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Abstract. I provideanoverviewof inverseprobabilityweighted (IPW)M -estimators
for cross section and two-period panel data applications. Under an ignorability as-
sumption, I show that population parameters are identified, and provide straightfor-
ward

√
N -consistent and asymptotically normal estimation methods. I show that

estimating a binary response selection model by conditional maximum likelihood
leads to a more efficient estimator than using known probabilities, a result that uni-
fies several disparate results in the literature. But IPW estimation is not a panacea:
in some important cases of nonresponse, unweighted estimators will be consistent
under weaker ignorability assumptions.
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1 Introduction

The problems of nonrandom sample selection, self selection, and attrition are po-
tentially very important in microeconometric applications. An important kind of
nonrandom selection, often calledincidental truncation, arises when certain indi-
viduals (or units from any underlying population) do not appear in a random sample
due to individual choices or behaviors. A leading example is where the equation of
interest is a wage offer equation for the population of all adults of working age, but
the wage offer is observed only for working adults. Depending on the nature of the
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self selection, using a sample of working people to estimate the wage offer equation
may result in inconsistent estimation of the population wage offer function.

Problems of survey nonresponse also fall under the rubric of incidental trunca-
tion. For example, a test score (such as IQ) may not be available for all individuals in
a sample because some individuals do not give permission for that information to be
released. Or, in a survey, a family may not report its annual charitable contributions,
even though it reports income and various demographic characteristics.

When incidental truncation leads to nonobservability of the response variable
in a linear regression model, Heckman’s (1976) solution requires that there be at
least one exogenous variable affecting selection that does not appear in the structural
equation; this is often a tenuous assumption. Further, in addition to the linear model,
Heckman’s approach is known to only work for special nonlinear models, such as an
exponential regression model (Wooldridge, 1997; Terza, 1998). In cases of survey
nonresponse or attrition in panel data, the fact that some exogenous variables might
not be observed introduces further complications in applying Heckman’s approach.

An alternative approach to consistent estimation in the presence of nonrandom
selection is based oninverse probability weighting, which has a long history in
statistics and has been recently studied more closely in econometrics. Horvitz and
Thompson (1952) proposed an inverse probability weighted (IPW) estimator of
the population mean when data are nonrandomly missing. Robins and Rotnitzky
(1995) use an IPW estimator in the context of multiple regression with nonrandomly
missing data, and Robins et al. (1995) show how an IPW estimator can be used
to estimate conditional means in the presence of attrition in panel data. Horowitz
and Manski (1998) compare weighting and imputation methods for estimating
population means. Rosenbaum (1987) and Hirano et al. (2000) study IPW estimators
of average treatment effects.

In thispaper I study thepropertiesof inverseprobabilityweightedM -estimators,
thereby providing a unified treatment that includes many special cases of interest.
Under the key assumption that selection is, in an appropriate sense,ignorable, an
inverse probability weighting scheme generally identifies the population parame-
ters. Special cases include least squares, conditional maximum likelihood, partial
maximum likelihood, and various quasi-likelihood methods. In fact, any problem
that can be written as minimizing or maximizing a sample average of objective
functions fits the framework, provided basic regularity conditions hold. Studying
IPW methods in a general framework highlights the role of the key ignorability as-
sumption, and shows that the mechanics and asymptotic theory of IPW estimation
are straightforward.

Weighting by inverse probabilities can solve a variety of sample selection prob-
lems, including that inherent in estimating average treatment effects. In addition, the
general framework I put forth in Section 3 applies to variable probability stratified
sampling, a case I considered explicitly in Wooldridge (1999). Outside of stratified
sampling, the probability weights usually must be estimated in a first stage, and I
consider the effects of first-stage estimation on the asymptotic distribution of the
estimator in Section 4. In Section 5 I discuss the pros and cons of weighting, and
Section 6 contains concluding remarks about directions for future research.
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2 The population optimization problem and random sampling

We begin with the optimization problem in the population, as this is needed to
define the parameters of interest. This section applies most directly to nonresponse
in a cross section setting, although the identification arguments readily extend to a
two-period panel data setting with attrition after the first time period.

Let w be anM × 1 random vector taking values inW ⊂ R
M . Some aspect

of the distribution ofw depends on aP × 1 parameter vector,θ, contained in a
parameter spaceΘ ⊂ R

P . Let q(w,θ) denote an objective function depending on
w andθ.

Assumption 2.1. θo ∈ Θ is the unique solution to the population minimization
problem

min
θ∈Θ

E[q(w,θ)] . �� (2.1)

In the leading case,θo indexes some correctly specified feature of the distribution
of w, such as a conditional mean, a conditional median, a conditional variance, or a
full conditional distribution. However, Assumption 2.1 applies when an underlying
model may be misspecified. At this level, we only assume thatθo uniquely solves
(2.1). Sufficient, but certainly not necessary, for existence of at least one solution is
compactness ofΘ and continuity ofE[q(w,θ)] onΘ. The uniqueness assumption
plays the role of identification in this general context.

Given a random sample of sizeN from the population,{wi : i = 1, ..., N},
theM -estimator solves the problem

min
θ∈Θ

N∑
i=1

q(wi,θ) . (2.2)

Under general conditions, theM -estimator is consistent and asymptotically normal
(for example, Wooldridge 2002, Ch. 12).

A leading example is a linear regression model. Lety be a scalar andx a1×K
row vector, and consider the population linear model

y = xθo + u, E(x′u) = 0 , (2.3)

wherex would typically contain unity. In other words,θo is the vector in the linear
projection ofy onx in the population. It may also be the case thatE(y|x) = xθo, but
this stronger assumption is not required to consistently estimateθo given a random
sample. The objective function for OLS estimation ofθo is q(w,θ) = (y − xθ)2.

Ifwespecifyanonlinear regression function, saym(x,θ),θ ∈ Θ, andE(y|x) =
m(x,θo) for someθo ∈ Θ, thenθo minimizes

E{[y − m(x,θ)]2} . (2.4)

Providedm(·, ·) and the distribution ofx satisfy reasonable assumptions,θo would
be the unique solution. Even ifm(x,θ) is misspecified forE(y|x), there generally is
a valueθo ∈ Θ that uniquely minimizes (2.4). This was noted by Huber (1967) and
White (1980, 1982). In the nonlinear regression case, the solution toθo is easily
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shown to be the minimizer ofE{[µ◦(x) − m(x,θ)]2}, whereµ◦(x) ≡ E(y|x)
is the true conditional mean function. In other words,θo provides the best mean
square approximation ofm(x,θ) to µ◦(x). From this perspective,θo becomes
the population parameter of interest, and nonlinear least squares under random
sampling is generally consistent forθo.

In the next section we modify the objective function to account for various
forms of nonresponse and stratification.

3 Consistency of weightedM -estimators

Nonrandom sampling from a cross-sectional population is conveniently viewed
as follows: we randomly drawwi ∈ W from the population, but it is not always
(fully) observed. Letsi denote a binary selection indicator:si = 1 if wi is observed,
si = 0 otherwise. Typically,si is a function of some elements ofwi, butsi can also
depend on unobservables. A generic element from the population is now denoted
(w, s). Because of the selected sample, identification ofθo [introduced in Sect. 2
as the unique solution to problem (2.1)] now must be studied in terms of the joint
distribution of(w, s).

