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Abstract. The aim of the paper is to find the univariate stationary distribution
of a particular bilinear process. In this context, we propose a novel approach to
derive the distribution function. It is based on a recursive formula and allows to
relax the conditions on the moments of the process. We also show that the derived
approximation converges to the “true” distribution function. The accuracy of the
recursive formula is evaluated for finite sample dimensions by a small simulation
study.
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1 Introduction

In recent years the bilinear models for time series have gained a growing atten-
tion. These models are difficult to deal with because of their complex probabilistic
structure (Tong, 1990). Therefore we focus on a particular bilinear model which
is often used as a building block for much more complex non linear time series
models such as the GARCH-BL (Storti, 2003).

Consider the following bilinear model:

Xt = εt + bεt−1Xt−2 (1)

where b is an unknown parameter, εt ∼ N(0, σ2), iid, and, without loss of gener-
ality, σ2 = 1.

This specification is the simplest case of Type I class of Standardized bilinear
models (Grahn, 1995). It can be easily confused with a White Noise because it has
zero mean, constant variance and zero autocovariances. But it has a more complex
structure in terms of the third mixed moments. Furthermore the time series generated
by this process show peaks in the observations which can be very distant from the
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stationary level of the series. By analyzing the series with linear models, these peaks
look like outlying observations. However the stationary univariate distribution of
Xt in (1) is different from the Normal one (assigned to the residuals εt).

The aim of this paper is to derive an approximation of the stationary distribution
of Xt in (1). In particular, we propose two different approaches: the first is based
on a type of Edgeworth expansion while the second is obtained by using a recursive
formula. We show that the last approximation is better than both the Normal and
Edgeworth type approximations.

The paper is organized as follows. In Sect. 2 we present and discuss some
preliminary results and derive the Edgeworth type approximation. In Sect. 3 we
propose an alternative approach based on a recursive formula and we show that,
under very weak conditions, it gives the best approximation. In order to evaluate
the previous results, a small simulation experiment is reported in Sect. 4. Some
concluding remarks are given in the final section.

2 Preliminary results and the Edgeworth type approximation

The following lemma is needed to introduce the Edgeworth type expansion for the
distribution function of Xt.

Lemma 1 If Xt is defined as in (1) and Xt is a strong stationary process, then its
distribution function must be absolutely continuous with density function f(.; b)
symmetric, positive, continuous and unimodal.

Proof. The process Xt is stationary if |b| < 1 (Grahn, 1995).
Given model (1) and being Xt a strong stationary process, it follows that its

characteristic function, H(u; b), is:

H(u; b) = e− 1
2 u2

∫
R

e− 1
2 b2u2y2

dF (y; b) (2)

where F (.; b) is the stationary distribution function of Xt.
Furthermore H(u; b) = 1 if and only if u = 0. Then the distribution function

cannot be arithmetic at some points over R and so it is a continuous distribution
function.
Being e− 1

2 b2u2y2
uniformly bounded, and since∫

R
|H(u; b)| du =

√
2π

∫
R

1√
1 + b2y2

dF (y; b) ≤
√

2π < ∞

then, there exists a continuous density function f(.; b).
Moreover the characteristic function is real and so f(.; b) is symmetric.
By using the Inversion Theorem, f(.; b) is

f(x; b) =
∫

R

1√
2π (1 + b2y2)

e
− x2

2(1+b2y2) f(y; b)dy (3)

and so f(.; b) is defined by a second kind integral equation.
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The density function is always positive. In fact, if f(x0; b) = 0 then

∫
R

1√
2π (1 + b2y2)

e
− x2

0
2(1+b2y2) f(y; b)dy = 0.

The last equation can be satisfied only forf(x; b) = 0,∀x ∈ R, which is impossible.
Given that the integrand function in (3) is:

g(x, y; b) =
1√

2π (1 + b2y2)
e
− x2

2(1+b2y2)

has the first partial derivative with respect to x, and it is uniformly dominated by
1/

√
2π, then

df(x; b)
dx

= −x

∫
R

1√
2π (1 + b2y2)3

e
− x2

2(1+b2y2) f(y; b)dy

So f(.; b) has a maximum only at x = 0.
It follows that f(.; b) is unimodal. ��

By Lemma 1 the expression (3) is the true univariate density function for Xt in
(1). However this lemma does not give a way to obtain a solution for (3). A series
expansion can be used to approximate the true distribution function for Xt in (1).
So it can be stated the following theorem.

