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Abstract. In this paper, we establish new representations, identities and recurrence
relations of order statistics (o.s.) arising from general independent nonidentically
distributed random variables (r.v.’s). These recurrence relations will enable one to
compute all moments of all o.s. in a simple manner. Applications for some known
distributions are given.
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1 Introduction

Let X1, X2, · · · , Xn be independent r.v.’s with distribution functions (d.f.’s) F1,
F2, · · · ,Fn, respectively. LetX1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the corresponding
o.s. It is known that the distribution of the rth o.s. Xr:n(1 ≤ r ≤ n) is conveniently
expressed in terms of permanents (see, e.g., Bapat and Beg, 1989). That is

Fr:n(x) =
n∑

i=r

1
i!(n − i)!

Per [F (x) 1 − F (x)]
i n−i

, − ∞ < x < ∞, (1.1)

where F (x) and 1 − F (x) denote the column vectors (F1(x) F2(x) · · · Fn(x))′

and (1 − F1(x) 1 − F2(x) · · · 1 − Fn(x))′, respectively. Moreover, if a1, a2, · · ·
are column vectors, then

[a1 a2 · · · ]
i1 i2 ···

will denote the matrix obtained by taking i1 copies of a1, i2 copies of a2 and so
on. Finally, in (1.1), PerA, where A = (aij) is n × n square matrix, denotes the
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permanent of A, i.e.,

PerA =
∑
σεSn

n∏
i=1

aiσ(i),

where Sn is the set of permutations of 1, 2, · · · , n. Thus the definition of the per-
manent is equivalent to the determinant except that all signs in the expansion are
positive (see the survey papers Minc 1983, 1987).

The need for recurrence relations and identities is well established in the litera-
ture and for details we refer to the monograph by Arnold and Balakrishnan (1989).
Recently, by using some known properties of permanents, general results on o.s.
from nonidentically r.v.’s are coming out. For example, by using the property that
the permanent is a multilinear function of the columns or the rows, Balakrishnan et
al. (1992) and Cao and West (1997) have established several recurrence relations
for the d.f.’s of o.s. of nonidentically r.v.’s. Bapat and Beg (1989), Beg (1991) and
Balakrishnan (1992) used the same property of the permanents to obtain several
recurrence relations and identities satisfied by the single and the product moments
of o.s. Balakrishnan (1994) exploited the linear relation between the probability
density function and the d.f. of the exponential r.v., which is equivalent to the con-
stant hazard rate property. This lends itself to the use of integration by parts to get
some elegant recurrence relations satisfied by the single and the product moments
of o.s. Balakrishnan and Balasubramanian (1995) have applied the same procedure
on o.s. from nonidentical power function r.v.’s to obtain some similar relations.
However, most of these recurrence relations show that, it is enough to evaluate the
kth moment of a single o.s. in a sample of size n, if these moments in samples of size
less than n are already available. The kth moment of the remaining n − 1 o.s. can
then be determined by repeated use of these recurrence relations. For this purpose
one could, for example, start with either µ

(k)
1:n = E(Xk

1:n) or µ
(k)
n:n = E(Xk

n:n). It

is, therefore, useful to express the moment µ
(k)
r:n = E(Xk

r:n) (1 ≤ r ≤ n) purely in
terms of the kth moment of the maximum o.s. or of the minimum o.s. from samples
of size up to n. In the case of independent and identically distributed r.v.’s this prob-
lem is discussed in Arnold et al. (1992) (Theorems 5.3.2 and 5.3.3). Barakat and
Abdelkader (2000) have considered this problem for o.s. arising from n indepen-
dent nonidentically distributed Weibull r.v.’s. Namely, they computed recursively
the kth moment of all o.s. from the kth moment of the maximum.

The main aim of this paper is to extend the result of Barakat and Abdelkader
(2000) to any d.f. In the next section, an interesting result (Theorem 2.1) is given,
which shows that the kth moment (k = 1, 2, · · · ) of rth o.s. (1 ≤ r ≤ n) of a sample
of size n can be expressed purely in terms of the kth moment of the maximums and
the minimums of all possible subsamples of the given sample. This result can then
be utilized for the recursive computation of the single moments of o.s. arising from
nonidentically distributed r.v.’s. Moreover, two new identities, which are satisfied
by the single moments (Theorem 2.2), are derived. These identities are simple in
nature and can be useful in checking the computations of these moments. Finally,
in Sect. 3, some illustrative examples are given.



