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Abstract. The DEDICOM model is a model to analyze square tables describing
asymmetric relationships among n entities. Its importance in the asymmetric mul-
tidimensional scaling literature is due to the fact that several authors showed a large
class of models to be simply a constrained version of DEDICOM. A typical exam-
ple is the Generalized GIPSCAL proposed by Kiers & Takane. In this paper we
present a new algorithm capable to fit, in the least squares sense, any DEDICOM
constrained model.
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1. Introduction

Multidimensional scaling is a set of techniques to analyze a data matrix X = [xij ]
whose rows and columns correspond to the same set of n objects (e.g. correlation
matrices, proximity data). When the intensity of the relation depends on the order in
which the objects are considered, the data matrix X is asymmetric. Typical examples
are: similarity ratings, preferences, flows (e.g. import-export, brand switching),
contingency tables (e.g. occupational mobility, word associations), etc.. Standard
multidimensional scaling (Gower, 1966), designed for symmetric data, can not be
applied in this case and suitable techniques are required for analyzing asymmetry
not solely due to random noise. Several models have been proposed (for a review, see
Zielman and Heiser, 1996) to deal with asymmetric data. Among them, DEDICOM
(Harshman et al., 1982) is one of the most important. This model can be formulated
as

X = ARA′ + E, (1)
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where A is a n × p (n > p) matrix of loadings (weights) for the n objects on p
dimensions, R is a p×p matrix representing relations among the p dimensions and
E is a residual term. The aim of the model is to explain the asymmetric relations
among the n objects by the relations among a small set of dimensions which can be
regarded as “aspects” of the objects. The relevance of each aspect on a particular
object is indicated by the entries of A. The parameters are usually estimated by
minimizing the sum of squared residuals. Several Alternating Least Squares (ALS)
algorithms have been proposed to solve this minimization problem. They can be
divided into two classes. The first contains algorithms, which we call left-and-right,
where the left and the right hand side matrix A in ARA′ are treated independently.
Mostly, the left and right hand matrices are equal upon convergence and thus the
proper model has been fitted. The second class contains algorithms that do not
distinguish the two left and right matrices but impose the constraint A′A = I. This
does not cause any loss of fit because every non-singular linear transformation of
A can be undone by applying the inverse transformation on R (Kiers, 1989; Kiers
et al., 1990).

The importance of DEDICOM in multidimensional scaling literature is due to
the fact that a large class of models to analyze asymmetric proximity data are simply
constrained versions of it. In fact, it can be shown that the Generalized GIPSCAL
(Kiers & Takane, 1994), Generalized EG (Rocci & Bove, 2002), EG (Escoufier &
Grorud, 1980) and the Gower decomposition (Gower, 1977) are particular cases of
the DEDICOM model. They simply correspond to a DEDICOM model where the
relation matrix R has a particular form. Several other models could be obtained by
imposing some constraints on the matrix R. For example, in some applications it
could be useful to set some elements of R equal to zero to simplify the interpretation
of the results.

This class of models gives rise to the need for a unique algorithm capable to
fit the DEDICOM model and its constrained versions. In this way the researcher
can easily implement a model selection procedure to find the model suitable for the
data. At the moment such algorithm does not exist. Our aim is to fill this gap by
extending the generalized Takane’s algorithm (Kiers et al., 1990), which has been
proposed to fit the DEDICOM model and appeared to be very efficient in most
practical cases.

The material of this paper is organized as follows. First, in Sect. 2 we exam-
ine some constrained versions of DEDICOM. The new algorithm is introduced
in Sect. 3, while in Sect. we present the results of a simulation study to test the
performances of the algorithm. We conclude with a general discussion in Sect. 5.

2. Constrained DEDICOM models

One of the most important DEDICOM constrained model (cDEDICOM for short) is
Generalized GIPSCAL (GG). This model generalizes, but also simplifies, the GIP-
SCAL model proposed by Chino (1990) and it allows a graphical representation of
the results which is absent in the DEDICOM model. It is based on the decomposi-
tion of the elementary datum xij into two parts: symmetry (i.e. sij = 1/2(xij +xji))
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and skew-symmetry (i.e. kij = 1/2(xij − xji)). The aim is to find a simultaneous
graphical representation of the two parts. The model can be formulated as

xij =
p/2∑

m=1

[b(ai(2m−1)aj(2m−1) + ai(2m)aj(2m)) (2)