TheM -estimator that uses the selected sample solves the problem

min
θ∈Θ

N∑
i=1

siq(wi,θ) , (3.1)

whereN denotes the size of the underlyingrandomsample. The sample sizeN
need not be known, although often it is. Notice how the selection indicatorssi de-
termine observations actually appearing in the minimization problem. The number
of observations used in estimatingθo is N0 = s1 + s2 + . . . + sN , which is ran-
dom. To distinguish (3.1) from the weighted estimator to be introduced shortly, we
refer to the estimator from (3.1) as theunweightedM -estimator(using the selected
sample), and denote it bŷθu.

When will the unweightedM -estimator based on the selected sample consis-
tently estimateθo, the solution to (2.1)? By a standard analogy principle argument
(for example, Manski, 1988; Wooldridge, 2002, Ch. 12),θo should also uniquely
solve

min
θ∈Θ

E[s · q(w,θ)] . (3.2)

Without further assumptions, a solution to (2.1) does not generally solve (3.2). A
simple example is the incidental truncation problem in a linear regression model
(2.3). If s is correlated with the erroru, the true regression parameterθo does not
generally minimizeE[s · (y − xθ)2] becauseE(s · x′u) �= 0. Later we show that
when we strengthen the population identification condition and selection is based
only on conditioning variables, thenθo solves (3.2). But this does does not cover
all cases of interest.

An assumption that allows us to consistently estimateθo, while applying to
many problems of data nonobservability, is the following.
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Assumption 3.1. (i) w is observed whenevers = 1. (ii) For a random vectorv
containingw, p(v) ≡ P(s = 1|v) is observed whenevers = 1. ��
Part (i) of Assumption 3.1 simply defines when the data are observable; presumably,
some or all ofw is not observed whens = 0, or we would use standard methods
based on random sampling.

Part (ii) is the key. What gives this assumption content is the requirement that
p(v) is observable whenevers = 1; without this assumption, Assumption 3.1(ii)
would be a tautology because we could just takev = w and definep(w) ≡ P(s =
1|w).

Assumption 3.1 covers the variable probability (VP) sampling setup treated in
Wooldridge (1999). To see how, partition the sample spaceW into J nonempty,
mutually exclusive, and exhaustive strata,W1,W2, . . . ,WJ . For each strata, define
a binary indicatorbj = 1[w ∈ Wj ], so thatb1 + b2 + . . . + bJ = 1. We first draw
w from the population and then observe its stratum. The VP sampling scheme, as
formally described by Wooldridge (1999), effectively defines a selection indicator,
s, by

s = h1b1 + h2b2 + . . . + hJbJ ,

wherehj is a binary indicator determining whether an observation falling into
stratumj is kept. Notice that thehj are determined by the sampling scheme, and
have nothing to do with the original population distribution. Also, thehj typically
are not known whens = 0 because all information on the observation is discarded
whens = 0. By the nature of VP sampling, eachhj is independent ofw. Let
pj ≡ P(hj = 1) be thesampling probabilityfor stratumj , that is, the probability
of keeping a randomly drawn observation that falls into stratumj. Because each
hj is independent ofw, and eachbj is a deterministic function ofw,

E(s|w) = E(h1)b1 + . . . + E(hJ)bJ = p1b1 + . . . + pJbJ ≡ p(w) . (3.3)

The sampling probabilities,pj , are part of the sampling design and are generally
reported along with other variables. Butp(w) is only observed whens = 1, that
is, for units actually appearing in the sample. Ifw falls into stratumj buthj = 0,
we do not observe the stratum. Nevertheless, Assumption 3.1(ii) is satisfied with
v ≡ w.

Assumption 3.1 applies more generally to any stratified sampling scheme where
the sampling probability functionp(w) is observed whenevers = 1. For example,
with multi-stage stratified sampling, where the strata in later stages are nested
within strata in earlier stages, we can obtain sampling probabilities as the products
of conditional probabilities, provided that the final strata are mutually exclusive.

In the context of attrition and other kinds of nonrandom response, special cases
of Assumption 3.1 have been calledselection on observables(for example, Fitzger-
ald et al., 1999). Whenv is always observed, this name makes some sense, although
Assumption 3.1 does not imply thats is a determistic function ofv. Still, the name
“selection on observables” is a useful label to distinguish Assumption 3.1 from
assumptions used in Heckman-type approaches to sample selection corrections. In
Heckman’s approach, selection would be correlated with an endogenous variable
(say,y) even after conditioning on all exogenous variables (say,x). In other words,
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we haveselection on unobservablesbecause selection is correlated with the part of
y that cannot be explained byx.

A simple lemma is at the heart of inverse probability weighted approaches to
estimation. Essentially, it shows that the inverse probability weighting recovers
population moments from a selected sample.

Lemma 3.1. As in Assumption 3.1,p(v) = P(s = 1|v), wherew ⊂ v, and
assume thatp(v) > 0 with probability one. Then, for any real-valued function
g(w) such thatE[|g(w)|/p(v)] < ∞,

E{[s/p(v)]g(w)} = E[g(w)]; . (3.4)

Proof. The assumptionE[|g(w)|/p(v)] < ∞ implies that both[s/p(v)]g(w) and
g(w) have finite absolute moments, since each is dominated by|g(w)|/p(v). Then,
we can apply the law of iterated expectations:

E{[s/p(v)]g(w)} = E(E{[s/p(v)]g(w)|v})
= E{[E(s|v)/p(v)]g(w)}

(becausew ⊂ v = E{[p(v)/p(v)]g(w)} = E[g(w)]). ��
Lemma 3.1 immediately suggests how to use the sampling probabilities to

consistently estimateθo. TheweightedM -estimator, θ̂w, is the solution to

min
θ∈Θ

N∑
i=1

[si/p(vi)]q(wi,θ) . (3.5)

This objective function simply weights each observation for which we observewi

by the inverse conditional probability of appearing in the sample; the observations
for whichsi = 0 do not appear in the optimization problem. Because Assumption
3.1 maintains thatp(vi) is observed wheneversi = 1, θ̂w, is computable from the
observed data.

The consistency of̂θw follows from Lemma 3.1 and a standard application of the
analogy principle (along with regularity conditions, of course). Under Assumptions
2.1 and 3.1, Lemma 3.1 immediately implies thatθo uniquely solves

min
θ∈Θ

E{[s/p(v)]q(w,θ)} . (3.6)

In other words, ifθo is identified in the population, it is identified by the nonran-
dom sampling scheme under Assumption 3.1. A formal consistency proof simply
requires adding some regularity conditions; other than verifying identification of
θo by the weighted objective function, the proof is standard.

Theorem 3.1. Assume that

(i) {(vi, si) : i = 1, 2, . . . , N} are random draws from the population satisfying
Assumption 3.1. (Remember, this is not the same as random sampling from the
original population of interest.)

(ii) For someδ > 0, p(v) ≥ δ > 0 for all v ∈ V.
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(iii) θo uniquely solves (2.1), that is, Assumption 2.1 holds.
(iv) For all θ ∈ Θ, |q(w,θ)| ≤ b(w) for some functionb(·) such thatE[b(w)] <

∞.
(v) For eachw ∈ W, q(w, ·) is continuous onΘ, a compact subset ofRp.

Thenθ̂w
p→ θo asN → ∞. ��

Proof. All remaining proofs are given in the appendix.��
Given Assumption 3.1, the remaining conditions of Theorem 3.1 are quite

weak, and, with the exception of assumption (ii), are essentially the same as those
used to establish consistency of theM -estimator on random samples. Conditions
such as continuity ofq(w, ·) and compactness ofΘ can be relaxed at the cost of
complicating the analysis; see Newey and McFadden (1994) for discussion.

