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Abstract A new rank correlation index, which can be used to measure the
extent of concordance or discordance between two rankings, is proposed. This
index is based on Gini’s mean difference computed on the totals ranks corre-
sponding to each unit and it turns out to be a special case of a more general
measure of the agreement of m rankings. The proposed index can be used in
a test for the independence of two criteria used to rank the units of a sample,
against their concordance/discordance. It can then be regarded as a competitor
of other classical methods, such as Kendall’s tau. The exact distribution of the
proposed test-statistic under the null hypothesis of independence is studied and
its expectation and variance are determined; moreover, the asymptotic distribu-
tion of the test-statistic is derived. Finally, the implementation of the proposed
test and its performance are discussed.

Keywords Nonparametric tests · Rank correlation methods ·
Gini’s mean difference · Distributive compensation

1 Introduction

Suppose that m judges are asked to rank n objects or, more generally, that a
sample of n units are ranked according to m different criteria. Assuming that
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there are no ties, we will denote by R1j, R2j, . . . , Rnj the sequences of ranks
corresponding to the jth judge (j = 1, . . . , m). The well-known problem of m
rankings consists of measuring the extent of agreement of the m judges’ rank-
ings. Of course, the above problem simplifies when m = 2; in this case, indeed,
two opposite extreme situations can be observed, each corresponding to the
complete agreement or disagreement of the two judges. More specifically, when
the two judges perfectly agree, Ri1 = Ri2 (i = 1, . . . , n), whereas Ri1 = n+1−Ri2
(i = 1, . . . , n), if the two judges completely disagree. The measures of agreement
or disagreement of the two rankings are commonly known as rank correlation
indexes (see Kendall and Gibbons 1990). Among them the most famous are
Spearman’s rho,

ρ= 12
n3 − n

n∑

i=1

(
Ri1 − n + 1

2

) (
Ri2 − n + 1

2

)
=1 − 6

∑n
i=1 (Ri1−Ri2)

2

n3 − n
, (1)

and Kendall’s tau,

τ = 1 − 4 P
n2 − n

, (2)

where P denotes the number of discordant pairs of ranks, i.e. the number of
pairs (Ri1, Ri2) and (Rl1, Rl2) such that Ri1 < Ri2 and Rl1 > Rl2 or Ri1 > Ri2
and Rl1 < Rl2 (i, l = 1, . . . , n). Another measure of rank correlation is Gini’s
cograduation index:

G = 2
g

n∑

i=1

{|Ri1 + Ri2 − n − 1| − |Ri1 − Ri2|}

(Gini 1954; see also Cifarelli et al. 1996), where the normalization constant g
equals n2 when n is even and n2 − 1 when n is odd.

When m > 2, the judges may all agree about the n objects but they cannot
completely disagree. Indeed if, say, the first judge disagrees with the second,
the third judge must agree either with the first or with the second, and so on.
In spite of this conclusion, the agreement among m judges can be measured on
the basis of a suitable mean of the rank correlation indexes computed on the
possible

(m
2

)
couples of judges. If Kendall’s tau is used as a measure of rank

correlation, one gets

τav = 1 − 2(m
2

)(n
2

)
n∑

j=1

j−1∑

i=1

rij(m − rij),

where rij denotes the number of judges who agree about ordering the ith object
higher that the jth object (see Hehrenberg 1952 and Hays 1960). It can be easily
shown that, when m = 2, the double summation in the above formula reduces
to P in (2). If Spearman’s rho is used in the average of the rank correlation
indexes, the following measure can be defined:
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ρav = 24
m(m − 1)(n3 − n)

m∑

j=1

j−1∑

k=1

n∑

i=1

(
Rij − n + 1

2

) (
Rik − n + 1

2

)
.

Instead of averaging the rank correlation indexes of every couple of judges,
a different logic can be followed to measure their agreement. It is sufficient to
note that, if the m judges completely agree on the ranking of the n objects, the
total ranks Ti = ∑m

j=1 Rij (i = 1, . . . , n) will be all multiples of m (the worst
object for every judges will totally score m, the second object will score 2m, and
so on); on the other hand, the more the m judges disagree, the more the total
ranks will be close to each other (an object ranked first for a judge may be last
for another one, and so on). Hence, if an index of variability of the total ranks
is computed, it will measure the extent of agreement of the m judges. Kendall

proposes to compute the variance of the total ranks, S = 1
n

∑n
i=1

(
Ti − m(n+1)

2

)2

and defines the well-known coefficient of concordance:

W = 12 S
m(n3 − n)

.

Note that W is obtained as the ratio of S over its maximum value in the case of
complete agreement and hence takes values in [0, 1] (see Kendall and Gibbons
1990). An interesting issue is that W turns out to be a linear function of ρav:

ρav = mW − 1
m − 1

.

Hence a test of concordance of m rankings can be equivalently based on W and
ρav; moreover, W reduces to ρ when m = 2.

