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for multivariate normal mixture models
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Abstract. It is well known that the log-likelihood function for samples coming
from normal mixture distributions may present spurious maxima and singularities.
For this reason here we reformulate some Hathaway’s results and we propose two
constrained estimation procedures for multivariate normal mixture modelling ac-
cording to the likelihood approach. Their perfomances are illustrated on the grounds
of some numerical simulations based on the EM algorithm. A comparison between
multivariate normal mixtures and the hot-deck approach in missing data imputation
is also considered.
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1. Introduction

Finite mixture distributions play a central role in statistical modelling as they com-
bine much of the flexibility of non parametric models with some analytic proper-
ties of parametric models, see e.g. [20,13]. In this last decade such models have
attracted the interest of many researchers so that mixtures have found a lot of new
and interesting fields of application, see e.g. [10,19,17,1].

Let f(·;ψ) be the density function of a normal mixture distribution, where ψ
assumes values in some parameter space Ψ , and let L(ψ) be the log-likelihood
function corresponding to a sample of size N with law f(·;ψ). The MLE ψ̂ is
usually computed by means of suitable optimization procedures which generate
a sequence of estimates {ψ(m)}m – starting from some initial guess ψ(0) – so
that the corresponding sequence {L(ψ(m))}m is not decreasing. [?]). However,
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the convergence towards ψ̂ is not guaranteed for two main reasons: i) the log-
likelihood function L(ψ) may be unbounded and this may cause the failure of the
algorithm; ii) the log-likelihood function L(ψ) presents local maxima, so that the
final estimate depends on the initial guess ψ(0).

This problem has been investigated in a sequence of papers, in particular in [5]
it is proved that the likelihood function should be maximised in a suitable subset
of Ψ and [6,8] present many related numerical results concerning the mixtures of
univariate normal distributions; some ideas will be outlined in Sect. 2.

The rest of the paper concerns the multivariate case; some preliminary ideas
were summarized in [3]. In Sect. 3 we reformulate some constraints introduced in
[5] for the multivariate normal mixture decomposition according to the likelihood
approach; in Sect. 4 we illustrate two simple procedures in order to implement
such constraints in practical algorithms. Afterwards in Sect. 5 we present some
numerical simulations based on the EM algorithm showing that our constrained
formulation leads to no failures and to a clearly smaller number of spurious maxima.
In Sect. 6 we consider an application in missing data imputation data by means of
a mixture of multivariate normal distributions. Finally in Sect. 7 we shall present
some concluding remarks and ideas for future work.

2. The univariate case

To begin with, we summarize some results concerning the univariate case. Let
f(x;ψ) be the density function of a mixture of k univariate normal components:

f(x;ψ) = α1p(x; µ1, σ
2
1) + · · ·+ αkp(x; µk, σ2

k) (1)

where p(x; µj , σj) is the density function of a normal distribution with parameters
µj , σ

2
j (j = 1, . . . , k), and ψ ∈ Ψ where:

Ψ = {(α1, . . . , αk, µ1, . . . , µk, σ1, . . . , σk) ∈ R
3k :

α1 + · · ·+ αk = 1, αj ≥ 0, σj > 0 for j = 1, . . . , k}.
Let L(ψ) be the log-likelihood function of ψ for a sample x = (x1, . . . , xN )
of size N drawn from f(x;ψ). It is well known that L(ψ;x) may show some
singularities, thus the definition of estimate of maximum likelihood as the absolute
maximum of L(ψ;x) lacks numerical sense. Under reasonable conditions, there
exists only one strongly consistent solution of the likelihood equations:

∂L(ψ;x)
∂ψ

= 0

and it is a point of local maximum of the likelihood function, see [11,18]. Herewith
the MLE estimate will be such a point of Ψ . In [5] it is proved that if the sample
x = (x1, . . . , xN ) drawn with law (1) contains at least k + 1 distinct points, then
for c ∈ (0, 1], there exists a point of absolute maximum which is strongly consistent
in the subset of Ψ satisfying the constraint:

min
i �=j

(
σ2

j

σ2
i

)
≥ c > 0 .
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Numerical experiments about the univariate case are presented in [6,8].

