
ORIGINAL ARTICLE

Ensuring business and service requirements
in enterprise mashups

Nikolaos Vesyropoulos1 • Christos K. Georgiadis1 •

Panagiotis Katsaros2

Received: 22 November 2016 / Revised: 24 July 2017 / Accepted: 1 September 2017 /

Published online: 6 September 2017

� Springer-Verlag GmbH Germany 2017

Abstract During the past few years, mashups have gained wide attention as they

utilize Web 2.0 technologies in order to combine data, as well as the functionalities

of numerous services, in a simple web application. While developing mashups for

simple user-specific needs is not a demanding procedure, this is not the case for

value-added services that need to satisfy specific properties and business needs,

known as enterprise mashups. As a number of business requirements have to be

satisfied, and execution faults are less tolerated compared to user-centric scenarios,

a rigorous approach for their development is required. In this work we present such

an approach utilizing model checking techniques, provided by the behavior, inter-

action, priorities (BIP) component framework. In addition, a methodology for the

transformation of business process model and notation models, describing the

business logic of a requested mashup, into the corresponding BIP models is pro-

posed. The generated models enable the verification of requested properties.

Keywords Business process � BPMN � Enterprise mashups � Web

services � Model checking � BIP component framework

& Nikolaos Vesyropoulos

nvesyrop@uom.edu.gr

Christos K. Georgiadis

geor@uom.edu.gr

Panagiotis Katsaros

katsaros@csd.auth.gr

1 University of Macedonia, 156 Egnatia Street, 54006 Thessalonı́ki, Greece

2 Aristotle University of Thessaloniki, Thessalonı́ki, Greece

123

Inf Syst E-Bus Manage (2018) 16:205–242

https://doi.org/10.1007/s10257-017-0363-x

http://orcid.org/0000-0002-2389-7389
http://crossmark.crossref.org/dialog/?doi=10.1007/s10257-017-0363-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10257-017-0363-x&domain=pdf
https://doi.org/10.1007/s10257-017-0363-x

1 Introduction

Web-based transactions have significantly benefited from the advent of the service-

oriented architecture (SOA). More and more enterprises rely on web services (WS)

in order to fulfill their business needs, both in terms of B2C and B2B transactions. A

major advantage that this paradigm offers is the ability to loosely connect

heterogeneous systems, which usually results in seamless communications and

message exchanges. In addition, the SOA paradigm offers the possibility of WS

composition, which enables the rapid development of compelling services, through

the merging of WS, which can be handled as composable units.

While SOAP based services are typically composed using BPEL for the

orchestration and choreography of services, RESTful compositions are often in the

form of Web 2.0 mashups. This term pertains to Web applications or pages that

combine data and services from different sources, in order to provide a value-added

service, while heavily relying on application programming interfaces (APIs) for the

retrieval process. They provide flexibility in creating unified environments, without

their construction being significantly effort demanding. Nevertheless, they have

mainly been utilized for the creation of simplified projects and user-oriented

solutions, such as enhanced maps with embedded information regarding the location

of certain points of interest. These mashups are produced by combining a map

service (e.g. the Google maps API) with data extracted from a secondary source,

such as, for example, a listing of available museums in a specific area. Such a

solution can aid an end-user in retrieving information, rapidly, through a unified

visual representation, though has limited application value in a business context. A

more compelling project is described in Polymerou et al. (2014), where a

combination of a sentiment analysis service, a map service and a video repository

can provide an interactive map that reveals the emotions that a video can invoke in

different regions, by processing the users’ comments in the video’s corresponding

section. Through the utilization of this mashup, peoples’ attitudes regarding specific

issues can be examined.

The abundance of reusable content that can be utilized in order to construct

mashups, provides the means for significant business opportunities. In addition, the

cost of developing compelling services using mashups can be significantly lower

than the cost associated with building these solutions from scratch. As a result,

mashups are currently gaining more attention from developers and end-users.

Nevertheless, many enterprises still seem hesitant about adopting this methodology.

One of the reasons for this limited interest involves the lack of tools for high-level

development based on business and service requirements. It has to be noted that

during the past decade service compositions were linked with SOAP-based services

and BPEL, as RESTful services have only recently gained wider adoption.

Nonetheless, in recent years a number of API repositories (e.g. Programmable Web

and Mashery) have emerged that provide the means for creating enterprise mashups

and, in addition, can assist the developing process by providing detailed

documentation, users’ feedback and online support. Furthermore, various

researchers have recently proposed novel solutions for the construction of such

206 N. Vesyropoulos et al.

123

value-added services, while commercial suits have begun integrating tools for

mashup development (e.g. Oracle’s WebCenter and IBM’s Mashup Centre)

(Paredes-Valverde et al. 2015). These suites can provide flexible interfaces and

business environments that can enable an enterprise to rapidly develop or customize

web applications that can satisfy emerging business needs, thus, also highlighting

the benefits of utilizing mashups. While this constantly increasing support indicates

a shift towards a higher adoption of enterprise mashups, there is still a need for

solutions that can verify or enforce specific requirements.

1.1 Business and service requirements

Business requirements refer to the identification and elicitation of the requirements

of enterprises, customers and other involved parties in business transactions. They

pertain to the behavior that is expected from business processes and external

services, in order to satisfy the enterprise’s predefined business needs (Kazhamiakin

et al. 2004). Instead of focusing on the actual implementation of such processes and

services in a transaction, they are closely connected to the way those can be utilized

in order to achieve specific goals as well as to their mutual dependencies (Pistore

et al. 2004). They are a primary concern during the development of enterprise

information systems and could also include the application of execution constraints

and the integration of predefined business agreements that should be fulfilled. An

example of a business requirement could be a restriction to the execution order of

external services that would prohibit the invocation of a certain service before the

completion of another.

Service requirements on the other hand, are requirements that refer both to the

functional and non-functional characteristics of the WS that are being used as stand-

alone services or as a part of a WS composition. They are closely connected to the

expected behavior of a WS in a certain environment (Wang et al. 2009). In more

detail, functional requirements pertain to those functionalities that are requested by

the end-user or the enterprise and focus on the specific operations that the service

can perform (Chen et al. 2014). For example, a functional requirement of a map

service could be that the service can calculate the distance between two given

locations. Non-functional requirements refer to requirements that are not directly

associated with the operations of the service. Such requirements could include the

existence of certain quality of service (QoS) characteristics (El Kassmi et al. 2016).

These characteristics can play a pivotal role in the selection of a service, between a

number of alternatives that provide similar functionalities, and can include its

response time, reliability and availability (Chen et al. 2014). If, for example, a given

service is not always available for user to consume and has a relatively long

response time it is not considered an ideal candidate for participating in a value-

added service.

1.2 Definition of emerging mashup types

Mashup types that have recently gained attention and can provide a shift towards the

wider adoption of mashups include:

Ensuring business and service requirements in enterprise… 207

123

(i) Enterprise mashups, which constitute compositions of services, internal

and external to the enterprise, that handle business processes (Leymann

et al. 2002) along with data and information from multiple sources (Pahlke

et al. 2010), taking advantage of the conveniences offered by open APIs

(Ruhi and Choi 2013). In addition, mashups allow the constant updating of

the presented information and content, through the monitoring of incoming

events. For example, a change in the value of a specific resource (such as a

change in the pricing of a specific product) could trigger the instant

invocation of another service along with the refreshing of the mashup, in

order to keep it up-to-date. These type of mashups provide an important

step towards the interoperability between heterogeneous business-oriented

systems, a necessity for enterprises, as highlighted in Zacharewicz et al.

(2016).

(ii) Physical-virtual mashups. The advent of the Internet of Things, as well as

its extension known as the Web of Things, have given rise to new types of

service mashups, which combine functionalities both from traditional WS

(virtual services) and from services based on the functionality of smart

devices (physical services). In more detail, physical-virtual mashups

pertain to the composition of services such as maps, imaging services and

services that handle business processes along with services provided by

embedded devices and physical objects (Vesyropoulos and Georgiadis

2013). Typically, physical services, allow interactions with end-users or

even machine-to-machine (M2M) interactions, through HTTP calls, which

give access to the functionality of smart objects, in the form of WS. Value

added services can be provided by combining physical and virtual services

into a service mashup. An example of such a mashup could be a map,

containing information regarding a city’s light and humidity measurements

in each district.

(iii) Business Intelligence mashups, which are Web pages or applications that

combine an enterprise’s internal services along with public and other

external WS. In addition, such mashups include the necessary mechanisms

that can provide feedback from social media streams, to the enterprise.

Such mashups are characterized by their ability to alter or modify the WS

involved in a dynamic manner, in order to respond to the rapidly changing

external environment of the enterprise, and to fulfill its needs in the optimal

way (Vesyropoulos and Georgiadis 2013).

In this work, we attempt to combine the benefits of the aforementioned types,

into mashups that include both virtual and physical services while adhering to

predefined business rules.

1.3 Business implications

Businesses require constant communication and interoperation with customers and

business partners. Especially, the interoperation between various information

systems such as those of suppliers and advertising partners, a vital part of an

208 N. Vesyropoulos et al.

123

enterprise’s well-being, can be a challenging task. In order to ensure seamless

interactions and message exchanges, businesses have often allocated resources into

the development of service-based information systems, which utilize well-accepted

XML-based communication protocols, while, in addition, provide WS composition

capabilities. Nonetheless, the development and maintenance of such systems

requires the constant involvement of an IT department.

By utilizing enterprise mashups, businesses can benefit from the existence of a

vast number of publicly available WS whose functionalities can be easily combined

and integrated in a Web application or Web page. Such applications can enable the

interoperation with external information systems using various well accepted

protocols and file formats, such as HTTP and JSON, accordingly. Such an approach

is easier to implement, compared to traditional SOA-based systems, while in

addition is associated with lower developmental costs.