Computing the moments of order statistics from nonidentical random variables 15

2 Main result

To lay the groundwork of this study, we begin with the following lemma.

Lemma 2.1. Let X be an arbitrary r.v. with d.f. F (x). Then, for any positive
integer k, ∫ ∞

0
xkd F (x) = k

∫ ∞

0
xk−1(1 − F (x)) dx

and ∫ 0

−∞
xkd F (x) = −k

∫ 0

−∞
xk−1F (x) dx.

Moreover, if the kth moment µ(k) of X exists, then µ(k) = µ(k)+ − µ(k)−, where
µ(k)+ = k

∫∞
0 xk−1(1 − F (x))dx, µ(k)− = k

∫ 0
−∞ xk−1F (x)dx and lim

x→−∞
xkF (x) = lim

x→+∞ xk(1 − F (x)) = 0.

Proof. The proof of the first part can be found in Galambos (1987, p 375). The
proof of the second part is similar to the first one.

Remark 2.1. It is convenient to call µ(k)+ and µ(k)−, for any r.v. X and positive
integer k, the positive and the negative kth moment of X, respectively.

In the following, some conventions and notations will be used. For any 1 ≤
i1 < i2 < · · · < im ≤ n, let Zi(m) = max(Xi1 , Xi2 , · · · , Xim

) and Wi(m) =
min(Xi1 , Xi2 , · · · , Xim). Then Hi(m)(x) =

∏m
t=1 Fit(x) and Li(m)(x) = 1 −∏m

t=1 Git
(x), where Gi(x) = 1 − Fi(x), ∀ i = 1, 2, · · · , n, be the d.f.’s of Zi(m)

and Wi(m), respectively. Moreover, in view of Lemma 2.1,

µ
(k)−
m:i(m) = −

∫ 0

−∞
xk d Hi(m)(x) = k

∫ 0

−∞
xk−1

m∏
t=1

Fit
(x) dx

and

µ
(k)+
1:i(m) =

∫ ∞

0
xk d Li(m)(x) = k

∫ ∞

0
xk−1

m∏
t=1

Git(x) dx

be the negative and the positive kth moment of the maximum and the minimum of
(Xi1 , Xi2 , · · · , Xim), respectively. Finally, let

I+
j =

∑ · · ·∑
1≤i1<i2<···<ij≤n

µ
(k)+
1:i(j), j = 1, 2, · · · , n, (2.1)

and

I−
j =

∑ · · ·∑
1≤i1<i2<···<ij≤n

µ
(k)−
j:i(j), j = 1, 2, · · · , n. (2.2)
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The two sequences I+
j and I−

j may be interpreted, respectively, as the sum of the
positive kth moment of the largest and the negative kth moment of the smallest o.s.
from all possible subsamples of size j of the given sample. The following theorem
shows that µ

(k)
r:n, ∀ 1 ≤ r ≤ n, k = 1, 2, · · · , can be expressed purely in terms of

I+
j and I−

j , for j = 1, 2, ..., n.

Theorem 2.1. For 1 ≤ r ≤ n and k = 1, 2, · · · , the positive and the negative kth
moment of Xr:n can be expressed as

µ(k)+
r:n =

n∑
j=n−r+1

(−1)j−(n−r+1)
(

j−1

n−r

)
I+

j (2.3)

and

µ(k)−
r:n =

n∑
j=r

(−1)j−r

(
j−1

r−1

)
I−

j . (2.4)

Moreover, µ
(k)
r:n = µ

(k)+
r:n − µ

(k)−
r:n .

Remark 2.2. If x̌i0 = inf{x : Fi(x) > 0} ≥ 0, i = 1, 2, · · · , n, then µ
(k)
r:n =

µ
(k)+
r:n . Also, if x̂i0 = sup{x : Fi(x) < 1} ≤ 0, i = 1, 2, · · · , n, then µ

(k)
r:n =

µ
(k)−
r:n .

Remark 2.3. If the d.f.’s Fi(x), i = 1, 2, · · · , n, are symmetric, then I+
j =(−1)k−1

I−
j .