Part (ii) of Theorem 3.1 requires that the selection probabilities be bounded
from below. This assumption can be relaxed by assuming a dominating function, say
b(v), for |q(w,θ)/p(v)| with E[b(v)] < ∞. In the context of stratified sampling,
assumption (ii) implies that each strata sampling probability is strictly positive.

Theorem 3.1 applies to a broad range of estimation problems, including nonlin-
ear least squares, conditional maximum likelihood, partial MLE, quasi- MLE, and
least absolute deviations. The reason for having a selected sample can be varied:
incidental truncation, nonresponse, and attrition, to name three. Therefore, Theo-
rem 3.1 provides the foundation for a unified approach to solving nonresponse and
stratification in nonlinear models. The key is Assumption 3.1.

For the comparisons of weighted and unweighted estimators in Section 5, an
important point is that the IPWM -estimator consistently estimates the unique solu-
tion to Equation (2.1). There is no presumption that an underlying model is correctly
specified. As we discussed in Section 2,M -estimators based on random sampling
are generally consistent for the solution to the population problem. Theorem 3.1
is the simple extension to the case of nonrandom sampling but where sampling
probabilities are available that satisfy Assumption 3.1.

Often we need to estimate the sampling probability function,p(·). Estimation of
the probabilities using parametric methods has no interesting consequences for the
consistency of the weightedM -estimator: consistency follows under standard reg-
ularity conditions from basic results on two-step estimation (for example, Newey
and McFadden, 1994). However, estimation ofp(v) does have interesting impli-
cations for the asymptotic variance of the weightedM -estimator. Therefore, we
postpone a treatment of estimating the selection probabilities until the next section.

We end this section with an example that is similar to some that arise in epidemi-
ology (for example, Lin, 2000). A key feature is that, as with variable probability
sampling, the element invi determining selection is observed only whensi = 1.

Example 3.1. Let (xi, yi) be a random draw from a population entering some
program or treatment at some point in a specified time interval, say[0, b], b < ∞.
Time zero corresponds to the first calendar date at which units can enter the program.
The program or treatment could be the start of unemployment benefits or medical
treatment for an illness. If time is measured in weeks and the population consists
of people entering the program during a two-year interval, thenb = 104.
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Thexi are covariates observed at the start of treatment andyi is some measure
of usage or cost of the progam or treatment over a given length of time, sayτ . We
are interested in some feature of the distribution ofyi givenxi, often a conditional
mean or conditional median, but maybe a full conditional distribution. For example,
we might be interested in the cost of unemployment benefits over the duration of
an unemployment spell as a function of covariates observed at the beginning of the
spell (including measures of benefit generosity). If unemployment benefits run out
after, say, 26 weeks, thenτ = 26. Some people will use a full 26 weeks of benefits
while others will use only part of the benefits. Lett∗i denote the length of time on
treatment and let0 ≤ ai ≤ b denote the starting time for individuali. (Thus, we
have, in duration terminology, “flow data.”)

Assume that data collection stops at timeb, so the duration is censored ift∗i ≥
b− ai. Even if we do not observe the full duration, it could still be that we observe
t∗i long enough to observeyi. Let ti = min(t∗i , τ). (If we setτ = ∞, so that we are
interested in, say, lifetime costs for an elderly person on Medicare, then we only
observe those costs if the person dies within the interval[0, b].) Thenyi is observed
if and only if ti ≤ b − ai or ai ≤ b − ti . (In other words, we do not observe
the costs of those individuals whose treatment times last longer thanτ and take
them past the calendar date,b .) Therefore, the selection indicator issi = 1(ai ≤
b − ti). Now, assume that the starting time,ai, is independent of(t∗i ,xi, yi). Then
E(si|ti,xi, yi) = P(ai ≤ b − ti|ti) = G(b − ti), whereG(a) ≡ P(ai ≤ a).
Therefore, in Assumption 3.1, we can takevi ≡ (ti,xi, yi) ≡ (ti,wi). (Only ti
affects the selection probability.) Note thatti is observed only when the duration
is not censored, which exactly corresponds tosi = 1. So, given a distribution of
starting times – say, uniform over[0, b] – we can obtainp(vi) = G(b − ti) as the
selection probabilities. Or, because we have a random sample{ai : i = 1, . . . , N},
we can consistently estimateG(·) quite generally. (For example, we could allow
for seasonality in the context of unemployment durations.) We could also allow
the starting time distribution to depend on the covariatesxi. LettingD(·|·) denote
conditional distribution, we would assumeD(ai|t∗i ,xi, yi) = D(ai|xi) and then
estimateG(·|xi). In these contexts, thexi would be always observed.

If we are interested inE(yi|xi) we could use, say, an exponential regression
function and a quasi-MLE using the gamma log-likelihood, or we could uselog(yi)
in a linear regression analysis. We can also handle cases whereyi is a count variable,
measuring, say, the number of visits to a hospital in the first year covered by an
insurance plan. Then, a Poisson regression model is appropriate. Or,yi could be a
binary indicator, in which caseq(x, y,θ) is the log- likelihood for a binary response
model. ��

4 The asymptotic variance of the weightedM -estimator

We now consider a special case of Assumption 3.1 and allow for estimating the se-
lection probabilities using binary response models forsi. Showing

√
N -asymptotic

normality of the weightedM -estimator is fairly straightforward.
We replace Assumption 3.1 with
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Assumption 4.1.

(i) The random vectorz is always observed andw is observed whens = 1.
(ii) w is ignorablein the selection equation, conditional onz:

P(s = 1|w, z) = P(s = 1|z) ≡ p(z) . (4.1)

(iii) For a known functionp(·, ·),
p(z) = p(z,γo), z ∈ Z , (4.2)

whereγo ∈ Γ ⊂ R
M . ��

Assumption 4.1 means that we have a vector,z, which is always observed, that is a
good predictor of selection. For example, in an attrition problem, where we evaluate
a response variable in a second period after participation in the program in the first
period [or the change in the response variable], we must assume that first-period
variables predict attrition sufficiently well that the responses and covariates in the
second period are ignorable.

Assumption 4.1(iii) means that we have a correctly specified parametric model
for the selection probability. In practice, we can use a flexible logit or probit model.
We will not study the possibility of using nonparametric estimation ofp(z), but
clearly this is possible under suitable regularity conditions. [Hirano, Imbens, and
Ridder (2000) show that, in the case of estimating the average treatment effect under
ignorability of treatment, nonparametric estimation allows one to obtain the most
efficient estimator possible. Extending their results to the generalM -estimator case
seems technically challenging, but a good topic for future research.]

Let γ̂ denote the maximum likelihood estimator (MLE) ofγo, that is,γ̂ solves
the binary response problem

max
γ∈Γ

N∑
i=1

{si log[p(zi,γ)] + (1 + si) log[1 − p(zi,γ)]} . (4.3)

Given that selection is a binary response, and without extra information, the MLE
is the most sensible estimator, as it is asymptotically efficient. We impose standard
regularity conditions onp , such as twice continuous differentiability inγ.