Using the proposed methodology, businesses can provide compelling value-

added services to their clients, while limiting the costs required for IT-support, as

would be the case in more complex BPEL-oriented service compositions (Hoyer

et al. 2011). Since the modeling of business flows in business process model and

notation (BPMN) schemas is also less effort-demanding and their conversion to

behavior, interaction, priorities (BIP) models can aid the validation of requested

properties, businesses can reap the benefits of offering compelling services with low

developmental costs and high dependability. Even in scenarios where there is a need

for integrating modern IoT-based services, originating from the functionality of

devices with embedded sensors, those services can be seamlessly included, as they

rely on RESTful calls, constituting them ideal candidates for service mashups.

In addition, mashups enable the simultaneous monitoring of up-to-date data

originating from various sources. Furthermore, they provide the means for an

enterprise to control the operations of its individual departments through a unified

environment (Pahlke et al. 2010). As a result, they constitute ideal solutions for the

development of information systems with relatively low costs. Nevertheless, the

satisfaction of certain properties is critical in such systems and, as a result, a

rigorous approach for their development, is of immense importance. Through our

proposed methodology, businesses can ensure the compliance with pre-requested

properties in mashup-based information systems.

The enterprise’s clients can also benefit from our approach, as it would allow

them to have a higher involvement into the composed services and provide them the

ability to request specific functional and non-functional characteristics, thus offering

a more personalized experience. In addition, as mashups can be in the form of web

applications, they are easier to handle and monitor, compared to the more complex

SOAP-based compositions.

Finally, software developers can utilize our approach, when developing Web

Services, in order to validate specific properties. In more detail, our BIP-based

modelling approach and the developed monitoring modules can aid in the

enforcement of correctness properties, such as the lack of deadlocks and

interference, during the development of a service, which can also lead to lower

testing and software maintenance costs.

Ensuring business and service requirements in enterprise… 209

123

1.4 Motivation and research contributions

As already mentioned, enterprise mashups consist of a number of internal and

external services that are combined into a value-added service. They provide the

opportunity to enterprises to monitor and handle information regarding the

operation of their various departments and, additionally, enable users to interoperate

with the enterprise in novel ways (Ghiani et al. 2016; de Vrieze et al. 2011).

Nevertheless, enterprise mashups lack the appropriate mechanisms for their

orchestration and the assurances that functional and non-functional properties are

satisfied (Wilson et al. 2011; Zahoor et al. 2008). As the compliance with such

properties is of significant importance in business-oriented scenarios, where faults

cannot be tolerated, enterprises are often unable to reap the benefits provided by the

utilization of mashups (Hoyer et al. 2011). To tackle this issue, we present a novel

approach for the rigorous development of enterprise mashups, by utilizing the BIP

component framework. BIP provides a number of powerful model-checking tools

that enable the verification of requested properties in complex applications along

with a set of execution engines. The framework is analyzed in more detail in a

following section.

The research contributions of our work can be summarized as follows: We

demonstrate a methodology for transforming BPMN described scenarios, providing

the business logic of a requested composite application, to the corresponding BIP

semantics. Thus, we enable the handling of the value-added service’s orchestration

and the monitoring of requested properties by the BIP engine. In addition, we

provide a novel architecture in BIP that can assist the rigorous development of

enterprise mashups that comply with requested business and service properties. For

the purpose of observing the compliance with the aforementioned properties, a

number of monitoring modules, which can be integrated into the architecture, are

also being demonstrated.

As BPMN models can be relatively easy to construct and comprehend, they can

be ideal for describing an enterprise’s business flows and do not require high

programming skills for their development. Thus, through our proposed transforma-

tion, an enterprise can acquire a methodology for the rigorous development and

orchestration of mashups without the need of extensive engagement from an IT

department (Ghiani et al. 2016), as well as a means for the verification of required

properties.

While the focal point of this manuscript is the construction of enterprise mashups

that comply with predefined requirements, its theoretical contributions can be

utilized for the development of various solutions based on the principles of software

component design (Lau and Wang 2007). For example, organizations can model

their individual business processes as a BPMN schema and, through the proposed

transformation methodology, utilize BIP in order to develop an enterprise

information system (Panetto and Cecil 2013). By modeling existing internal

applications as atomic BIP components, and by integrating them in more complex

compound components, they can validate the satisfaction of properties, the lack of

deadlocks and the seamless information exchange between various business

departments. This could lead to higher interoperability, improved productivity

210 N. Vesyropoulos et al.

123

and lower costs. The process of applying the BIP component framework for the

development of software, based on the principles of component design, is feasible,

as demonstrated in Basu et al. (2013).

The remainder of this paper is organized as follows: Sect. 2 pertains to the

presentation of the related work, while in Sect. 3 an introduction to the BIP

component framework and to the semantics included is presented. In addition, we

elaborate on the application of BIP for the formal definition of architectures. In

Sect. 4 we demonstrate the process for transforming BPMN scenarios into BIP

components, which can verify the execution order as well as a number of functional

and non-functional properties of a requested mashup. Section 5 describes a

proposed mashup architecture, while Sect. 6 demonstrates two case studies, used as

proof of concept for our methodology. Finally, we give some future directions and

conclusions stemmed from the application of this modeling approach.

2 Related work

2.1 Mashup development

Mashup development has been a focal point for researchers for the past few years. A

more recent trend, is the research on tools and techniques for the development of

business related mashups, as they provide the means for lightweight and on-the-fly

value-added solutions that combine services originating from one or more

enterprises. In addition, various transformation techniques have also been examined,

that convert BPMN models into other model types, in an attempt to automate the

composition procedure.

In more detail, authors in Bozzon et al. (2009) provide a methodology for

creating business service mashups, through the transformation of BPMN and

WebML flowcharts to rich navigation models. Through the transformation process,

an enterprise can acquire enriched models describing their business workflows. This

is a promising approach, nonetheless lacks a procedure for the verification of

desired properties, such as the one that can be offered by the BIP component

framework. In Kheldoun et al. (2015), a formal model for the verification of

complex BPMN models utilizing petri-nets is explained. This approach also takes

into consideration the invocation order of BPMN components and formally

describes the semantics involved in a BPMN process. Nonetheless, in our approach

required properties are both described and embedded into a composite BIP model,

which enables the verification of properties into a value-added service mashup.

In Liu et al. (2011), architecture integration patterns are utilized for a mashup

composition, in an approach based on displaying information on map services. This

methodology is useful for the rapid development of enterprise mashups, though

lacks the means for ensuring business, functional and non-functional properties. In

Xue et al. (2013), an integrated framework for personalized business processes is

demonstrated. The framework supports the modeling and monitoring of numerous

business processes in an enterprise mashup and in addition allows the automated

execution of the overall composed service. As the focal point of this research is the

Ensuring business and service requirements in enterprise… 211

123

group of users with limited programming skills that need to compose a mashup

based on business processes, no measures are proposed for the validation of

business-oriented properties. In Xu et al. (2013), a modeling approach is described,

which is centered on the process collaboration of end-users. This proposal adopts

BPMN notations in order to describe control and data flows in enterprise mashups,

and relies on the correct use of synchronization patterns on behalf of the end-users,

in order to model the behavior of value-added systems. While currently limited

validation capabilities are offered, the authors propose the use of a process modeler,

based on the aforementioned approach, which will assist users in the modeling

process. This is a promising solution, as it could enable the enforcement of desired

properties.

In Hobel et al. (2013), the use of a platform for enterprise mashups is presented,

in which security concerns are of the highest priority. The platform enables the

definition of security rules and the monitoring of submitted mashups in order to

detect security threats, through the evaluation of compliance with predefined

policies. As mashups developed on-the-fly by customers can handle sensitive data,

the need for imposing security rules and monitoring the composed complex process

is considered mandatory, giving value to this research approach.

2.2 Application of model checking and formal methods in virtual
and physical WS

In Said et al. (2016), BIP has been used in order to secure WS compositions, by

ensuring the non-interference property. In addition, an approach for the validation of

time requirements utilizing BIP have been proposed in Guermouche and Dal Zilio

(2012). Other approaches regarding the formal modeling and analysis of WS-based

applications are described below.

In Kil and Nam (2013) authors apply three individual model-checking techniques

in order to identify optimal service compositions, though their applicability is

limited in scenarios that lack semantic descriptions for the involved WS. A method

for conflict detection in value-added services, based on model-checking, is

presented in Kim et al. (2013). This is a promising approach, but differentiated to

ours, as BIP utilizes property-preserving transformations which allow the verifica-

tion of non-interference and deadlock-freedom in composite models (Sifakis 2014).

While the development of RESTful applications can be assisted by REST-related

frameworks, limited support is provided for the validation of adherence to the REST

constraints and service profiles. In order to overcome this, formal methods have

been used in literature, such as the work presented in Decker et al. (2009), where

authors use Petri-nets in order to formally describe the execution of RESTful

processes. REST constraints, such as the uniform interface requirement, were also

included in the proposed model. In addition, in Wu et al. (2012), the REST

architecture is formally modeled using the CSP process algebra. In the aforemen-

tioned manuscript CSP processes are used to describe RESTful components while

the constraints introduced in the REST paradigm, are also being modeled. Through

model checking, the authors proceed to the validation of the client–server and

cachable constrains.