Corollary 2.1. Let F1 = F2 = · · · = Fn. Then I+
j =

(
n

j

)
µ

(k)+
1:j and I−

j =(
n

j

)
µ

(k)−
j:j , where µ

(k)+
1:j = k

∫∞
0 xk−1Gj(x) dx, µ(k)−

j:j = k
∫ 0

−∞ xk−1F j(x) dx

and G(x) = 1−F (x). In this case (2.3) and (2.4), respectively, have the following
forms

µ(k)+
r:n =

n∑
j=n−r+1

(−1)j−(n−r+1)
(

j−1

n−r

)(
n

j

)
µ

(k)+
1:j (2.5)

and

µ(k)−
r:n =

n∑
j=r

(−1)j−r

(
j−1

r−1

)(
n

j

)
µ

(k)−
j:j . (2.6)

Moreover, (2.5), when x̌i0 ≥ 0, and (2.6), when x̂i0 ≤ 0, reduce to (5.3.15), in
Theorem 5.3.3 of Arnold et al. (1992), and (5.3.14), in Theorem 5.3.2 of Arnold et
al. (1992), respectively.
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Corollary 2.2. If n is odd integer, then the kth moment of the median µ
(k)
n+1

2 :n
is

given by

µ
(k)
n+1

2 :n
=

n∑
j= n+1

2

(−1)j− n+1
2

(
j−1
n−1

2

)
Ij ,

where Ij = I+
j − I−

j . Moreover, in view of Remark 2.3, if the d.f.’s Fi(x), i =

1, 2, · · · , n are symmetric and k is odd integer, then µ
(k)
n+1

2 :n
= 0.

Proof of Theorem 2.1. From (1.1), it can be shown that, for any 1 < r ≤ n,

Fr−1:n(x) = Fr:n(x) +
1

(r − 1)!(n − r + 1)!
Per [F (x) 1 − F (x)]

r−1 n−r+1

,

which is equivalent to

Fr−1:n(x) = Fr:n(x) +
∑
P

r−1∏
j=1

Fij
(x)

n−r+1∏
j=1

(
1 − F

in−j+1
(x)
)

, (2.7)

where the summation P extends over all permutations (i1, i2, · · · , in) of (1, 2, · · · ,
n) for which 1 ≤ i1 < i2 < · · · < ir−1 ≤ n, 1 ≤ ir < ir+1 < · · · < in ≤ n.

An application of Lemma 2.1 thus yields µ
(k)
r:n = µ

(k)+
r:n −µ

(k)−
r:n , where µ

(k)+
r:n =

k
∞∫
0

xk−1Gr:n(x)dx, µ
(k)−
r:n = k

0∫
−∞

xk−1Fr:n(x)dx and Gr:n(x) = 1−Fr:n(x).

To compute µ
(k)
r:n, the Equation (2.7) can be used and this yields

µ(k)+
r:n = µ

(k)+
r−1:n + J(k)+

r:n (2.8)

and

µ(k)−
r:n = µ

(k)−
r−1:n − J(k)−

r:n ,

where

J(k)+
r:n = k

∫ ∞

0
xk−1

∑
P

r−1∏
j=1

(
1 − Gij (x)

) n−r+1∏
j=1

Gin−j+1(x) dx (2.9)

and

J(k)−
r:n = k

∫ 0

−∞
xk−1

∑
P

r−1∏
j=1

Fij (x)
n−r+1∏

j=1

(
1 − Fin−j+1(x)

)
dx.
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Now, (2.9) can be rewritten as

J(k)+
r:n

= k
∑
P

(∫ ∞

0
xk−1

n∏
j=r

Gij (x) dx −
r−1∑
j1=1

∫ ∞

0
xk−1Gij1

(x)
n∏

j=r

Gij (x) dx

+
∑∑

1≤j1<j2≤r−1

∫ ∞

0
xk−1Gij1

(x)Gij2
(x)

n∏
j=r

Gij (x) dx

+ · · · + (−1)r−2

× ∑ · · ·∑
1≤j1<j2<···<jr−2≤r−1

∫ ∞

0
xk−1

r−2∏
j=1

Gij
(x)

n∏
j=r

Gij
(x)dx

+(−1)r−1
∫ ∞

0
xk−1

n∏
j=1

Gij
(x) dx

)

=
r∑

j=1

(−1)j−1 A+
j (r, n)I+

n−r+j , (2.10)

where I+
j is defined by (2.1) and A+

j (r, n) is a suitable sequence of constants, which
depends only on r and n. On account of (2.10) and by using the obvious relations