3. The multivariate case

Let f(x;ψ) be the density of a mixture of k multinormal distribution:

f(x;ψ) = α1p(x;µ1,Σ1) + · · ·+ αkp(x;µk,Σk) (2)

where the αj (j = 1, . . . , k) are the mixing weights and p(x;µj ,Σj) is the density
function of the multivariate normal distribution with mean vectorµj and covariance
matrix Σj (which is required to be positive definite, denoted by Σj > 0). Finally
we set ψ = {(αj ,µj ,Σj), j = 1, . . . , k} ∈ Ψ , where Ψ is the parameter space:

Ψ = {(α1, . . . , αk,µ1, . . . ,µk,Σ1, . . . ,Σk) ∈ R
k[1+p+(p2+p)/2] :

α1 + · · ·+ αk = 1, αj ≥ 0, Σj > 0 for j = 1, ..., k} .
(3)

It is well known that the matrixΣj is positive definite if and only if all its eigenvalues
are strictly positive. Thus, if we denote by λi(Σj) the i-th eigenvalue of the j-th
covariance matrixΣj , the parameter space (3) can be rewritten as:

Ψ = {(α1, . . . , αk,µ1, . . . ,µk,Σ1, . . . ,Σk) ∈ R
k[1+p+(p2+p)/2] :

α1 + · · ·+ αk = 1, αj ≥ 0, λi(Σj) > 0 for j = 1, ..., k, i = 1, ..., p} .
(4)

Assume that we are provided with a sample drawn with law (2) containing at least
k + p distinct points and let c ∈ (0, 1]. In [5] the following constraint:

min
1≤h�=j≤k

λ(ΣhΣ
−1
j ) ≥ c > 0 (5)

on the eigenvalues of ΣhΣ
−1
j is imposed for some positive number c (satisfied

by the true parameter), because this leads to a constrained (global) maximum-
likelihood formulation as the assumptions of [12] are satisfied.

In practice the constraint (5) presents a drawback: indeed even if the bound
(5) can be easily checked, in the present form it is inapplicable in the optimization
procedures like the EM algorithm where the estimates of the covariance matrices
are iteratively updated. Thus our goal becomes to impose suitable constraints on the
eigenvalues of each covariance matrixΣj (j = 1, . . . , k) such that the bound (5) is
satisfied. For this aim a suitable reformulation of the above constraint is proposed
in Proposition 1. We premise the following definition of matrix norm, see e.g. [7,
9,16].

Definition 1 (Matrix norm) LetMp be the set of all (p × p) matrices over R. A
function ‖ · ‖ : Mp → R is a matrix norm if for all A,B ∈ Mp and c ∈ R it
satisfies the following five axioms:

i. ‖A‖ ≥ 0
ii. ‖A‖ = 0 if and only if A = 0,

iii. ‖cA‖ = |c| · ‖A‖,
iv. ‖A + B‖ ≤ ‖A‖+ ‖B‖,
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v. ‖AB‖ ≤ ‖A‖ · ‖B‖ (submultiplicative or multiplivative property).

Proposition 1 Let A,B two p× p symmetric and positive definite matrices. Then
we have:

λmax(AB−1) ≤ λmax(A)
λmin(B)

(6)

λmin(AB−1) ≥ λmin(A)
λmax(B)

(7)

where λmin(·) and λmax(·) are respectively the smallest and the largest eigenvalue
of the matrix (·).
Proof. The proof is based on some results of matrix analysis, see e.g. [7,16] for
details. The hypotheses on the matrices A and B imply that AB−1 is positive
definite (we remark that in general the matrix AB−1 is not symmetric even if
A and B are) and thus all its eigenvalues are stricly positive. In particular the
spectral radius ρ(AB−1) = maxi |λi(AB−1)| of the matrix AB−1 – that is the
largest eigenvalue of AB−1 in absolute value – is equal to largest eigenvalue
λmax(AB−1) := maxi λi(AB−1) = maxi |λi(AB−1)|.