212 N. Vesyropoulos et al.

123

Similarly to RESTful projects, formal methods are often applied in order to

validate specific properties of IoT applications. Such applications are often being

developed by utilizing a number of available domain-specific operating systems,

such as the Contiki OS and Riot. As constrained devices are used in IoT scenarios,

more and more efforts are made to optimize the development procedure. In

Glombitza et al. (2010) FSM are applied as a means for a model-driven approach in

developing WSN service applications. In addition, a domain specific language is

being introduced. Developed applications can be utilized in IoT scenarios due to

their service-based nature. Finally, in Vörtler et al. (2015), authors introduce a

verification framework for Contiki-based IoT applications. This approach relies on

CBMC, a model checking tool and the modeling of interrupts that occur in the

Contiki OS. The authors focus on the verification of IoT applications, while

limitations occur especially in cases where a large number of interrupts have been

modeled.

2.3 Model-based and component-based software development

The BIP component framework has a powerful set of tools and engines that enable

the development of software based on the principles of model-based and

component-based development. An important advantage of BIP is the fact that it

is not only a verification tool but an execution engine as well (http://www-verimag.

imag.fr/BIP-Tools-93). In other words, the transitions described in a modeled sys-

tem can be executed, as the engine enables C/C?? functions to be added to the

model. As a result, the engine verifies properties in an executable system, thus also

providing orchestration capabilities. Compared to other technologies and frame-

works, BIP offers a number of significant advantages. Authors in Paredes-Valverde

et al. (2015) discuss alternative tools, languages and methodologies for the devel-

opment of composite mashups. Their comparison highlights the fact that a number

of approaches support the synchronization between components of a mashup and

the introduction of simple business rules and restrictions (such as Apatar and IBM

Mashup Centre) but these tools do not provide verification capabilities, and thus

cannot ensure the compliance of the resulting mashup with certain requested

properties. Furthermore, authors in Zahoor et al. (2008) and Kil and Nam (2013)

describe the application of model-based approaches that enable the verification of

certain requirements, but lack the capabilities of orchestrating the resulting mashup,

due to the lack of an execution engine.

As already mentioned in Sect. 1.4, the BIP component framework can be utilized

in order to develop software, based on the principles of component design.

Following those principles, authors in Basu et al. (2013) use the framework in order

to design parallel applications in manycore devices. Through the modeling of the

application software, they ensure the validation of specific functional properties and

analyze the performance of the modeled system. Utilizing BIP, their proposed

methodology also offers automated code generation and deployment on the targeted

platforms, thus highlighting another significant advantage of the BIP component

framework.

Ensuring business and service requirements in enterprise… 213

123

http://www-verimag.imag.fr/BIP-Tools-93
http://www-verimag.imag.fr/BIP-Tools-93

In addition, in Lekidis et al. (2015) authors apply the same principles, in order to

propose a workflow for the rigorous development of IoT applications in the Contiki

OS. By modeling the architecture of Contiki OS and the behavior of a requested

application, using BIP, they propose a methodology for the development of IoT

software and the enforcement of required properties.

Finally, in Mavridou et al. (2016), authors discuss the utilization of BIP for the

development of the on-board control software of the CubETH satellite, through a

series of steps. Initially, authors demonstrate the modeling of architecture styles for

on-board software, a process followed by the analysis and formalization of

requirements. Authors also describe the development of atomic components for the

various functionalities of the modeled system and finally validate the model for the

lack of deadlocks. Through, this process they ensure that the resulting software is

correct-by-construction, a necessity in cases of software that handle critical

operations, such as those performed in a satellite system.

3 The BIP component framework

Our suggested approach focuses on enabling a rigorous design of Enterprise

Mashups, using the BIP component framework and its associated set of tools. BIP

provides the means for designing and validating composite applications, through the

utilization of its component-based architecture and rigorous semantics. While

initially developed for heterogeneous embedded applications, it has been success-

fully applied on numerous fields. The semantics of the BIP engine are formally

described in detail below, based on the work presented in Basu et al. (2013).

Through BIP models, the behavior of complex systems can be described in

hierarchically structured models, which consist of a set of atomic components, along

with their corresponding interactions and interfaces. BIP atomic components are

transition systems extended with a set of ports and variables. Atomic components

AC, are in the form of a tuple Q;X;P; Tð Þ, where Q defines the control locations, X

the set of variables, P the communication ports and T the available transitions.

When transitions occur, the variables that describe characteristics of the modeled

system can receive new data. Such transitions s are represented as q; p; g; f ; q0ð Þ. In s
the variables q; q0 2 Q pertain to control locations and in more detail to the initial

and the new location after the transition. The variables p and g correspond to a port

and guard value, while f is the user defined function that controls the transition and

updates the variable values. This is the case as the BIP framework allows the

execution of C and C?? code, in the form of functions, during transitions.

While the transitions model the behavior of the atomic components, interactions

model the necessary synchronization between such components and the corre-

sponding data exchanges. Such interactions are handled by connectors, which define

the synchronization rules of the corresponding ports. The BIP semantics define two

types of ports: (i) synchrons, where transitions can take place only if all connected

components can simultaneously perform the corresponding transitions or (ii) trigger

ports, which enable a broadcast-based synchronization, as all possible interactions

which include the transition of the trigger port can be executed. An interaction a is

214 N. Vesyropoulos et al.

123

defined as the triple Pa;Ga;Fað Þ where these values correspond to ports utilized in

an interaction, the guard value and the specific function that is enabled and executed

during the interaction.

In addition, priorities refer to the scheduling of the modeled system, which can

be accomplished through the definition of rendezvouses between a set of ports. In a

set of c interactions a priority p signifies a partial order p � cxc, where a1pa2
demonstrates a higher priority in interaction a1 compared to interaction a2.

To conclude, BIP enables the composition of atomic components into composite

ones CCi ¼ f Q;X;P;Tð Þgni¼1 where we assume that for each given two AC the joint

of ports and the joint of variables equals to zero. By constructing architectures in

BIP, thus applying formal specifications, it is possible to enforce and to compose

properties while developing composite components. Property enforcement is

achieved by applying restrictions to the behavior of a modeled architecture.

Property composability, which pertains to the combination of architectures, is

accomplished by formally defining the components that the architecture is consisted

of, along with a glue operator (Sifakis 2014).

When composing architectures, an important goal is to maintain a global

property. As shown in Bliudze and Sifakis (2008), utilizing glue operators in

component compositions enables the preservation of the properties enforced in the

standalone components. In Lekidis et al. (2015) formal architectures that enable the

rigorous development of physical services are presented, while in Stachtiari et al.

(2014), virtual service architectures (SOAP-based and RESTful) are deployed,

aiming at the enforcement of requested properties. In addition, an elaboration on the

utilization of BIP for the composition of service architectures is also being

presented.

4 Transformation of BPMN models

Complex business-related requirements, as well as the execution order of the

involving services and processes in a business scenario, are often modeled using

BPMN due to its provided graphical notations. BPMN 2.0 provides the means for

the serialization of BPMN model and the extraction of the corresponding XML

schemes.

In this work, a methodology is presented for the rigorous development of

enterprise mashups, which adhere to business-related requirements that have been

documented as BPMN processes.

4.1 BPMN components

A BPMN process can consist of the following basic elements:

(i) Flow objects: including events, activities and gateways.

(ii) Connecting objects: which can be sequence flows, message flows and

associations.

(iii) Swim lanes: divided to pools and lanes.

Ensuring business and service requirements in enterprise… 215

123

(iv) Artifacts: such as data objects, groups and annotations.

A formal definition of the core elements of a BPMN process include:

\bpmn_process[::= \pool[*

\pool[::= \lane[*

\lane[::= \event[*\activit[* var_def*

\gateway[\connect[

\event[::= start_ev | inter_ev | end_ev

\activit[::= task | subprocess | transctn | call_act

\gateway[::= excl | ev_based | parll | incls | exlc_ev

| parll_ev | incls_ev | comlx

\connect[::= seq | msg_fl | association

In more detail, a process contains the declaration of variables, the definition of

events and the included activities, gateways and connections. Events are handled by

the corresponding handlers and can be of three types: starting, intermediate and

ending. Activities included in a process can be tasks, subprocesses, transactions and

activity calls. A number of different types of gateways are defined in BPMN such as

exclusive, inclusive and parallel gateways while finally connections can be

sequential, message flow connections or associations.

4.2 BPMN to BIP transformation

In order to achieve the requested business requirements we translate BPMN models

to their corresponding BIP models, based on a predefined set of rules explained

below. Model to model mappings are often applied in business scenarios, when

strict properties need to be ensured (Wang, Truptil and Benaben 2016). The

proposed transformation of an XML-based language to a corresponding BIP model

is a feasible process, as presented by authors in Stachtiari et al. (2012). We have

selected the following basic rules for the transformation procedure:

(i) Pools are transformed into composite BIP modules, while lanes are

components of a module.

(ii) The communication between components, or even between modules, is

achieved through the utilization of ports.

(iii) While serial executions in a lane are converted to serial states of a module,

parallel executions (originating from the existence of gateways) result to

components executing simultaneously and synchronizing through

rendezvous.

(iv) Finally, restrictions in the invocation order of components in the BPMN

model can be handled by the priorities declared in the corresponding BIP

model. To enable the monitoring of specific properties, appropriate

216 N. Vesyropoulos et al.

123

modules can also be integrated into the generated model, as will be shown

in Sect. 6.1.3.

The mapping of individual components of the BMPN model is explained, in

more detail, below, while it is also schematically presented in Fig. 1.

For the transformation to the BIP model to be completed, individual events,

activities and connected objects also have to be mapped. As already mentioned,

there are three kinds of events in BPMN regarding their position in the overall

business flow: starting, intermediate and ending events. The starting event of a

BPMN process corresponds to the initial node in the BIP model, from where the

execution will commence. Intermediate events are modeled in the form of

transitions between intermediate nodes, while the ending events are mapped as

transitions that are pointed towards the initial node and terminate the execution of

the BIP model. Regarding their functionality, events can be in the form of timer,

message or conditional events or can even lack a specific operation (such events are

known as none events, which are commonly used as starting or ending events).

