
ORI GIN AL ARTICLE

A novel programming framework for architecting
next generation enterprise scale information systems

D. Venkatesan1
• S. Sridhar2

Received: 2 June 2015 / Revised: 26 August 2016 / Accepted: 29 August 2016 /

Published online: 17 September 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract The increasing popularity and usage of internet based services makes

design of software system complex and their power unlimited in scale. These

systems often involve heterogeneous environment and platforms. They continuously

evolve in order to meet the changes in technology and business practices. Emer-

gence of information system architecture based on disparate externally provided

internet based services warrant incorporation of novel design primitives in the

application design. Traditionally popular application design primitives includes

separation, abstraction, compression, uniform composition, replication and resource

sharing that has evolved and came to vogue based on past experience and expert

practice. This work examines and evaluates approaches to incorporation of new and

novel unit operations around which applications can be architected, designed and

analyzed for the internet computing and big data era. Incidentally it is found that

portions of agent technology provides several unit operations such as migration of

code and speech-act based responsibility delegation/application composition as

application architectural primitives. This work determines extensions to Web Ser-

vices-Business Process Execution Language (WS-BPEL) programming frame-

work—called as ACtive Internet Application Framework (ACIAF) and is suited for

incorporation of novel unit operations such as migration of code and speech-act

based component orchestration/application composition to enable construction of

next generation information systems. An analysis of merits and demerits of using

& D. Venkatesan

d.venkatesan@aubit.edu.in

S. Sridhar

ssridhar@annauniv.edu

1 Department of Information Technology, Anna University, BIT Campus,

Tiruchirapalli 620024, Tamilnadu, India

2 Department of Information Science & Technology, Anna University, Chennai, Tamilnadu,

India

123

Inf Syst E-Bus Manage (2017) 15:489–534

DOI 10.1007/s10257-016-0330-y

http://orcid.org/0000-0003-1453-062X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10257-016-0330-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10257-016-0330-y&domain=pdf

WS-BPEL technology to realize ACIAF is also carried out here. Code mobility

feature of ACIAF is demonstrated using a use case while loosely coupled appli-

cation design using ACIAF is theoretically discussed. Formal analyzability of

mobility behavior of ACIAF application is highlighted based on its conformance to

Petri-net formalism. Further formal logical analyzability/interpolatability of indi-

vidual actions performed by collaborating ACIAF applications is also highlighted. It

is argued here that ACIAF shall provide necessary foundation, guidance and

motivation for further detailed technical work on several ideas presented to realize

next generation information systems. This work firmly establishes extension to WS-

BPEL platform as a most viable approach to realize novel architectural primitives to

the design and implementation of next generation information systems.

Keywords Application architecture � Work flow � Migratable web service � Data

processing � Loosely coupled system design � Programming framework � WS-BPEL

1 Introduction

Modern information system architects tend to adopt paths that facilitate leveraging

ever increasing list of externally provided services using workflow metaphor (to

specify the flow of business functionality) and remain platform independent. The

heterogeneous and distributed nature of this environment warrant architects to

incorporate necessary quality attributes such as performance, dependability and

scalability into the information system design from very early phases of its

conception (Barbacci et al. 1995). This will ensure satisfactory performance of the

resulting software applications. Smith (2015) argues even today much work need to

be done to incorporate principles and patterns for designing responsive systems. He

quotes over the past 40 years (1979, 1995, and 2015) success rate of our ability to

build responsive systems were very low. It implies huge wastage of human effort

and resources. Hence there is a need to find suitable principles and patterns for

designing responsive high performance systems.

Traditionally software systems are designed based on six unit operations namely

separation, abstraction, compression, uniform composition, replication and resource

sharing (Kazman and Bass 1994). These unit operations formed architectural basis in the

design of information systems that has desirable quality attributes such as scalability,

separation, modifiability, integrability, portability, performance, reliability, ease of

creation and reusability (Barbacci et al. 1995). Architectural primitives themselves is not

of much use if the designers fail to leverage and use it appropriately. In addition

underlying technology should enable seamless incorporation of architectural primitives

in system design. After a long journey, software industry has reached at web services

technology that provides technical means (through Web Services technology) to impart

several quality attributes to systems (such as separation of implementation from

definition to offer loose coupling, platform-independence and inter-operability). Web

services technology also enables architect applications to easily incorporate architec-

tural primitives in system design. This lead to realization of several important system

quality attributes (Milanovic 2011). Web services technology provides necessary

490 D. Venkatesan, S. Sridhar

123

abstraction for platform independent composition of underlying application capability.

It enables creation of information systems and applications by composing individual

discrete services running on disparate platforms. A popular web services composition

framework is WS-BPEL (WS-BPEL 2007; Havey 2005). WS-BPEL is an industrially

successful work flow metaphor based application composition language/framework that

depends entirely on web services and extensible markup language (XML) technology. It

transparently adopt to rapid changes in underlying computing environment and

technology due to embracement of XML technology. WS-BPEL based applications

have sound formalism based on petri-net/process calculus and are visually and

graphically specifiable. It remains structurally similar to traditional work flow based

information system design paradigm and very intuitive. Traditional business process

models can be easily translated into WS-BPEL programs and verification and validation

is smooth due its similarity with real life business flow. These merits make WS-BPEL a

suitable candidate for further enhancement and innovation to adapt it to rapid changes in

computing environment.

As WS-BPEL technology solved several traditional problems in application

development, it still has a few issues to tackle with. This is mainly due to the

changes taking place to its environments such as emergence of social media that

lead to data explosion and necessity of applications to deal-with an ever increasing

list of externally provided services that are nascent. This makes reliable

orchestration and partnership with externally provided services and consuming

large quantity of data difficult.

In the past vast majority of the information systems generally deal with small

quantity of data that could be easily transported to the application site and processed

over the network. Due to changes in the computing environment and its scale,

applications architects and designers faces new challenges in designing modern

information systems. Architects/Designers are forced to search for novel unit

operations that enable design and architecture of next generation of modern

information systems in the changed environment (Barbacci et al. 1995; Kazman and

Bass 1994). Hints are already evident: do not move around large volume of data but

instead move the application, choose and associate with partner services on the fly at

run time rather than statically at the design time. This makes sound business sense in

meeting constraints such as price, performance and quality requirements. The search

for novel unit operations to compose system is constrained by the fact that they should

not deviate from traditional work-flow based application architecture that remain

similar to business activity model. Another problem faced by application architects in

composing application based on externally provided services is its complete

dependence on WSDL (Web Services Description Language) files at the design time.

It can break the applications at run time when the referenced WSDL based services are

no longer available due to reasons such as version promotion, changes to business or

migration of service location/address. This gives rise to an important problem of web

services substitution in orchestrated applications. Speech act (FIPA-ACL 1998;

Covington 1997) based services composition (Venkatesan and Sridhar 2016)–that

uses simplest of communication primitives such as ‘‘ask’’ and ‘‘tell’’, obviates direct

dependence on WSDL files and introduces message based indirection where any

compatible web services can be invoked by a middleware responsible for message

A novel programming framework for architecting next… 491

123

routing (Okouya et al. 2013; Venkatesan and Sridhar 2016). Thus speech act based

services composition provides an important solution to services discovery and

substitution making resulting applications robust. Hence it is proposed to imbibe these

two unit operation (i.e. code migration and separation via loose coupling) capabilities

into WS-BPEL framework. The resulting method and programming language

technology is proposed to be added to WS-BPEL language as an extension and is

called as Active Internet Application Framework (ACIAF) here. It may be noted that

several such operations can be added to WS-BPEL framework and made part of

ACIAF. ACIAF is called as a framework because it captures some important design

decisions (and their implementation) that are common to a group of similar

applications and permit its reuse in creating several other such applications (Gamma

et al. 1995). The design constructs supplied by ACIAF can be reused by designers and

programmers to realize solutions applicable in their problem context. ACIAF as a

framework (for now) consists of a proposal for implementation of a system of design

patterns namely migration and speech act based composition.

The search for novel unit operations and a sound underlying theory of them lead us to

agent technology. Agent technology (AT) provides several unit operations such as

migration of code, speech act based loose coupling, autonomy, and rationality that can

be used to architect new class of information systems (Weiss 2012; Bradshaw 1997).