The multiplicative property of matrix norms specializes in our case:

‖AB−1‖ ≤ ‖A‖ · ‖B−1‖ . (8)

Moreover, since for any matrix norm it results ρ(AB−1) ≤ ‖AB−1‖, we have:

ρ(AB−1) = λmax(AB−1) ≤ ‖AB−1‖ . (9)

Let us consider the spectral norm ‖ · ‖2 of a matrix A, which is defined as:

‖A‖2 := max{
√

λ : λ is an eigenvalue of A′A};
in particular if A is symmetric then ‖A‖2 coincides with its spectral radius, that is
‖A‖2 = ρ(A). Thus we get (above we remarked that in general the matrix AB−1

is not symmetric even if A and B are):

λmax(AB−1) ≤ ‖AB−1‖2
‖A‖2 = λmax(A)

‖B−1‖2 = λmax(B−1),

(10)

so that from the relations (8), (9) and (10) we get:

λmax(AB−1) ≤ ‖AB−1‖2 ≤ ‖A‖2 · ‖B−1‖2 = λmax(A)λmax(B−1) .

The proof is completed considering the equalityλmin(A) = 1/λmax(A−1)because
the eigenvalues of A−1 are the inverse of those of A and this yields:

λmax(AB−1) ≤ λmax(A)λmax(B−1) =
λmax(A)
λmin(B)

.
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The other statement (7) results in the same way by applying the inequality (8) to
the inverse matrix:

λmin(AB−1) =
1

λmax[(AB−1)−1]
=

1
λmax[(BA−1)]

≥ 1
λmax(B)λmax(A−1)

=
λmin(A)
λmax(B)

.

This completes the proof. ��

In particular since the eigenvalues ofΣj give the variances along the principal
axes, then imposing bounds on the eigenvalues ofΣj amounts to imposing bounds
on these variances. According to the relation (7), the bound (5) can be satisfied
by imposing suitable constraints on the eigenvalues of each covariance matrixΣj

(1 ≤ j ≤ k).
Let a, b two strictly positive constants such that a/b ≥ c, where c satisfies the

relation (5), and assume that the eigenvalues of the covariance matricesΣj satisfy
the constraints:

a ≤ λi(Σj) ≤ b i = 1, . . . , p , j = 1, . . . , k . (11)

Then for any pair of covariance matricesΣh,Σj , the inequality (7) yields:

λmin(ΣhΣ
−1
j ) ≥ λmin(Σh)

λmax(Σj)
≥ a

b
≥ c > 0 , 1 ≤ h 	= j ≤ k . (12)

In the following the log-likelihood will be maximised over the subspace Ψa,b of
Ψ :

Ψa,b = {(α1, . . . , αk,µ1, . . . ,µk,Σ1, . . . ,Σk) ∈ R
k[1+p+(p2+p)/2] :

α1 + · · ·+ αk = 1, αj ≥ 0, a ≤ λi(Σj) ≤ b, for j = 1, . . . , k} ,

for suitable positive numbers a, b such that a/b ≥ c.

4. Two different procedures

In order to implement the constraints (11) in the EM algorithm, we suggest two
different strategies based on some results of matrix theory, see e.g. [16].