Timer and conditional events are modeled as looping transitions, as they begin and

end in the same node. Both types have a condition that ends the loop. In the case of

timer events every loop increases the value of a variable by a certain time unit, until

a threshold is reached. In conditional events a certain condition must be met in order

for the execution to proceed to the next transition.

Examples of conditional events are presented in Fig. 2 below. Finally, message

events can be modelled as simple transitions, as BIP enables the transfer of data and

the allocation of new values in the model’s variables with each transition.

Activities can be in the form of tasks, subprocesses, transactions and call

activities. After the transformation process, tasks are depicted as individual nodes of

a BIP component. They are included into the atomic component that models the lane

they originally belonged to, in the BPMN process. As sub-process can contain a

number of connected tasks and events, each task included takes the form of an

individual node of the BIP model, while each event is also modeled based on the

principles described above. The same notions are applied for transaction activities,

but since those are handled as a whole by BPMN engines, a compensation

mechanism is necessary in case one or more of the included tasks fail to complete.

In this case, all actions performed by the involved tasks must be revoked. To model

this behavior in BIP an additional node is created, that can handle this compensation

and each individual node of the transaction can transfer the execution to this node

through an appropriate transition. A differentiated activity type is the call activity

type. It pertains to a global process that can be invoked by different tasks in the

overall business flow. When this process is invoked, the execution is transferred to

it. Such a process can contain a number of events and tasks, spanning across

different lanes. As a result, in the produced BIP model it is mapped as a compound

component.

BPMN also offers a number of gateways in order to describe an overall business

workflow. The most commonly utilized gateways are the parallel, exclusive and

inclusive gateways. All three types can be triggered by the completion of the task

before them or by a specific event. In the latter case they can be characterized as

Ensuring business and service requirements in enterprise… 217

123

Fig. 1 Mapping of BPMN components to BIP

218 N. Vesyropoulos et al.

123

event-based gateways. Parallel gateways describe the concurrent execution of two

or more tasks. In case these tasks are placed in different lanes, their mapping in BIP

is accomplished by synchronizing atomic components with rendezvous. In more

detail, the atomic components that describe the parallel tasks are connected with

ports that trigger their parallel execution. When both tasks are completed a

condition can enable the execution flow to continue to the next tasks. An example of

the mapping of such a parallel gateway is presented in Fig. 2 where the bill and

collect ports enable the synchronization of three atomic components and a condition

enables the transfer of the execution to the next task.

In case the involved tasks are placed in the same lane, there is no need for the

creation of additional atomic components, as parallel executions are possible in an

atomic component and the transfer of the execution to the next task can be achieved

with the utilization of an internal condition.

The mapping of exclusive gateways is simpler, as those set mutual exclusive

execution paths. As a result, they are modeled as multiple available transitions,

beginning from the same node and leading to distinct destination nodes. Finally,

inclusive gateways can lead to a serial execution flow, excluding the alternative

paths, or to a concurrent execution of two or more paths, based on specific

conditions. As a result, they are treated in a similar manner as parallel gateways,

where the execution flows are modeled into distinct atomic components and in case

two or more paths are to be executed in parallel, those are synchronized by

rendezvous. While BPMN also supports the complex type gateways, users are

generally recommended to utilize simpler gateways for the modelling of their

business workflows. We opted not to develop a specific rule for the transformation

of complex gateways, as those should be handled differently in each given scenario.

Regarding the relevancy of the mapping process, it must be noted that not all of

the tasks described in the BPMN model have to be RESTful services. These tasks

can also correspond to internal business processes. In both cases, ports are utilized

in the generated BIP model in order to invoke a process or service and to pass the

values of required variables. Especially in the case of RESTful services, ports are

utilized in order to invoke specific operations of the service and to return

information regarding the outcome of the operation.

Fig. 2 Order procedure in BPMN

Ensuring business and service requirements in enterprise… 219

123

As it has already been noted, BIP is not only a model verification tool but it also

provides an execution engine (http://www-verimag.imag.fr/BIP-Tools-93). As a

result, the BIP model that is generated after the transformation process, provides the

ability to call existing RESTful services during its transitions. Furthermore, as BIP

allows the execution of C/C?? functions, the transformation process can also

provide a template for a RESTful service, where operations from an open source

service can be integrated, or alternatively those can be developed from scratch

according to the enterprise’s needs. The feasibility of this approach has been

demonstrated by authors in Stachtiari et al. (2014).

The transformation process is demonstrated below, through a low-scale

transformation example, in the context of e-commerce transactions. Suppose an

e-commerce business provides pick-up spots, from where the customer can collect

his ordered products, thus avoiding extra shipping costs. Each time an order is

received the corresponding pick-up spot handles the overall procedure. A typical

order procedure is depicted in the BPMN model presented in Fig. 2. As seen in the

model, upon receiving the order, the pick-up spot sends a query to the warehouse, in

order to ensure that the products are available and, most importantly, in good

condition. The warehouse responds to the query accordingly. In case one of the

requested products is damaged and no other stock is available, the order is

cancelled.

If no problems were encountered, two procedures can be initiated in parallel. The

warehouse is ordered to collect and package the products and to transfer them to the

pick-up spot, while the accounting department can prepare the necessary paperwork.

After both processes are completed, the pick-up spot can finalize the order.

The corresponding BIP model, created following the aforementioned rules, is

presented in Fig. 3. As seen in the depicted model, the three lanes of the BPMN

scenario produce the same number of atomic BIP components.

For communication purposes between these components, a total of ten ports is

being deployed. Utilizing these ports the simultaneous execution of parallel

transitions is also ensured, as components synchronize through rendezvous. In

Fig. 3 Order procedure in BIP

220 N. Vesyropoulos et al.

123

http://www-verimag.imag.fr/BIP-Tools-93

addition, the invocation order of the BPMN components is maintained, as it is

controlled by the declared priorities in the BIP model.

The model can be checked for correctness and ensures that business requirements

are satisfied even when the requested behaviors are handled by WS in a complex

value-added service, such as a mashup. In the Table 1 the transitions related to the

external ports are explained.

5 Mashup model

Enterprise mashups consist of WS that are external to an organization and a number

of internal services and processes as well. They offer a unified environment that can

help an enterprise or its clients to monitor data from multiple sources and complete

various operations rapidly. As a result, they can be utilized for the development of

information systems or web applications in which clients can interact with the

enterprise. In addition, enterprise mashups can also contain widgets and data parsed

from external sources, such as websites or databases (López et al. 2009; Hoyer et al.

2008; de Vrieze et al. 2011). For this reason, any given solution should provide the

capability of invoking both services and widgets, while also allowing the integration

of parsed data from various resources. To comply with those requirements, in this

section, we present a reference architecture for enterprise mashups, modeled using

the BIP component framework. Such an architecture is necessary as it describes the

handling of the aforementioned operations. Furthermore, by modeling an architec-

ture, global coordination properties can be enforced, thus enabling the development

of correct-by-construction composite systems (Mavridou et al. 2016). Combined

with the novel transformation presented above, it can aid the rigorous development

of mashups, which adhere to predefined functional and non-functional requirements

and can be orchestrated through the utilization of BIP’s execution engine. The

Table 1 Explanation of ports in atomic components

Pick-up

snd_req Sends a request to the warehouse regarding the products

error Receives a detected error regarding availability or status

rcv_resp Receives a response regarding the availability and status

collect Issues a collect items request

bill Issues a billing request

Warehouse

rcv_req Receives an availability and status examination request

error Sends a detected error regarding availability or status

snd_resp Sends a response regarding availability and status

collect Receives a collect items request

Accounting department

bill Receives a billing request

Ensuring business and service requirements in enterprise… 221

123

architecture AMASHUP consists of the application, core and service layers, as

depicted in Fig. 4.

The application layer refers to the model originating from the transformation of

the BPMN model to the corresponding BIP module. The required business logic is

included in this layer and as a result the modeled behavior and interactions are

closely related to the needs of the given transactional scenario.

The core layer consists of the module responsible for the invocation of requested

components, the widget module which is responsible for collecting and parsing

webpages and the data module which collects data from external sources in XML or

JSON format.

Finally, the service layer is responsible for the interoperations with the requested

internal and external WS. This layer enables the examination of architecture specific

properties, such as RESTful architectural constraints. In the overall architecture

model, monitoring modules are also included as a means for the verification of

business, service and QoS requirements. For the verification of business require-

ments the corresponding module is connected, with appropriate ports, to the

application layer, where the business workflow is modeled. The modules that

examine functional and non-functional characteristics of the involved services are

connected to the WS layer. More information regarding the architecture’s port are

given in Table 2.