+dm(ai(2m−1)aj(2m) − ai(2m)aj(2m−1))] + eij ,

where b can be only 1 or 0 and dm ≥ 0(m = 1, 2, . . ., p/2). When b = 1 and
p = 2, it allows us to represent object i as a point lying in a plane (bimension)
having coordinates (ai1, ai2). The obtained configuration of n points represents
simultaneously symmetry and skew-symmetry. In fact, let x̂ij be the fitted data
pertaining to the pair (i, j), we have

ŝij =
1
2
(x̂ij + x̂ji) = ai1aj1 + ai2aj2, (3)

that is, for any pair of points the scalar product describes the symmetric component
of the data. Furthermore,

k̂ij =
1
2
(x̂ij − x̂ji) = d1(ai1aj2 − ai2aj1) (4)

that is, twice the area of the triangle having the two points and the origin as vertices,
multiplied by d1, describes the absolute value of the skew-symmetric component,
whose algebraic sign is associated with the orientation of the plane (positive counter-
clockwise, negative clockwise).

When b = 1 and p > 2, the symmetric component of the data is represented by

ŝij =
p/2∑

m=1

(ai(2m−1)aj(2m−1) + ai(2m)aj(2m)) (5)

which corresponds to the sum of the scalar products between a pair of points on
each bimension, while the skew-symmetric component is represented by

k̂ij =
p/2∑

m=1

dm(ai(2m−1)aj(2m) − ai(2m)aj(2m−1)) (6)

that is, twice the sum of the triangle areas taking into account the algebraic sign and
the weight dm of each bimension. It follows that to get the intensity of the relation
between two objects we have to consider all the diagrams simultaneously (one for
each bimension) summing algebraically scalar products and weighted areas.

The GG model is a constrained version of DEDICOM. This can be easily seen,
by rewriting (2) in matrix notation as

X = A(bI + KD)A′ + E, (7)
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where I is the identity matrix, D = diag(d1, d1, , d2, d2, . . ., dp/2, dp/2) and K is
a block-diagonal matrix having on its main diagonal the matrix[

0 1

−1 0

]
(8)

repeated p/2 times. It follows that GG is a DEDICOM model where R is constrained
to have a particular form. Kiers & Takane (1994) have shown that this constraint
could be non-active, since every matrix R of even order having a positive semi-
definite symmetric part (i.e. 1/2(R + R′)) can be always rewritten in the form
R = U(I + KD)U′.

Several models can be considered as constrained versions of GG and then
cDEDICOM models: the Generalized Escoufier & Grorud model (Rocci &Bove,
2002), which can be obtained by setting b = 1 and d1 = d2 = . . . = dp/2,
the Escoufier & Grorud model (Escoufier & Grorud, 1980), where b = 1 and
d1 = d2 = . . . = dp/2 = 1, and the Gower decomposition (Gower, 1977), where
b = 0 and only the skew-symmetric part of the data is analyzed. Of course, the last
model is used only when the data matrix is skew-symmetric or when the symmetric
and the skew-symmetric parts of the data are analyzed separately.

In the next section we will introduce a general algorithm capable to fit, in a
least squares sense, the models considered above and other cDEDICOM models.

3. A general algorithm

In this section we consider the problem of fitting a cDEDICOM model. The least
squares loss function to be minimized can be written as

f(A,R) = 2 ‖X − ARA′‖2
, (9)

where ‖·‖ indicates the Frobenius matrix norm and the multiplicative factor 2 is
inserted only for convenience.AnALS algorithm can be formulated by alternatively
updating A and R. In the next subsections we will show how to perform those
updates.

3.1. Update of A

The update of the loading matrix can be done by adopting a left-and-right approach,
i.e. (9) is modified as

fλ(A,B,R) = ‖X − ARB′‖2 + ‖X − BRA′‖2 + λ ‖A − B‖2 (10)

which coincides with (9) when A = B, and the current value of the loading matrix
A is updated with the minimizer B of (10) calculated for given values of A and λ.

The underlying idea is the following. Since the two matrices ARB′ and BRA′

approximate the same matrix X, when we minimize (10), then A tends to be equal
to B. To force this “natural” tendency, we also add a penalty term which penalizes
those solutions where A is different from B. The parameter λ calibrates the weight
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of the penalty and it has to be chosen by the user. In the following, we first discuss
the choice of λ, then the minimization of (10) with respect to B. We start from the
following result.