Procedure 1. For any eigenvalue λ(A) of a p× p matrix A it results:

λ(A + εIp) = λ(A) + ε (13)

λ(γA) = γ · λ(A) (14)

where Ip is the p-dimensional identity matrix and γ is a non-zero real number. Let

Σ
(m)
j be the j-th covariance matrix evaluated at the m-th iteration of the algorithm
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and denote respectively by λmin(Σ(m)
j ) and λmax(Σ

(m)
j ) the smallest and the

largest eigenvalue ofΣ(m)
j (j = 1, . . . , k). Afterwards let us consider:

λ
(m)
∗ = min

{
λmin(Σ(m)

1 ), . . . , λmin(Σ(m)
k )

}
λ∗(m) = max

{
λmax(Σ

(m)
1 ), . . . , λmax(Σ

(m)
k )

}
,

and finally set ε
(m)
∗ = a− λ

(m)
∗ . If λmin(Σ(m)

j ) < a for some j ∈ {1, . . . , k}, the

matrix Σ(m)
j + ε

(m)
∗ Ip satisfies the lower bound in (11). Indeed, according to the

relation (13), we have:

λmin(Σ(m)
j + ε

(m)
∗ Ip) = λmin(Σ(m)

j ) + ε
(m)
∗ = λmin(Σ(m)

j )− λ
(m)
∗ + a

≥ a . (15)

Analogous arguments apply in order to impose the upper bound in (11) according
to the relation (14). If λmax(Σ

(m)
j ) > b − a for some j ∈ {1, . . . , k}, then let us

set γ = (b− a)/λ∗(m); thus the matrix γΣ
(m)
j satisfies the constraint:

λmax

(
b− a

λ∗(m)Σ
(m)
j

)
=

b− a

λ∗(m) λmax(Σ
(m)
j ) ≤ b− a < b . (16)

Here we impose a slightly stronger constraint than necessary, i.e
λmax(Σ

(m)
j ) ≤ b − a rather than λmax(Σ

(m)
j ) ≤ b, in order to prevent an

eccessive translation of the spectrum of the eigenvalues due to the constraint (15)
on the smallest eigenvalue λmin(Σ(m)

j ) .
The two constraints (15) and (16) described above can be implemented quite

easily in optimization algorithms, like the EM algorithm, performing the following
steps at the m-th iteration, after computing the eigenvalues ofΣ(m)

j :

1. If λmax(Σ
(m)
j ) > b − a then set γ = (b − a)/λ∗(m) and afterwards

Σ
(m)
j ← γΣ

(m)
j ;

2. If λmin(Σ(m)
j ) < a then set ε

(m)
∗ = a − λ

(m)
∗ and afterwards

Σ
(m)
j ← Σ

(m)
j + ε

(m)
∗ Ip.

Procedure 2. The previous recipe is quite simple but it involves a drawback.
Indeed, when the constraints (13) and (14) act, they modify the entire spectrum
(that is all eigenvalues) of the covariance matrix. A more elegant strategy will be
presented below based on the spectral decomposition theorem and it allows the
imposition of a constraint only to some selected eigenvalues of the covariance
matrix. It is well known that any symmetric matrix A can be decomposed as:

A = ΓΛΓ ′ (17)

where Λ is the diagonal matrix of the eigenvalues of A, and Γ is an orthogonal
matrix whose columns are standardized eigenvectors; the symbol ′ denotes matrix
transpose.
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The idea is to utilise formula (17) in a constructive way rather than as a decom-
position relation, in order to build a covariance matrix having given eigenvalues: if
any eigenvalue of Σ(m)

j is smaller (greater) than a (b) than it can be replaced by
a (b) while the eigenvectors remain unchanged. The procedure can be summarized
as follows at the m-th iteration:

1. Compute the diagonal matrix Λ(m) = diag(λ(m)
1 , . . . , λ

(m)
p ) of the eigen-

values and the orthogonal matrix Γ (m) whose columns are the standardized
eigenvectors ofΣ(m)

j ;

2. if λ
(m)
i < a then set λ

(m)
i ← a, i = 1, . . . , p;

3. if λ
(m)
i > b then set λ

(m)
i ← b, i = 1, . . . , p;

4. set Λ(m) ← diag(λ(m)
1 , . . . , λ

(m)
p );

5. setΣ(m)
j ← Γ (m)Λ(m)Γ ′(m).