One crucial technical difference between traditional application technologies (such as

modular or component or service oriented) and agent technology is in how they treat and

invoke collaborating partners interfaces (i.e. delegation of capability). AT uses indirect -

speech act- message based coupling of capabilities across collaborating components

(i.e. they do not hard code the collaborating component’s interface) whereas traditional

applications uses direct specification and invocation of interfaces of collaborating

components. Thus traditional agent applications are inherently and genuinely loosely

coupled. Traditional agent technology has strong roots in artificial intelligence and in

fact positioned as a means of realizing many goals of artificial intelligence (Russell and

Norvig 2003). Agent technology is very vast and its progress is stymied by its attempt to

tackle several issues at the same time (Shehory 2014; Logan 2015). A sound wisdom

taught by the discipline of software engineering is to use incremental approach in system

construction: introduce new notions one by one until they are fully imbibed into the main

stream software technology. Such examples include introduction of modular, object

oriented and service oriented system development approaches that are very narrow and

focused but yet produced remarkable results. Wooldridge (2009) has stressed at several

of his writings that agent technology is 99 % about software engineering and 1 % about

artificial intelligence. Taking cue from this sound wisdom, this work takes up principles

and ideas from a very narrow part of agent technology that deals with two well

understood conceptually clear principles namely migration of code and speech act

based application composition. These two capabilities have a clear road to design and

programmatic realization in information systems (as discussed here). Though this work

is primarily about creating a web services based internet application programming

framework, it refers to main stream agent technology literature because there several of

its design primitives are well researched and documented over the past three decades. It

helps us to quickly launch and assimilate well-understood and documented design

principles though in a web services programming context.

492 D. Venkatesan, S. Sridhar

123

Web services based application composition should tackle quality attribute issues

(Milanovic 2011) that are non-functional properties but nevertheless very important

for the success of the information systems. To realize quality attributes like

scalability, separation, modifiability, integrability, portability, performance, relia-

bility, ease of creation and reusability in the context of emergence of web services

technology, one need to introduce technical constructs (i.e. ‘‘tactics’’ or ‘‘design

option’’ as per Bass et al. (2003)) in the underlying technology. It is better if these

technical constructs are made available for everyone’s use rather than each

programmer custom develop it in their own application context. Software

Frameworks are one of the way to enable reuse. Hence this work suggests ACIAF

as reusable software framework that help architects to achieve desirable quality

attributes in their applications. Performance is an important quality attribute that

improve system response. To impart this quality attribute it is essential to

incorporate necessary architectural primitives and tactics (Bass et al. 2003) to the

underlying technology. Mobility of applications reduces network traffic and

improves performance due to proximity of code and data. In the modern context

‘‘mobility’’ can be added to the six unit operations presented in (Kazman and Bass

1994). Thus mobility operation adds an invaluable architectural tactic for achieving

the performance quality attribute of resulting application (Bass et al. 2003). In the

same manner, separation, modifiability and reliability quality attributes can be

realized by orchestrating dependent components in the loosest possible manner

using speech acts. Thus simple orchestration of web services using invoke operation

in WS-BPEL can be extended to incorporate speech act message based invocation

of participating web service interfaces without any direct reference to a partner link.

This mechanism requires existence of a middleware for message routing and

interface invocation. This message based orchestration is also proposed to be a part

of ACIAF. Thus ACIAF incorporates mobility and speech-act based partner link

interface invocation as two important new unit operations that designers can use (or

reuse) for architecting information systems. It also offers ready path for

implementation using WS-BPEL and underlying web services technology.

ACIAF conforms to Service Oriented Architecture (SOA) (Erl 2005; Newcomer

and Lomow 2005). SOA consists of inter-operability and infrastructure based

system integration and structuring principles. WS-BPEL (WS-BPEL (2007))

consists of WS-* (Weerawarana et al. 2005) standard compliant, platform neutral,

industrially popular, business process modeling and orchestration and programming

technology. Web 2.0 (Murugesan 2007) adds user generated content over the plain

web data (such as web pages and services) through blogs, comments, ratings, tags,

feedback, syndication and the like. Web 2.0 adds new method of generating highly

relevant data to the organization (Murugesan 2009). There exist several works

analyzing domain specific usages of Web 2.0 (Boulos and Wheeler 2007;

Constantinides and Fountain 2008; Bughin and Chui 2010) that illustrates how

industry got benefited from Web 2.0 technologies in managing their resources

efficiently, achieve business goals and increase customer satisfaction. Due to rapid

adoption of Web 2.0 and business process automation solutions modern business

enterprises generate massive quantity of data situated on geographically separated

locations. SOA has enabled provisioning of vast number of service based

A novel programming framework for architecting next… 493

123

applications that can be readily leveraged by third party applications. Traditional

applications and information system environments are unable to cope with this rapid

developments in software technology and are struggling to keep pace. Hence novel

information processing solutions are required. Thus one of the research problem

taken up in this work is to arrive at a programming language framework that

leverages best of the popular pervasive technologies to enable creation of loosely

coupled code mobility based business information systems to efficiently process

data scattered across distributed sites. It can be seen that ACIAF applications readily

provides solution to this problem.

Applications developed using ACIAF result in SOA compliant services. These

applications run on WS-BPEL containers (extended to support ‘‘mobility’’ –that is

service migration- tag) that are typically run as part of J2EE application servers such

as Tomcat or Jboss. A popular open source WS-BPEL programming and run time

environment is Apache Orchestration Director Engine (ODE) that is used here to

realize ACIAF. ACIAF applications remain 100 % backward compatible with

existing business process automation infrastructure protecting the investment made.

However at the same time it permits WS-BPEL applications to incorporate newer

loose coupling and mobility constructs wherever it result in performance advantage.

Traditional agent platforms (Sudeikat et al. 2004) includes JaCaMo (Boissiera et al.

2013), 3APL, JADE/WADE (Bellifemine et al. 2005, Banzi et al. 2008), Jadex (Pokahr

et al. 2003; JadexTool 2016), Retsina (Sycara et al. 2003). They provides promising

application level architectural primitives such as migration of code, speech act based

loose coupling, deliberation, means-ends reasoning, rationality and autonomy and uses

reasoning strategy using Belief-Desire-Intension framework. However ACIAF appli-

cations differs from traditional agent technology applications as it is striped and devoid

of any kind of artificial intelligence or knowledge engineering goals that are typically

associated with traditional AT –such as autonomous, rational and deliberative

capabilities (Bradshaw 1997; Weiss 2012; Wooldridge 2009). In addition ACIAF

applications are out growth of web services and business process automation

technologies and hence are already widely used and continue to use familiar tools and

techniques. The benefits are not available for traditional agent technology environments

as they are vastly different (in system modeling, programming paradigm, run time

environment, test/debug) and do not generally use industrially popular tools and

techniques (Dastani et al. 2010). Since this work derived several ideas from AT and in

future several more ideas may also be derived from it (given the revolution taking place

in sematic web and readiness of ACAIF to imbibe it—to impart applications logical

inferential capabilities that are also part of traditional agent technology), it is worthwhile

to study ACIAF side-by-side with traditional AT.

The primary goal of this work is to illustrate ACIAF features that are useful in

architecture of next generation information systems and outline how to realize them.

It does explain technicalities of ACIAF itself in brief. In that it forms a foundational,

motivational and unifying role for further detailed and focused technical work. This

work argues and establishes WS-BPEL as the platform of choice for introducing

novel unit operations (i.e. architectural primitives) and argues no other technology is

likely to possess these merits and hence is a promising candidate for realizing next

generation information systems.

494 D. Venkatesan, S. Sridhar

123

This paper is organized as follows: Sect. 2 discusses related works such as

services, work flow, web technologies to create a new programming framework that

has new application architectural primitives. Current literature is reviewed to get

fresh ideas and to leverage the benefits offered by them. Section 3 introduces

mobility unit operation and discusses architectural issues in composing standard

compliant mobility applications. It introduces ACIAF framework. It also highlights

details of ACIAF application software environment. Section 4 presents an approach

to loose coupling and integration of services using speech act like messaging using

WS-Addressing technology. Section 5 presents a use case employing ACIAF to

demonstrate code mobility based application. This helps us to experimentally

analyze the outcome of various solution architectures available to build similar

application and highlights impact of ACIAF. Section 6 evaluates ACIAF with

respect to well know criteria on modeling, programming and technological aspects.