Fig. 4 The abstract AMASHUP architecture

222 N. Vesyropoulos et al.

123

Table 2 Definition of the architecture’s ports

Application

init Signals the initiation of the mashup, according to the business logic of the application

finalize Signals the finalization of the mashup

bsn_init Initializes the business monitor for monitoring the possible violation of predefined
business rules

bsn_final Signifies that the business monitor finished its without errors

Core

Data

rcv_req Receives a request for parsing of an external source’s data

snd_resp Returns the data to be included in the mashup

Invocation

init Receives a request for the initiation of a mashup

end Ends the mashups operation

req_data Requests the parsing of external data

rcv_data Receives a response from the data module

req_wdg Requests data in the form of a widget

rcv_wdg Receives a response from the widget module

inv_ws Requests the invocation of a specific WS operation

close_ws Receives a signal regarding the termination of an operation

Widget

rcv_req Receives a request for including external information, without modifications, in the form
of a widget

snd_resp Returns data in an appropriate format for a widget

WS

begin Receives a request for initialization and commences its operation

end The WS terminates its operation

serv_init Initializes the service monitor for observing the possible violation of service properties in
a specific WS

serv_final Signifies that the service monitor finished its without errors

bsn_init Initializes the business monitor for observing the possible violation of predefined business
rules

bsn_final Signifies that the business monitor finished its without errors

Business monitor

init_business Signifies the initialization of the business monitor for observing the possible violation of
predefined business rules

finalize Finalizes the business monitor without errors, as if such an event occurred a deadlock
would be detected by the BIP engine

Service monitor

serv_init Signifies the initialization of the service monitor for observing the possible violation of
service properties in a specific WS

serv_final Finalizes the service monitor without errors, as if such an event occurred a deadlock
would be detected by the BIP engine

QoS monitor

qos_init Initializes the QoS monitor for observing the possible violation of a predefined non-
functional characteristic of a WS

complete Finalizes the business monitor without errors, as if such an event occurred a deadlock
would be detected by the BIP engine

Ensuring business and service requirements in enterprise… 223

123

In case no specific data parsing or widget support is required in a given business

transaction scenario, the following abstract architecture can be simplified as seen in

the first case study in Sect. 6 where we focus on the application layer and the

monitoring modules integration. While the application layer can be utilized as a

standalone component for the verification of specific properties, benefits can rise

from embedding it to the overall architecture model. Such an integration enables the

validation of additional properties (e.g. architectural properties through the service

layer) and the handling of widgets and data by the BIP engine (through the core

layer, as seen in the second case study in Sect. 6).

While the development of BIP models requires some basic modeling knowledge,

an important aspect of the proposed architecture is that the core and service layers,

as well as the QoS monitor module, only need to be modeled once. When modeling

a new business scenario, the only modules that need to be developed are the

application module (as it is based on the required business logic) and the business

and service monitors, that can examine properties related to a given application.

6 Case studies

For the purpose of evaluating the proposed transformation methodology as well as

the proposed architecture, we utilize two case studies. The evaluation objective is to

determine whether the generated BIP models can identify the violation of a

requested property, inform the user and terminate the overall procedure. In more

detail, our interest is focused both on properties that are described by the BPMN

model, such as properties that relate to the orchestration of the mashup as well as

properties that are linked with the performance of the involved services. For this

reason, we introduce specific business and service properties for each case study. In

addition, by examining properties that relate to the overall orchestration, we are also

able to determine the validity of the transformation process. As the requested

business flow and the orchestration of the involved services are being described in

the BPMN model, any differentiation during the execution of the mashup should

result in the issuing of a violation message by the BIP engine. Thus, the two case

studies also enable the evaluation of the transformation process, through the

examination of the operation of the various atomic components.

The first case study is simpler and focuses solely on the application layer and the

monitoring modules of the proposed mashup architecture. Thus it provides more

insight on the transformation process and the way the BIP engine can identify and

inform the user of possible deviations from the requested orchestration, originally

described in the BPMN model. The second case study is more complex as it

demonstrates various levels of integration of the application layer into the mashup

architecture, utilizes a number of real world WS and follows a scenario-based

approach in order to highlight the robustness of our approach. Thus, both case

studies can shed light on the applicability of our approach and the benefits

associated with its adoption by enterprises.

224 N. Vesyropoulos et al.

123

6.1 Case study A: an e-commerce transaction

As a proof-of-concept regarding our mashup development workflow, we present a

BIP model describing both B2B and B2C transactions of a flower e-shop. The

business logic of this case study is based on a simple execution flow, described in

BPMN, which involves service interactions that occur in a typical e-commerce

transaction.

After the conversion process, the corresponding BIP model is checked for

behavioral correctness, concurrency issues and for the violation of non-functional

requirements, through the integration of monitor modules. The mashup should be

able to handle the presentation of products, the ordering mechanics, the preparation

of the delivery as well as the calculation of the overall costs and the printing of the

invoice, as shown below in Fig. 5.

6.1.1 Services involved

The individual services involved are presented in more detail below:

(i) Show products: Presents product description and characteristics. In

addition, user ratings and reviews can be included in the overall

presentation provided. This service exchanges information with the show

images service for the projection of images regarding the selected products,

which are stored in external image repositories (e.g. in Flickr).

(ii) Cart service: The cart service is responsible for the handling of orders. The

ordered products list is being transferred in message exchanges and

restrictions are applied. Such a restriction is that a product cannot

mistakenly be ordered twice.

(iii) Invoice service: The invoice operation is responsible for issuing the invoice

that includes all the individual charges. This operation needs to exchange

information with other services, including the cart and delivery service,

before it can be initiated.

Fig. 5 BPMN model describing the execution flow

Ensuring business and service requirements in enterprise… 225

123

(iv) Map service: Is used for the identification of the customer’s shipping

address and can be one of the popular alternatives offered, such as the

Google Maps service offered by the corresponding API.

(v) Delivery: The delivery service is responsible for the selection of the

appropriate vendor for delivering the requested package to the customer.

This service must exchange information with other services, such as the

map service and the invoice service.

(vi) Show images: Presents images of products and can exchange information

with the show products service. As mentioned above, images are stored in

image repositories.

In case a B2B transaction is initiated the environmental measurement service is

also being invoked:

(vii) Ambient (environmental) measurements service: Physical services enable

the usage of the functional characteristics of smart objects, as on-demand

services. As flowers are delicate products, in this case study we suppose

that the members involved in a B2B transaction, request additional

information regarding environmental measurements in order to evaluate

the current status of requested products. In more detail the temperature,

humidity and light measurements can be returned. This is accomplished by

invoking the corresponding sensors and handling their measurements as

RESTful resources. For the needs of this case study we have developed this

service using the Contiki OS, while the RIOT OS can also be utilized

(Isikdag 2015). The integration of this service into the application,

demonstrates the feasibility of applying the proposed methodology to

validate required properties using both virtual and physical services.

Based on the transformation rules described in Sect. 4.2, two compound

components are initially created in the BIP model, as two pools exist in the BPMN

model. The pool that corresponds to the store contains two lanes, one describing the

process flow of the e-shop and another one that contains a process by the accounting

department. As a result, the store compound component contains two atomic

components. The starting transition of the BIP model leads to the execution of the

‘‘select transaction type’’ task from the end-user’s lane. The message event

originating from this task is modeled as a port (the select_trans port that is

connected to the rcv_trans port) that synchronizes the ‘‘End-user’’ and ‘‘E-shop’’

atomic components. Similarly all events that require the existence of rendezvous

between components are modeled as ports and their functionality is explained

below. In order to ensure the compliance with a number of properties that are

introduced in the following section, we have also integrated three monitors in the

BIP model that are analytically presented in Sect. 6.1.3. The generated abstract BIP

model is presented in Fig. 6, while the definition of included ports is presented in

Table 3.

226 N. Vesyropoulos et al.

123

6.1.2 Business and service properties

We selected a number of service and business properties (SP and BP accordingly),

that can be validated through the generated BIP model. We have included both

functional (SP1) and non-functional (SP2) requirements.

SP1: The Delivery service must receive as input the distance (as calculated by the

Map service, based on the information provided by the store) and then calculate and

return the delivery cost.

SP2: Involved services are reliable. With the term reliable, we refer to WS tasks

that can be invoked on demand and complete their functions in a reasonable time

frame and without interferences. While reliability is also heavily linked with the

correct transmission of messages, we solely focus on the completion of tasks as

described in Cardoso et al. (2004). This is the case, as the nature of idempotent

actions in RESTful services can lead to the prevention of message-based errors.

BP1: The Ambient measurements service can only be initiated in B2B

transactions.

BP2: The Show products service must receive information, regarding the nature

of the transaction, on invocation and before the presentation of products and prices,

as those differ in B2B and B2C scenarios.

6.1.3 Evaluation

By converting the BPMN model to the corresponding BIP model, we can ensure that

the invocation order of the involved services, originally described in the BPMN

Fig. 6 The corresponding abstract BIP model with monitor integration

Ensuring business and service requirements in enterprise… 227

123

model is preserved, aiding the fulfillment of requested properties. Nonetheless, in

order to monitor complex transactions, when more services are included and more

message exchanges occur, and to ensure that all requested requirements are

Table 3 Definition of utilized ports

End-user

select_trans Provides information for the selected transaction type

rcv_img Receives a list of product images

req_checkout Issues a request for the purchase of selected products

rcv_inv Receives the order’s invoice

init Signals the initialization of the procedure

finalize Signals the finalization of the procedure

E-shop

rcv_trans Receives information on the requested transaction type

show_img Sends a list of product’s images

rcv_req Receives a request for the purchase of selected products

finalize informs the user that the order is finalized

req_inv Requests the order’s invoice

req_resp Receives the order’s invoice

B2B Signals the initiation of a B2B transaction

B2C Signals the initiation of a B2C transaction

s_prod Starts the execution of the show products service

req_envir sends request for environmental measurements

getDist Sends request for the client’s distance from the e-shop

delivery Signals the execution of the delivery service

Accounting department

rcv_req Receives an invoice request

snd_resp Sends the corresponding invoice

RT monitor

init Synchronizes with the initiation of the invoice service

complete Synchronizes with the completion of the invoice service

Business monitor

init Signals the initialization of the procedure

finalize Signals the finalization of the procedure

B2C_trans Receives the initiation event of a B2B transaction

B2B_trans Receives the initiation event of a B2C transaction

show_prod Synchronizes with the execution of the show products service

req_envir Synchronizes with the request for environmental measurements

Service monitor

init Receives the initiation event of the procedure

finalize Receives the finalization event of the procedure

delivery Synchronizes with the execution of the delivery service

getDist Synchronizes with the request for the client’s distance from the e-shop

228 N. Vesyropoulos et al.

123

satisfied, atomic monitor components can be applied. Such an approach has been

presented in Stachtiari et al. (2012).