5. Numerical simulations

The performances of the proposed constraints have been evaluated on the grounds
of two different sets of problems involving data modelling by multivariate normal
mixtures. The first one concerns some mixture decompositions and will be illus-
trated in this section; the second one lies in the area of missing data imputation and
it will be treated in the next section.

As far as the first applications are concerned, we have considered three mixtures
of k components of p-normal distributions for different parameters ψ. For each of
them we have first generated a sample X of N data; the parameters have been
estimated using the EM algorithm. The point of local maximum corresponding to
the consistent estimator ψ∗ has been chosen to be the limit of the EM algorithm
using ψ as initial estimate.

For each mixture we have generated a set of 100 points as initial estimates
ψ(0) selected as follows. The initial weights (α(0)

1 , . . . , α
(0)
k ) have been randomly

chosen with uniform distribution in the unit interval [0, 1] satisfying the constraint∑
i α

(0)
i = 1. The initial mean vectorsµ(0)

1 , . . . ,µ
(0)
k have been selected as follows.

Let x̄ and S be respectively the sample mean and the sample covariance matrix of
the data X; afterwards we randomly generated the µ(0)

1 , . . . ,µ
(0)
k independently

with multivariate normal distribution as:

µ
(0)
1 , . . . ,µ

(0)
k

i.i.d∼ N(x̄,S) ,

see also [17].The initial guessesΣ(0)
1 , . . . ,Σ

(0)
k have been chosen as the covariance

matrices of k different random subsamples of X.
Finally we run a hundred times the unconstrained EM algorithm and the two

constrained EM algorithms implementing respectively the Procedure 1 and the
Procedure 2 starting from the initial estimates previously selected. Many different
pairs of constraints (a, b) have been taken into account.

The computation stopped when the difference between two consecutive log-
likelihood values, say L(ψ(m)) − L(ψ(m−1)), resulted less than 0.01. Computer
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programs were written in the R language; the different experiments and the obtained
results are described below.

Mixture 1: k = 3, p = 2, N = 200.
The sample was generated according to the following parameters of the mixture:

α = (0.3, 0.4, 0.3)′ µ1 = (0, 3)′ µ2 = (1, 5)′ µ3 = (−3, 8)′

Σ1 =
(

1 0
0 2

)
Σ2 =

(
1 −1
−1 2

)
Σ3 =

(
2 1
1 2

)
.

The covariance matricesΣ1,Σ2 andΣ3 have respectively the following eigenval-
ues:

λ1 = (1, 2)′ λ2 = (0.382, 2.618)′ λ3 = (1, 3)′ .

Note that the smallest eigenvalue is equal to 0.382 while the largest eigenvalue
resulted equal to 3.

First we considered the unconstrained algorithm: we observed failures (that
is the algorithm did not generate a bounded sequence of loglikelihood values)
in 3% of cases and convergence towards to some spurious maximum in 11% of
cases; then the right maximum was attained in the remaining 86% of cases. On
the contrary both the constrained algorithms based on Procedures 1 and 2 gave no
failures and moreover converged to the right maximum in a larger percentage of
cases. Table 1 summarizes the percentage of convergence to the right maximum for
the two constrained procedures for some different values of the constraints (a, b)
in (11).

Table 1. Mixture 1: Percentage of convergence to the right maximum of the constrained EM algorithms
for some pairs (a, b)

a

b 0.20 0.25 0.30 0.35

4.0 96% 98% 97% 96%

4.5 93% 93% 91% 94%

5.0 94% 93% 90% 93%

a

b 0.20 0.25 0.30 0.35

4.0 98% 97% 98% 99%

4.5 99% 98% 99% 99%

5.0 98% 98% 100% 100%

Procedure 1 Procedure 2

The two recipes are practically equivalent even if Procedure 2 worked slightly
better than the other recipe.