Section 7 discusses certain formal properties enjoyed by ACIAF applications such

as ‘‘verifiably safe migration’’ and logical/inferential interpolation of individual

ACIAF application behavior in a group of ACIAF applications. Section 8 ends with

some concluding remarks and a brief plan of further work.

2 Literature review

2.1 SOA and web services technology

Web services can be used to encapsulate underlying executable code while exposing

their interfaces through Web Services Description Language (WSDL). It offers

interaction via Simple Object Access Protocol (SOAP) and by other means. Most

proprietary technology vendors expose their software capabilities using WSDL as it

offers unlimited agility for composition to the underlying software components

(Weerawarana et al. 2005). Hence universally these days components are written as

Web services and exposed and accessed via WSDL/SOAP. Typically internet based

services are provided as web services and architecting information systems using

those services involve usage of Service Oriented Architecture (SOA) principles

(Newcomer and Lomow 2005; Huhns and Singh 2005a). SOA is backed by

supporting technology standards (Brown et al. 2008; Erl 2005). Its features include

capabilities such as service re-use, message monitoring/control/transformation/

security, complex event processing, service composition/discovery, legacy asset

wrapping & provisioning and virtualization to address scalability. Its infrastructure

include capabilities such as service repository, service registry, messaging/queuing

infrastructure, activity monitoring/logging, encoding and data transformations,

encryption engine, event processor, composition engine support, and model-based

implementation environment (Weerawarana et al. 2005). Imperative programming

paradigm is widely used to realize SOA because most developers are familiar with it

and large number of industry quality tools is available. However adaptation of SOA

process and methods have several challenges (more than 413 issues identified by Gu

and Lago 2009) to face, most of which are being effectively addressed by software

industry.

A novel programming framework for architecting next… 495

123

2.2 Sematic web technology

The web content or data can be encoded using standard ontology (Kotis and Vouros

2006; GeneOntology 2001) and annotated using approaches such Web Ontology

Language (OWL) (Yu 2011). This enable web resources to be machine processable

using query, discovery and selection (Noy 2004; Yu 2011). Thus web 3.0 capability

fully depends on ontology based XML encoding of web resources, and it is a

necessity for intelligent querying and processing of web resources. Hence enterprise

information system architect should design information systems/application in such

a way that it keeps open the path ways for future adaptation of web 3.0 tools and

technologies in their application. Typically given the cost of the Information System

(IS) development, they are usually used for several decades as the past enterprise IT

experience shows (Gable et al. 2008). There is a huge scope for integration of

sematic web services technologies to business information system application as it

has been shown by Garcı́a (2008). Thus enterprise information system should adopt

XML based programming and integration technology to fight obsolescence, protect

investment made and be future ready.

2.3 Business process modeling

SOA is an approach to build systems, while sematic web is to enable systems to

make use resources intelligently and in machine processable manner without

ambiguity. But neither of them address modeling of actual business processes and

applications. That aspect is addressed by workflow paradigm. Workflow Manage-

ment Coalition (WfMC) is a standard body and promoter of workflow paradigm. It

has produced a workflow reference model (Hollingsworth 1995) that forms the basis

of most of the Business Process Modeling (BPM) initiatives today. It consists of

standards for process definition, interfaces, information interchange, inter-operabil-

ity and control in the workflow enactment. BPM is about defining flow of data

among business processes in a specified order using workflow metaphor. It is

concerned with representation of the process flow, the actors within it, alerts,

notifications, escalations, standard operating procedures, service level agreements,

and task hand-over mechanisms (Havey 2005). It is gaining popularity due its

ability to integrate disparate processes (implemented using different technologies)

using modern EAI techniques such as XML, SOA, SOAP, ESB and Web Services.

Different programming languages have evolved for specifying BPM such as

Business Process Execution Language (BPEL), Business Process Modeling

Language (BPML), BPSS and MDA (Harvey 2005). Of them industrially popular

languages are BPEL (WS-BPEL 2007) and BPMN (BPMN 2016). Business rules

have been used by BPM systems to provide definitions for governing behavior, and

a business rule engine can be used to drive process execution and resolution.

Business rules (specified visually as part of Computation Independent Model (CIM)

of the process) permit dynamic processing such as intelligent routing, validation of

policies within process and constraint checks. It also permits business analysts to

create ad-hoc workflow based on changes to business practices and policies that

help one to alter original flow in process model created such as (1) Policy based task

496 D. Venkatesan, S. Sridhar

123

assignment (2) Various escalation policies and (3) Load balancing of tasks.

Typically a BPEL process script is a sequence of XML tag based statements

invoking web service interfaces in a specified order with data being retained and

passed across different invocation by the BPEL process script. WS-BPEL

programming is imperative in nature and uses direct interface invocations of

partner links. Partner link invocations can be easily routed through enterprise

service bus technology (ESB) (Schmidt et al. 2005; Maréchaux 2006) in a standard

compliant manner. WS-BPEL is industrially accepted and prevalent technology

though is not declarative in nature. Financial products Markup Language,

Conversation Markup Language are some examples of XML dialects of business

messages that work on ESB and WS-BPEL to implement real world systems purely

based on messaging. This work shall use BPM technology to specify the logic of our

mobile agents because it maps in a natural manner real life business processes and

their details to software abstraction model. Juric et al. (2009) provides a method for

incorporating versioning to WS-BPEL process scripts. It inspires us to find similar

extensions to WS-BPEL process scripts and modeling technology so that novel

architectural level unit operations can be built into BPEL processes.

2.4 Popular agent environments

While workflow technology provides scheme of modeling and building business

system, it leaves out identifying inherent reusable architectural patterns that can be

culled out and made part of application server engines/middleware to enable

infrastructure based reuse. That aspect is addressed by agent technology. Agent

technology (ResourcesAgent 2016; FIPA 2016) has both imperative (Bellifemine

et al. 2005; Banzi et al. 2008) as well as declarative programming (Bordini et al.

2007, 2009; Lloyd and Ng 2011) language based programming environment.

Imperative programming languages such as Java, C?? and WS-BPEL is popular in

enterprise computing and enterprise software architecture (Sessions 2007). Hence this

work adopts the path of programming system using imperative languages and will not

discuss about declarative agent programming languages and environments further.

Some popular imperative programming based agent environments are JADE, ABLE

and Retsina. Java Agent Development Environment (JADE/WADE/Wolf) (Bellifem-

ine et al. 2005; Banzi et al. 2008) is an environment/framework that provides

developers infrastructural facilities by abstracting protocols and classes for agent

communication, transport, messaging and workflow behavior using Java program-

ming language technology. RETSINA (Sycara et al. 2003) is a popular agent

environment consists of four basic agent types namely interface agents (for user input/

output), task agents (perform user tasks/plans/workflows/collude with other software

agents to accomplish work), information agents (provide intelligent access to a

heterogeneous collection of information sources), middle agents (for multi-agent

capability matching). It has mechanism to enable requester agents to find provider

agents in environments with heterogeneous and dynamic information services, using

middle agents, which serve to increase agent interoperability. It provide infrastructure

for multi-agent interoperation, matchmaking, agent location resolution, failure

monitoring, logger/activity visualization/launcher, agent specification in terms of

A novel programming framework for architecting next… 497

123

ontology and agent discovery and message transfer. ABLE (Bigus et al. 2002) is a

Java framework, component library, and productivity toolkit for autonomic comput-

ing utilizing machine learning and reasoning. It uses extensively Java beans

technology and developer needs to write native java programs and developed for Java

platform only in mind. Jadex (JadexTool 2016) is a realization of Belief-Desire-

Intention processing logic framework (Rao and George 1995) add on to JADE

platform. It shows how to model business processes using goals, plans, and rules. But

as per perception of experts of agent technology themselves the discipline has not

seen much industry adoption (Shehory and Sturm 2014; Logan 2015).

2.5 Formal modeling of WS-BPEL

A robust business process modeling paradigm and highly capable middleware

platform addresses only one aspect in real world software development. There

should be a mechanism to test and verify systems built out of these technologies.