In this paper we propose to measure the agreement of the m rankings by
a different measure of variability computed on the total ranks T1, . . . , Tn, i.e.
Gini’s mean difference (Gini 1912; see also David 1968; Kotz and Johnson 1982,
pp. 436–437). For N observations x1, . . . , xN , relating to a quantitative variable
X, Gini’s mean difference (without repetition) can be defined as

∆(X) = 1
N2 − N

N∑

i=1

N∑

l=1

|xi − xl|,

that is as the mean of the N(N−1) absolute differences between every couple of
different observations. If this measure of variability is applied to the total ranks
T1, . . . , Tn, the following measure of agreement of m rankings is obtained:

D(m) = ∆(T)
max∆(T)

= 3∆(T)
m(n + 1)

, (3)
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where ∆(T) = 1
n2−n

∑n
i=1

∑n
l=1 |Ti − Tl|. Note that the maximum value max

∆(T) = m(n+1)
3 is attained when the total ranks T1, . . . , Tn, are all multiple of

m; hence, as for W, D(m) ranges in [0, 1]. Moreover, note that D(m) cannot be
regarded as a linear function of a suitable mean of

(m
2

)
known rank correlation

indexes, differently from W.
The minimum value D(m) = 0, corresponding to a minimum agreement

among the m judges, is closely related to the concept of compensation developed
in Zenga (2003). Suppose that k quantitative variates X1, . . . , Xk are observed
on N units and let ∆(X1), . . . ,∆(Xk) denote the Gini’s mean differences com-
puted on these variates; moreover, let Y = X1+· · ·+Xk and∆(Y) be the total of
the k variates and its mean difference. It can be shown that∆(Y) = ∑N

i=1∆(Xi)

if and only if the ranking of the N units does not change when the values of
each of the k variate are used as a criterion for sorting (i.e. if the k variate are
cograduated); conversely, when the rankings according to the k variates differ,
∆(Y) <

∑N
i=1∆(Xi). Moreover, the minimum value∆(Y) = 0 is reached when

the sum Y takes the same value for each observed unit, which means that, if
some variates assume high values on a specific unit, the remaining variates must
show lower values. This last situation is termed in Zenga (2003) as distributive
compensation among the k variates; in addition, the ratio 1 − ∆(Y)∑N

i=1 ∆(Xi)
can be

proposed as a measure of departure of data from this situation. In our settings,
the situation of distributive compensation is equivalent to a “lack" of agree-
ment among the m judges. Hence, in a sense, the concept of compensation can
be regarded as the opposite of concordance even when m > 2, that is when the
concept of discordance cannot be applied.

This paper examines the properties of D(m) in the particular case m = 2,
that is when it can be regarded as a rank correlation index as well as Kendall’s
tau, Spearman’s rho or Gini’s cograduation index. Indeed it can be noted that,
differently from W, under the condition m = 2, D(m) does not produce a known
index. In the following, the proposed index will then be simply denoted as

D = 3
2(n3 − n)

n∑

i=1

n∑

j=1

∣∣Ri1 + Ri2 − Rj1 − Rj2
∣∣ . (4)

Consider a population described by the bivariate r.v. (X, Y) with joint dis-
tribution function H(x, y) (which will be supposed to be continuous from now
on) with marginal distribution functions F(x) = H(x, ∞) and G(y) = H(∞, y).
The proposed measure D can be regarded as the natural estimator, based on
a bivariate random sample (X1, Y1), . . . , (Xn, Yn) drawn from (X, Y), of the
functional

D(H) = 3
2

∫

�4

|F(x1)+ G(y1)− F(x2)− G(y2)| dH(x1, y1)dH(x2, y2).
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Hence, the use of D as a rank correlation measure can be further justified
by analyzing some properties of the functional D(H) as a measure of mono-
tone dependence. First of all it can be easily proved that D(H−) = 0, where
H−(x, y) = max{0, F(x) + G(y) − 1}, that is in case of perfect negative depen-
dence; conversely, D(H+) = 1, where H+(x, y) = min{F(x), G(y)}, that is in
case of perfect positive dependence. Moreover, following Tchen (1980), if H2
is more concordant than H1 (that is if H1(x, y) ≤ H2(x, y) for all (x, y) ∈ �2),
a natural requirement of the functional would be to agree with such an order-
ing, i.e. to be such that D(H1) ≤ D(H2). This fact can be proved by using
Tchen (1980, Corollary 3, p. 822). In the notation of the same corollary, let
n = q = 2 and consider the product measure Ĥ = H × H. Now write D(H) =∫
�4 |r1(x1, x2)+ r2(y1, y2)| dĤ(x1, y1, x2, y2)where r1(x1, x2) = F(x1)−F(x2) and

r2(y1, y2) = G(y1)− G(y2). The results follow by noticing that, for p = 1, 2, the
number of functions r1 and r2 decreasing in their pth coordinate is always
an even number and that the function |r1 + r2| is super-additive. Hence the
functional D(H) agrees with the so-called ordering of monotone dependence.
Some further characteristics of the functional D(H)will be discussed in the next
section.

Rather than as a (sample) measure of concordance, the interest of this paper
is mainly in the use of D as a test-statistic for independence (of two judges
or two criteria) against concordance/discordance. To implement this test, the
distribution of the test-statistic D under the null hypothesis of independence
is considered in the next section. The expectation and the variance of the test-
statistic are derived; moreover, the asymptotic distribution of D is determined
and some conclusions about the quality of its approximation are drawn. Sec-
tion 3 discusses the implementation of a test of independence based on D and
gives indications about the performance of the test, compared to its classical
nonparametric competitors. Finally, some conclusions and directions for future
research are discussed in Sect. 4.