∑
P

(1) =
(

n

r−1

)
and

∑ · · ·∑
1≤j1<j2<···<jm≤n

(1) = (n
m), for all n ≥ m, an application

of the multiplication principle of the combinatorial analysis on the left and the right
hand sides of the jth term of (2.10), yields the following combinatorial identity

(
n

r−1

)(
r−1

j−1

)
= A+

j (r, n)
(

n

n−r+j

)

(each of the left and the right hand sides of the above combinatorial identity rep-
resents the total number of integrations involving, respectively, in the left and the

right hand sides of the jth term in (2.10)). Therefore, A+
j (r, n) =

(
n−r+j

j−1

)
, from

which, by using (2.8), we get

µ(k)+
r:n = µ

(k)+
r−1:n +

r∑
j=1

(−1)j−1
(

n−r+j

j−1

)
I+

n−r+j , 2 ≤ r ≤ n. (2.11)

Note that µ
(k)+
1:n = I+

n and µ
(k)+
2:n = I+

n−1 − (n − 1)I+
n . This show that (2.3) holds

for r = 1, 2. Now, we prove (2.3) by induction over r. Let us assume that (2.3) has
been proved for a fixed r = � − 1, 1 ≤ � − 1 < n. Then, by virtue of (2.8) and the
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assumption of induction, we get

µ
(k)+
�:n =

n∑
j=n−�+2

(−1)j−(n−�+2)
(

j−1

n−�+1

)
I+

j

+
�∑

j=1

(−1)j−1
(

n−�+j

j−1

)
I+

n−�+j

= I+
n−�+1 +

n∑
j=n−�+2

(−1)j−(n−�+1)
[(

j

n−�+1

)
−
(

j−1

n−�+1

)]
I+

j

=
n∑

j=n−�+1

(−1)j−(n−�+1)
(

j−1

n−�

)
I+

j ,

which completes the proof of (2.3). Similarly, it can be shown that

J(k)−
r:n =

n∑
j=r−1

(−1)j−r+1B−
j (r, n)I−

j ,

where I−
j is defined by (2.2) and the sequence {B+

j (r, n)} satisfies the combina-
torial relation (

n

r−1

)(
n−r+1

j−r+1

)
= B−

j (r, n)
(

n

j

)
.

Thus,

µ
(k)−
r−1:n = µ(k)−

r:n +
n−r+2∑

j=1

(−1)j−1
(

j+r−2

j−1

)
I−

j+r−2, 2 ≤ r ≤ n. (2.12)

By induction over r, we get (2.4) and the proof is completed.

Remark 2.4. Note that the sequences
{
I+

j

}j=n

j=1
and

{
I−

j

}j=n

j=1
for many d.f.’s are

simple to evaluate (see Sect. 3). Furthermore, by computing these sequences and
recursively applying (2.11) and (2.12), the kth moment (k = 1, 2, · · · ) of all o.s.
can be evaluated with a simple algorithm. Table 1, which constitutes a lower triangle
matrix, illustrates this algorithm for negative moments in (2.12).

Remark 2.5. In Table 1, if a−
rj denotes the coefficient of I−

j in the rth row, then

a−
rj =

{
(−1)j−r

(
j−1
r−1
)
, 1 ≤ r ≤ j,

0, otherwise.

Therefore, a−
rj = 0, ∀ r > j, a−

rr = 1, r = 1, 2, · · · , n, | a−
rj | + | a−

r+1j |=|
a−

r+1j+1 |, ∀ r < j, (since
(

j−1
r−1
)
+ ( j−1

r ) = ( j
r )) and

j∑
r=1

a−
rj = 0 (since

j∑
r=1

a−
rj

=
j−1∑
r=0

(−1)j−r−1( j−1
r ) = 0).
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Ta
bl

e
1.

T
he

ne
ga

tiv
e

m
om

en
ts

µ
(k

)−
r
:n

,r
≤

n
,o

f
o.

s.
ar

is
in

g
fr

om
no

ni
de

nt
ic

al
ly

r.v
.’s

µ
(k

)−
n
:n

=
I− n

µ
(k

)−
n

−
1
:n

=
I− n

−
1

−(
n

−
1)

I− n

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

µ
(k

)−
5
:n

=
I− 5

−
··

·
(−

1
)n

−
6
(n

−
2
)··

·(n
−

5
)

4
!

I− n
−

1
(−

1
)n

−
5
(n

−
1
)··

·(n
−

4
)

4
!