Theorem 1 If Xt is defined as in (1), Xt is a strong stationary process and |b| <√
2/5, then there exists a series approximation of the univariate distribution func-

tion at the second term

F̃ (x) = Φ(x) − cxφ(x) (4)

with c = b2

2(1−b2) , φ(x) and Φ(x) the standard Normal density and distribution
functions, respectively.

Besides, the approximation error is∫ ∞

−∞

[
f(x) − f̃(x)

]2
dx ≤ 105

64
b8(µ4)2

√
π

with f(·) the true density function, f̃(·) the density function corresponding to F̃ (·)
and µ4 = E(X4

t ).

Proof. Starting from (2) and, by Taylor expansion at the second term, we have an
approximate characteristic function H̃(u; b),

H̃(u; b) = e− 1
2 u2

∫
R

(
1 − 1

2
b2u2y2

)
f(y; b)dy (5)

By the Inversion Theorem we have the result in (4). The expression (4) has the
density function of Lemma 1 if |b| <

√
2/5. If this condition is violated the

density function, corresponding to F̃ (x) in (4), is not unimodal.
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Let R1(u; b) be the remainder term of the expansion (5) which is

R1(u; b) ≤ 1
8
u4b4µ4e

− u2
2

By Parseval identity and, again, by the Inversion Theorem, we have

∫ ∞

−∞

[
f(x) − f̃(x)

]2
dx ≤ 105

64
b8(µ4)2

√
π

since
∫ ∞

−∞ u8e−u2
=

√
π105. ��

Remark 1 |b| <
√

2/5 implies that the sixth moment exists, that is E(X6
t ) < ∞.

Remark 2 The distribution (4) can be seen as an Edgeworth series truncated at
the second term. So Theorem 1 states that there is an Edgeworth expansion for the
stationary univariate distribution function for Xt defined in (1).

The above theorem gives a general method to approximate the unknown distri-
bution function. It is based on the existence of the moments of Xt. Since in model
(1) εt is a Gaussian White Noise then (Grahn, 1995)

E(Xn
t ) < ∞ ⇔ bn <

1
1 · 3 · · · (n − 1)

for n even.
So it implies that a better approximation imposes the existence of higher order

moments which means that the parameter b tends to zero or equivalently the non
linear structure in model (1) disappears.

Moreover it is possible to find a class of approximate distribution functions
of Xt without imposing conditions on the existence of the moments. So we can
compare the approximate distribution function of Theorem 1 with the distribution
functions shown in the following pages.

3 An alternative approach to approximate the distribution function

Firstly, we introduce a proper space of distribution functions.

Definition Let G be the class of functions g (.; b) over R such that g (.; b) is
continuous, unimodal, symmetric density function with

∫
R xg(x; b)dx = 0 and

µ2 = E(X2
t ) =

∫
R x2g(x; b)dx = 1

1−b2 .

In the following we use L1 to denote the class of functions which are abso-
lutely integrable over R and L2 to indicate the class of functions which are square
integrable over R and ‖.‖Lk , k = 1, 2, as the relative norm on Lk, k = 1, 2.

Lemma 2 The class G ⊂ L2 and it is complete in the L2 norm.



The univariate distribution function for a particular bilinear model 171

Proof. Given a Cauchy sequence in G, g1, . . . , gn, . . . then ∀ε > 0 ∃n0 :

∀(m, n) m > n > n0
∣∣‖gm‖2

L2 − ‖gn‖2
L2

∣∣ ≤ ‖gm − gn‖2
L2 < ε

So the sequence ‖gn‖2
L2 is convergent and there exists a function ḡ such that

‖gn‖2
L2 → ‖ḡ‖2

L2 < ∞
So G ⊂ L2.