2 Distribution of D under independence

Every rank correlation measure described in Sect. 1 can be used in a test for the
independence of two judges or two criteria of ranking. In particular, values of D
close to 0 or to 1 can lead to the rejection of the null hypothesis of independence
toward the alternative of discordance or concordance.1 To determine the criti-
cal values of the test, a deeper analysis of the distribution of D under the null
hypothesis is hence needed. Under H0, every possible joint realization of the
two sequences R11, . . . , Rn1 and R12, . . . , Rn2 have the same probability 1/(n!)2.
The distribution of the test-statistic D can then be computed by enumerating
all the (n!)2 points of the sample space and by recording the frequency f (d) of

1 Being derived as a special case of D(m), D ranges in the interval [0, 1]. To build an index ranging
in the usual interval [−1, +1] (like ρ, τ and G), it is sufficient to consider the transformation 2D−1;
of course this transformation is useless when D is a test-statistic.
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Table 1 Distribution of D under H0 when n = 6

0.000 0.143 0.229 0.257 0.286 0.314 0.343 0.371
0.001 0.007 0.008 0.013 0.006 0.017 0.011 0.022
0.400 0.429 0.457 0.486 0.514 0.543 0.571 0.600
0.031 0.018 0.028 0.047 0.032 0.044 0.056 0.053
0.629 0.657 0.686 0.714 0.743 0.771 0.800 0.829
0.064 0.063 0.060 0.065 0.058 0.060 0.057 0.051
0.857 0.886 0.914 0.943 0.971 1.000
0.044 0.031 0.026 0.019 0.007 0.001

occurrence of each different value d taken by D; the probability of D = d will
then be given by the ratio f (d)/(n!)2.

Note that the value taken by D does not change if the summation in (4) is
taken by rearranging the terms so that, say, the first sequence of ranks is in
ascending order. Hence the distribution of D can be more easily computed by
setting Ri1 = i (i = 1, . . . , n) and by enumerating all the n! possible realizations
of the ranks R12, . . . , Rn2. In this way, every point of the sample space corre-
sponds to a different permutation of the set {1, 2, . . . , n}. This procedure is quite
simple if n is not large. Table 1 reports the distribution of D under H0 when
n = 6.

Table 1 shows that the distribution of D under H0 is not symmetric. This
fact looks strange as the null distribution of other common rank correlation
measures, such as τ , ρ and G, is symmetric around zero. One can try to ex-
plain such an asymmetry by further analyzing the properties of the above-
mentioned functional D(H). Indeed it can be easily shown that D(H0) = 0.7,
where H0(x, y) = F(x)G(y), i.e. when the marginal components are inde-
pendent;2 moreover, differently from other common measures of monotone
dependence, D(H0) �= D((H− + H+)/2), that is the functional does not con-
sider symmetrically positive and negative dependence. Following Cifarelli and
Regazzini (1990), a measure of monotone dependence should be defined so
that it vanishes in case of indifference, that is, roughly speaking, for such sit-
uations characterized by a compensation of the departure from H+ and the
departure from H−; special cases of indifference are then independence and
H = (H− + H+)/2 [see Cifarelli and Regazzini (1990) and Cifarelli et al.
(1996) for further details]. The measure D(H) may of course be modified to
vanish in case of independence but it cannot take the same value for each
situation termed as indifference. This fact happens because D was originally
proposed as a measure of the concordance of m rankings, even if this pa-
per is mainly concerned with the case m = 2; hence the functional D(H)
mainly measures concordance or equivalently departure from perfect negative
dependence. To get a monotone-dependence measure, as suggested in Cifarelli
and Regazzini (1990), one could subtract to D(H) an analogous functional of

2 Note that 0.7 is also the asymptotic expected value of D under independence, as it will be proved
later in this Section.
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Fig. 1 Graph of the distribution of D under H0 when n = 9

discordance. For instance, if the new functional D̃(H) = D(H)−D̄(H) is defined
(where D̄(H) = 3

2

∫
�4 |F(x1)− G(y1)− F(x2)+ G(y2)| dH(x1, y1)dH(x2, y2)),

it can be easily shown that D̃(H−) = −1, D̃(H+) = +1 and that D̃(H0) =
D̃((H− +H+)/2) = 0. This definition would of course imply to modify even the
expression of D by subtracting an analogous index based on the counter-ranks
of one of the two sequences; such a modification is an interesting hint but, as
above explained, is out of the purposes of this paper.

Of course, the discussed asymmetry of D(H) and of its natural estimator
D is not without consequences. First of all, as it will be discussed in Sect. 3,
the determination of the critical values of a two-sided test based on D can be
troublesome. Moreover, the power function of the same test is likely to be asym-
metric, as it will be pointed out later; this fact implies that the test may result
powerful just for some kind of alternatives. Fortunately, at least concerning the
null distribution of D, the detected asymmetry rapidly vanishes as n increases:
Fig. 1 reports the graph of the distribution for n = 9 and shows that the null
distribution seems to converge to normality (this conjecture will be proved later
in this section). Some anomalies connected with the asymmetry of D are hence
likely to be overcome when n is large (see for instance the discussion about the
power function in Sect. 3.1).

