∗(δ) is represented by the continuous black line.
Vertical lines correspond to the value δG

2 . Pictures on the right: the black dotted line represents
n/2 for different values of δ, while the three continuous red lines represent, respectively, the third
quartile, the median and the first quartile of the distribution of NB. Vertical lines correspond to the
value δY

2

parameter of the design σ and suggest the existence of an optimal value for k
depending on the sample size n of the default plan.

For both designs σ and τ , once the respective parameters k or c are fixed,
the values δG

1 and δY
1 are decreasing functions of n, the reference sample size of

the default plan. Hence for clinical trials where the planned sample size n of the
default plan is large, it is to be expected that both response-adaptive designs σ

and τ could be effective alternatives, even in cases where the smallest clinically
relevant difference δ0 is small. By looking at the values of δY

1 when the sample
size of the default plan is n = 100, one can conclude that, at the possible cost
of a larger sample size for the trial, the design σ becomes a viable alternative
to a balanced design for values of the smallest clinically relevant difference δ0
greater than 0.25; if one is willing to choose a small value for the scaling constant
c, the design τ is better than a balanced design even for values of δ0 greater
than 0.12.
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Fig. 13 Design τ , second analysis 1 − β = 0.9, c = 1, 5, 10. Pictures on the left: the black dotted
line represents n = n(δ) while the function n∗ = n∗(δ) is represented by the continuous black line.
Vertical lines correspond to the value δG

2 . Pictures on the right: the black dotted line represents
n/2 for different values of δ, while the three continuous red lines represent, respectively, the third
quartile, the median and the first quartile of the distribution of NB. Vertical lines correspond to the
value δY
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5.2 Second analysis

The results of the second analysis confirm the findings of the first.
As it was to be expected, all the simulations show that for both designs σ

and τ , the critical value δG
2 is an increasing function of the power 1 − β. For a

fixed power 1 − β, both δG
2 (σ ) and δG

2 (τ ) are non increasing functions of the
initialization parameter k and the scaling constant c, respectively, as long as
δG

2 > δY
2 .

The critical value δY
2 (τ ) increases with c for any value of the power 1 − β;

hence a stronger protection against outliers is paid in terms of larger values
for the smallest difference δ for which the response-adaptive design becomes a
viable alternative to the default design. For a fixed value of c, the simulations
support the conjecture that δY

2 (τ ) is an increasing function of 1 − β.
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Fig. 14 Design τ , second analysis 1 − β = 0.95, c = 1, 5, 10. Pictures on the left: the black dotted
line represents n = n(δ) while the function n∗ = n∗(δ) is represented by the continuous black line.
Vertical lines correspond to the value δG

2 . Pictures on the right: the black dotted line represents
n/2 for different values of δ, while the three continuous red lines represent, respectively, the third
quartile, the median and the first quartile of the distribution of NB. Vertical lines correspond to the
value δY
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For the design σ it is confirmed that very small values of the initialization
parameter k are to be discouraged: in fact, for 1−β = 0.8, the value δY

2 (σ ) seems
to reach a minimum for values of k close to 5, while this minimum is attained
for values of k larger than 5 when 1 −β > 0.9: this findings will stimulate future
research on the optimal choice for the parameter k.

This second analysis seems slightly in favor to the design τ: for moderate val-
ues of the scaling constant c, the values of δY

2 (τ ) are generally smaller than those
obtained with the design σ , even when we believe we are dealing with a value
for the initialization parameter k close to the optimum (1 − β = 0.8, k = 5).

6 Conclusion

Research on response-adaptive designs for clinical trials with continuous
responses is gaining momentum. In this study we compared two different
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response-adaptive designs for continuous responses by introducing a criterion
that evaluates them by considering their performances when competing with a
benchmark, non-adaptive standard alternative.

Over all the two designs seem to have similar merits; when confronted with
a balanced, one-sided z-test, both look like viable alternatives when the small-
est clinically relevant difference δ0 between the means of the two responses
assumes moderate to large values. In fact, when power is the main concern, our
findings are slightly in favor of the design τ proposed by Bandyopadhyay and
Biswas (2001) and Biswas and Basu (2001), implemented with a small or mod-
erate scaling constant c. In contrast, the appeal of the design σ generated by
the randomly reinforced urn of Muliere et al. (2006a) stems from the fact that
it targets an asymptotic allocation where all the patients are given the better
treatment, a property not shared by the design τ .
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