I− n

µ
(k

)−
4
:n

=
I− 4

−4
I− 5

+
··

·
(−

1
)n

−
5
(n

−
2
)··

·(n
−

4
)

3
!

I− n
−

1
(−

1
)n

−
4
(n

−
1
)··

·(n
−

3
)

3
!

I− n

µ
(k

)−
3
:n

=
I− 3

−3
I− 4

+
6I

− 5
−

··
·

(−
1
)n

−
4
(n

−
2
)(

n
−

3
)

2
!

I− n
−

1
(−

1
)n

−
3
(n

−
1
)(

n
−

2
)

2
!

I− n

µ
(k

)−
2
:n

=
I− 2

−2
I− 3

+
3I

− 4
−4

I− 5
+

··
·

(−
1)

n
−

3
(n

−
2)

I− n
−

1
(−

1)
n

−
2
(n

−
1)

I− n

µ
(k

)−
1
:n

=
I− 1

−I
− 2

+
I− 3

−I
− 4

+
I− 5

−
··

·
(−

1)
n

−
2
I− n

−
1

(−
1)

n
−

1
I− n
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Remark 2.6. A similar table, for positive moments in (2.11) is represented in
Barakat and Abdelkader (2000), which constitutes an upper triangle matrix with

vertex at µ
(k)+
1:n (= I+

n ) and base at µ
(k)+
n:n (= I+

1 − I+
2 + I+

3 + · · · + (−1)n+1I+
n ).

Moreover, similar properties, as stated in Remark 2.5, are of course satisfied with
obvious changes.

The following theorem presents two identities satisfied by the kth moment of
o.s., which are interesting and simple in nature and, of course, can be useful in
checking the computation of these moments.

Theorem 2.2. For n ≥ 2 and k = 1, 2, · · · , we have
n∑

r=1

1
r

µ(k)−
r:n =

n∑
j=1

(−1)j−1

j
I−

j (2.13)

and
n∑

r=1

1
n − r + 1

µ(k)+
r:n =

n∑
j=1

(−1)j−1

j
I+

j . (2.14)

Proof. We prove (2.13), by induction over n (the coefficients in the table of negative

moments). If n = 2,
∑2

r=1
1
r µ

(k)−
r:2 = I−

1 − 1
2I−

2 =
∑2

j=1
(−1)j−1

j I−
j . Assume

(2.13) has been proved for a fixed n. Then, since (in view of (2.4)),

n+1∑
r=1

1
r

µ
(k)−
r:n+1 =

n+1∑
r=1

1
r


n+1∑

j=r

(−1)j−r
(

j−1
r−1
)
I−

j




=
n∑

r=1

1
r

µ(k)−
r:n + I−

n+1

n∑
r=1

(−1)n+1−r

r
( n

r−1 ) +
1

n + 1
I−

n+1,

an application of the assumption of induction yields

n+1∑
r=1

1
r

µ
(k)−
r:n+1

=
n∑

j=1

(−1)j−1

j
I−

j + I−
n+1

n∑
r=1

(−1)n+1−r

n + 1
( n+1

r ) +
1

n + 1
I−

n+1

=
n∑

j=1

(−1)j−1

j
I−

j + I−
n+1

n+1∑
r=0

(−1)n+1−r

n + 1
( n+1

r ) +
(−1)n

n + 1
I−

n+1

=
n+1∑
j=1

(−1)j−1

j
I−

j .

Formula (2.13) is thus proved. The proof of (2.14) is similar to (2.13), for brevity
we omit the proof. The theorem is thus established.

The identities (2.13) and (2.14) show that the knowledge of the sequences Ij

and I−
j are enough to find the kth moments of all o.s. For example, if I−

j is known,

then µ
(k)−
r:n is completely determined.
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3 Applications