Mixture 2: k = 3, p = 2, N = 200.
The second mixture has the same parameters as the previous one except a variance
inΣ3 that now is equal to 0.6 rather than 2. This sample was generated according
to the following parameters of the mixture:

α = (0.3, 0.4, 0.3)′ µ1 = (0, 3)′ µ2 = (1, 5)′ µ3 = (−3, 8)′

Σ1 =

(
1 0
0 2

)
Σ2 =

(
1 −1
−1 2

)
Σ3 =

(
2 1
1 0.6

)
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The covariance matricesΣ1,Σ2 andΣ3 have respectively the following eigenval-
ues:

λ1 = (1, 2)′ λ2 = (0.382, 2.618)′ λ3 = (0.079, 2.521)′ .

Note that in this case the smallest eigenvalue is equal to 0.079 while the largest
eigenvalue resulted equal to 2.618.

As concerns the unconstrained algorithm, we observed failures in 16% of cases
while the algorithm converged to some spurious maximum in 15% of cases; then
the right maximum was attained in 69% of cases.

Table 2. Mixture 2: Percentage of convergence to the right maximum of the constrained EM algorithms
for some pairs (a, b)

a

b 0.01 0.02 0.03 0.05

3.5 78% 81% 82% 95%

4.0 85% 93% 93% 95%

4.5 89% 95% 89% 87%

a

b 0.01 0.02 0.03 0.05

3.5 88% 89% 97% 99%

4.0 88% 86% 97% 99%

4.5 87% 87% 99% 98%

Procedure 1 Procedure 2

5 30 55 80 105 130 155
-2000

-1800

-1600

-1400

-1200

-1000

unconstrained
constraint 1
constraint 2

number of iterations

lo
g-

lik
el

ih
oo

d

Fig. 1. Comparison among the trajectories of the log-likelihood functions when the unconstrained
algorithm converges to a spurious maximum

On the contrary again both the constrained algorithms based on Procedures 1
and 2 gave no failures and moreover converged to the right maximum in a larger
percentage of cases. The obtained results have been summarized in Table 2 which
gives the percentage of convergence to the right maximum for the two constrained
procedures for some different values of (a, b) in (11). Also in this case Procedure
2 worked in general slightly better than the first recipe.
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Fig. 2. Comparisons among the trajectories of the smallest eigenvalue (top) and of the largest eigenvalue
(bottom) when the unconstrained algorithm converges to a spurious maximum

Figures 1, 2 and 3 show examples of how the two constrained versions work
when the unconstrained converges respectively to a spurious maximum or tends
to a singular point for some cases concerning the Mixture 2; Figs. 1 and 2 refer
to the same initial guess. The following constraints have been selected: a = 0.03
and b = 4 (note that here the algorithm based on Procedure 2 required a smaller
number of iterations, but this is not true in general).

Mixture 3: k = 2, p = 3, N = 300.
The third mixture is based on 2 three-dimensional multivariate normal distributions.
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Fig. 3. Example of how the constrained versions of the EM algorithm work when the unconstrained
algorithm tends to a singularity: trajectories of the log-likelihood (top) and of the smallest eigenvalue
(bottom).

The sample was generated according to the following parameters of the mixture:

α = (0.3, 0.7)′ µ1 = (0, 0, 0)′ µ2 = (5,−2, 3)′

Σ1 =


1 0 0

0 1 0
0 0 1


 Σ2 =


 4 −2 1
−2 2 0
1 0 2
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The covariance matricesΣ1,Σ2 have respectively the following eigenvalues:

λ1 = (1, 1, 1)′ λ2 = (0.551, 2.000, 5.449)′ .