The distribution of D cannot be determined numerically when n is large, as
the number of permutations to be enumerated becomes unpracticable. How-
ever, some characteristics of the distribution of D can be derived analytically.
The next theorem provides the expected value and the variance of D under H0.
The proof of this theorem requires some tedious computations to determine the
exact distribution of the summands in the formula (4); for the sake of brevity,
by following a suggestion of the anonymous referee, the proof is hence omitted
(a whole detailed proof can be found in Borroni (2006) available at the web site
www.dimequant.unimib.it).
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Theorem 1 Under the null hypothesis of independence,

E(D|H0) = 7n2 − 10n + 2
10n(n − 1)

(5)

and

Var(D|H0)

= 1751n6 − 3090n5 + 233n4 + 1428n3 − 2173n2 − 9822n + 4725
12600n3(n − 2)(n − 1)2(n + 1)

when n is odd

= 1751n6 − 3090n5 − 5020n4 + 192n3 − 5344n2 − 20448n − 10008
12600n2(n − 3)(n − 1)2(n + 1)2

when n is even.

(6)

The asymptotic expected value and variance of D under H0 can be eas-
ily derived from their exact formulas above. The whole asymptotic distribution
can be obtained by following a technique similar to the one used in Cifarelli and
Regazzini (1977) for Gini’s cograduation index (see also Cifarelli and Regazzini
1974). The following theorem gives such a result:

Theorem 2 Under the null hypothesis of independence,
√

n D is asymptotically
normally distributed with mean 7

10 and variance 1751
12600 .

Proof Let (X1, Y1), . . . , (Xn, Yn) be a random sample whose elements are iid
according to the absolutely continuous bivariate cdf H(x, y). Moreover let
F(x) = H(x, ∞) and G(y) = H(∞, y). Now consider the U-statistic

Un =
(

n
3

)−1 ∑

(n,3)

Ψ0(Xi1 , Yi1 ; Xi2 , Yi2 ; Xi3 , Yi3)

where the sum
∑
(n,3) is taken over the

(n
3

)
subsets 1 ≤ i1 < i2 < i3 ≤ n of

{1, . . . , n}; the three-degree symmetric kernel of Un is defined as

Ψ0(X1, Y1; X2, Y2; X3, Y3)

= 1
2

[Ψ (X1, Y1; X2, Y2; X3, Y3)+ Ψ (X2, Y2; X1, Y1; X3, Y3)

+Ψ (X3, Y3; X2, Y2; X1, Y1)] ,

where

Ψ (X1, Y1; X2, Y2; X3, Y3)

= [
2 S (F(X2)+ G(Y2)− F(X3)− G(Y3))− 1

]

· [S(X2 − X1)+ S(Y2 − Y1)− S(X3 − X1)− S(Y3 − Y1)]

(S(a) being 1 if a ≥ 0 and 0 elsewhere).
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It can be first proved that
√

nUn and
√

nD are asymptotically equally
distributed. Note that

∑

(n,3)

Ψ0(Xi1 , Yi1 ; Xi2 , Yi2 ; Xi3 , Yi3) = 1
4

∑

i �=j �=l

Ψ (Xl, Yl; Xi, Yi; Xj, Yj);

moreover, recall that, for each real couple (a, b), |a−b| = [
2 S(a − b)− 1

]
(a−b).

As n tends to infinity, it can then be written

(D−Un)� 3
2 n2

∑

i �=j

{∣∣∣∣
Ri1

n
+ Ri2

n
− Rj1

n
− Rj2

n

∣∣∣∣−
∣∣F(Xi)+G(Yi)−F(Xj)−G(Yj)

∣∣
}

;

it has then to be proved that
√

n(D − Un) tends to zero in probability, that is
limn→∞ Pr{√n|D − Un| < ε} = 1 for every ε > 0. Note that

√
n|D − Un|
≤ 3

2n3/2

∑

i �=j

∣∣∣
∣∣∣Ri1

n + Ri2
n − Rj1

n − Rj2
n

∣∣∣ − ∣∣F(Xi)+ G(Yi)− F(Xj)− G(Yj)
∣∣
∣∣∣

≤ 3
2n3/2

∑

i �=j

∣∣∣Ri1
n + Ri2

n − Rj1
n − Rj2

n − F(Xi)− G(Yi)+ F(Xj)+ G(Yj)

∣∣∣

≤ 3
2n3/2

∑

i �=j

{∣∣∣Ri1
n − F(Xi)

∣∣∣ +
∣∣∣Ri2

n − G(Yi)

∣∣∣ +
∣∣∣Rj1

n − F(Xj)

∣∣∣ +
∣∣∣Rj2

n − G(Yj)

∣∣∣
}

� 3√
n

∑

i

∣∣∣Ri1
n − F(Xi)

∣∣∣ + 3√
n

∑

i

∣∣∣Ri2
n − G(Yi)

∣∣∣

Hence

Pr
{√

n|D − Un| < ε
}

≥ Pr

{(
3√
n

∑

i

∣∣∣Ri1
n − F(Xi)

∣∣∣ < ε
2

)
∩

(
3√
n

∑

i

∣∣∣Ri2
n − G(Yi)

∣∣∣ < ε
2

)}

≥ Pr

{
3√
n

∑

i

∣∣∣Ri1
n − F(Xi)

∣∣∣ < ε
2

}
+ Pr

{
3√
n

∑

i

∣∣∣Ri2
n − G(Yi)

∣∣∣ < ε
2

}
− 1

≥ 1 − 6
ε
√

n

∑

i

E
{∣∣∣Ri1

n − F(Xi)