In this section, we aim to investigate whether the BIP engine can detect a

violation in one or more of our requested properties that are associated with the

orchestration described in the BPMN model. In more detail, if during the execution

of the mashup a deviation from the business flow presented in the BPMN model

occurs, the BIP engine should reach a deadlock state and terminate the execution of

the overall process. In order to achieve this, two monitor modules are integrated into

the BIP model, which can examine the fulfillment of properties SP1, BP1 and BP2.

In addition, the detection of such errors by the BIP engine also validates the

accuracy of the transformation process.

Using the tools provided by the BIP component framework, we examined all

execution seeds of the mashup model to validate the fulfillment of requested

requirements and to verify the deadlock freedom property.

Figure 7 presents the proposed business monitor component for the verification

of properties BP1 and BP2. The component terminates the overall procedure if B2B

transaction occurs in a B2C scenario.

Aiming to validate property SP1, we have developed the service monitor

component presented in Fig. 8. The component reaches a deadlock in case a service

does not complete its requested functionality.

In case an erroneous transition, which enables the invocation of the delivery

service prior to the map service, exists or the execution of the involved services is

not restricted by the BIP tool, this would result into a violation detected by the

service monitoring module.

The same would apply in transitions that are observed by the business monitor.

For example, the invocation of the environmental measurements service in a B2C

scenario would result in a violation detected by the aforementioned monitor.

Fig. 7 The developed business monitor

Ensuring business and service requirements in enterprise… 229

123

As highlighted in Fig. 9, the BIP engine detects deviations from the intended

business flow and orchestration and, as a result, terminates the overall process. This

behavior demonstrates the applicability of our approach for the development of

enterprise mashups that adhere to predefined properties and that do not enable the

execution of seeds that violate those properties. The fact that the monitor described

above returns an error message in case the execution of the mashup deviates from

the business flow described in the BPMN model, validates the robustness of our

transformation methodology. Nonetheless, the benefits from the utilization of our

approach are not only restricted to the identification of the fulfillment of functional

properties. Thus, in order to evaluate the non-functional service property SP2,

pertaining to the reliability property, we have developed the monitor module

depicted in Fig. 10.

Fig. 8 The developed service monitor

Fig. 9 Detected deadlock signifying property violation

230 N. Vesyropoulos et al.

123

The monitor counts the overall attempts to execute a specific service, as well as

the number of recorded failures during its invocation or execution. In our scenario,

the reliable task monitor is connected to the invoice service. Two threshold values

are used, one associated with the execution time of a service and another related to

the ratio of the overall invocation attempts to those that were not successful. If the

reliability property is not fulfilled the monitor returns a corresponding message.

Regarding this property, we have executed a number of REST APIs publicly

available in the programmable web site (www.programmableweb.com), for han-

dling invoices. In more detail, we took a random sample of 25% of the available

invoice services that the corresponding search query returned (approximately 51 out

of 204 services). Using strict values for the time threshold and the failures to

attempts ratio threshold, there were occurrences where the reliability monitor

returned a violation message, as seen in Fig. 11 and in Table 4.

By loosening those threshold values, which is equivalent to lowering the required

QoS values by the end-user, the BIP model can be validated and no deadlock occurs

as can be seen in Fig. 12.

This can be used as a mean to validate the accuracy and trueness of the model. In

the following figure all three developed monitoring modules are integrated.

While in this section we also utilized state space exploration in order to

demonstrate the validity and trueness of the model, this is not a necessity for

developers that apply our methodology when creating a mashup. BIP offers a wide

selection of tools for validation purposes and while its state space exploration

capabilities are not significantly effort-demanding, developers can alternately use

the simpler interactive execution of the model in order to examine the available

transitions step-by-step. This way they can easily detect deadlocks and identify parts

of the execution process in which potential flaws may exist.

6.2 Case study B: an enterprise mashup for a hotel chain

In the second case study we present the development of a mashup that contains four

real-world WS and two of an enterprise’s internal services. It pertains to the

Fig. 10 The reliability monitor

Ensuring business and service requirements in enterprise… 231

123

http://www.programmableweb.com

business logic of a hotel chain that enables users to make a booking in one of their

hotels and additionally presents multimedia information regarding the selected

hotel’s city. The business logic of this case study is again based on a simple

execution flow, described in BPMN. The description of the individual internal and

external services involved is given below. For the deployment and execution of the

mashup, the Apache web server is utilized, since it enables the interaction with BIP,

through CGI scripts as a way to dynamically add content to a webpage.

The BPMN model is converted to the corresponding BIP model, based on the

methodology described in Sect. 4.2. In order to assess the robustness of the

approach we utilize three case scenarios that involve different levels of integration

of the application layer to the overall AMASHUP architecture.

6.2.1 Services involved

The individual services involved are presented in more detail below (Fig. 13):

(i) Booking service: Based on the principles adopted by online booking

applications, we have developed a booking service that can be used

internally by the hotel management. This internal service receives

Fig. 11 Detected deadlock
triggered by the reliability
monitor

Table 4 Results of the alteration of threshold values

Alterations attempt Time threshold (s) Failures to attempts ratio Detected deadlocks (%)

1 0.5 0.1 29.41

2 0.7 0.2 25.49

3 0.9 0.3 19.61

4 1.2 0.4 19.61

5 1.5 0.5 11.74

6 1.8 0.6 5.88

7 2.1 0.7 1.96

8 2.4 0.8 1.96

Fig. 12 Deadlock freedom as a result of threshold adjustment

232 N. Vesyropoulos et al.

123

information regarding the city that the user wants to visit, the date of his

arrival and departure, the number of adults that want to stay in the hotel, as

well as the number of the requested rooms. The service sends a request to

the hotel’s database and returns a list of available rooms. When the user

selects a room, the room’s cost is transferred to the invoice service.

(ii) Show images: The show images service receives the requested city as an

input and returns the first five images retrieved by Flickr’s API, when the

name of the city is given as input and the results are ranked by their

interest. By utilizing this real world API, the enterprise mashup is enriched

by content generated by the city’s visitors.

(iii) Map service: By utilizing the Google Maps’ API, the address of the hotel,

as recorded in the hotel’s database is visually presented in a map. Thus,

using the map service the end-user can locate points of interest near the

hotel’s proximity.

(iv) Weather widget: Using the widget module, segments of a website or

widgets that are already developed by third parties can be embedded into

the mashup. In this enterprise mashup, the requested date of arrival is used

as input in a weather forecast service. Since widget applications are

available by a number of weather services (e.g. https://www.accuweather.

com/en/free-weather-widgets/current), those can be embedded into the

value-added application. Utilizing this widget, clients can rapidly receive

valuable information regarding the weather conditions that are expected

during their arrival.

(v) Currency widget: As potential clients may use different currencies in their

countries than the one preferred by the hotel, a widget that can instantly

convert money values can be embedded in the mashup. By utilizing the

widget module, a pre-developed service (https://www.exchangeratewidget.

com/currency-converter-widget/) is added to the mashup.

(vi) Invoice service: For the needs of this case study we have developed a

service that receives the user’s personal information and the room’s charge

and creates a printable invoice. This service can be used as an internal

service by the hotel chain and can be added to the enterprise mashup.

Fig. 13 BPMN model describing the execution flow of an online booking

Ensuring business and service requirements in enterprise… 233

123

https://www.accuweather.com/en/free-weather-widgets/current
https://www.accuweather.com/en/free-weather-widgets/current
https://www.exchangeratewidget.com/currency-converter-widget/
https://www.exchangeratewidget.com/currency-converter-widget/

Taking into consideration the rules described in Sect. 4.2, the corresponding BIP

model is developed. In more detail, two compound components are created since

two pools exist in the BPMN model. The pool that corresponds to the hotel contains

two lanes, one describing a service executed by the accounting department and the

other describing the execution of all other services and widgets involved in the

booking process. As a result, the compound component named enterprise contains

two atomic components.

6.2.2 Requested property

For the needs of this case study we have selected one required service property

(SP1) and one required business property (BP1).

SP1: Involved services are reliable. Similarly to the first case study, with the term

reliable, we refer to WS tasks that can be invoked on demand and complete their

functions in a reasonable time frame and without interferences.

BP1: The Invoice service should only be invoked after the invocation of all other

services. As services are invoked in a serial manner, the business monitor needs

only to examine whether the invoice service is initiated after the currency widget (or

the map service instead, in case the application layer is not integrated into the

AMASHUP architecture as seen in the second case scenario in the evaluation section

below).

6.2.3 Evaluation

For evaluating the robustness of the transformation methodology and the

correctness of the AMASHUP architecture, a scenario based approach has been

selected. Such an approach has been adopted by researchers in various fields. For

example, authors in de Bruin and Van Vliet (2001) applied this methodology to

assess quality characteristics in a set of generated software architectures. This

approach has also been applied in order to evaluate how software architectures

affect the fulfillment of business requirements when developing enterprise

information systems (Niu et al. 2013) and to examine behavioral system properties

such as the existence of deadlocks (de Bruin 2000).

In the first case scenario, the application layer is used as a standalone module and

is not integrated into the AMASHUP architecture. In addition, it is not connected to

any monitor modules. As a result, the generated mashup cannot handle widgets and

the end- user cannot monitor the fulfillment of the required properties SP1 and BP1.

For example, if the invoice service is invoked before the completion of all other

services and such a transition is enabled in the BIP model, the end-user will not be

notified that the requirement BP1 has been violated. The same limitation is present

in cases where a service does not complete its functionality in reasonable time

frames, thus violating the requirement SP1. We examined a number of possible

execution seeds and encountered instances of this behavior, which highlights the

need for a higher degree of integration of the application layer into the proposed

architecture.