Table 3. Mixture 3: Percentage of convergence to the right maximum of the constrained EM algorithms
for some pairs (a, b).

a

b 0.2 0.3 0.4

6.0 76% 75% 74%

6.5 83% 82% 80%

7.0 80% 81% 72%

8.0 52% 55% 55%

a

b 0.2 0.3 0.4

6.0 73% 73% 69%

6.5 76% 74% 71%

7.0 74% 74% 71%

8.0 72% 70% 70%

Procedure 1 Procedure 2

As far as the unconstrained algorithm is concerned, we observed failures in
36% of cases while the algorithm converged to some spurious maximum in 32%
of cases; then the right maximum was attained in 32% of cases. Also in this case
both the constrained algorithms based on Procedures 1 and 2 gave no failures;
Table 3 gives the percentage of convergence to the right maximum for the two
constrained procedures for some different values of a, b in (11). Unlike the two
previous mixtures, in this case either procedure worked slightly better than the
other one depending on the choice of the constraints (a, b).

6. Mixture models vs. hot deck imputation: a case study

An important field of application of multivariate normal mixture models concerns
missing data imputation, see e.g. [14]. Let x1, . . . ,xN be a sample of size N from a
Gaussian mixture with density f(x;ψ) given in (2). Here we assumed components
with the same covariance matrixΣ, that isΣj = Σ (j = 1, . . . , k). The maximum
likelihood estimation of the parameters has been obtained via the EM algorithm,
see [15].

Since the scope is now missing data imputation rather than mixture decompo-
sition, our analysis was carried out along different lines and we utilised the well
known Fisher’s iris data set for comparison with the results given in [4]. It is well
known that this data set contains 150 cases of 4-dimensional observations con-
cerning three species of iris flowers. Moreover since we placed in the context of
statistical learning by examples, we considered 90 units (30 for each species) as
the learning set (for parameter estimation) and the remaining 60 units (20 for each
species) as the test set.

Starting from the complete data set, first of all we have generated six groups
of a hundred incomplete data sets eliminating at random some values (the whole
data set contains 600 values): 100 data sets with 25 missing values, 100 data sets
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with 50 missing values, ..., 100 data sets with 150 missing values. In this case the
missing at random (MAR) hypotheses are satisfied. We point out that the missing
data in the test set have been estimated using the model obtained from the learning
set.

We compared the estimates obtained using imputation based on the mixture
models (MM) with the ones obtained by means of the hot-deck (HD) method (using
the Euclidean distance); for this aim we considered the following standardized mean
distances:

δL :=
1

nL

∑
(i,j)∈XL

|x̂ij − xij |
sj

and δT :=
1

nT

∑
(i,j)∈XT

|x̂ij − xij |
sj

(18)

where XL (XT ) denotes the learning (test) set containing nL (nT ) points, x̂ij

denotes the estimated ij-th value and xij the corresponding value in the complete
data set, and sj is the standard deviation of the j-th variable, see also [2].

The initial estimate of the parameters has been obtained via the sample esti-
mate based on the subset of complete data; moreover, in view of our scope only
the simplest constraining recipe has been implemented, i.e. Procedure 1. The al-
gorithm was stopped when the difference between two consecutive values of the
log-likelihood resulted less than 0.5. Finally, as we assumed the same covariance
matrix for the three multivariate normal components, only a lower bound a = 0.01
on the smallest eigenvalue must be imposed.

The results obtained using the mixture models have been summarized in Table 4,
where for each group of 100 datasets we give: the common total number of missing
values, the minimum and the maximum number of missing values for both the
learning sets and the test sets, the mean distances δL and δT computed according
to the distances (18).

Table 4. Results for different numbers of missing values in Iris data estimated using MM: distances
from the original data

Learning Set Test Set

# missing # missing # missing

tot min max δL min max δT

25 9 21 0.1214 4 16 0.1016

50 23 37 0.1281 13 27 0.1083

75 37 53 0.1260 22 38 0.1078

100 52 71 0.1238 29 48 0.1119

125 65 86 0.1255 39 60 0.1186

150 79 103 0.1270 47 71 0.1272

Table 5 summarizes analogous quantities when using the HD imputation method
on the same datasets.