Thus formal modeling, specification and verification of programming languages

play a critical role. Programming languages (such as Pascal, C, C??) and their

formal specification in terms of Backs-Naur form and usage of Context free/

sensitive/regular grammars simplify translation and compilation of programs

written in those languages. Incorporating such formal modeling notation to analyze

and translate programs facilitate proper usage of languages supporting concurrency/

distributed computing constructs. WS-BPEL (2007) is an industrially popular

orchestration language. There are automatic verifiers (Breugel and Koshkina 2006;

Lohmann 2007; Lohmann et al. 2008; Müller 2010) which can take WS-BPEL

process scripts and convert it into formal models (Aalst 2005) such as Petri nets

(Lohmann et al. 2009a, b), guarded concurrent automata and process algebra and

prove its ability to satisfy certain set of preset service properties. These properties of

WS-BPEL can be used to determine graceful completion of concurrently running

tasks and absolutely determine current state of execution of WS-BPEL scripts. This

formal maturity of BPEL scripts makes it an ideal choice for next generation system

composition and integration programming platform.

2.6 Agent programming research

Nwana and Ndumu (1999) presents a dated assessment of the status of agent research

that nevertheless relevant even today. It sets out important evaluation parameters that

any agent platform must meet to be relevant to the business environment. Kamngar et al.

(2005) work gives a detailed account on the design, data structures and implementation

details of a mobile agent server and container. It specifies role of components such as

agent loader, agent router, ACL communication, agent representation, agent state

representation like resource table, service table, route table in realizing the system. It is

based on third generation programming environment and does not embrace services

technology. Cooney and Roe (2003) presents a model for implementing information

systems using concepts of Web services and mobile agents where agents are free to

move between cooperating Web servers/services to implement the application service

functionality. Chunlin et al. (2003) proposes a hybrid agent platform (IMAP) composed

498 D. Venkatesan, S. Sridhar

123

of several cooperating intelligent and mobile agents. It uses Java to implement the

framework of the system (for communication between agents and mobility) while

Prolog is used to impart reasoning and intelligence. Xu and Pears (2006) provide a fault

tolerant agent middleware platform (that could survive agent server crashes) to carryout

large scale distributed information retrieval applications and collaboration processing.

Aberg et al. (2005) provides details of composing web services into a work flow systems

to carry out business applications and deploys agent technology to discover and

compose web services (using ontology based web service discovery). However the

architecture fails to incorporate mobile code as part of application architecture and it

essentially presents centralized coordinating software orchestrating distributed appli-

cation that is of limited interest. Chi and Song (2007) proposes a method for e-business

process composition using a chain of services that are executed in on-the-fly

orchestrated manner that leverages adaptable agent metaphor and interoperable,

extensible web services technology. Wang and Wang (2005) discusses technique of

specifying and managing work flow configuration dynamically and uses agents to carry

out decision making and business process orchestration. Several of the workflow related

features attributed to the agents in this paper were used in realizing modern business

process application software architecture in Venkatesan (2010). Wieland et al. (2008)

discuss integrating context information into workflow. The supply of contextual

information and provisioning of an integration layer into workflow semantics at

appropriate place shall make work flow smart. The context information such as agent’s

status, error condition and exception are gathered and supplied to agent container engine

(through an integration layer) to intelligently handle agent related management/

administrative tasks. Guan et al. (2004) discusses issues faced by a system that employ

mobile code in securing such agents and agent hosts. Some issues are like data

confidentiality, non-repudiability, forward privacy, forward integrity of code and data

(with ability for the user to verify the same), code insertion defense, code truncation

defense, itinerary confidentiality and malicious action on the host. Lettmann (2011)

provides an extensible definition of agent and multi-agent systems that users can

customise and design agent based system. Considerable research is going on in

providing security for mobile agents based on this work. Huhns and Singh (1998) argues

agents are the best metaphor to realize business workflows. Huhns and Singh (2005b)

claims several SOA principles are deeply influenced by MAS research and describe a

15-year roadmap for service-oriented multi-agent system research. But many of the

stated research agenda is still awaiting success and have seen limited progress. It is

anticipating inevitable evolution of services standard complaint MAS environment to

carry out large scale cooperative computing. Huhns has published several works in the

past 25 years about integrating workflow, agents, services technology and autonomic

computing. In those works it is argued that there exist strong relationships between these

disciplines, but till date not many applications exist that corroborate the importance of

the relationship. Brazier et al. (2009) argues a case for creating web scale workflows by

integrating SOA and agent technology in addition to incorporating autonomic

capabilities to this environment such as self-configuration, healing, optimization and

protection. Okouya et al. (2013) extends this proposal one step further making this

environment semantic SOAP message based and inferentially adaptive, predictable and

intelligent and proposed Open Interaction Platform. It may be noted that all the

A novel programming framework for architecting next… 499

123

initiatives mentioned here have not resulted in creation of any industry grade solutions

(Shehory and Sturm 2014; Logan 2015). Most ideas remain on paper or isolates to their

research labs and till date there exist no SOA compliant XML based MAS environment.

It may be interesting to note that this work may be making a significant first step

envisaged in creating SOA compliant MAS platform.

3 ACIAF and ‘‘CODE MOBILITY’’ operation

3.1 Adding code mobility to WS-BPEL scripts

Business application can be modeled, specified and programmed in process

scripting language like Web Services-Business Process Execution Language (WS-

BPEL) to codify business flow logic to interface with computing node’s processing

capability in an interoperable and decentralized manner Venkatesan (2010) presents

a method for arriving at novel software environment that integrate few important

orthogonal technologies. Building upon the ideas presented there ACtive Internet

Application Framework (ACIAF) proposes to fuse Workflow (Aalst and van Hee

2004), Web 2.0/3.0 (Murugesan 2007; Garcı́a 2008; Yu 2009), Service Oriented

Architecture (SOA) (Newcomer and Lomow 2005; Brown et al. 2008) and WS-

BPEL (2016) and some features of Agent technology to create a new distributed

computing environment. The benefits provided individually by these technologies

are already discussed in Sect. 2. Fusion of these technologies using an architectural/

programming framework permits creation of new class of internet applications that

can migrate to partner link computing nodes to leverage the services running on it.

In this manner computation is carried out in proximity of data and results are

accumulated in the state variables of migrating application. This mobility enabled

business process application after taking a round trip across various partner link

nodes, can arrive at invoker/launcher of the process with processed results. This

model of computation increases performance of resulting applications. WS-BPEL is

used to codify the process logic of the mobility capable applications (mobile agents)

and it natively has services computing metaphor built into it. ACIAF extends WS-

BPEL by adding new XML tag for mobility that permit the script to suspends its

execution and migrates to specified node and recover context information and

proceeds further with execution. There are several similar efforts in architecting

systems (either in isolation or by fusion more than one approach) using SOA (Huhns

2002) or agents (Luck et al. 2005), or work flow (Savarimuthu et al. 2005; Havey

2005) or Web 2.0/Web 3.0 (Katasonov and Terziyan 2008; Brazier et al. 2009).

ACIAF assimilate, combine, synthesis and advance their ideas. In this paper, using

ACIAF a case study is described that justifies need of ACIAF and show richness of

framework in composing efficient internet application. Building upon ideas

expressed in Aversa et al. (2009), Banzi et al. (2008), Trione et al. (2009) and

Luck et al. (2005) this work proposes a software development environment that

support development/deployment of applications based on ACIAF that is inherently

workflow based, business aligned, formal, industry standard and SOA compliant.

Here ACIAF engine is realized as a services container server. It is clear that these

500 D. Venkatesan, S. Sridhar

123

applications are standard compliant, easily leverages available infrastructure and are

reusable in comparison to similar agent platform mentioned before.

Though multi-faceted software architectural proposals/approaches were made

having the same or similar goal of fusing multiple technologies (which were

reviewed in Sect. 2.6) none actually proposed a standard compliant framework.

Thus ACIAF effort is matured for the following reasons:

1. It uses industry standard WS-BPEL process scripting language to provide

mobility to applications.

2. It extends WS-BPEL to provide additional markup directives for script

termination/archival at selective point, migration and re-initialization.

3. It uses WS-BPEL engine itself as agent container and deployment environment.

4. It extends the WS-BPEL engine to have additional capability to receive,

selectively execute related portions and migrate it to other BPEL engines.

5. WS-BPEL permits through a ESB intermediary, partner link interface

invocations semantics which can be extended to support ‘‘speech act based’’

interaction through a sematic SOAP messaging infrastructure leading to open

interaction system infrastructure as envisaged in Okouya et al. (2013).