234 N. Vesyropoulos et al.

123

In the second case scenario, the application layer is not integrated into the

AMASHUP architecture, nonetheless a number of monitor modules are being utilized.

In more detail, the reliability monitor presented in the previous case study as well as

a business monitor are being connected to the application layer. A limitation

observed in this scenario is that the reliability monitor can only be connected to a

single service, as was also the case in the previous case study. This limitation occurs

due to the fact that the AMASHUP architecture is not being utilized. Regarding the

fulfillment of property BP1, the developed monitor terminates the overall process in

case the invoice service is being invoked before the invocation of the map service.

We examined various execution seeds and encountered such occurrences, where the

end-user is being notified of a property violation. While this approach enables the

monitoring of requested properties, as well as the deadlock-freedom property, it has

some limitations. First of all, since the application layer is not integrated into the

AMASHUP architecture, the reliability monitor can only be connected to a single

service. In addition, the generated BIP model cannot handle the invocation of

widget modules. This signifies that benefits can be reaped by the integration of the

model to our proposed architecture, as seen in the final case scenario.

In the third, and final, case scenario, the application layer is connected to the

AMASHUP architecture model, thus the overall mashup can also handle widgets,

while the reliability monitor can observe the behavior of all involved services. The

enterprise mashup that is developed as a result of the overall process is presented in

Fig. 14.

The BIP model that resulted after the transformation process corresponds to the

application layer of the architecture. The core layer contain the widget module, that

is responsible for the integration of widgets, and the invocation module that is

responsible for the invocation of involved WS. Finally, in the WS layer the service

Fig. 14 An enterprise mashup for a hotel chain

Ensuring business and service requirements in enterprise… 235

123

interactions are described and the connection with the reliability and service

monitors is accomplished.

The generated abstract BIP model is presented in Fig. 15, while the definition of

included ports in the application layer is presented in Table 5. In addition, Fig. 16

presents the transitions that are included in the invocation and widget modules.

Through the transformation of the BPMN model to the corresponding BIP model

and its integration to the AMASHUP architecture, the BIP engine can handle the

Fig. 15 Abstract BIP model integrated into the AMASHUP architecture

236 N. Vesyropoulos et al.

123

orchestration of the resulting enterprise mashup and the fulfillment of requested

properties SP1 and BP1. As stated above, the business monitor does not allow the

invocation of the invoice service before the invocation of other services. In this case

study, and as the mashup can also handle widgets, we opted to notify the end-user in

case the invoice service is being invoked before the invocation of the currency

widget. In case such an erroneous transition occurs, a violation is detected by the

engine. In more detail, a deadlock is reached in case the user attempts to initiate the

init_inv port in the modeled system, resulting into the termination of and the overall

execution. The business monitor’s detailed behavior, is depicted in Fig. 17.

Using the tools provided by the BIP component framework, we examined a

number of possible execution seeds of the mashup model.

As seen in Fig. 18, there were instances where the business monitor detected the

violation of property BP1 and terminated the overall execution.

The findings of the three case scenarios highlight the need for applying the

proposed AMASHUP architecture and, in parallel, show the robustness of our

approach. Firstly, through the execution of possible execution seeds in all three case

scenarios we validated that the mashup adheres to the business flow originally

presented in the BPMN model. Secondly, through the utilization of our transfor-

mation methodology and the integration of the generated model into the overall

Table 5 Definition of utilized ports in the application layer

End-user

bsn_init Initializes the business monitor

bsn_final Finishes the synchronization with the business monitor

snd_info Sends the booking information to the hotel

rcv_curr Receives notification that the currency widget is invoked

req_checkout Issues a payment request for the booking

rcv_inv Receives the order’s invoice

init Signals the initialization of the procedure

end Signals the finalization of the procedure

Hotel

rcv_info Receives information on the requested booking

snd_curr Signals a notification that the currency widget is invoked

rcv_req Receives a request for the payment of selected rooms

finalize Informs the user that the order is finalized

req_inv Requests the order’s invoice

rcv_res Receives the order’s invoice

init_curr Signals the initiation the currency widget

init_inv Signals the initiation of the invoice service

Accounting department

rcv_req Receives an invoice request

snd_resp Sends the corresponding invoice

Ensuring business and service requirements in enterprise… 237

123

proposed architecture, we demonstrated how an enterprise mashup can be

developed. In addition, we presented how, using this approach, the orchestration

of the value-added service can be controlled by the BIP engine. Finally, we pointed

Fig. 16 The invocation and widget modules of the core layer

Fig. 17 Component monitoring
the invocation order of services

Fig. 18 Execution reaches a deadlock due to the violation of property BP1

238 N. Vesyropoulos et al.

123

towards the fact that, through the application of our methodology, the generated

mashup adheres to predefined functional and non-functional properties and can

notify the end-user in case of a property violation.

7 Conclusion, business implications and future work

We have demonstrated a rigorous approach for the development of enterprise

mashups, based both on virtual as well as on physical services. Based on the BIP

component framework, we provide a means to enforce business requirements as

well as functional and non-functional properties. Through the proposed design flow

an enterprise mashup model is demonstrated as a proof-of-concept, while the

services that comprise it, have been examined for the correctness of required

properties. Our contribution’s focal point is the rigorous methodology for

developing and testing Web mashups, as there is a lack of such approaches in

recent literature.

Enterprises could use the proposed methodology to model their workflows using

the well-known BPMN format and easily transform them into formal BIP based

models, thus ensuring that the value-added services they provide to their clients and

business partners maintain predefined business and service properties. The process

of developing BPMN models is significantly less challenging a task as is creating

the corresponding BPEL models, along with the necessary orchestration and

choreography rules that are typically required in SOAP-based service compositions.

In addition, through the automation of the BPMN to BIP transformation process,

highly reliable enterprise mashups can be easily constructed. As a result, businesses

can benefit from the adoption of our approach, since it can ease the workload of

their IT department, lower the cost of developing and maintaining complex

compositions and enable the rapid development of dependable value-added services.

Furthermore, enterprise mashups enable clients to receive more personalized

services, as they can be more involved in the development process.

Future work involves the development of an automated tool for the transforma-

tion of BPMN models to their corresponding BIP modules. This is a feasible

approach, as tools that generate BIP models through a transformation process have

been demonstrated in Stachtiari et al. (2012) and Chkouri et al. (2008), in order to

convert BPEL and Architecture Analysis and Design Language (AADL) models,

accordingly, to their corresponding BIP models. In addition, we work towards the

integration of SOAP-based services into enterprise mashups. Furthermore, we aim

at the extended monitoring of the overall value-added service, through the dynamic

validation of additional QoS requirements on run-time, as they constitute an

important factor in the selection of WS and highly influence the overall satisfaction

level of end-users. Finally, due to the fact that when evaluating the reliability of a

service, the execution time needed is of vital importance, we aim to enhance the

reliability task monitor. To achieve this we aim at utilizing a differentiated version

of BIP (timed-BIP), which promises higher precision in time measurements.

Ensuring business and service requirements in enterprise… 239

123

References

Basu A, Bensalem S, Bozga M, Bourgos P, Maheshwari M, Sifakis J (2013) Component assemblies in the

context of manycore. In: Beckert B et al (eds) Lecture notes in computer science. Springer, Berlin,

pp 314–333

Bliudze S, Sifakis J (2008) A notion of glue expressiveness for component-based systems. In:

Proceedings of 20th international conference on concurrency theory (CONCUR), pp 508–522

Bozzon A, Brambilla M, Facca FM, Carughu GT (2009) A conceptual modeling approach to business

service mashup development. In: Proceedings of IEEE international conference on web services,

(ICWS), pp 751–758. doi:10.1109/ICWS.2009.24

Cardoso J, Sheth A, Miller J, Arnold J, Kochut K (2004) Quality of service for workflows and web service

processes. Web Semant Sci Serv Agents World Wide Web 1:281–308. doi:10.1016/j.websem.2004.

03.001

Chen M, Tan TH, Sun J, Liu Y, Dong JS (2014) Veriws: a tool for verification of combined functional

and non-functional requirements of web service composition. In: Proceedings of 36th international

conference on software engineering (ICSE), pp 564–567

Chkouri MY, Robert A, Bozga M, Sifakis J (2008). Translating AADL into BIP-application to the

verification of real-time systems. In: Proceedings of international conference on model driven

engineering languages and systems (MODELS), pp. 5–19

de Bruin H (2000) Scenario-based analysis of component compositions. In: Proceedings of international

symposium on generative and component-based software engineering. Springer, Berlin, pp 131–148

de Bruin H, van Vliet H (2001) Scenario-based generation and evaluation of software architectures. In:

Bosch J (eds) Generative and component-based software engineering. Springer, Berlin, pp 128–139

de Vrieze P, Xu L, Bouguettaya A, Yang J, Chen J (2011) Building enterprise mashups. Future Gener

Comput Syst 27:637–642. doi:10.1016/j.future.2010.10.004

Decker G, Lüders A, Overdick H, Schlichting K, Weske M (2009) RESTful Petri Net Execution. In:

Bruni R, Wolf K (eds) Web services and formal methods. Springer, Berlin, pp 73–87

El Kassmi I, Jarir Z, Obaid A (2016) Non-functional requirements interdependencies in web service

composition. In: Proceedings of IEEE international conference on systems of collaboration (SysCo),

pp 1–6

Ghiani G, Paternò F, Spano LD, Pintori G (2016) An environment for end-user development of web

mashups. Int J Hum Comput Stud 87:38–64. doi:10.1016/j.ijhcs.2015.10.008

Glombitza N, Pfisterer D, Fischer S (2010) Using state machines for a model driven development of web

service-based sensor network applications. In: Proceedings of ACM workshop on software

engineering for sensor network applications (ICSE), pp 2–7

Guermouche N, Dal Zilio S (2012) Towards timed requirement verification for service choreographies.