∣∣∣ +
∣∣∣Ri2

n − G(Yi)

∣∣∣
}

The result follows now by noticing that, for i = 1, . . . , n, there always

exists k > 0 so that E
{∣∣∣Ri1

n − F(Xi)

∣∣∣
}
< k

n and E
{∣∣∣Ri2

n − G(Yi)

∣∣∣
}
< k

n ; hence

limn→∞ Pr{√n|D − Un| < ε} ≥ 1
To get the asymptotic distribution of Un, one has then to compute the func-

tion g1(x1, y1) = E {Ψ0(x1, y1; X2, Y2; X3, Y3)} ; the general theory of U-statistics
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states that Un is asymptotically normally distributed with mean θ and variance
9 σ 2

1 , where θ = E {g1(X1, Y1)} and σ 2
1 = Var {g1(X1, Y1)} . Under H0, that is

under the hypothesis H(x, y) = F(x)G(y) (for every (x, y)), some calculations
show that

g1(x1, y1)

= 1
3

F4(x1)− F2(x1)− 2
3

F(x1)+ 1
3

G4(y1)− G2(y1)− 2
3

G(y1)

+2 + 2F2(x1)G(y1)+ 2F(x1)G
2(y1) (if 0 ≤ F(x1)+ G(y1) ≤ 1)

= 1
3

F4(x1)− 4
3

F3(x1)+ 3F2(x1)− 14
3

F(x1)+ 1
3

G4(y1)− 4
3

G3(y1)

+3G2(y1)− 14
3

G(y1)+ 10
3

+ 8F(x1)G(y1)− 2 + F2(x1)G(y1)

−2F(x1)G
2(y1) (if 1 < F(x1)+ G(y1) ≤ 2)

and that θ = 7
10 , σ 2

1 = 1751
113400 , which complete the proof. ��

From Fig. 1 above, the normal curve seems to be a quite accurate approx-
imation of the distribution of D even when n is small. To investigate further,
Table 2 compares the exact values of the cumulative probabilities of D with their

Table 2 Comparison of the exact cdf of D and its asymptotic approximation (n = 8)

value 0.000 0.083 0.143 0.155 0.167 0.179 0.190 0.202 0.214
exact 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.002 0.003
appr. 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001

0.226 0.238 0.250 0.262 0.274 0.286 0.298 0.310 0.321 0.333
0.004 0.005 0.006 0.007 0.008 0.011 0.013 0.016 0.018 0.022
0.001 0.002 0.002 0.003 0.004 0.005 0.006 0.008 0.010 0.012

0.345 0.357 0.369 0.381 0.393 0.405 0.417 0.429 0.440 0.452
0.027 0.031 0.036 0.043 0.049 0.056 0.065 0.074 0.084 0.095
0.015 0.018 0.022 0.027 0.032 0.039 0.046 0.055 0.064 0.075

0.464 0.476 0.488 0.500 0.512 0.524 0.536 0.548 0.560 0.571
0.107 0.121 0.135 0.151 0.168 0.187 0.205 0.227 0.248 0.272
0.088 0.102 0.117 0.134 0.152 0.173 0.194 0.218 0.243 0.269

0.583 0.595 0.607 0.619 0.631 0.643 0.655 0.667 0.679 0.690
0.297 0.323 0.349 0.378 0.407 0.436 0.466 0.498 0.529 0.562
0.297 0.326 0.356 0.387 0.419 0.451 0.484 0.516 0.549 0.581

0.702 0.714 0.726 0.738 0.750 0.762 0.774 0.786 0.798 0.810
0.594 0.626 0.657 0.689 0.719 0.749 0.777 0.805 0.831 0.855
0.613 0.644 0.674 0.703 0.731 0.757 0.782 0.806 0.827 0.848

0.821 0.833 0.845 0.857 0.869 0.881 0.893 0.905 0.917 0.929
0.877 0.898 0.917 0.933 0.948 0.960 0.971 0.979 0.986 0.992
0.866 0.883 0.898 0.912 0.925 0.936 0.945 0.954 0.961 0.968

0.940 0.952 0.964 0.976 0.988 1.000
0.995 0.998 0.999 1.000 1.000 1.000
0.973 0.978 0.982 0.985 0.988 0.990
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normal asymptotic approximations, for n = 8; note that the difference between
the exact cumulative distribution function and its approximations never exceeds
0.026, this value occurring when the cdf is evaluated for D around 0.9. This result
is quite good but it has to be pointed out that, when D is used as a test-statis-
tic, the approximation of the tails of its distribution should be very accurate,
especially if low significance levels are applied. Fortunately, the quality of the
asymptotic approximation improves fast as the sample size increases: further
comparisons show that, not only the difference between the exact and the
approximated cdf reduces, but even that the highest differences are observed
in the central part of the distribution; for instance, when n = 12, the highest
difference of 0.023 is observed when the cdf is evaluated at around 0.69.