This results in richer application architecture to allow us to compose sophisticated

applications. WSBPEL process scripts that migrate from node to node, are called for

short as ‘‘mobBEPL’’ Script. Figure 1 below depicts convergence of important

orthogonal components of distributed computing to create architecture for e-com-

merce or any kind of mobility based internet application. This is called as ACIAF.

Fig. 1 Convergence of BPEL, SOA, Web 2.0 and mobile agent technologies

A novel programming framework for architecting next… 501

123

3.2 The ACIAF system environment

Architectural vision and business need decides on the capabilities built into any

software system. Agent computing tend to incorporate most ambitious features due

to its conceptual strength (Brazier et al. 2009; Huebscher and McCann 2008;

Mazeiar and Ladan 2009) from neural network, fuzzy reasoning, self-organizing,

autonomous, artificial intelligence and so on. Typically the environment should

allow for flexible design, building and operation of assortment of agents with

mundane features like heterogeneity in communication, coordination, functionality,

platform, semantic description. Agent societies be developed/deployed to adopt

future evolution, integration in a standard compliant manner. This infrastructure

need to be domain independent and reusable substrate on which actual agents, its

components, services live, communicate, interact and interoperate. ACIAF due to its

services computing standard compliance meets several of these needs making it a

powerful business processing environment.

Despite several examples of deployed agent systems, agent technology face several

barriers to their large scale adoption (McKean et al. 2008; Shehory and Sturm 2014). A

fundamental obstacle in agent technology is lack of mature software development

methodologies, lack of common standards, insufficient tool support, failure to enable

software reuse, SOA ignorance, non-standard operating environment, un-realistic

assumption of agent as a piece of self-contained code (minimal reuse of standard

infrastructure), platform dependency and failure to interface with existing software

infrastructure in a natural manner. However an industrially popular business process

automation environment like ACIAF addresses these pressing issues as shown in Fig. 2.

The core container engine that implements ACIAF as an infrastructure constitute of

extended WS-BPEL server. We call it Agent Server Web Server (ASWS). It implements

code mobility capability to process scripts through new\serialize[,\loadFromArc-

hive[, \startExcuteAt[structuring activities tag. It introduces new \migrateTo[
communication activity tag related to structuring control flow of BPEL process. A sample

mobBPEL process script is given in Listing 6 (Sect. 5). This work refers to a mobBPEL

script also as an agent as it shares many features typically attached with a traditional agent.

ACIAF has a visual process editor/composition tool that is derived from standard

Eclipse BPEL designer editor. It is a kind of Rich Client Platform (RCP)

application. Its source code is modified to add ability to model, specify and generate

ACIAF Environment S/W Components (based on ODE+Eclipse BPEL Designer extension)
Agent editor/
Composer

Agent Session Mgr,
Process Controller

ASWS server
policy Config.

Status/ Mgmt
Console

Transport
Module

MobBPEL layer

Transport Layer –HTTP and others
Messaging layer – SOAP, and others

Service layer -WSDL

Process layer –Apache ODE

Services Integration Layer (using ESB) “Speech Act” based Communication

Fig. 2 Components of ACIAF server (ASWS application stack)

502 D. Venkatesan, S. Sridhar

123

additional tags of mobBPEL script to make it ACIAF agent business logic

coding/composition tool. Instead the mobility tag can be inserted by hand to the

existing WS-BPEL script at appropriate places and submitted to bpel compiler.

ACIAF has status reporting and management module is similar to JBoss Web

Services/JMX console and it lists status of all agents at a partner link. It is derived by

customization of ODE-process monitoring web tool interface. mobBPEL scripts are

managed from this console. ACIAF has a server policy module that governs execution of

client mobBPEL scripts. It provides necessary security for partner link nodes against

resource hogging, vicious scripts, Denial of service attacks by client scripts. It places

certain ceiling on how much system memory, execution time, network band-width a

client script can take on the partner link. This information is set by the administrators of

the ASWS node. ‘‘Client process controller’’ uses this for client process management.

ACIAF has a ‘‘Agent session manager’’ and it takes ACIAF agent configuration

parameters that govern mobBPEL script execution. This information is set by the

developers of the ACIAF script (at client side) and is part of the migrating agent.

3.3 Architectural elements of ACIAF

The architectural elements of ACIAF application server is depicted in Fig. 3. It

shows software components running on a PartnerLink node and their interactions.

Architectural elements of a software is expressed in terms of components, bus,

system property elements (Grunbacher et al. 2003). Following this tradition AICAF

system elements are identified. It includes an editor capable of inserting mobility tag

in a BPEL script, a compiler extension that can process WS-BPEL scripts with code

mobility tag extension, a middleware platform that is an extension of standard WS-

C
lie

nt
 (A

ge
nt

 la
un

ch
er

)
(m

ob
ile

 A
ge

nt
 W

S-
B

PE
L

Se
rv

ic
e)

Agent
ManagementS

erver

AgentManage
mentPT

Agent
Composition

Service

PA
R

T
N

E
R

L
IN

K
 H

O
ST

..1

PARTNERLINK HOST..2..to..N

pu
rc

ha
se

O
rd

er
PT

migrateTo

migrateTomigrateTo

ASWS Engine

C
re

at
eA

ge
nt

PT

Agent 1

BPELWMC
script
Dt

Agent 2

BPELWMC
script
Dt

Agent N
mobBPEL

script+Data
+CustomCode

Fig. 3 Schematic of client, partner link node interaction in ACIAF

A novel programming framework for architecting next… 503

123

BPEL engine (with support for mobility). All these participating components and

their deployment scenario is illustrated in Fig. 3.

A behavioral description of ACIAF application may be in place here. It also

shows relevance of agent metaphor in combination with service. Take the case of a

purchase order BPEL application. The client wants to place a purchaseOrder with a

partner who in turn interact with one or more partners to determine price,

packaging, shipping and invoicing, credit card payment authorization actions. Most

of these services are available with third part service providers and the purchase

order application must orchestrate them to realize its business functionality. These

services are typically available as portTypes or WSDL interfaces. In a typical WS-

BPEL scenario all these actions will be executed in sequence from the client

PurchaseOrderService in a client–server mode.

But in the case of mobBPEL version of PurchaseOrderService application

mobility is inserted at appropriate places. To make this application robust,

proposed extensions and design approach is essential. purchaseOrder BPEL

process migrates to partnerLink node (say PARTNERLINK HOST ‘‘1’’) to

computer price of the order by interacting with local itemPriceInfoService and

then migrate and interact with packagingInfoService to determine special

packaging requirements and its price (which may be running on the same node

or different node (say PARTNERLINK_HOST ‘‘2’’) and workflow cycle

continues until generated invoice/pay acknowledgement is submitted to the

initiating client. In ACIAF application, client can just initiate the order

placement action and wait for the arrival of finished invoice (as a message in

asynchronous mode) unlike client–server model where it orchestrates each and

every step. However the process specification along with node migration

instructions needs to be composed by the client as usual as part of WSBPEL

process specification (for static case). Section 5 illustrates a more understandable

and simpler use case development using ACIAF.

3.4 ACIAF system implementation description

A research prototype version is developed on Apache-ODE 1.3.5 (ODE 2016)/

Axis2.x environment by changing BPEL engine code to add new tag

functionalities. The development and testing is carried out on a 986 64 bit

machine running CentOS/MS-Windows operating system. Apache Orchestration

Director Engine (ODE) has several unique capabilities that make it ideal choice

for our agent environment. In ODE the process management API (ODEAPI

2016) is defined as a Web service interface. In doing so it offers SOAP access to

the service, and also create Java interfaces for SOAP access and JMX,

depending on needs. All messages are defined as XML elements, mapping to

WSDL doc/literal. This offers immeasurable benefits for process management

(such as migration that is relevant to us). The process definition management

interface of ODE defines six operations namely, list (Returns information about

all, or some process definitions), details (Returns detailed information about the

specified process definition), set-properties (Changes properties associated with

the process definition), activate (Activates the process definition) and retire

504 D. Venkatesan, S. Sridhar

123

(Retires the process definition). The process instance management interface of

ODE defines following operations namely, suspend (Suspends the process

instance), resume (Resumes the process instance), terminate (Terminates the

process instance), fault (Faults the process instance) and delete (Deletes all or

some completed process instances). These sets of APIs (ODEAPI 2016) are

suitably modified to accomplish WS-BPEL process retiring, migration and

reloading as and when we encounter BPEL extension tags in the process

definition file. From a programming point view, we accomplish migration and

reloading capability by suitably modifying and extending ODE JaCOb

(ODEJaCOb 2016) implementation to archive process variables and reload

them at different partner link node at process creation time (similar to suspend

and resume activity implementation). Changes were also made to related

packages and dependencies of DeploymentService, InstanceManagement, Pro-

cessManagement interfaces/classes in ODE 1.3.x code base to realize several

mobility related sub-functionality in ODE engine.