But ‖gn‖L1 = 1 ∀n and ‖gn‖L1 → ‖ḡ‖L1 = 1. Therefore ḡ is a density
function.

Every function gn(x; b) is bounded and continuous with respect to x, ∀n and
∀|b| < 1. Consider a compact subset K = [−q, q] ⊂ R with q a positive and finite
number. Then we can build the functions gK

n in the following way:

gK
n (x; b) =

{
gn(x; b) x ∈ K
0 x �∈ K

The functions gK
n are dense in G. Then fix ε > 0 m′, n′ m′ > n′ > n0 such

that ∫
K

(
gK

m′(x; b) − gK
n′(x; b)

)2
dx < ε

By the mean value theorem there exists a x0 ∈ K such that
∣∣gK

m′(x0; b) − gK
n′(x0; b)

∣∣ <
√

2qε = ε′

Also, the choice of x0 depends on m and n. Since gK
n is bounded then ∀(m, n) we

can find a value of x such that
∣∣gK

m(x; b) − gK
n (x; b)

∣∣ < ε′

Hence the sequence gK
n converges uniformly to ḡK . Finally also the sequence gn

converges uniformly to ḡ. Then ḡ is bounded and continuous.
Since

∫
R x2k−1gn(x; b)dx = 0 ∀n, then

∫
R x2k−1ḡ(x; b)dx = 0 k ∈

N .
It follows that ḡ is symmetric.

In the same way
∫

R x2gn(x; b)dx → ∫
R x2ḡ(x; b)dx = µX

2 .
ḡ is unimodal. In fact, suppose ḡ is not unimodal. If ḡ has a maximum at x0 > 0

then there exist x′ < x′′ such that ḡ(x′; b) = ḡ(x′′; b). Then

lim gn(x′; b) = ḡ(x′; b) lim gn(x′′; b) = ḡ(x′′; b)

So lim |gn(x′; b) − gn(x′′; b)| = 0. Fix ε > 0 ∃n0 : ∀n > n0 we have

|gn(x′; b) − gn(x′′; b)| < ε ⇒ gn(x′; b) = gn(x′′; b)

But this is impossible because gn is a bounded, continuous and unimodal function
with the only maximum at 0. ��
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Remark The true density function, f , of the process (1) and the approximation
f̃ belong to G, where f̃ is derived by (4) in Theorem 1. In fact, it is f̃(x; b) =
(1 − c)φ(x) + cx2φ(x).

To understand the degree of approximation of f̃ we can choose another dis-
tribution function which belongs to G. Such a distribution is the Normal one with
zero mean and variance µ2. Let

p(x; b) =
1√

2πµ2
e− x2

2µ2

Lemma 3 If |b| <
√

2/5 then p is a better approximation than f̃ for f in L2 norm,
that is

‖p − f‖L2 < ‖f̃ − f‖L2 .

Proof. By Parseval identity we can evaluate the characteristic functions. Let H(u; b)
be the characteristic function of f given by expression (2) in Lemma 1, H̃(u; b) be
the characteristic function of f̃ given by expression (5) in Theorem 1 and Hp(u; b)
be the characteristic function of p. The condition |b| <

√
2/5 assures that f̃ exists.

So

H(u; b) = H̃(u; b) + R1(u; b)

where R1(u; b) < 1
8u4b4µ4e

− u2
2 with µ4 = E(X4

t ) as in Theorem 1.
But also

Hp(u; b) = exp
(

−u2

2

)
exp

(
−u2b2µ2

2

)
= H̃(u; b) + R2(u; b)

where R2(u; b) = 1
8u4b4(µ2)2e− u2

2 αu,b, with 0 < αu,b ≤ 1 and αu,b depends on
u and b. So

‖H̃ − H‖L2 ≤ ‖R1‖L2 and ‖Hp − H‖L2 ≤ ‖R1 − R2‖L2

Since R1(u; b) > R2(u; b)∀u, b given that µ4 > (µ2)2αu,b for the process defined
in (1), it follows that

‖p − f‖L2 < ‖f̃ − f‖L2 ��
Remark Observe that the Normal distribution, with density function p, approxi-
mates (in L2 norm) the true density function f better than f̃ . Moreover p is defined
for |b| < 1 whereas f̃ for |b| <

√
2/5.