Table 6 reports the percentages of times (for each group of 100 datasets) in
which the MM approach led to a smaller value of the standardized mean distances
δL and δT , respectively for the learning set and the test set, than the HD approach
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Table 5. Results for different numbers of missing values estimated in Iris data using HD: distances from
the original data

Learning Set Test Set

# missing # missing # missing

tot min max δL min max δT

25 9 21 0.1444 4 16 0.1526

50 23 37 0.1488 13 27 0.1504

75 37 53 0.1542 22 38 0.1552

100 52 71 0.1570 29 48 0.1588

125 65 86 0.1622 39 60 0.1663

150 79 103 0.1660 47 71 0.1755

Table 6. MM versus HD: percentage of times in which the MM method led to smaller distances δL and
δT than the HD method

# missing tot δL δT

25 74% 87%

50 81% 92%

75 98% 97%

100 99% 97%

125 99% 100%

150 99% 98%

did. The results obtained show that almost always the mixture models have led to
better results than the hot-deck method.

7. Discussion and concluding remarks

An important point concerns the choice of the bounds a, b in (11). The results
presented in Sect. 5 show that Procedure 1 is more sensible than Procedure 2 with
regard to this choice; however the difficulty is when no prior information abouta, b is
avalaible. For this aim, we tried to implement a criterion based on the eigenvalues
of the initial estimates of the covariance matrices Σ(0)

1 , . . . ,Σ
(0)
k : let λ

(0)
min and

λ
(0)
max respectively the smallest and the largest eigenvalue of Σ(0)

1 , . . . ,Σ
(0)
k , and

afterwards we set:

a := λ
(0)
min/a′ b := λ(0)

max · b′ .

for suitable positive numbers a′, b′; the results were unsatisfactory since we didn’t
find a unique suitable pair of values (a, b). Perhaps a fruitful strategy is to look for
some adaptive procedure for varying the constraints dynamically as the algorithm
carries out.

As concerns the application in missing data imputation, the scope was to eval-
uate mixture models in comparison with the hot-deck approach: in our opinion, on
the grounds of the obtained results, the use of mixture models is questionable for
small percentages of missing data. We remark that we compared also the hot-deck
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approach with the usual mean imputation method: the hot-deck method gave always
better estimates than the other one both for the learning and the test sets.

A final important question concerns the monotonicity of the constrained EM
algorithm. Our simulations seems to suggest that a suitable choice of the bounds
(a, b) could preserve the monotonicity when Procedure 2 is taken into account; on
the contrary Procedure 1 often destroyed the monotonicity of the EM algorithm but
this did not constitute a problem: the trajectories of the likelihood shown in Figs. 1
and 3 are representative of the obtained results in our simulations.

The proposed constraints on the parameter space of the likelihood function of a
multinormal mixture distribution, and the practical recipes we implemented, have
proved to work quite well in our simulations: problems with singularities do not exist
while the number of spurious maxima have been at least reduced. No overwhelming
superiority of either procedure can be assessed in general; the two recipes reflect
two different constraints on the geometric properties of the covariance matrices and
more suggestions could follow from further theoretical studies.
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1. Böhning D, Seidel W (2003) Recent develompments in mixture models. Computational Statistics
& Data Analysis 41: 349–357

2. Domma F, Ingrassia S (2001) Mixture models for maximum likelihood estimation from incomplete
values. In: Borra S, Rocci M,Vichi M, Schader M (eds)Advances in classification and data analysis.
Springer, Berlin Heidelberg New York, pp 201–208

3. Domma F, Ingrassia S (2002) A constrained MLE formulation for multinormal mixture decom-
position. In: Atti della XLI Riunione Scientifica della Società Italiana di Statistica, Milano, 5–7
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