The weightedM -estimator,̂θw, now solves

min
θ∈Θ

N∑
i=1

[si/p(zi, γ̂)]q(wi,θ) . (4.4)

We will not state a formal consistency result, as there are no interesting twists,
although we must rule out the possibility that response probability gets arbitrarily
close to zero as we varyz in Z andθ in Θ.

The weighting in (4.4) underlies a popular approach to estimating average
treatment effects. In the treatment effects literature, the goal is to estimateµ1 −
µ0 ≡ E(yi) − E(y0), the difference in population means with and without treat-
ment. The outcomes,y0 and y1, are counterfactual because each unit from a
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random sample of the population is either treated or not. Therefore, we observe
only yi = (1 − si)yi0 + siyi1 for each individuali. A key assumption is the
so-calledignorability of treatment, which is thatsi is independent of (yi0, yi1)
conditional on the observed set of covariates,zi. Then a consistent estimator of
µ1 is µ̂1 = N−1∑N

i=1[si/p(zi, γ̂)]yi; similarly, a consistent estimator ofµ0 is
µ̂0 = N−1∑N

i=1{(1− si)/[1−p(zi, γ̂)]}yi. In treatment effect contexts,p(zi, γ̂)
is called thepropensity score. See Hirano et al. (2000) for a careful study ofµ̂1 and
µ̂0 when the propensity score is estimated nonparametrically. Blundell and Costa
Dias (this issue) survey other methods for using the propensity score in program
evaluation.

We now sketch a derivation of the asymptotic of the weightedM -estimator
without worrying about the regularity conditions that allow use of the uniform
law of large numbers. We assume that the functionq(w, ·) is twice continuously
differentiable on the interior ofΘ for all w ∈ W and thatθo is in the interior ofΘ.
Then, a standard mean value expansion of the score aboutθo gives, with probability
approaching one,

0 = N−1/2
N∑

i=1

[si/p(zi, γ̂)]g(wi,θo)

+

(
N−1

N∑
i=1

[si/p(zi, γ̂)]Ḧi

)√
N(θ̂w − θo) ,

whereg(w,θ) ≡ ∇θq(wi,θ)′ is P × 1 andḦi is theP × P hessian ofq(wi,θ)
with rows evaluated at mean values betweenθ̂w andθ̂o. Define

Ao ≡ E{[si/p(zi,γo)]H(wi,θo)} = E[H(wi,θo)] , (4.5)

where the equality follows from Lemma 3.1, and assumeAo is nonsingular. Then,
by the uniform weak law of large numbers, we can write

√
N((θ̂w − θo) = −A−1

o

(
N−1/2

N∑
i=1

[si/p(zi, γ̂)]gi

)
+ op(1) , (4.6)

weregi ≡ g(wi,θo). The next step is to use a mean value expansion on the term
multiplying −A−1

o , aboutγo. Let pi ≡ p(zi,γo). Then

N−1/2
N∑

i=1

[si/p(zi, γ̂)]gi = N−1/2
N∑

i=1

(si/pi)gi

−E[(si/pi)gi(∇γpi/pi)]
√
N(γ̂ − γo) + op(1) , (4.7)

where we define∇γpi ≡ ∇γp(zi,γo) and use the fact that∇γ [1/p(zi,γ)] =
−∇γp(zi,γ)/[p(zi,γ)2]. If we define

Co ≡ E[(si/pi)gi(∇γpi/pi)] , (4.8)
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we see thatCo is the covariance between the score of the weightedM -estimator
objective function, evaluated at the true parameters, and∇γ log[p(zi,γo)] =
∇γpi/pi. Next, under standard regularity conditions, we can write

√
N(γ̂ − γo) = [E(did′

i)]
−1N−1/2

N∑
i=1

di + op(1) , (4.9)

where
di ≡ si(∇γp

′
i/pi) − (1 − si)[∇γp

′
i/(1 − pi)] (4.10)

is theM × 1 score of the binary response log-likelihood, evaluated atγo. The next
step is important. Becausesi = sisi, we can insert an extrasi multiplying∇γpi/pi

into the formula forCo. Further, becausesi(1 − si) = 0, si(∇γpi/pi) = sid′
i,

and so
Co = E[(si/pi)gi(sid′

i)] = E(si/pi)gid
′
i] .

Now defineki ≡ (si/pi)gi. Collecting terms together, we have shown that

N−1/2
N∑

i=1

[si/p(zi, γ̂)]gi = N−1/2
N∑

i=1

{ki − E(kid′
i)[E(did′

i)]
−1di} + op(1)

≡ N−1/2
N∑

i=1

ui + op(1) , (4.11)

whereui ≡ ki − E(kid′
i)[E(did′

i)]
−1di is theP × 1 vector of residuals from the

population regression ofki ondi. Combining (4.11) and (4.6) gives

√
N(θ̂w − θo) = −A−1

o

(
N−1/2

N∑
i=1

ui

)
+ op(1) , (4.12)

and so
Avar[

√
N(θ̂w − θo)] = A−1

o DoA−1
o , (4.13)

whereDo ≡ E(uiu′
i) = E(kik′

i) − E(kid′
i)[E(did′

i)]
−1E(dik′

i).
Equation (4.13) has several important implications. First, it shows that, if we

somehow happen to knowγo, so that we could insert the known selection prob-
abilities, p(zi,γo), into the objective function, we should nevertheless use the
estimated probabilities based on the conditional maximum likelihood estimator,γ̂.
To see why, we can use an even simpler argument to find the asymptotic variance
of the estimator, saỹθw, that uses the known probabilities:

Avar[
√
N(θ̃w − θo)] = A−1

o BoA−1
o , (4.14)

whereBo = E(kik′
i) = E(gig

′
i/pi). But then

Bo − Do = E(kik′
i) − E(uiu′

i) = E(kid′
i)[E(did′

i)]
−1E(dik′

i) ,

positive semi-definite matrix, which immediately implies that Avar[
√
N(θ̃w −

θo)] − Avar[
√
N(θ̂w − θo)] is p.s.d.
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Interestingly, equation (4.13) implies that, even if we have the model forP(si =
1|zi) correctly specified, we can do no worse – and usually do better asymptotically
– by adding nonlinear functions ofzi to any probit or logit estimation. The reason
is simple: as we add more functions ofzi, the score vector in the MLE binary
response expands (even though the true coefficients on the new variables are zero),
and this implies that the regression ofki ondi will have a smaller variance matrix.

Equation (4.13) suggests simple estimators for Avar[
√
N(θ̂w − θo)]. Let û′

i

be the1 × P residuals from the regression̂k
′
i on d̂

′
i, i = 1, . . . , N , wherek̂i =

si/p(zi, γ̂)]g(zi, θ̂w), d̂i = d(si, zi, γ̂), andN is the total number of observations,
as before. Then a consistent estimator ofDo is

D̂ = N−1
N∑

i=1

ûiû
′
i . (4.15)

A general, consistent estimator ofAo, is

Â = N−1
N∑

i=1

(si/p̂i)H(wi, θ̂w) , (4.16)

which, of course, simply weights the selected observations by the estimated inverse
probabilities.