To build an approximation for f , ∀|b| < 1, which does not suffer the limitation
of f̃ , we use the second kind integral equation of Lemma 1 as recursive formula,
that is

fk+1(x; b) =
∫

�

1√
2π (1 + b2y2)

e
− x2

2(1+b2y2) fk(y; b)dy

with k = 0, 1, 2, . . . and f0 ∈ G.
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The above equation can be written as

fk+1 = V (fk) (6)

and by Lemma 1 it is easy to show that V is an operator from G to G.

Lemma 4 The sequence {fk}, as defined in (6), converges to f in L2 norm,
∀f0 ∈ G.

Proof. Since ‖fk‖L1 = 1, ∀k then ‖V ‖L1 = 1. By Lemma 1 it can be
argued that fk(x; b) < 1 ∀(k, x, b). So the kernel of the operator V is always
positive and less than 1. It follows that ‖V ‖L2 ≤ ‖V ‖L1 = 1. Then the operator V
is continuous and the sequence ‖fk‖L2 is bounded.

The sequence ‖fk‖L2 , or equivalently ‖fk‖2
L2 , is monotone. Suppose that

the monotonicity does not hold. There exists, at least a k, for which ‖fk‖2
L2 ≥

‖fk+1‖2
L2 < ‖fk+2‖2

L2 .
The above relations can be written as∫

(fk(x; b) − fk+1(x; b)) (fk(x; b) + fk+1(x; b))dx ≥ 0

∫
(fk+2(x; b) − fk+1(x; b)) (fk+2(x; b) + fk+1(x; b))dx > 0

Since (fk(x; b) + fk+1(x; b)) and (fk+2(x; b) + fk+1(x; b)) are also quantities
less than 1 by Lemma 1, the second expression becomes∫

(fk+2(x; b) − fk+1(x; b)) (fk+2(x; b) + fk+1(x; b))dx ≤

≤
∫

(fk+2(x; b) − fk+1(x; b))dx = 0

But this is impossible and so we can state that the sequence ‖fk‖2
L2 , or equivalently

‖fk‖L2 , is monotone.
Thus, this sequence is convergent and so there exists a function ḡ ∈ L2, with

‖ḡ‖L1 = 1, such that ‖fk‖L2 → ‖ḡ‖L2 .
By Lemma 1, the characteristic functions Hk are integrable, ∀k, so ḡ is a

bounded and continuous function over R. It follows that the sequence {fk(x; b)}
is uniformly convergent with respect to x. Therefore

lim
k

∫
R

|fk(x; b) − ḡ(x; b)|2 dx =
∫

lim
k

|fk(x; b) − ḡ(x; b)|2 dx = 0.

Hence fk converges to ḡ in L2 norm, that is ‖fk − ḡ‖L2 → 0. If f0, the initial point
of the sequence in (6), is a generic function which belongs to G, since fk ∈ G and
G is complete in L2 norm by Lemma 2, it follows that ḡ ∈ G.

Finally, if f is a solution of

f = V (f)
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then f = ḡ in L2 norm. ��
An explicit expression can be derived for the characteristic function, H1, corre-

sponding to the distribution function with density f1 = V (p). By (2) in Lemma 1
H1 is

H1(u; b) = e− u2
2

(
1 + b2µ2u

2)−1/2
. (7)

Corollary 1 If f0 in the sequence (6) is p, the Normal distribution, then f1 = V (p)
is a better approximation than p for f , in L2 norm.