3 A test of independence based on D

D can be used as a test-statistic in a two-sided or a one-sided test of indepen-
dence; indeed, the null hypothesis of independence can be tested against the
two-sided alternative of lack of independence (H1) or against one of the one-
sided alternative of concordance (H+

1 ) or discordance (H−
1 ). When n is small,

the determination of the critical values can be accomplished numerically on the
basis of the left and right tails of the exact distribution of D under H0; when
n is large, the above-discussed asymptotic approximation has to be applied.
Tables 3 and 4 report, for n = 6, . . . , 17 and for some selected values of α,
the values lα (Table 3) and rα (Table 4) such that, under H0, Pr{D ≤ lα} ≤ α

and Pr{D ≥ rα} ≤ α. Up to n = 12, these critical values were determined
by computing the exact null distribution of D (recall that, according to what
reported in Sect. 2, this task requires to enumerate all the permutations of the
set {1, . . . , n}). Due to the known computational limits, the critical values for
n = 13, . . . , 17 were instead determined by simulating the null distribution of
D, i.e. by randomly drawing 5 millions permutations of the set {1, . . . , n}; to

Table 3 Critical values of test based on D (left tail)

n\α 0.005 0.01 0.025 0.05 0.1 0.15

6 0.0000 0.1429 0.2287 0.2857 0.3714 0.4287
7 0.1786 0.2143 0.2857 0.3571 0.4286 0.4643
8 0.2381 0.2738 0.3333 0.3929 0.4524 0.4881
9 0.2750 0.3083 0.3667 0.4167 0.4750 0.5167

10 0.3030 0.3394 0.3879 0.4364 0.4909 0.5273
11 0.3273 0.3591 0.4091 0.4546 0.5046 0.5409
12 0.3461 0.3776 0.4266 0.4685 0.5175 0.5489
13∗ 0.3654 0.3956 0.4423 0.4808 0.5275 0.5577
14∗ 0.3802 0.4088 0.4527 0.4923 0.5363 0.5648
15∗ 0.3929 0.4214 0.4643 0.5018 0.5429 0.5714
16∗ 0.4044 0.4323 0.4735 0.5088 0.5500 0.5765
17∗ 0.4154 0.4424 0.4828 0.5172 0.5564 0.5821

*Simulated
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Table 4 Critical values of test based on D (right tail)

n\α 0.15 0.1 0.05 0.025 0.01 0.005

6 0.8571 0.8857 0.9429 0.9714 0.9714 1.0000
7 0.8393 0.8750 0.9107 0.9286 0.9643 0.9822
8 0.8214 0.8571 0.8929 0.9167 0.9405 0.9524
9 0.8167 0.8417 0.8750 0.9000 0.9250 0.9417

10 0.8061 0.8303 0.8667 0.8909 0.9212 0.9323
11 0.8000 0.8273 0.8591 0.8818 0.9091 0.9227
12 0.7972 0.8182 0.8496 0.8741 0.9021 0.9161
13∗ 0.7940 0.8159 0.8461 0.8681 0.8956 0.9093
14∗ 0.7890 0.8110 0.8396 0.8637 0.8879 0.9033
15∗ 0.7857 0.8071 0.8357 0.8589 0.8821 0.8982
16∗ 0.7838 0.8044 0.8323 0.8544 0.8779 0.8926
17∗ 0.7806 0.8002 0.8284 0.8993 0.8738 0.8885

*Simulated

test the reliability of this procedure, the distribution of ρ was simulated as well
and the corresponding critical values were compared with the ones reported in
the literature (notice that the same techniques was applied in Rizzi (1971) for
Gini’s cograduation index).

Concerning the two-sided test, the null hypothesis should be rejected when-
ever D ≤ d1 or D ≥ d2; some specifications are now needed. First of all, as
noted in Sect. 2, when n is small the distribution of D under H0 is not symmet-
ric. Hence, splitting the significance level α exactly into two parts for the two
tails of the distribution may not be optimal. In addition, as the distribution of
D is discrete, the usual rule of determining the critical values d1 and d2 so that
Pr{D ≤ d1} ≤ α/2 and Pr{D ≥ d2} ≤ α/2 may cause the real significance level
of the test to be far from the nominal value α.

Of course, when a one-sided test is implemented, the asymmetry of the dis-
tribution of D causes no problems. For instance, when the alternative H+

1 is
considered, the rule of rejecting H0 whenever D ≥ d+ should applied (the
critical value d+ being such that, under H0, Pr{D ≥ d+} ≤ α). Note that the
real significance level of the test can be far from the nominal value α as well.
A similar reasoning applies when the alternative H−

1 is considered: in this case,
H0 will be rejected whenever D ≤ d−, where the critical value d− is such that,
under H0, Pr{D ≤ d−} ≤ α.

3.1 Performance of the test based on D

An important issue concerning the implementation of a test of independence
based on D is the performance of the test, in comparison to other known non-
parametric methods. At this aim, some results of a simulation study based on
some specific families of bivariate distributions are here reported. As a natural
point of start, the test based on the proposed test-statistic D was first compared
to other classical nonparametric tests (Kendall’s tau, Spearman’s rho and Gini’s
cograduation index) when the samples are drawn from a bivariate standard nor-
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Fig. 2 Simulated power functions for the bivariate normal model (n = 25)

mal distribution with correlation coefficient r. For each fixed value of r, 50,000
bivariate samples were generated from the normal model and the power of the
tests was estimated as the percentage of a correct rejection of the null hypoth-
esis of independence. Figure 2 reports the estimated power functions (plotted
against the value of r ranging from −1 to +1) for the four tests in their two-sided
version, with a 5% significance level and a sample size n = 25.