In most econometric applications,w can be partitioned as(x,y), wherex
represents the conditioning variables. Then, a simpler estimator ofAo is often based
onG(xi,θo) ≡ E[H(wi,θo)|xi]. A simple iterated expectations argument shows
thatG(xi, θ̂w) can replaceH(wi, θ̂w) in (4.16) without changing the consistency
result:

N−1
N∑

i=1

(si/p̂i)G(xi, θ̂w)
p→Ao . (4.17)

In cases wherexi is observed for alli, we can drop(si/p̂) and use the unweighted
estimator,N−1∑N

i=1 G(xi, θ̂w).
The comparison of the estimators that use the estimated versus the known selec-

tion probabilities implies that if we compute the asymptotic varianceas ifwe have
not estimated the probabilities, the standard errors are larger than necessary, and
so confidence intervals and inference are conservative. In other words, if we obtain
significant estimates using the incorrect standard errors, the corrected standard er-
rors would lead to even largert statistics. This is somewhat unusual for two-step
estimation problems, where the prevailing wisdom is that adjusting standard errors
for a first stage estimation usually results in larger standard errors. Interestingly, the
above derivation hinges crucially on the assumption that the parameters inp(z,γo)
are estimated using maximum likelihood binary response. I do not know whether
the efficiency gains from estimatingγo carry over to other methods of estimating
γo, such as the one described in Example 3.1.

The following theorem simply fills in the missing regularity conditions.
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Theorem 4.1. Assume that

(i) {(wi, zi, si) : i = 1, 2, . . . , N} is a random sample from a population satis-
fying Assumption 4.1.

(ii) The assumptions of Theorem 3.1 hold.
(iii) p(z, ·) is continuous on the compact setΓ, twice continuously differentiable on

int(Γ),γo ∈ int(Γ), andp(z,γ) ≥ δ > 0 for all z ∈ Z,γ ∈ Γ. Let γ̂ be the
conditional maximum likelihood estimator ofγo, and let1/p̂i ≡ 1/p(zi, γ̂)
be the inverse probability weights.

(iv) The representation in (4.6) holds, withE[g(wi,θo)] = 0 andAo nonsingular.

Then (4.13) holds, and a consistent estimator of Avar[
√
N(θ̂w − θo)] is given

by

Â
−1

D̂Â
−1

, (4.18)

whereD̂ is given in (4.15) and̂A is given in (4.16) or (4.17). ��
The following example illustrates the broad applicability of Theorem 4.1.

Example 4.1. Let m(x,θ) be a parametric conditional mean function for the
scalar response variabley. Assume that for someθo ∈ θ,E(y|x) = m(x,θo).
Let q(w,θ) = log f [y|m(x,θ)] denote the quasi log-likelihood for a member of
the linear exponential family (LEF; for example, GMT, 1984). Included are binary
response, such as probit and logit and the fractional regression models of Papke
and Wooldridge (1996), Poisson regression models, and gamma regression models.
Let v(x,θ) denote the variance function associated with the LEF density. In the
Poisson case,v(x,θ) = m(x,θ), in the gamma casev(x,θ) = [m(x,θ)]2, and
in the binary response casev(x,θ) = m(x,θ)[1−m(x,θ)]. Nonlinear regression
is encompassed by takingv(x,θ) ≡ 1. Let γ̂ be the first-stage probit or logit
estimator ofsi on zi, i = 1, . . . , N , where thezi are the observed variables that
predict sample selection. Let̂pi = p(zi, γ̂) be the fitted probabilities. Then the
weighted quasi-MLE solves

max
θ∈Θ

N∑
i=1

(si/p̂i) log{f [yi|m(xi,θ)]} .

A conservative estimate of the asymptotic variance ofθ̂w is(
N∑

i=1

(si/p̂i)∇θm̂
′
i∇θm̂i/v̂i

)−1( N∑
i=1

(si/p̂
2
i )ê

2
i ∇θm̂

′
i∇θm̂i/v̂

2
i

)

·
(

N∑
i=1

(si/p̂i)∇θm̂
′
i∇θm̂i/v̂i

)−1

, (4.19)

where∇θm̂i ≡ ∇θm(xi, θ̂w), v̂i ≡ v(xi, θ̂w), andêi ≡ yi −m(xi, θ̂w). This is
identical to the Huber-White “sandwich” estimator using thesi = 1 observations
but where the quasi-log likelihood has been weighted by1/p̂i for eachi. (We have
not regressed the weighted score of the quasi-log likelihood ond̂i, the score from
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the selection probability estimation, in forming the matrix in the middle of the
sandwich, and that is why the estimator is conservative.) Ifxi is always observed,
we can dropsi/p̂i from the two terms on the outside of the sandwich.

Importantly, we need to use an estimator that has the sandwich form even if the
variance implicit in the linear exponential family is correctly specified up to a con-
stant of proportionality:Var(y|x) = σ2

ov(x,θo). (This is a common assumption
in the generalized linear models literature.) For example, for linear or nonlinear

regression, we need to use (4.18) (or the more precise versionÂ
−1

D̂Â
−1

/N )
even ifVar(y|x) = σ2

o. For binary response, where the variance must be correctly
specified if the mean is, we still need a so-called robust form of the variance matrix
estimator. Similar comments hold for Poisson and gamma regression models.

This example covers some interesting possibilities for estimating average treat-
ment effects conditional on covariates. For concreteness, suppose we want to use
linear or nonlinear regression, wheresi is now a treatment indicator and we ob-
serveyi = (1−si)yi0 +siyi1, and the notation is the same as before. Letm1(x,β)
be the model forE(y1|x) andm0(x,α) be the model forE(y0|x); for example,
these could be linear or exponential. We want to estimatem1(x,β) − m0(x,α)
at different values ofx. Consider estimatingβ; the argument forα is essentially
identical. If we know the propsensity score,p(zi,γo) – the probability of receiving
treatment based on covariatesz, with x ⊂ Z – the weighted objective function is∑N

i=1[si/p(zi,γo)][yi−m1(xi,β)]2 =
∑N

i=1[si/p(zi,γo)][yi1−m1(xi,β)]2/2,
where we use the simple facts thatsiyi = siyi1 and s2

i = si. The ignorabil-
ity of treatment assumption is thatP(s = 1|y0, y1, z) = P(s = 1|z), which
implies that Assumption 4.1(ii) holds withw = (x, y1). Therefore, provided
E(y1|x) = m1(x,βo), we can consistently estimateβo using the IPW nonlin-
ear least squares estimator, and the asymptotic distribution theory applies directly.
Of course, we would estimateβo first. Then we can use(1− si) and[1− p(zi, γ̂)]
to estimateαo, and obtain estimates ofm1(x,β) − m0(x,α). ��

Before leaving this section, we make a final observation. Suppose that, in the
population, the information matrix equality holds:E[gi(θo)gi(θo)′] = E[Hi(θo)]
≡ Ao, as would happen in the case of maximum likelihood estimation. As is
well known from the theory ofM -estimation with random samples (for example,
Wooldridge, 2002, Ch. 12), the asymptotic variance of the properly centered and
scaledM -estimator is, under random sampling,A−1

o . If instead we use nonrandom
sampling with known sampling probabilities, the asymptotic variance is given in
equation (4.14). The difference in asymptotic variances,A−1

o BoA−1
o − A−1

o =
A−1

o (Bo−Ao)A−1
o , is easily shown to be positive semi-definite. In fact,Bo−Ao =

E(gig
′
i/pi) − E(gig

′
i) = E[gig

′
i(1 − pi)/pi], which is a positive semi- definite

matrix. This shows that it is better, under the information matrix equality, to use
a random sample than to use a nonrandom sample with known sampling weights.
However, I cannot claim a similar result if the probability weights are estimated,
as in Theorem 4.1. It appears that (4.13) could be smaller thanA−1

o (in the matrix
sense), although I have not worked out an example.
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5 To weight or not to weight? That is the question

An important issue that arises in the analysis of stratified data with sampling weights
is: When should the sampling weights actually be used? The same question arises
with general nonresponse. Unfortunately, there is no clear-cut answer for all appli-
cations.