Proof. Since p ∈ G then ‖p − f‖L2 ≥ ‖f1 − f‖L2 by Lemma 4.
It is easy to verify that

‖Hp‖L2 < ‖H1‖L2

where Hp is the characteristic function of p.
Therefore, by Parseval identity

‖p − f‖L2 > ‖f1 − f‖L2 . ��
Lemma 4 assures that formula (6) is convergent to f for every initial point in

the class G. So we have a method to build an approximation to f without imposing
any further condition on the moments of Xt. Only the second moment must exist
because the class G has distribution functions with a finite second moment, by
definition. In fact, it easy to verify that the existence of the second moment assures
the stationarity of Xt defined in (1) (Grahn, 1995). But the main difficulty to go on
in the recursion formula (6) is to derive analytically the density functions fk(·).

At this point we have three distribution functions, f̃ by Theorem 1, p the Normal
distribution and f1 by corollary 1 which approximate f . The meaning of these
approximations can be analyzed with respect to a class of stationary stochastic
processes approximating the bilinear one defined in (1). For this purpose we can
see such a class of stationary stochastic processes as

Zt = εt + m(εt−1) (8)

or

Z ′
t = T (Z ′

t−1) + εt (9)

where εt is a Gaussian White Noise as in (1) and m and T are strictly monotone
and continuously differentiable functions over R.

The following theorem shows a link between the density functions fk(·) and
the class of processes (8) and (9).

Theorem 2 In the class of processes in (8) and (9), with density defined in (6), there
exists only one linear process as approximation of the bilinear one given in (1).
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Proof. Let HZ and HZ′ be the characteristic functions for Zt and Z ′
t, respectively.

By corollary 1, we can start with HZ ≡ Hp corresponding to the Normal distri-
bution function in G. In this case it is easy to verify that the process Zt becomes a
MA(1) with coefficient b

√
µ2. In a similar way we have an AR(1) process for Z ′

t.
Now consider a k ≥ 1. So HZ ≡ Hk, where Hk is the characteristic function

corresponding to a distribution function with density fk.
Assume that k is fixed. Let w = m(εt−1) be a continuous random variable over

R. Then, by (8)

HZ(u; b) = e− u2
2 Hw(u; b)

where Hw is the characteristic function of w. By (2) in Lemma 1, the characteristic
function of HZ can always be written as

HZ(u; b) = e− u2
2 (hZ)k(u; b)

where Hw(u; b) = (hZ)k(u; b) =
∫

R e− 1
2 b2u2y2

fk−1(y; b)dy.
But ‖(hZ)k‖L1 = ∞, ∀k ≥ 1. Further Hw is always non negative, then the

random variable w has no bounded density function over R. It follows that m′(x) =
0 for some finite x0. Thus m is not strictly monotone as required by definition of
m in (8).

The same result is true for Z ′
t in (9). ��

Remark The above theorem states that only a linear process can be used to approx-
imate the bilinear one in (1) of class (8) or (9). Nevertheless a non linear process,
in the same classes, exists as competitor of (1) if the functions m or T are restricted
to a subset of R.

The method of series expansion in Section 2 implies that it is necessary to
restrict m or T to a compact subset of R because the Fourier Transform of the
function exp

( 1
2u2

)
H̃(u; b) exists only in a compact subset of R. f̃ is an example

of this case. Instead, the other approach with the recursive formula (6), allows
to use a non linear process (8) or (9) with the functions m or T restricted to
R − {x1, x2, . . . , xn}, where {x1, x2, . . . , xn} is a finite set of points in R. By
corollary 1 the approximation of the density function f1 is equivalent to a non linear
function m or T which is restricted to a subset of R such as R−{x1, x2, . . . , xn}.

The approximate density functions f̃ , p and f1 depend on the unknown param-
eter b. If we consider a consistent estimator for b, such as the (Conditional Least
Squares) CLS, shown in Grahn (1995), say b̂CLS , then

ˆ̃
f(x) = φ(x)(1 − ĉCLS) + ĉCLSx2φ(x) a.s.−→ f̃(x).

This convergence can be proved by b̂CLS
a.s.−→ b, (Grahn, 1995), and ĉCLS =

b̂2CLS

2(1−b̂2CLS)
a.s.−→ c because it is a continuous function of b.