In: Proceedings of 8th IEEE international conference on collaborative computing: networking,

applications and worksharing (CollaborateCom), pp 117–126

Hobel H, Heurix J, Anjomshoaa A, Weippl E (2013) Towards security-enhanced and privacy-preserving

mashup compositions. In: Janczewski J et al (eds) Security and privacy protection in information

processing systems. Springer, Berlin, pp 286–299

Hoyer V, Stanoesvka-Slabeva K, Janner T, Schroth C (2008) Enterprise mashups: design principles

towards the long tail of user needs. In: Proceedings of IEEE international conference on services

computing (SCC), pp 601–602

Hoyer V, Stanoevska-Slabeva K, Kramer S, Giessmann A (2011) What are the business benefits of

enterprise mashups?. In: Proceedings of IEEE 44th Hawaii international conference on system

sciences (HICSS), pp 1–10

Isikdag U (2015) Enhanced building information models: using IoT services and integration patterns.

Springer, Cham

Kazhamiakin R, Pistore M, Roveri M (2004) A framework for integrating business processes and business

requirements. In: Proceedings of eighth IEEE international enterprise distributed object computing

conference (EDOC), pp. 9–20

Kheldoun A, Barkaoui K, Ioualalen M (2015) Specification and verification of complex business

processes—a high-level petri net-based approach. In: Motahari-Nezhad RH, Recker J, Weidlich M

(eds) Business process management. Springer, Berlin, pp 55–71

Kil H, Nam W (2013) Semantic web service composition via model checking techniques. Int J Web Grid

Serv 9:339–350. doi:10.1504/IJWGS.2013.057466

240 N. Vesyropoulos et al.

123

http://dx.doi.org/10.1109/ICWS.2009.24
http://dx.doi.org/10.1016/j.websem.2004.03.001
http://dx.doi.org/10.1016/j.websem.2004.03.001
http://dx.doi.org/10.1016/j.future.2010.10.004
http://dx.doi.org/10.1016/j.ijhcs.2015.10.008
http://dx.doi.org/10.1504/IJWGS.2013.057466

Kim YS, Shin DH, Jeon HB, Lee KH, Cho KS, Park W (2013) Conflict detection in composite web

services based on model checking. Int J Web Grid Serv 9:394–430. doi:10.1504/IJWGS.2013.

057470

Lau KK, Wang Z (2007) Software component models. IEEE Trans Software Eng 33:709–724. doi:10.

1109/TSE.2007.70726

Lekidis A, Stachtiari E, Katsaros P, Bozga M, Georgiadis CK (2015) Using BIP to reinforce correctness

of resource-constrained IoT applications. In: Proceedings of 10th IEEE international symposium on

industrial embedded systems (SIES), pp 1–10

Leymann F, Roller D, Schmidt MT (2002) Web services and business process management. IBM Syst J

41:198–211. doi:10.1147/sj.412.0198

Liu Y, Liang X, Xu L, Staples M, Zhu L (2011) Composing enterprise mashup components and services

using architecture integration patterns. J Syst Softw 84:1436–1446. doi:10.1016/j.jss.2011.01.030

López J, Bellas F, Pan A, Montoto P (2009) A component-based approach for engineering enterprise

mashups. In: Proceedings of international conference on web engineering (ICWE), pp 30–44

Mavridou A, Stachtiari E, Bliudze S, Ivanov A, Katsaros P, Sifakis J (2016) Architecture-based design: a

satellite on-board software case study. In: Proceedings of 13th international conference on formal

aspects of component software (FACS 2016)

Niu N, Da Xu L, Bi Z (2013) Enterprise information systems architecture—analysis and evaluation. IEEE

Trans Ind Inf 9:2147–2154

Pahlke I, Beck R, Wolf M (2010) Enterprise mashup systems as platform for situational applications. Bus

Inf Syst Eng 2:305–315. doi:10.1007/s12599-010-0121-9

Panetto H, Cecil J (2013) Information systems for enterprise integration, interoperability and networking:

theory and applications (editorial). Enterp Inf Syst 7:1–6. doi:10.1080/17517575.2012.684802

Paredes-Valverde MA, Alor-Hernández G, Rodrı́guez-González A, Valencia-Garcı́a R, Jiménez-

Domingo (2015) A systematic review of tools, languages, and methodologies for mashup

development. Softw Pract Exp 45:365–397. doi:10.1002/spe.2233

Pistore M, Roveri M, Busetta P (2004) Requirements-driven verification of web services. Electron Notes

Theor Comput Sci 105:95–108. doi:10.1016/j.entcs.2004.05.005

Polymerou E, Chatzakou D, Vakali A (2014) Emotube: a sentiment analysis integrated environment for

social web content. In: Proceedings of 4th international conference on web intelligence, mining and

semantics (WIMS14), pp 20–25

Ruhi U, Choi D (2013) Enterprise mashups for knowledge management. In: Proceedings of 1st

international conference on information and communication technology trends (ICICTT),

pp 159–168

Said NB, Abdellatif T, Bensalem S, Bozga M (2016) A robust framework for securing composed web

services. In: Braga C, Ölveczky PC (eds) Formal aspects of component software. Springer, Berlin,

pp 105–122

Sifakis J (2014) Rigorous system design. In: Proceedings of symposium on principles of distributed

computing, pp 292–292. ACM

Stachtiari E, Mentis A, Katsaros P (2012) Rigorous analysis of service composability by embedding WS-

BPEL into the BIP component framework. In: Proceedings of 19th IEEE international conference on

web services (ICWS), pp 319–326

Stachtiari E, Vesyropoulos N, Kourouleas G, Georgiadis CK, Katsaros P (2014) Correct-by-construction

web service architecture. In: Proceedings of 8th IEEE international symposium on service oriented

system engineering (SOSE), pp 47–58

Vesyropoulos N, Georgiadis CK (2013) Web of things: understanding the growing opportunities for

business transactions. In: Proceedings of 6th Balkan conference in informatics, pp 267–274

Vörtler T, Höckner B, Hofstedt P, Klotz T (2015) Formal verification of software for the Contiki

operating system considering interrupts. In: 18th IEEE international symposium on design and

diagnostics of electronic circuits & systems (DDECS), pp 295–298

Wang Q, Shao J, Deng F, Liu Y, Li M, Han J, Mei H (2009) An online monitoring approach for web

service requirements. IEEE Trans Serv Comput 2:338–351. doi:10.1109/TSC.2009.22

Wang T, Truptil S, Benaben F (2016) An automatic model-to-model mapping and transformation

methodology to serve model-based systems engineering. IseB. doi:10.1007/s10257-016-0321-z

Wilson S, Daniel F, Jugel U, Soi S (2011) Orchestrated user interface mashups using w3c widgets. In:

Proceedings of international conference on web engineering (ICWE), pp 49–61

Ensuring business and service requirements in enterprise… 241

123

http://dx.doi.org/10.1504/IJWGS.2013.057470
http://dx.doi.org/10.1504/IJWGS.2013.057470
http://dx.doi.org/10.1109/TSE.2007.70726
http://dx.doi.org/10.1109/TSE.2007.70726
http://dx.doi.org/10.1147/sj.412.0198
http://dx.doi.org/10.1016/j.jss.2011.01.030
http://dx.doi.org/10.1007/s12599-010-0121-9
http://dx.doi.org/10.1080/17517575.2012.684802
http://dx.doi.org/10.1002/spe.2233
http://dx.doi.org/10.1016/j.entcs.2004.05.005
http://dx.doi.org/10.1109/TSC.2009.22
http://dx.doi.org/10.1007/s10257-016-0321-z

Wu X, Zhang Y, Zhu H, Zhao Y, Sun Z, Liu P (2012) Formal modeling and analysis of the REST

architecture using CSP. In: Beek M, Lohmann N (eds) Web services and formal methods. Springer,

Berlin, pp 87–102

Xu L, de Vrieze P, Phalp K, Jeary S, Liang P (2013) Interoperative end-user process modelling for

process collaborative manufacturing. Int J Comput Integr Manuf 26:990–1002. doi:10.1080/

0951192X.2012.685107

Xue S, Wu B, Chen J (2013) An end-user oriented approach for business process personalization from

multiple sources. In: Ghose Aditya et al (eds) Service-oriented computing—ICSOC 2012

workshops. Springer, Berlin, pp 87–98

Zacharewicz G, Diallo S, Ducq Y, Agostinho C, Jardim-Goncalves R, Bazoun H, Wang Z, Doumeingts G

(2016) Model-based approaches for interoperability of next generation enterprise information

systems: state of the art and future challenges. IseB. doi:10.1007/s10257-016-0317-8

Zahoor E, Perrin O, Godart C (2008) Mashup model and verification using mashup processing network.

In: Proceedings of international conference on collaborative computing: networking, applications

and worksharing, pp 632–648

242 N. Vesyropoulos et al.

123

http://dx.doi.org/10.1080/0951192X.2012.685107
http://dx.doi.org/10.1080/0951192X.2012.685107
http://dx.doi.org/10.1007/s10257-016-0317-8

	Ensuring business and service requirements in enterprise mashups
	Abstract
	Introduction
	Business and service requirements
	Definition of emerging mashup types
	Business implications
	Motivation and research contributions

	Related work
	Mashup development
	Application of model checking and formal methods in virtual and physical WS
	Model-based and component-based software development

	The BIP component framework
	Transformation of BPMN models
	BPMN components
	BPMN to BIP transformation

	Mashup model
	Case studies
	Case study A: an e-commerce transaction
	Services involved
	Business and service properties
	Evaluation

	Case study B: an enterprise mashup for a hotel chain
	Services involved
	Requested property

	Conclusion, business implications and future work
	References