To provide some guidance about weighting, we must recognize that there are
two issues. The first involves consistency of the two procedures while the second
involves asymptotic efficiency comparisons in cases where both the weighted and
unweighted estimators are consistent. We first consider the consistency issue.

As we saw in Section 3, the weighted estimator is consistent if we have an
appropriate ignorability assumption and if we either know or can consistently esti-
mate the sampling probabilities. When sample selection is, in an appropriate sense,
based on conditioning variables, the unweightedM -estimator is generally consis-
tent. The definition of “conditioning variables” is effectively thatθo minimizes the
expected value of the objective function conditional on any value ofx. We must
also assume thatθo is the unique solution to (2.1).

Assumption 5.1.

(i) For eachx ∈ X ,Θo solves the problem

min
θ∈Θ

E[q(w,θ)|x] . (5.1)

(ii) θo is the unique solution to problem (3.2).��

Practically, part (i) of Assumption 5.1 means that the underlying econometric model
– whether it is a model of a conditional mean, conditional distribution, conditional
quantile, and so on – is correctly specified. A simple argument shows that As-
sumption 5.1(i) is much stronger than just assumingθo solves problem (2.1): if
E[q(w,θo)|x] ≤ E[q(w,θ)|x] for all x ∈ X ,θ ∈ Θ, then iterated expectations
implies thatθo solves (2.1). As a simple example of where the converse is not true,
consider the linear regression modely = x,θo + u whereE(x′u) = 0. Then, as
we discussed in Section 2,θo minimizesE[(y − xθ)2]. But θo is only guaranteed
to minimizeE[(y − xθ)2|x] for eachx if E(u|x) = 0.

Assumption 5.1 holds in the context of conditional MLE when the density
of y given x is correctly specified. It also holds for problems such as weighted
least squares, even in multivariate contexts, when the conditional mean is correctly
specified but the variance function is effectively misspecified. In the context of
quasi-MLE in the linear exponential family – for example, Gourieroux et al. (1984)
– Assumption 5.1(i) holds when the conditional mean is correctly specified, even
though everything else about the distribution might be misspecified.

Part (ii) of Assumption 5.1 is needed because we could have situations where
the selected subpopulation is not sufficiently rich to identifyθo, In the linear re-
gression case from the previous paragraph, lack of identification would occur if
rankE(x′x|s = 1) < K.

The notion that sampling depends on the conditioning variablesx is formalized
in part (ii) of the following assumption:
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Assumption 5.2.

(i) w is observed whenevers = 1.
(ii) For x from Assumption 5.1,

P(s = 1|w) = P(s = 1|x) . �� (5.2)

A leading case where equation (5.2) holds is whens is a deterministic function of
x, that is, selection is based purely on the value ofx. Of course it also holds when
s is independent ofw, and therefore ofx.

It is easy, again using the analogy principle, to show that Assumptions 5.1 and
5.2, along with regularity conditions, imply consistency of the unweighted estima-
tor. Recall from Section 3 that the limiting minimization problem that corresponds
to the unweightedM -estimator is given by (3.2). Therefore, we show thatθo is a
solution to (3.2), again using iterated expectations. For anyθ ∈ Θ,

E[s · q(w,θ)] = E{E[s · q(w,θ)|x]} = E{E(s|x)E[q(w,θ)|x]}
= E{p(x)E[q(w,θ)|x]} , (5.3)

where the second equality follows by iterated expectations:E[s · q(w,θ)|x] =
E{E[s · q(w,θ)|w]|x} = E[E(s|w)q(w,θ)|x]E(s|x)E[q(w,θ)|x] because
E(s|w) = E(s|x) under Assumption 5.1(ii). Becausep(x) ≥ 0 for x, andθo
minimizesE[q(w,θ)|x] for all x, it follows that

p(x)E[q(w,θo)|x] ≤ p(x)E[q(w,θ)|x], x ∈ X , θ ∈ Θ . (5.4)

Taking the expectation with respect tox shows thatθo is a solution to (3.2), as
claimed.

Theorem 5.1. Assume that

(i) {(wi, si) : i = 1, 2, . . . , N} are random draws satisfying Assumption 5.2.
(ii) Assumption 5.1 holds.
(iii) Parts (iv) and (v) of Theorem 3.1 hold.

Then the unweightedM -estimator using the selected sample,θ̂u, is consistent for
θo : θ̂u

p→ θo asN → ∞. ��

Once we verify thatθo is identified in the subpopulation, the proof of Theorem 5.1
is very similar to that of Theorem 3.1, and so it is omitted. One interesting feature
of Theorem 5.1 is that it does not require the selection probabilities to be strictly
positive: if selection is based onx and Assumption 5.1 holds, we can exclude parts
of the population that are defined in terms ofx, provided we can still identify
θo in the observed subpopulation. Entirely excluding part of the population is not
possible in Theorem 3.1. Therefore, if we are willing to make the assumptions in
Theorem 5.1, the unweighted estimator has the advantage of allowing selection
schemes where part of the population is not represented at all.

In most cases that are not stratified sampling, there is some positive probability
that any population member will appear in the selected sample. So, what if the
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sampling probabilities are strictly positive and depend only on conditioning vari-
ables in the sense of Assumption 5.2? Still, even from a consistency standpoint, it
is not obvious whether or not to weight. As we discussed in Section 3, the weighted
estimator identifies the solution to (2.1) whether or not there is any kind of model
misspecification. The requirement thatθo solves (5.1) for allx essentially means
that the feature of the distribution ofy givenx that we are modeling is correctly
specified. Under misspecification, the solution to problem (3.2) will not be the same
as the solution to (2.1). In other words, the weighted and unweighted estimators
will have different probability limits even though sampling is exogenous. Since
the solution to (3.2) depends on the sampling scheme – namely, the probabilities
P(s = 1|x) = p(x) – most would conclude that the unweighted estimator is
not very attractive. If we take the broad view that we want to estimate the vector
that solves the population problem even under misspecification, then the weighted
estimator is preferred.

A counterbalance to the previous argument is a somewhat subtle reason to prefer
the unweighted estimator in problems of nonresponse, such as attrition. This has
to do with unobservability of some elements ofx for the excluded subpopulation.
Suppose Assumptions 5.1 and 5.2 hold. Then we know the unweighted estimator
is consistent. If we also assume the probabilitiesp(x) are bounded from below by
a strictly positive number, so that part (ii) of Theorem 3.1 holds, then the weighted
estimator based onp(x) or consistent estimates would also be consistent. The
problem for the weighted estimator is that, if some elements ofx are not observed,
we cannot estimate thep(xi) even for the selected sample. Typically, the response
probabilities are estimated from a binary response ofsi onzi using a random sample
from theentirepopulation. (Example 3.1 is an exception.) Any element ofx that
is missing for a subset of the population cannot be included inz. This means that,
for the purposes of correcting the nonrandom sampling problem, our first-stage
estimation of the selection probabilities could be misspecified. Importantly, this
has nothing to do with whetherp(z,γ) is correctly specified forP(s = 1|z). The
problem is that, under Assumption 5.2(ii), it is unlikely thatP(s = 1|w, z) =
P(s = 1|z) unless we can takex to be a subset ofz.