3.5 The ACIAF agent scripting environment

The code mobility capability for ACIAF is derived by adding mobility tag to WSBPEL

script. WS-Script can be composed using a modified BPEL editor that supports insertion

of mobility tag at appropriate places in the composition or mobility tag can be manually

inserted into a generated WS-BPEL script. By adding\migrateTo …/[tag (a sample

pseudo code is given in Sect. 5, Listing 6) it remains to be shown that it does not interfere

or alter the regular data and event flow of original BPEL script. BPEL programs as soon

as finish executing a tag, completely reflects the effect on the state of the process

variables. No action will be kept pending or will be posted by the engine at a later time.

Hence the BPEL program execution has local semantics like in a flat shell scripting

program. This property can be used to analyze the effect of\migrateTo…/[tag on

overall WS-BPEL program flow.

Like in any other programming language, correctness of logic and flow of

program is the responsibility of the programmers. Tools can only check the

syntactic correctness of used programmatic constructs. It is programmers respon-

sibility to use\migrateTo…/[tag at suitable places in WS-BPEL programs where

no other activity is ongoing or pending such as in a loop (between looping tag or

flow tag, migration tag must not be used). Due to the underlying formal rigor (using

Petri net theory) enjoyed by WSBPEL, its compiler can detect scripts flow

anomalies due to erroneous usage of the migration tag (through static analysis). In

such cases at the compilation time itself error is generated about inappropriate usage

of migration tag and compilation is aborted.

The Listing 1 below shows the algorithm for safe migration of the ACIAF agent

script. This algorithm assumes that the WS-BPEL script is not having any syntax error

(such as missing tags, tag pairs, misspelling, variable declaration errors) and is a well

formed XML document in the first place before introduction of ‘‘migrateTo’’ tag.

A novel programming framework for architecting next… 505

123

Listing 1 Algorithm for sane migration of ACIAF agent scripts

//assumption:BPEL script is a well formed formula before introduction of mobility tag
Algorithm checkSafeMigrationOfACIAFAgentScript (input mobBPELScrpt)
Returns flag;

Enum scriptWFFflag = {SAFE,UNSAFE}

MIGRATE_TAG = “migrateTo”

Int pendingMatchingBpelTagCount=0;

String bpelTag=NULL;

scriptWFFflag=UNSAFE;

While (bpelTag=getNextBPELTag(mobBPELScrpt) != NULL)

{

If bpelTag== MIGRATE_TAG && pndngMatchingEndTagCount!=0

scriptWFFflag = scriptWFFflag | UNSAFE; //migrate tag overlaps regular BPEL tag –error!

else if isBpelStartPartTag(bpelTag)==TRUE

pndngMatchingEndTagCount++; //encountering new BPEL opening tag

else if isBpelMatchingClosePartTag(bpelTag)==TRUE

pndngMatchingEndTagCount--;//encountered a matching BPEL close tag

} //reached end of input script file; check if any migrate tag overlapped other tag construct

Return scriptWFFflag;

In this manner ACIAF engine ensure safe insertion of mobility tag at appropriate

places of the mobility enabled ACIAF applications.

4 ACIAF and ‘‘Loose Coupling’’ operation

Like incorporating ‘‘mobility of code’’ as unit operation and provisioning it to

system designers in a popular software environment solves few issues, there is a

need to incorporate ‘‘loose coupling’’ (a kind of separation operation) of external

services used in orchestration in ACIAF. Emergence of applications composed of

externally provided services gives raise to new kind of challenges and problems that

architects and programmers must address. At the architectural level the externally

provided services may evolve or their location may move away or simply may not

meet emerging quality/performance requirements. At the programmer level these

issues must be tackled at the code level. Design time picture may fade away at run

time as the typical production application life time is more than a decade. It is

challenging to get reliable external partnership for an extended period of time. The

requirements of consuming applications changes fast and provider must keep

updating their services to meet the expectations of the consuming applications. This

leads to versioning problem as different consumers wants different things from the

same service over a period of time. Since WS-BPEL framework is predominantly

used to compose and orchestrate services based applications, it must be capable of

facing this situation and resolve it.

This problem is well known to application software developers on Microsoft

windows operating system (and also developers of Unix *.so files that are sharable

dynamic loadable libraries across several applications) during 1990s. It is known as

‘‘DLL hell’’ (Anderson 2000). Microsoft windows developers encounter problems

with dynamic link libraries (DLLs)—especially after numerous applications have

506 D. Venkatesan, S. Sridhar

123

been installed and uninstalled on a system. The difficulties include having many

unnecessary DLL copies, conflicts between DLL versions and difficulty in obtaining

required DLLs. Changes to the classes in the DLL such as adding a new member

variable or virtual function would break already running application and require

recompilation of it. Recent versions of Microsoft windows operating systems (as

part of its .NET framework) treats DLLs as assemblies and permits side-by-side

assembly sharing to enable multiple versions of a Component Object Model (COM)

or Win32 assembly to run simultaneously on the system (Pratschner 2001). This

technology permits instead of a single version of an assembly that assumes

backward compatibility with all applications, permits coexistence of several

versions of DLLs in isolated manner by appropriately relating to referenced

application at run time without version mismatch.

To put it simply operating system provides infrastructure support to relate

appropriate version of DLL (or external component/contract) to their connected

applications; Different applications can use different versions of the same DLL

without conflict. In addition to this externally provided component/function library

may use different programming language technology and to integrate them one need

support from the underlying operating system; this is known as automation enabled

classes or function that permit cross language reuse of functionality. Indeed

Microsoft operating system provided support for marshaling of data across

components developed using different programming languages and also supported

versioning of components through its registry entries.

Thus there is an established case that industry has accepted infrastructure offering

solution to resolve version mismatch and locate/maintain appropriate version of

components and their related applications (i.e. provide-consumer pairing informa-

tion) as a workable approach. Hence this work suggests similar line of solution

using ACIAF infrastructure to resolve ‘‘Orchestration Hell’’. The SOA applications

are likely to face the same fate Win32 applications faced during 1990s in connecting

with DLLs. If the present state of affairs in SOA technology continues, it will sure to

lead to a situation that developers faced in 1990s in Microsoft Windows operating

system environment. This situation may be called as ‘‘Orchestration hell’’.

Developers will stuck with most inhospitable situation of unable to extend existing

services for the fear of breaking existing orchestrations or choose the hard task of

asking all clients to constantly upgrade themselves to match with their own service

evolution (which is clearly unworkable). So the only way out in services technology

is to introduce infrastructure based innovation to tackle services invocation

problem; a functionality must be introduced in WS-BPEL framework (as it is

established as the most prominent orchestration environment) to offer infrastructure

based solution to orchestration applications to overcome ‘‘Orchestration Hell’’.

Instead of permitting applications to use hard coded WSDL, message based

orchestration of external services must be introduced. Incidentally this solution can

be tweaked to solve supplementary problems faced by applications relating to issues

like QoS, scalability, reliability and cost issues. Thus messaging based integration of

external services, not only provide reliable connectivity, can also be used to meet

business rules, partnership constraints at run time. Venkatesan and Sridhar (2016)

offers a workable solution to this problem. Building upon the ideas presented there,

A novel programming framework for architecting next… 507

123

Fig. 4 depicts architectural model of the proposed solution for loose coupling in

ACIAF.

Traditional applications that consume WS service providers will simply fail if

these ‘‘Provider’’ services (participants of orchestration logic) are not available for

reasons such as service address migration, evolution or unsatisfactory QoS. Hence

the designer should have a mechanism to specify—using underlying infrastructure

capabilities—that should not be part of application logic- how the application

behaves. One possible line of solution is to specify alternatives if one partnership

fails then infrastructure can invoke alternatives automatically in case of failures.