The moments of order statistics have assumed considerable interest in recent years
and have been tabulated quite extensively for several distributions. There are many
practical applications for the moments of order statistics arising from nonidentical
d.f.’s. In stochastic activity networks, for example, these moments may be used to
compute the network completion time when each activity represented by Weibull
r.v. (see, Abdelkader, 2003c). Bendell et al. (1995) used the moments of o.s. from
Erlang distribution in a narrow case. Namely, the first four central moments of
max(X1, X2), where X1 and X2 are independent nonidentically r.v.’s, are derived
and thus the network completion time is obtained. Abdelkader (2003a) generalized
the result of Bendell et al. (1995) to n independent nonidentically Erlang vari-
ables. Furthermore, the Weibull and Erlang distributions may used in the reliability
theory to find the expected life system of independent nonidentical parallel com-
ponents. Childs and Balakrishnan (1998) studied the moments of o.s. arising from
independent nonidentical Pareto r.v.’s and as a result of this study, they obtained
some important results for the multiple-outlier model (with a slippage of p ob-
servations). Generally speaking, the moments of o.s. are quite extensively used in
literature to address the problem of the efficient estimation of the parameters of
the underlying distribution when the sample possibly contains one or more outliers
(see, for example, Balakrishnan, 1994, and Childs and Balakrishnan, 1998). How-
ever, the computation of such moments, specially when arising from nonidentically
distributed r.v.’s, is tremendous difficult. Clearly, Theorem 2.1 reduces the compu-

tation of these moments to compute merely the sequences I+
j and I−

j , which are
simple in nature. Moreover, Remarks 2.4, 2.5 and 2.6 enable one to compute these
moments in a simple recursive manner. On the other hand, in most applications,
such as the stochastic activity networks and the reliability theory, we deal only with
the sequences of d.f.’s for which x̌i0 = inf{x : Fi(x) > 0} ≥ 0, i = 1, 2, · · · , n.

Therefore, in view of Remark 2.2, we have to compute I+
j only. In this case,

Theorem 2.1 reveals that the kth moment of the rth o.s. can be expressed as a
linear combinations of the kth moment of the maximum o.s. for various subsets of
(X1, X2, ..., Xn). Therefore, we may argue that this will be hold for the d.f.’s itself.
In this case, this simply means, in the terminology of the reliability theory, that the
reliability of an r out- of n system can be expressed as a linear combination of the
reliabilities of all possible series systems formed out of the n components. We now

list explicit expressions for the sequences I+
j and I−

j of the above mentioned d.f.’s
as well as the other important known d.f.’s.

(1) Nonidentically distributed Weibull variables:

Fi(x) = 1 − exp(−αi xβ), x > 0; αi, β > 0, i = 1, 2, · · · , n.

The sequence I+
j is given by

I+
j =

∑ · · ·∑
1≤i1<i2<···<ij≤n

kΓ ( k
β )

β(αi1
+ αi2

+ · · · + αij
)

k
β
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(see Barakat and Abdelkader, 2000).

(2) Nonidentically distributed Erlang variables:

Fi(x) = 1 −
m−1∑
s=0

(λix)s

s!
exp(−λix), x > 0; λi > 0, m = 1, 2, · · · .

The sequence I+
j is given by

I+
j =

∑ · · ·∑
1≤i1<i2<···<ij≤n

m−1∑
s1=0

· · · m−1∑
sj=0

kλs1
i1

λs2
i2

· · ·λsj

ij
(s1 + s2 + · · · + sj + k − 1)!

s1!s2! · · · sj !(λi1 + λi2 + · · · + λij
)s1+s2+···+sj+k

(see Abdelkader, 2003b).

(3) Nonidentically distributed positive exponential variables:

Fi(x) = exp(αi x), x < 0; αi > 0, i = 1, 2, · · · , n.

The sequence I−
j is given by

I−
j =

∑ · · ·∑
1≤i1<i2<···<ij≤n

(−1)k−1k!
(αi1

+ αi2
+ · · · + αij

)k
.

(4) Nonidentically distributed Pareto variables:

Fi(x) = 1 − xθi
o

xθi
, x ≥ xo > 0; θi > 0.

It is easy to show that I+
j exists, for all 1 ≤ j ≤ n, and k (k = 1, 2, · · · ), only if

n∑
i=1

θi > k. Moreover, I+
j takes the following simple form

I+
j = xk

o( n
j ) + k xk

o

∑ · · ·∑
1≤i1<i2<···<ij≤n

1∑j
t=1 θ

it
− k

.

(5) Nonidentically distributed Laplace variables:

Fi(x) =

{
1
2eβix, x ≤ 0,

1 − 1
2e−βix, x > 0.

The sequences I+
j and I−

j are given by

I+
j =

∑ · · ·∑
1≤i1<i2<···<ij≤n

k!
2j(β

i1
+ β

i2
+ · · · + β

ij
)k
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and

I−
j =

∑ · · ·∑
1≤i1<i2<···<ij≤n

(−1)k−1k!
2j(βi1

+ βi2
+ · · · + βij

)k
.
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