If x is always observed then the weighted estimator is more attractive because
we can, and should, includex in z. If, for example, selection is a deterministic
function ofx, then a sufficiently flexible model forP (s = 1|z) should pick this
out as long asx ⊂ z. In addition, the weighted estimator allows observable factors
other thanx to affect selection, while the unweighted estimator effectively does
not.

Consider a concrete example. Suppose that, in an initial time period, we obtain
a random sample of people participating in a job training program. We have, say,
before-training earnings, education levels, workforce experience, and demographic
variables. Denote pre-training earnings asy0 and the pre-training covariates asx0.
Then, some people participate in the program, and assume participation is exoge-
nous. Letr be a binary job- training participation indicator. In follow-up interviews
to obtain post- training earnings and updates on other variables (say, marital status),
some people are not available. So post-training earnings and information on other
variables that change from the first period are unavailable. Denote the post-training
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earningsy1 and the post-training time- varying covariates asw1. One evaluation
approach would try to estimateE(y1|r, y0,x0,w1) and study the effect ofr on this
expectation. Lets be the attrition indicator (s = 1 if still available in the second
time period). Then an unweighted analyis – this could be a regression approach,
an MLE, or a quasi-MLE method that works under ranom sampling – is consistent
provided

P(s = 1|y1, r, y0,x0,w1) = P(s = 1|r, y0,x0,w1) . (5.5)

(Remember that the unweighted estimator does not require us to estimate the se-
lection probability.) In applying a weightedM -estimator, we can only estimate
P(s = 1|r, y0,x0) becausew1, the vector of time-varying covariates, is missing
for those who attrit. Therefore, we must takez ≡ (r, y0,x0) to apply the IPW
method in Section 4, which means that the needed ignorability assumption is

P(s = 1|y1, r, y0,xo,w1) = P(s = 1|r, y0,x0) . (5.6)

Assumption (5.6) is the same as sayings is independent of(y1,w1) conditional on
(r, y0,x0). But then s and y1 are necessarily independent, conditional on
(r, y0,x0,w1). In other words, (5.6) implies (5.5), but the converse is not gen-
erally true. In fact, since attrition might well be related to time-varying covariates
– for example, changes in marital status or job tenure – (5.5) is practically more
appealing than (5.6).

The previous discussion suggests some general considerations when deciding
whether or not to use weighting. In cases where some of the covariates are un-
observed for the unselected part of the populationand the feature of interest – a
conditional expectation, a conditional median, or a condition distribution as the
leading cases – is conditional on all possible covariates and any initial response
variable, there is a strong argument against weighting. Effectively, the “kitchen
sink” nature of the population conditional expectation or conditional distribution
of interest means that selection can depend on the broadest set of variables possi-
ble, that is, every variable observed at any time except the response variable after
attrition. Any weighting necessarily excludes from the selection probability covari-
ates that are not observed after attrition, and so it is consistent only under stronger
assumptions than needed for the unweighted estimator.

When might weighting be preferred in cases of nonresponse on some covari-
ates? Weighting is most appealing when the model we want to estimate has a
more structural interpretation and is not simply a kitchen-sink-type analysis. In
the job-training example with attrition described earlier, suppose we start with an
unobserved effects model, which we write for a random draw from the population
as

yit = αorit + witβo + ci + uit, t = 0, 1 , (5.7)

whereci is unobserved heterogeneity andwit contains time-varying covariates, and
rit is the job-training participation indicator. (In the setup discussed above,ri0 = 0
for all i.) Differencing the two time periods gives a cross-sectional equation,

∆yi = αo∆ri + ∆wiβo + ∆ui . (5.8)
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Now, suppose we are only willing to assumeE(∆ui|∆ri,∆wi) = 0. If we had a
random sample, we would just estimate (5.8) by OLS. If we have attrition, we could
still apply OLS to (5.8) under the assumptionP(si = 1|∆yi,∆ri,∆wi) = P(si =
1|∆ri,∆wi). Unlike in the earlier case, we cannot condition on initial earnings,yi0
, in the selection probability. In other words, now we have to assume that attrition is
ignorable with respect to the change in earnings conditional only on(∆ri,∆wi).
If we instead estimate (5.8) by weighted least squares, using inverse probability
weights, then we would include(yi0,xi0, ri0, ri1) in the selection probit or logit,
wherexi0 contains all initial period covariates. Now the ignorability assumption
used by IPW is not more restrictive than that used by the unweighted analysis, and
so the IPW estimator could be consistent in cases where the unweighted estimator
is not.

So far, our discussion has focused on consistency. But there are also efficiency
issues when the sampling is exogenous, as in Assumption 5.1. In the context of
different kinds of stratified sampling, Wooldridge (1999, 2001) shows that when
w partitions as(x,y) where some feature of the conditional distribution ofy
givenx is correctly specified, stratification is a function ofx, and a generalized
conditional (onx) information matrix equality holds, then the unweighted estimator
is asymptotically more efficient than the weighted estimator. This covers the fairly
well-known regression and conditional maximum likelihood cases, and many others
as well.

Recall from Theorem 4.1 that estimating the selection probabilities generally
leads to a more efficient estimator than using the knownp(zi) (if these were avail-
able). An important result is that, if Assumptions 5.1 and 5.2 hold, then the asymp-
totic variance of the weighted estimator is the same whether or not the selection
probabilities are estimated. Letθ̂w be the weighted estimator based onp(xi, γ̂)
and letθ̃w be the weighted estimator based onp(xi,γo).

Theorem 5.2. Let the assumptions of Theorem 4.1 hold, and, in addition, make
Assumptions 5.1 and 5.2. (So we takez ≡ x in Theorem 4.1.) Assume that part (iv)
of Theorem 4.1 can be strengthened toE[g(wi,θo)|xi] = 0, as would hold under
Assumption 5.1 under a standard interchange of an integral and partial derivatives.
ThenE(d′

iki) = 0, and thereforeAvar
√
N(θ̂w −θo) is given by Eq. (4.14), which

is the same asAvar
√
N(θ̃w − θo). ��

Interestingly, the asymptotic equivalence ofθ̂w and θ̃w does not hinge on a
generalized information matrix equality. For example, suppose we have a model
for E(y|x), saym(x,θ), and the model is correctly specified –E(y|x) = m(x,θo)
for some element ofθo in the parameter set. IfP(s = 1|y,x) = P(s = 1|x) =
p(x,γo), and we always observex, then estimatingγo by binary response MLE
leads to the same asymptotic variance as usingp(xi,γo), even if there is het-
eroskedasticity inVar(y|x) of unknown form. In a quasi-MLE environment, say,
with Poisson regression, the variance can have any form, and the estimatorsθ̂w and
θ̃w are still asymptotically equivalent. In a panel data setting (where selection is in
all time periods or not at all), there can be neglected serial correlation of any form.