From Fig. 2 it is clear that the power of the test based on D has an asym-
metric behavior; indeed the proposed test is more powerful for discordance
alternatives, while showing a poor performance when concordance is consid-
ered. Indeed the power function of D is the highest when r < 0, but it becomes
the lowest for r > 0. To understand better this behavior, the distribution of
the test-statistic D under the alternative hypothesis should be further studied;
as a first hint, however, recall the discussion about the asymmetry of the null
distribution of D and the role of the functional D(H) in the beginning of Sect. 2.
To give some further comments on Fig. 2, consider that, as known, the power
of τ and ρ result to be quite similar; D results to be slightly better than both τ
and ρ for r < 0, but it becomes definitely worse when r > 0. Conversely, when
G and D are compared, one notices that G performs quite worse than D when
r < 0 and just slightly better when r > 0.

From the above-reported results, it is natural to conclude that D should be
the best test-statistic when a one-sided test for independence against discor-
dance is implemented; to appreciate the increase of power which can be gained,
Table 5 reports some values of the estimated powers of a test for H0 against H−

1
when the samples are drawn from a bivariate standard normal distribution and
n = 25 (the significance level is again set to 5%). Of course similar reasonings
lead to a bad performance of D when a one-sided test against concordance is
considered; Table 6 reports, with the same settings, the estimated powers of a
test for H0 against H+

1 .
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Table 5 Simulated powers
for the one-sided test
(bivariate normal, n = 25)

D tau Gini rho

r = −1.00 1.0000 1.0000 1.0000 1.0000
r = −0.90 1.0000 1.0000 1.0000 1.0000
r = −0.80 0.9992 0.9990 0.9981 0.9992
r = −0.70 0.9868 0.9846 0.9781 0.9859
r = −0.60 0.9292 0.9215 0.9015 0.9248
r = −0.55 0.8742 0.8622 0.8377 0.8671
r = −0.50 0.8019 0.7838 0.7582 0.7918
r = −0.45 0.7137 0.6894 0.6654 0.6998
r = −0.40 0.6165 0.5903 0.5683 0.6001
r = −0.35 0.5161 0.4884 0.4690 0.4986
r = −0.30 0.4179 0.3894 0.3776 0.3990
r = −0.25 0.3286 0.3028 0.2958 0.3118
r = −0.20 0.2470 0.2225 0.2235 0.2319
r = −0.10 0.1263 0.1098 0.1122 0.1139

Table 6 Simulated powers
for the one-sided test
(bivariate normal, n = 25)

D tau Gini rho

r = 0.10 0.0955 0.1128 0.1158 0.1169
r = 0.20 0.1938 0.2235 0.2209 0.2302
r = 0.25 0.2619 0.2985 0.2914 0.3062
r = 0.30 0.3482 0.3898 0.3767 0.3981
r = 0.35 0.4376 0.4835 0.4669 0.4943
r = 0.40 0.5403 0.5873 0.5647 0.5984
r = 0.45 0.6450 0.6880 0.6650 0.6973
r = 0.50 0.7436 0.7838 0.7572 0.7911
r = 0.55 0.8294 0.8615 0.8387 0.8681
r = 0.60 0.9007 0.9240 0.9047 0.9286
r = 0.70 0.9770 0.9847 0.9771 0.9853
r = 0.80 0.9980 0.9990 0.9979 0.9991
r = 0.90 1.0000 1.0000 1.0000 1.0000
r = 1.00 1.0000 1.0000 1.0000 1.0000

Clearly the differences among the powers of the considered tests tend to
vanish when the sample size increases. Figure 3 shows the estimated power
functions of the four tests for a bivariate standard normal distribution with
n = 50. It can be easily noticed that, even if D keeps its first position for r < 0,
it is now very slightly better than the other tests (except for G); the bad perfor-
mance of D for r > 0, in addition, is not very evident, even if it is still present.
When the sample size increase to n = 200 (see Fig. 4), the power function of
D is almost coincident with the one of τ and ρ; a different situation, however,
is observed with respect to G: even if not strongly, D performs still better than
G when r < 0 and it even starts to do the same when r > 0 (notice that, to
give more readability to the graph, the power functions are plotted just in their
relevant part, i.e. when r ranges from −0.5 to +0.5).

The conclusion drawn for the bivariate normal model can be of course modi-
fied when a different structure of dependence is chosen for the two populations
from which the samples are drawn. A commonly used model in simulations is
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Fig. 3 Simulated power functions for the bivariate normal model (n = 50)
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Fig. 4 Simulated power functions for the bivariate normal model (n = 200)

the Fairlie–Gumbel–Morgenstern distribution (with uniform marginals) with
density:

f (x1, x2) = 1 + α(2 x1 − 1)(2 x2 − 1); 0 ≤ x1, x2 ≤ 1; −1 ≤ α ≤ 1

(see Johnson 1987 for a quick reference and for details about the simulations
from this model). It is fairly known that, as the parameter α ranges from −1
to +1, this distribution can model a limited level of dependence (when the
marginal distributions are uniform, indeed, the correlation coefficient ranges
from −1/3 to 1/3); this fact is reflected in the results of our simulations: Figs. 5
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Fig. 5 Simulated power functions for the Farlie–Gumbel–Morgenstern model (n = 25)
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Fig. 6 Simulated power functions for the Farlie–Gumbel–Morgenstern model (n = 100)

and 6 report the estimated power functions of the four considered test, in their
two-sided version, respectively, for n = 25 and n = 100 (the functions are plot-
ted against the values of the parameters α; a 5% level of significance is again
applied). When the sample size is small (n = 25), the situation observed in Fig. 2
is replied, with a stronger evidence due to the small level of correlation. When
the sample sizes increases to n = 100, all the power functions tent to coincide,
like in the normal case.