It is also true for p and f1.
The knowledge of a parametric distribution function allows to solve the esti-

mation problem in a finite dimensional space instead of infinite dimensional one.
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Fig. 1. Kernel estimate, Edgeworth type f̃ and Normal p, with b = 0.6

4 Empirical results

To evaluate the results of the proposed techniques a Monte Carlo study has been
performed. We draw 1000 series from (1) of length T=200 observations fixing
σ2 = 1. Then, to eliminate the starting values effects, we select randomly a number
between T/2 and 3T/4. This number is used to extract a specific observation for
each series. So we get 1000 values and show them by means a Kernel density
estimation. The Kernel function is Gaussian. So the bias of the Kernel density
estimation is 1

2h2f ′′(x)+o(h2), where f ′′(·) is the second derivative of the density
function f(·) (Jones, 1995). As in Lemma 1 it can be shown that f ′′(·) exists.
Denote by h the bandwidth parameter which tends to zero when n, the number
of the observations, goes to infinity. Since n = 1000, then the bias is a negligible
quantity, ∀x. Also, we estimate b̂CLS for each series and let bCLS be its mean over
1000 Monte-Carlo runs.

Figure 1 reports the Kernel density estimate for the simulated values, the density
function computed from the Edgeworth type f̃ , and the Normal density function
p, fixing the value of b to 0.6 which is near to

√
2/5 (the upper limit for f̃ to be a

valid approximation).
It is clear that the Normal density p has a better performance with respect to f̃ ,

the Edgeworth type approximation. It confirms the results in Lemma 3. For values
of b closer to zero, the differences tend to disappear, and the approximation (4)
works well.

Figure 2 compares the simulated density function (Kernel estimate) with the
Normal density p and f1, defined by its characteristic function in (7). The parameter
b is fixed to 0.8, a value for which f̃ is not valid.

It is evident that f1 is a better approximation than p. In this case it is possible
to verify that f1 has heavier tails than the Normal density p.

Since the fourth moment of (1) does not exist for b = 0.8, the CLS estimator
of b does not satisfy the conditions of the strong consistency (Grahn, 1995).
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Fig. 2. Kernel estimate, f1 and Normal p, with b = 0.8
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Fig. 3. Kernel estimate with the true value b = 0.8, f1 and normal p with the mean of the CLS estimate
bCLS = 0.6917

If we consider the CLS estimator for the parameter b, with σ2 = 1, we have
bCLS = 0.5577 for b = 0.6 and bCLS = 0.6917 for b = 0.8 over the 1000 Monte-
Carlo runs. Since the bias is great in the latter case, in Fig. 3 we compare the true
density function for b = 0.8 (Kernel estimate) with the functions p (Normal) and
the f1 in (7) fixing their parameter b to bCLS = 0.6917. So Fig. 3 shows the same
true density function (Kernel estimate) as in Fig. 2. It is interesting to note as the
behaviour of the density functions p and f1 seems to approximate very well the
true density function. In particular, given that b̂CLS underestimates b for T finite
(Grahn, 1995), then the approximation density function f1 is just a good choice
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when we have to estimate the parameter b and it is close to 1, the boundary of non
stationarity for the process defined in (1).

5 Concluding remarks

The aim of this paper is to investigate the theoretical aspects of the univariate distri-
bution function for a particular bilinear process in (1). Two methods are proposed
to derive an approximating density function. The result of the second section gives
the conditions for which the Edgeworth type expansion of the univariate stationary
distribution of Xt is valid. The alternative method, proposed in Sect. 3, is more
general and it can be applied only assuming that Xt is stationary. Moreover the last
approach delivers a parametric density function which can be useful for the estima-
tion of the unknown parameter b (by maximum likelihood, for instance) without
the constraint on the existence of higher order moments which are necessary for
the applications of the techniques available at the moment.

An analytical approximating distribution of Xt allows to compute the uncon-
ditional expected length of one-step ahead prediction interval (Kabaila, 2001). In
fact, in a forecasting context it is crucial to know the unconditional distribution
function in order to forecast m steps ahead, especially, when m > 1.

The generalization of methods, which have been described in the second and
third sections, to a wider class of bilinear models is still under study.
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