Result 1. Let B be such that

fλ(A,B,R) < fλ(A,A,R), (11)

then f(B,R) < f(A,R) if λ ≥ λ∗, where

λ∗ =
vec(A′A − B′B)′S vec(A′A − B′B) − 2vec(A − B)′T vec(A − B)

vec(A − B)′ vec(A − B)
(12)

being S and T the symmetric parts of R ⊗ R and R ⊗ X, respectively.

Proof. The statement is proven if we are able to show that

fλ(A,A,R) + fλ(B,B,R) − 2fλ(A,B,R) ≤ 0. (13)

In fact, by combining (13) with (11), we have

fλ(A,A,R) + fλ(B,B,R) ≤ 2fλ(A,B,R) < 2fλ(A,A,R) (14)

which implies

fλ(B,B,R) < fλ(A,A,R), (15)

i.e., the statement. To show that (13) is true when λ ≥ λ∗, we note that

fλ(A,B,R) = 2 ‖X‖2 + ‖ARB′‖2 + ‖BRA′‖2 − 2tr(X′ARB′)

−2tr(X′BRA′) + λ ‖A − B‖2

= 2 ‖X‖2 + vec(A′A)′(R ⊗ R + R′ ⊗ R′) vec(B′B) + (16)

−2vec(A)′(R ⊗ X + R′ ⊗ X′) vec(B) + λ ‖A − B‖2

= 2 ‖X‖2 + 2ã′Sb̃ − 4a′Tb + λ(a − b)′(a − b),

where ã = vec(A′A), b̃ = vec(B′B),a = vec(A),b = vec(B),S = 0.5(R ⊗
R+R′ ⊗R′) and T = 0.5(R⊗X+R′ ⊗X′). It follows that (13) can be rewritten
as

fλ(A,A,R) + fλ(B,B,R) − 2fλ(A,B,R) =

= 2ã′Sã−4a′Ta+2b̃
′
Sb̃−4b′Tb−4ã′Sb̃+8a′Tb−2λ(a−b)′(a−b)(17)

= 2(ã − b̃)′S(ã − b̃) − 4(a − b)′T(a − b) − 2λ(a − b)′(a − b),

which is negative or zero when λ satisfies inequality (12). ��
The above result states that the choice of λ greater the particular threshold λ∗,

assures that the minimization of (10) with respect to B gives us an update for the
loading matrix which decreases the loss function (9). However, the threshold λ∗

depends on both the current value A and the new value B. This implies that we
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should know in advance the value of the new update before computing it. This
problem can be solved by finding an upper bound for the threshold that does not
depend on B. This upper bound can be found when the loading matrix is constrained
to be columnwise orthonormal, as stated by the following corollary.

Corollary 1. Let A and B be columnwise orthonormal matrices such that
fλ(A,B,R) < fλ(A,A,R), then f(B,R) < f(A,R) if

λ ≥ α, (18)

where α is the largest eigenvalue of −2T = −(R ⊗ X + R′ ⊗ X′).

Proof. The proof consists in showing that α ≥ λ∗. Firstly, we note that in this case
A′A − B′B = 0 in (12). Secondly, we notice that the ratio

−2vec(A − B)′T vec(A − B)
vec(A − B)′ vec(A − B)

(19)

is the Rayleigh quotient of −2T. The statement follows because it is well known
that the Rayleigh quotient of any symmetric matrix assumes as maximum value the
largest eigenvalue of the matrix itself. ��

The above corollary is equivalent to result 2 by Kiers et al. (1990), where the
unconstrained DEDICOM model has been considered. When the loading matrix is
unconstrained, we can use alternatively the following corollary.

Corollary 2. Let B satisfying fλ(A,B,R) < fλ(A,A,R), then f(B,R) <
f(A,R) if

λ ≥ µ (‖A − B‖ + 2 ‖A‖)2 + α, (20)

where µ and α are the largest eigenvalues of −2T = −(R ⊗ X + R′ ⊗ X′) and
S = 0.5(R ⊗ R + R′ ⊗ R′), respectively.