It is clear that the best performances of the test based on D can be ob-
served for such families of distributions where the dependence structure is
mainly discordant. To prove this conclusion, Figs. 7 (n = 25) and 8 (n = 100)
report the estimated power functions for the Gumbel’s bivariate exponential
model, which has density:



A test of concordance based on Gini’s mean difference 305

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
D
tau
Gini
rho

Fig. 7 Simulated power functions for the Gumbel’s bivariate exponential model (n = 25)
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Fig. 8 Simulated power functions for the Gumbel’s bivariate exponential model (n = 100)

f (x1, x2) = [(1 + θx1)(1 + θx2)] exp{−x1 − x2 − θx1, x2}; x1, x2 > 0

where 0 ≤ θ ≤ 1 (see Gumbel 1960 and again Johnson 1987). The parameter
θ in the Gumbel’s distribution regulates the dependence structure, giving inde-
pendence for θ = 0; when θ increases the components get more discordant, the
correlation coefficient being −0.43 when θ = 1.

Figure 7 3 proves what previously conjectured: the test based on D performs
definitely better than the other considered tests; notice, again, that the power

3 The power functions are here plotted against the values of the parameter θ ; a 5% level of
significance is applied for all the tests, in their two-sided version.
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Fig. 9 Simulated power functions for the Plackett’s bivariate uniform model (n = 100)

of τ and ρ is quite similar, while the power of G is very lower than the one of D.
When the sample size increases (Fig. 8), the considered tests tend to perform
similarly; however, G makes a remarkable exception to this general rule, as its
power function remains definitely low.

As a final term of comparison Fig. 9 reports the results obtained with a flex-
ible model, Plackett’s bivariate uniform distribution (see Plackett 1965). The
r.v. (X1, X2) follows a Plackett’s distribution if it has density

f (x1, x2) = ψ[(ψ − 1)(x1 + x2 − 2x1x2)+ 1]
{[1 + (x1 + x2)(ψ − 1)]2 − 4ψ(ψ − 1)x1x2}3/2 ; 0 < x1, x2 < 1

where ψ > 0. The parameter ψ can lead to different dependence situations as
X1 = 1 − X2 if ψ → 0, X1 and X2 are independent if ψ = 1 and X1 = X2 if
ψ → ∞. In Fig. 9 the estimated power functions for n = 100 (5% significance
level; two-sided tests) are plotted against the value of the parameter ψ ; as the
values of ψ greater than 1 are the ones giving concordance, this part of the
power function results to be amplified. Notice that, despite the large value of
the sample size, the test based on D has here a remarkable worse performance
for ψ > 1; differently to the other above-considered situations, in addition, the
test based on G performs quite similarly to τ and ρ.

As a final remark concerning the performance of the test based on D, the
reader may refer to Borroni and Cazzaro (2006), where the power function
of the test is simulated under known “alterations” of the bivariate normal
model and for small values of the sample size. Some of the therein reported
simulations follow the approach of Vale and Maurelli (1983) (see also Kotz
et al. 2000) where the marginal components of a bivariate normal distribution
are subjected to nonlinear transformations with known coefficients; this pro-
cedure leads to a different dependence structure along with different kinds of
marginal distributions with known levels of kurtosis and skewness. Even if the



A test of concordance based on Gini’s mean difference 307

marginal distributions are not relevant in our context, as the considered tests
do not depend on them, it has to be cited that some combinations of trans-
formations give a higher power for the test based on D, even for concordance
alternatives and for small sample sizes. Nevertheless, this fact is observed just
occasionally and the conclusions drawn from the above-reported simulations
are mainly confirmed, especially with respect to the relationship between D and
G (see Borroni and Cazzaro 2006 for further details).

4 Concluding remarks and future research

In this paper a nonparametric procedure to test if two criteria leading to two
sequences of ranks can be considered independent, concordant or discordant
is introduced. Hence the proposed test D can be regarded as a competitor of
other classical rank correlation methods, such as Spearman’s rho and Kendall’s
tau. Some simulation studies show that the introduced procedure may perform
better than its competitors, depending on the situations where it is applied; of
course these comparisons can be extended and the situations where D has the
best performance could be analytically characterized by studying the Pitman
efficiency of the test. However, one immediate advantage of the presented
approach is that the proposed test can be directly extended to deal with more
than two criteria of ranking; we think that this extension can be considered
as the most profitable direction of future research. Indeed, when m > 2 the
index D(m) does not turn out to be a mean of known measures computed on the
possible

(m
2

)
couples of rankings; hence it can be suspected that the information

drawn by D(m) are at least different, and perhaps deeper, than the ones pro-
vided by other classical measures, such as Kendall’s coefficient of concordance,
which are essentially based on known pairwise comparisons of rankings. The
link between D(m) and the concept of compensation, in addition, gives new hints
to better understand the relationship between the independence of m rankings
and its opposite extremes.
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