This would be a client side or middleware based solution rather than ‘‘Provider’’

based solution as in Ebrahim et al. (2015). Ebrahim et al. (2015) suggests a provider

side (i.e. server-side) infrastructure based solution to cater to this situation purely

based on design time contract metadata. However in the case of catastrophic failure

at ‘‘Provider’’ side none of the suggested methods will be applicable. In such

situation a client infrastructure based or middleware based fault tolerance solution is

desirable. This work takes client side approach to tackle this problem. This approach

may be proved more robust than traditional approach of keeping client application

passive to any kind of failure and making ‘‘Provider’’ side active attempting

remedial solutions as suggested by Ebrahim et al. (2015) and related works. Client

side based error resilience solution has not been attempted so far as applications are

architected predominantly in a client–server style flavor so far. Presently there exist

no middleware to negotiate establishment of partners at run time.

Consumers and providers of services connect traditionally using URI. For

enterprise scale application that require higher level service non-functional capabil-

ities such as scalability, it is suggested to leverage WS-Addressing standard based

connectivity between consumers and providers. WS-Addressing (2006) standard

offers transport neutral mechanism to connect with instance specific service provider

end points in a scalable manner. It removes dependency on transport layer for service

address resolution and provide ability to use multiple transports as the data is

encapsulated within SOAP envelop. So transport specific header messages are

dispensed with to increase interoperability. Loose coupling with partner link

invocation interfaces depends on identification of syntactically exact end point

references at run time. Open Interaction Middleware Service (OIMS) suggestion by

C
lie

nt
 (A

C
IA

F
co

m
po

se
r

&
 la

un
ch

er
)

(L
oo

se
 c

ou
pl

in
g

W
S-

B
PE

L
 S

cr
ip

t)

PARTNERLINK
HOST..2..to..N

Web Service
applications 1..N

PA
R

TN
E

R
L

IN
K

(P

L
) H

O
ST

..1

Application ..N
Application 2

In
vo

ke
d

O
pe

ra
tio

n
 P

T

1.

.N

Customized WS-
Addressing
messages based
identification/
orchestration of
partner link W

S-
B

PE
L

ex
te

ns
io

n
en

gi
ne

 +
 d

ep
lo

ye
d

A
pp

lic
at

io
ns

O
IM

S
m

es
sa

gi
ng

PT

Middleware for
dynamic
identification &
Invocation of PL

SO
A

P
m

es
sa

ge
s

Application1

SO
A

P
m

es
sa

ge
s

Middleware for
dynamic
identification &
Invocation of PL

Fig. 4 Method of ‘‘Loose coupling’’ in ACIAF: schematic of client application, middleware for PL/
endpoint determination (that is part of ACAIAF engine) and WS-Provider nodes

508 D. Venkatesan, S. Sridhar

123

Venkatesan and Sridhar (2016) presents an idea to leverage WS-Addressing

infrastructure support to solve problems such as ‘‘Orchestration hell’’ and also

provide ‘‘loose coupling’’ at the same time. OIMS suggests replacing traditional web

services end point address (supplied at design time) in\wsa:To[and\wsa:Action[
fields of WS-Addressing message structure with a speech act message that helps

middleware to compute EPA at run time. This work integrates the ideas presented

there into ACIAF and further elaborates it technically. This goal can be achieved using

two different strategies that have different level of impact on ‘‘Client/Consumer’’

applications and ‘‘Provider/Server’’ applications. Subsequent paragraphs describe

these two approaches separately in detail.

4.1 Loose coupling method affecting ‘‘Consumer’’ environment alone

Typically ACIAF applications are designed by specifying the business logic as a

process flow. In the simplest case business logic may consists of orchestrating

several business partner capabilities in a sequence. The business logic is converted

into WS-BPEL program consisting a sequence construct and within it each business

partner’s capability is invoked (using the details provided in imported WSDL files

of the partner link–Provider–services). Thus BPEL invoke operations are insepa-

rably tied to the port types and operations of the partner link WSDL files leading the

problem described in the outset of this section. This issue is at the application level.

Even at the infrastructure level connecting to the service operations (i.e. through

port type) is based on the URI and the transport of the SOAP message to the service

end point depends upon the transport layer. To overcome these kind of issues WS-

Addressing (referred to as WS-A for short) standard was introduced. As discussed

WS-A standard consists of method of communicating EPR (end point references) to

clients and message information from client to server within SOAP envelop.

WS-Addressing (2006) cater to enterprise level solutions using web services that

need more than simple URI to specify the end point. Applications need more capability

to convey information while invoking service end points and it just cannot delegate

application level information (such as instance of web service, session id., profile

info.) communication to transport layer. These information should be kept within the

SOAP envelop. This requirement is fulfilled by world wide web consortium’s WS-

Addressing standard. It also supports extensibility by permitting end users to tailor

message information header by adding custom fields in addition to regular fields.

Though WS-A technology removed direct dependence on transport layer for

information communication between provider and consumer of services, it still retains

client–server flavor and dependence on WSDL files and location specific service

provider information. If a (SOAP message based) indirection can be introduced to

overcome this direct (i.e. hard coded) dependence, it will increase reliability of

orchestration/application. Venkatesan and Sridhar (2016) suggest a middleware

mediated separation that uses simplest form of speech-acts between consumer and

service provider. It suggest to use a message template provisioning over WSDL based

on which consumers can orchestrate providers using ACL based WS-A. This work

elaborates on the core idea presented there. There are several methods of realizing

loose coupling at consumer end and the following sections describes few.

A novel programming framework for architecting next… 509

123

4.1.1 Loose coupling using syntactic method

It is illustrative to explain how loose coupling design activity is carried out at

consumer side with code snippets from an actual use case. So let us take the use case

presented in Sect. 5. In that the client orchestrates three ‘‘Providers’’ (node1, node2,

node3) that provide mathematical calculation services namely ‘‘Addition’’, ‘‘Sub-

traction’’ and ‘‘Multiplication’’ respectively. In the normal case the ‘‘Consumer’’

(namely WS-BPEL) application refers to provider WSDL files at design time and

carryout orchestration using URIs (namely http://www.cn1.com/AdditionApp/

AdditionService, http://www.cn2.com/SubtractionApp/SubtractionService and

http://www.cn3.com/MutiplicationApp/MultiplicationService).

A typical WS-A message transferred between consumer and provider (from

application running on ‘‘client node’’ to WS running on compute node1 ‘‘CN1’’) in the

use case is listed in Listing 2. This snippet highlights information content of various

fields in unmodified WS-A message. The\wsa:To[element carries data on URI of

the web service to which the SOAP message should be forwarded and\wsa:Action[
element carries data on which operation to be executed on the server side.

Listing 2 A traditional WS-A message from client to compute node1 (CN1) providing “Addition” Service
(01) <S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" xmlns:wsa=http://www.w3.org/2005/08/addressing
xmlns:end="http://endpoint/" >
(02) <S:Header>
(03) <wsa:MessageID>http://client.com/123456ABCDEFG-XX11-1111-ABCD-00DD010662DA</wsa:MessageID>
(04) <wsa:ReplyTo>
(05) <wsa:Address>http://client.com/aciafmathtutor/tutorService</wsa:Address>
(06) </wsa:ReplyTo>
(07) <wsa:To>http://cn1.com/AdditionApp/AdditionService </wsa:To>
(08) <wsa:Action>http:// cn1.com/Addition/addRequest</wsa:Action>
(09) </S:Header>
(10) <S:Body> <add> <arg0>1</arg0> <arg1>1</arg1> <arg0>2</arg0> <arg1>2</arg1> </add> . </S:Body>
(11) </S:Envelope>

Listing 3 OrchestrateRegistry.xsd: configuration file to specify application preferences metadata and choice of
Provider services and its metadata.