We can combine Theorem 5.2 with a generalization of the information matrix
equality from maximum likelihood theory to conclude that the unweighted esti-
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mator is more efficient under correct model specification and exogenous sampling
under standard assumptions. We need a definition:

Definition 5.1. Thegeneralized conditional informationmatrix equality (GCIME)
holds if, for someσ2

o > 0,

E{∇θq(w,θo)′∇θq(w,θo)|x} = σ2
oG(x,θo) , (5.9)

where
G(x,θo) ≡ E[∇2

θq(w,θo)|x] . �� (5.10)

The GCIME is natural for many problems. The GCIME always holds for conditional
MLE under correct specification of the conditional density withσ2

o = 1. Another
important case is quasi-MLE in the LEF under the so-calledgeneralized linear
models(GLM) assumption. This assumption states thatVar(y|x) is proportional to
the variance implied by the density used in the quasi-log likelihood. For example,
in Poisson regression, the GLM assumption isVar(y|x) = σ2

oE(y|x).

Assumption 5.3. The generalized conditional information matrix equality holds.
��

Theorem 5.3. Assume that Assumptions 5.1, 5.2, and5.3 hold, alongwith standard
identification and regularity conditions. Let̂θu be the unweightedM -estimator
using the selected sample, and letθ̂w be the weightedM -estimator using weighting
function1/p(x), wherep(x) ≡ P(s = 1|x). Then

Avar
√
N(θ̂u − θo) = σ2

o{E[p(x)Go(x)]}−1 , (5.11)

and

Avar
√
N(θ̂w−θo) = σ2

o{E[Go(x)]}−1E[Go(x)/p(x)]{E[Go(x)]}−1 . (5.12)

Further, the difference betweenAvar
√
N(θ̂w − θo) and Avar

√
N(θ̂u − θo) is

positive semi-definite.��

This result shows that the weighted estimator is inefficient when selection is
on exogenous variables and the generalized GCIME holds. This provides further
support for using the unweighted estimator when we think selection is determined
by conditioning variables. Not suprisingly, when the GCIME holds, it is best to
useM -estimation under random sampling. Why? Under random sampling and
the GCIME, the asymptotic variance of theM -estimator isσ2

o{E[Go(x)]}−1 =
σ2

oA
−1
o [just takep(x) ≡ 1]. The difference in asymptotic variances is positive

semi-definite becauseAo − E[p(x)Go(x)] = E{[1 − p(x)]Go(x)} is positive
semi-definite.

If the GCIME does not hold then the weighted estimator could be more efficient
than the unweighted estimator, and either could be more efficient than using random
sampling. The preferred estimator depends on the nature of the GCIME violation
and the choice ofp(x).
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6 Concluding remarks

In cases where the population model is linear, Heckman’s (1976) approach is the
most common way, in econometrics, of handling nonrandom sample selection.
Unfortunately, Heckman’s approach does not extend easily to general nonlinear
models. Plus, the Heckman correction relies on having a variable in the selection
equation that can be excluded from the population conditional mean function. In
many cases, such variables are difficult to find. Inverse probability weighting works
under different assumptions than Heckman’s approach. We assume that we have
access to variables, in addition to those appearing in the population model of interest,
that are sufficiently good predictors of sample selection.

One benefit of IPW estimators is that they can be obtained for general nonlinear
models. Here, I have focused onM -estimators. Useful extensions would be to two-
stepM -estimators and generalized method of moments estimators. An interesting
research agenda is to extend the derivation of the asymptotic distributions in Section
4 to allow for nonsmooth problems. A leading case of a nonsmooth problem is
least absolute deviations (LAD). As is now well known, under random sampling
and fairly weak assumptions, LAD is consistent for the parameters in a correctly
specified conditional mean and has a

√
N -asymptotic normal distribution. Theorem

3.1 applies to LAD under nonrandom sampling provided we can find suitable inverse
probability weights. But asymptotic normality of the IPWM -estimator for LAD,
along with consistent estimation of the asymptotic variance, is not a trivial extension
of Theorem 4.1. Presumably, the arguments in Newey and McFadden (1994) can
be adapted to the IPW, but the details remain to be worked out.

A Appendix

Proof of Theorem 3.1.We already showed that

E{[s/p(v)]q(w,θ)} = E[q(w,θ)],θ ∈ Θ ,

and soθo is identified by the weightedM -estimator objective function under As-
sumption 2.1. To complete the proof, we simply show that the objective function sat-
isfies the weak uniform law of large numbers. Defineg(v, s,θ) ≡ [s/p(v)]q(w,θ).
Then, by (ii) and (iv),

|g(v, s,θ)| ≤ δ−1b(w), all (v, s) ,

andE[b(w)] < ∞ by (iv). It now follows from Lemma 2.4 in Newey and McFadden
(1994) that{g(vi, si;θ) : i = 1, 2, . . .} converges in probability to its expectation,
uniformly overθ. From the consistency result in Newey and McFadden (1994,
Theorem 2.1),̂θw

p→ θo. ��
Proof ofTheorem5.2.It suffices to show thatE(d′

iki) = 0. But, as discussed in Sec-
tion 4,E(d′

iki) = E{[(si/pi)gi(θo)][∇γpi(γo)/pi]}, wheregi(θo) ≡ g(wi,θo)
and, withzi = xi,pi ≡ p(xi,γo). Since∇γpi(γo)/pi is a function ofxi it suffices,
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by iterated expectations, to show thatE[(si/pi)gi(θo)|xi] = 0. But by Assump-
tion 5.2 with zi = xi,E(si|wi) = E(si|xi) = pi. Sincegi(θo) is a function
of wi,E[(si/pi)gi(θo)|wi] = gi(θo). But another application of iterated (since
xi ⊂ wi) givesE[(si/pi)gi(θo)|xi] = E[gi(θo)|xi] = 0.

Proof of Theorem 5.3.By standard first order asymptotics,

Avar
√
N(θ̂u − θo) = A−1

u BuA−1
u , (A.1)

where

Au = E[s∇2
θq(w,θo)] and Bu = E[s∇θq(w,θo)′∇θq(w,θo)] .

Assumption 5.2 implies thats andw are independent conditional onx, so iterated
expectations implies

Au = E[E(s|x)E{∇2
θq(w,θo)|x}] = E[p(x)Go(x)] . (A.2)

Similarly,

Bu = E[E(s|x)E{∇θq(w,θo)′∇θq(w,θo)|x]} = σ2
oE[p(x)Go(x)] , (A.3)

where the last equality follows from Assumption 5.3. Equation (5.11) follows from
(A.1), (A.2), and (A.3).

A similar argument proves (5.12). First,

Avar
√
N(θ̂w − θo) = A−1

w BwA−1
w

where

Aw ≡ E{[s/p(x)]∇2
θq(w,θo)} = E{[E(s|x)/p(x)]Go(x)} = E[Go(x)]

and

Bw ≡ E{[E(s|x)/p(x)2]E[∇θq(w,θo)′∇θq(w,θo)|x]} = σ2
oE[Go(x)/p(x)]

Finally, we prove the last statement. This holds if[Avar
√
N(θ̂u − θo)]−1 −

[Avar
√
N(θ̂w − θo)]−1 is positive semi-definite. Define

D(x) ≡ [p(x)]1/2Go(x)1/2, F(x) ≡ [p(x)]−1/2Go(x)1/2 .

Then, dropping the scalarσ2
o,

[Avar
√
N(θ̂u − θo)]−1 − [Avar

√
N(θ̂w − θo)]−1

= E[D(x)′D(x)] − E[D(x)′F(x)]{E[F(x)′F(x)]}−1E[F(x)′D(x)]
≡ E[U(x)′U(x)] ,

whereU(x) is theP × P matrix of population residuals from the population
regression ofD(x) onF(x). This completes the proof asE[U(x)′U(x)] is positive
semi-definite. ��
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