Proof. The proof consists in showing that µ (‖A − B‖ + 2 ‖A‖)2 +α ≥ λ∗. First,
we note that

vec(A′A − B′B)′S vec(A′A − B′B) =
≤ µvec(A′A − B′B)′ vec(A′A − B′B) (21.a)

≤ µ ‖C′C − A′C − C′A‖2 (21.b)
≤ µ (‖C′C‖ + ‖A′C‖ + ‖C′A‖)2 (21.c)

≤ µ
(
‖C‖2 + 2 ‖A‖ ‖C‖

)2
, (21.d)

where (21.a) derives from the upper bound of the Rayleigh quotient, (21.b) is
obtained by setting C = A − B, (21.c) derives from the triangular inequality and
(21.d) follows from the fact that ‖A′C‖ = ‖C′A‖ ≤ ‖A‖ ‖C‖. Then, by recalling
that (see proof of corollary 1)

−2vec(A − B)′T vec(A − B)
vec(A − B)′ vec(A − B)

≤ α, (22)
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it follows

µ (‖A − B‖ + 2 ‖A‖)2 + α =
µ

(
‖A − B‖2 + 2 ‖A‖ ‖A − B‖

)2

‖A − B‖2 + α ≥ λ∗.

(23)

��
Corollary 2 gives us a threshold that can not be computed without the prior

knowledge of the new update. However, we know that the norm of the difference
between the new and the old value of the loading matrix is a decreasing function of
λ, if B is computed by minimizing (10). This implies that if we compute (20) by
using the norm ‖A − B‖, where B have been computed by minimizing (10) with
λ = 0, then we obtain a value for λ greater than the threshold. The choice of λ will
be also discussed in the next section.

Then, the update of the weight matrix can be done by minimizing (10) for a
given value of λ.

When the weight matrix is constrained to be columnwise orthonormal, i.e.
A′A = B′B = I, the minimum of (10) with respect to B can be computed by
noting that

fλ(A,B,R) = 2 ‖X‖2 + ‖BRA′‖2 + ‖ARB′‖2 + λ(‖A‖2 + ‖B‖2)
−tr(B′X′AR + B′XAR′ + λB′A) (24)

= 2 ‖X‖2 + 2 ‖R‖2 + 2λp − tr(B′X′AR + B′XAR′ + λB′A)

= 2 ‖X‖2 + 2 ‖R‖2 + 2λp − tr(B′W).

The implication is that (10) attains a minimum when tr(B′W) is a maximum, i.e.
when

B = PQ′, (25)

where PLQ′ is the singular value decomposition of W (see Cliff, 1966).
Finally, it can be easily shown that (10) attains its unconstrained minimum for

B = (X′AR + XAR′ + λA)(R′A′AR + RA′AR′ + λI)−1. (26)

In the next subsection we will show how to update R to fit a cDEDICOM model.

3.2. Update of R

DEDICOM model
The update is

R = (A′A)−1A′XA(A′A)−1. (27)
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GG model
The matrix R is constrained to be of the form I + KD. The update can be easily
found by writing (9) as

f(A,R) = 2 ‖X − ARA′‖2

= 2 ‖Xs − AA′‖2 + 2
∥∥Xk − AKDA′∥∥2

(28)

= 2 ‖Xs − AA′‖2 + 2
∥∥vec(Xk) − (A × AK)d

∥∥2
,

where Xs and Xk are the symmetric and skew-symmetric parts of X,× indicates
the Khatri-Rao (column-wise Kronecker) product of matrices and d the vector
containing the diagonal elements of D. It implies that the update of R can be
obtained by setting

[d1, d2, ..., dp/2] = vec(Xk)′C(C′C)−1 (29)

where C = (A × AK)(Ip ⊗
[

1
1

]
).

A different update can be found by using the Kiers & Takane theorem (1994).
In fact they show that a DEDICOM solution is a GG solution if and only if the
symmetric part of the matrix R is positive semi-definite. It follows that we can fit the
GG model exactly as DEDICOM, i.e. we can require A columnwise orthonormal,
by imposing the constraint that Rs, i.e. the symmetric part of R, must be positive
semi-definite. To impose this constraint we can follow this strategy. First we rewrite
(9) as

f(A,R) = 2 ‖X − ARA′‖2

= 2 ‖Xs − ARsA′‖2 + 2
∥∥Xk − ARkA′∥∥2

(30)

= 2 ‖A′XsA − Rs‖2 + 2
∥∥A′XkA − Rk

∥∥2
+ 2‖X‖2 − 2‖A′XA‖2.

Note that (30) includes two independent minimization problems. The solution of
the first one is obtained by taking Rs = PLP′ where P are the eigenvectors of
A′XsA associated to the positive eigenvalues and L is the diagonal matrix of the
corresponding eigenvalues. The solution of the second minimization problem is
simply Rk = A′XkA.

GEG model
In this case the matrix R is constrained to be of the form I + dK. It follows that
the update of R simply resolves in the update of d. We can write

f(A,R) = 2 ‖X − ARA′‖2

= 2
∥∥Xs + Xk − AA′ − dAKA′∥∥2

(31)

= 2 ‖Xs − AA′‖2 + 2
∥∥Xk − dAKA′∥∥2

,

which attains its minimum with respect to d when

d =
tr(XkAKA′)

tr(AKA′AKA′)
. (32)
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Other models
To fit other cDEDICOM models it is important to note that

f(A,R) = 2 ‖X − ARA′‖2 = 2 ‖vec(X) − (A ⊗ A)vec(R)‖2
, (33)

and consequentely when we are fitting a cDEDICOM model, the update of R can
be always treated as a constrained linear regression.

4. Simulation study

In the previous section, we have shown that the same model can be fitted by fol-
lowing different strategies. In particular, DEDICOM and GG models can be fitted
by either requiring or not the weight matrix to be orthonormal. In this section we
will perform a simulation study to compare the two options. The same study will
be also used to test two different strategies in the choice of λ. In general, the results
in Sect. 3.1 indicate that there exists a threshold, say λ0, such that if λ ≥ λ0 then
the value of B, minimizer of (10), decreases (9). We do not know the exact value
of λ0, but we can compute only some upper bounds of it as shown in the previous
sections. Then the first strategy is to use a value of λ equal to the proper upper
bound (formula (18) or (20)). However, such upper bounds could be too far from
the true λ0 implying only a small decrease for the loss (9), since obviously for
λ → +∞ then f(B,R) → f(A,R). It follows that the speed of convergence of
the algorithm may be improved by initially setting λ = 0 and then increasing this
value till function (9) stops decreasing. In the sequel, this strategy will be called
“forward selection” of λ and will be compared in our study with the one consisting
in setting λ equal to the proper upper bound.

The design of the simulation is the following. We generated data matrices by
a DEDICOM model according to the following four factors, each with two levels:
a) low (10% of total variability) or high (60% of total variability) error level; b)
n = 20 or n = 40 objects; c) p = 2 or p = 4 components. The DEDICOM
model was fitted on each data matrix by using four different implementations of
the algorithm: i) without orthonormality constraints and λ set to the upper bound
(20) (no orth λ = up); ii) without orthonormality constraints and forward selection
of λ (no orth λ forw); iii) with orthonormality constraints and λ set to the upper
bound (18) (orth λ =up); iv) with orthonormality constraints and forward selection
of λ (orth λ forw). We recorded the Sum of Squared Residuals (SSR), the CPU
time in seconds that has been used to run the algorithm till convergence and the
number of iterations (one iteration corresponds to one update of A and R). For each
combination of factor levels (8 in total) we generated 250 data matrices, we ran the
four implementations of the algorithm for fitting a DEDICOM model, computed
the average of SSR, CPU time and number of iterations. The simulation has been
implemented in MATLAB and the computations have been done on a PC equipped
with a 2.0 GHz Pentium 4. The results are reported in Table 1.

From Table 1, we can see that the best strategy for the choice of λ, in terms of
fit, number of iterations and CPU time, is the forward selection. Among these two
algorithms the version with orthonormality constraints seems to be more precise
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Table 1. Average Sum of Squared Residuals (SSR), CPU time in seconds (CPU secs) and number of
iterations (#Iterations) for 4 different algorithms to fit the DEDICOM model applied on 2000 simulated
data sets with different error level, number of objects and components

Error #comp #objects no orth no orth orth orth
λ = up λ =forw λ =up λ forw

Low 2 20 SSR% 10.99 9.854 10.616 9.851
CPU secs 0.603 0.011 0.079 0.016
#Iterations 320.256 11.224 53.700 13.024

40 SSR% 11.324 10.138 10.511 9.808
CPU secs 1.451 0.017 0.181 0.019
#Iterations 315.352 10.856 40.624 10.180

4 20 SSR% 8.202 8.015 8.158 8.006
CPU secs 4.919 0.009 0.521 0.015
#Iterations 1085.512 12.964 126.076 14.796

40 SSR% 9.166 9.069 9.168 9.083
CPU secs 16.737 0.015 2.167 0.027
#Iterations 886.388 12.484 118.116 14.532

High 2 20 SSR% 49.473 48.627 49.181 47.964
CPU secs 0.703 0.150 0.127 0.099
#Iterations 304.488 25.108 71.524 48.520

40 SSR% 50.620 48.693 50.219 48.416
CPU secs 2.582 0.030 0.474 0.101
#Iterations 426.628 26.068 87.092 38.256

4 20 SSR% 33.052 33.032 32.972 32.991
CPU secs 5.082 0.023 0.669 0.030
#Iterations 842.756 25.700 123.128 26.008

40 SSR% 39.757 39.581 39.647 39.503
CPU secs 23.381 0.028 3.346 0.036
#Iterations 872.640 22.704 126.304 22.372

while the other one seems to be faster. However, the differences are, in our opinion,
not significant.

The Generalized GIPSCAL (GG) model was fitted to the same datasets by using
the same four different implementations of the algorithm as before. The results are
reported in Table 2.

In this case we obtained results similar to the DEDICOM case. The best strategy
for λ is the forward selection with orthonormality constraints. The difference is that
now the algorithm with orthonormality constraints and forward selection for λ is
even the fastest.

From the simulation study we conclude that the forward selection for λ gives
the best results and, whenever it is possible, the algorithm that uses orthonormality
constraints on the loading matrix should be preferred.
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Table 2. Average Sum of Squared Residuals (SSR), CPU time in seconds (CPU secs) and number of
iterations (#Iterations) for 4 different algorithms to fit the Generalized GIPSCAL model applied on 2000
simulated data sets with different error level, number of objects and components

Error #comp #objects no orth no orth orth orth
λ =up λ forw λ = up λ forw

Low 2 20 SSR% 44.671 43.534 43.379 43.389
CPU secs 1.446 0.325 0.173 0.015
#Iterations 757.164 376.096 120.208 10.716

40 SSR% 44.515 44.297 43.504 43.530
CPU secs 3.191 0.655 0.432 0.024
#Iterations 709.384 330.520 108.148 11.648

4 20 SSR% 35.310 35.441 35.278 35.204
CPU secs 15.408 0.688 1.141 0.029
#Iterations 3482.100 446.780 275.880 17.636

40 SSR% 36.375 37.124 36.549 36.299
CPU secs 63.538 0.630 5.262 0.047
#Iterations 3551.468 283.036 292.700 17.492

High 2 20 SSR% 65.022 65.499 65.827 65.293
CPU secs 1.011 0.356 0.210 0.129
#Iterations 437.536 307.688 117.108 59.520

40 SSR% 67.061 69.117 68.306 67.919
CPU secs 2.816 0.526 0.849 0.190
#Iterations 453.040 290.900 156.288 64.644

4 20 SSR% 53.779 53.880 53.724 53.672
CPU secs 19.951 0.605 1.221 0.155
#Iterations 3432.924 327.348 221.400 52.540

40 SSR% 57.544 57.769 57.501 57.478
CPU secs 91.908 0.611 5.922 0.202
#Iterations 3528.576 250.500 222.600 51.256

5. Discussion

In this paper we present a new algorithm to fit cDEDICOM models, which can be
considered a generalization of the algorithm proposed by Kiers et al. (1990) for
fitting the DEDICOM model. The algorithm follows an alternating least squares
scheme, is very easy to implement and, as shown in the simulation study, it is also
very fast. In the simulation study we tested two different strategies of selection
for λ. However, other strategies can be implemented. For example, we can first
minimize (10) with λ = 0, compute the loss (9) and repeat the minimization if the
loss does not decrease by setting λ to the proper upper bound (18) or (20). In a
simulation study, not reported here for sake of brevity, this strategy, suggested by
Kiers et al. (1990), has been tested by giving results only slightly worse than the
forward strategy.

The algorithm here proposed has been tested for the DEDICOM and Gener-
alized GIPSCAL models but it can be also used to fit the Generalized Escoufier
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& Grorud, Escoufier & Grorud and Gower decomposition models. However, we
recall that for the last two models it can be also used a routine able to compute
the singular value decomposition of a real matrix (see Escoufier & Grorud, 1980,
and Gower, 1977). Finally, we note that the algorithm can be easily extended to fit
every cDEDICOM model, i.e. a model which can be considered as a constrained
DEDICOM model by assuming a particular form for R.
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