<?xml version="1.0"?> <xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema xmlns="http://www.aciaf.com” >
<xs:element name="application"">

<xs:complexType>
<xs:element name="applicationName" type="xs:string"/>
<xs:sequence>

<xs:element name="partnerServiceId" type="xs:string">
<xs:element name="partnerServiceName" type="xs:string"/>
<xs:element name="primaryURI" type="xs:string" />
<xs:element name="versionId type="xs:string />

<xs:element name=" alternateURIs"">
<xs:complexType>
<xs:sequence> <xs:element name="alternateURI" type="xs:string" MinOccurs=0 MaxOccurs=unbounded /> </xs:sequence>
</xs:complexType>
</xs:element> #end of alternateURIs

<xs:element name="QoSindex" type="xs:float"/>
<xs:element name="MaxNetworkLatency" type="xs:float"/>
<xs:element name="MaxServerLoad" type="xs:float"/>
</xs:element> #end of “partnerServiceId"

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

As discussed in this orchestration the information carried by the tags\wsa:To[
and \wsa:Action[are hard coded at design time. This information is rather

510 D. Venkatesan, S. Sridhar

123

http://www.cn1.com/AdditionApp/AdditionService
http://www.cn1.com/AdditionApp/AdditionService
http://www.cn2.com/SubtractionApp/SubtractionService
http://www.cn3.com/MutiplicationApp/MultiplicationService

restrictive and suffers ills that are already described. Now the client orchestration

environment (Apache ODE based ACIAF) should be enabled to permit designers to

specify several alternatives to this\wsa:To[and\wsa:Action[information. This

information is proposed to be stored as part of application registry file residing with

ACIAF ODE engine (i.e. at client/consumer side). The structure of this configu-

ration file—namely OrchestrateRegistry.xml—defined as a XSD file—is shown in

Listing 3. This structure can be extended to hold additional information by adding

new tags and appropriate handlers for them to be provided on ACIAF orchestration

engine (while invoking partners). From the structure of this schema one can easily

guess kind of designer level activity performed during application design using

external services. Listing 4 gives an instance of this configuration file as a result of

conclusion of orchestration design activity—this sample instance of configuration

file for math tutor case study in Sect. 5 illustrates designer’s choice of three more

alternate servers (i.e. providers of addition mathematical operation contract) namely

cn1a.com, cn1b.com, cn1c.com in case primary partner link cn1.com is not

available or cannot meet quality parameter thresholds indicated in the configuration

file. In such cases, at run time, middleware will make a suitable decision of

substituting alternate partner link to execute external service contract. This way the

ACIAF is more robust and active to failure resolution and enforcing meta-data

based contract execution at run time. Traditional environments (Ebrahim et al.

2015) do not offer this kind of robustness using client side approach as in ACIAF.

Listing 4 A sample instance of OrchestrateRegistry.xsd snippet: for Math tutor application

<?xml version="1.0"?>
<application xmlns="http://www.aciaf.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.aciaf.com OrchestrateRegistry.xsd">
<applicationName>mathTutor</applicationName>
<partnerServiceId>addService1</partnerServiceId>
<partnerServiceName>AdditionService</partnerServiceName>
<primaryURI>http://www.cn1.com/AdditionApp/AdditionService<primaryURI>
<versionId>v1.0 </versionId>
<alternateURIs>
<alternateURI>http://www.cn1a.com/AdditionApp/AdditionService</alternateURI>
<alternateURI>http://www.cn1b.com/AdditionApp/AdditionService</alternateURI>
<alternateURI>http://www.cn1c.com/AdditionApp/AdditionService</alternateURI>
</alternateURIs>
<QoSindex>90</QoSindex>
<MaxNetworkLatency>100</MaxNetworkLatency>
<MaxServerLoad>80</MaxServerLoad>
</application>

The above configuration file based web service substitution method is experi-

mented using a proof of concept research prototype application in Apache Axis-2

server and Java JAX-WS 2.x compliant Java client environment. However incorpo-

rating it in ACIAF container (that uses Apache ODE) is much more complex. The

reasons are several fold; BPEL scripts are stateful and can embedded complex

constructs around partner ‘‘Invoke’’ operations so loose coupling in WS-BPEL should

not break on going interactions in the middle, Apache ODE uses extensively Axis 2

web services programming technology and integrating WS-A customization may

prove to be technically challenging. This study is a work in progress.

Dynamic partnership determination in ACIAF can be enabled by adopting Java

XML-Based Web Services (JAX-WS) technology. JAX-WS makes it easier for

A novel programming framework for architecting next… 511

123

developers to write stateful web services using inbuilt WS-A technology. The JAX-

WS API provides this by adding explicit support for Web Services Addressing (WS-

Addressing) in it. JAX-WS 2.x provides several ways to create endpoint references

in server applications. Its API includes one subclass of EndpointReference class,

called W3CEndpointReference that represent endpoint references in accordance

with the WS-Addressing 1.0 Core specification. The W3CEndpointRefer-

enceBuilder allows the developer the ability to specify any of the properties of an

endpoint reference. In WS-A messages one can just specify an address and a

reference parameter, however, it is possible to specify a Web Services Description

Language (WSDL) service name and endpoint (port) name, instead of an address.

The run time will use the service and endpoint name combination to identify the

endpoint for which a reference is required, and it will return a W3CEndpointRef-

erence with the correct address filled in.

Endpoint references created in a server application returned over the wire to a consumer

application. The client application can then use that endpoint reference to invoke the

endpoint, as necessary. As per the WS-Addressing specifications any reference parameters

included in the endpoint reference will be automatically be added as headers to the SOAP

envelope that is sent to the client application. JAX-WS 2.x also provides a facility to allow

a Web service application to retrieve these reference parameters. Based on this scalable,

stateful and fault tolerant applications can be implemented.

The solution offered to ‘‘OrchestrationHell’’ using approach described in Listing

4 can be criticized (for finding alternate partner links providing same functionality)

as yet another kind of hardcoding. However the enforcement of contract meta-data –

such as QoS, latency enforcement may not subject to such criticism. So we need to

search for alternatives. One promising approach is instead of hard coding these

partner link URIs, they can be determined at runtime using semantic web query

languages such as SPARQL or specified using content languages such KIF

(knowledge interchange format). In either case it requires the entire ACIAF

environment—and all its participants—to embrace some kind of understandable

uniform ontology—which is not unrealistic to assume. In addition to this content

part should be embedded in a richer communication language—as SOAP is simply

syntactical. Approaches such as using FIPA-ACL (Foundation of Intelligent

Physical Agents—Agent communication language) (FIPA-ACL 1998) is promising.

OIMS suggested by Venkatesan and Sridhar (2016) and adopted here in ACIAF

does that. The content language in the ACL can use OWL-DL (Schiemann and

Schreiber 2006) or knowledge interchange format (Covington 1997).

4.1.2 Loose coupling using Scripts

It is possible to use speech-acts to indirectly specify possible partner link end points

using some kind of logical assertions in its content field, shall replace traditional

information in\wsa:To[and\wsa:Action[. Listing 5 lists snippet of WS-A message

with a speech-act encoded inside \wsa:To[sub-filed to identify partner link

dynamically. In the simplest case there are no changes whatsoever to provider side

(they simply continue to provide the same WSDL file) limiting the innovation to the

composition engine/framework alone making the diffusion/adaptation of the

512 D. Venkatesan, S. Sridhar

123

technology very easy. It may be noted that there is some overlap between WS-A

message structure and FIPA-ACL message structure such as sa-msg-id and in-reply-

to. These message Ids should be used by server and clients to build suitably chained

business logic in one-to-one or one-to-many basis. Provider WSDL files and their

operations can be automatically encoded into message templates of the kind described

in Listing 5 by consumers (i.e. client orchestration applications) –along with other

non-functional or business constraints- and maintain it in their application deployment

engine registry. This script based approach added one level of determining

synonymous provider partner links to which consumer can connect to get the business

contract fulfilled. It can be seen this approach is purely syntactical.

Listing 5 Speech act embedded WS-A messages from client

(01) <S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" xmlns:wsa=http://www.w3.org/2005/08/addressing
xmlns:end="http://endpoint/" xmlns:aciaf="http://aciaf.com/aciaf" >
(02) <S:Header> ……………
(03) <wsa:To>
(04) <WSAACLQuery xmlns="http://www.w3schools.com" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.aicaf.com WSAACLquery.xsd" Language=FIPA_ACL>
<speechact>ask</speechact>
<sender> <aciaf:SenderAddress ID=mt.com/aciafmathtutor/tutorService instanceID=”ABCD-1234” Transport=http/> </sender>
<receiver> <aciaf:ReceiverAddress ID=http://192.168.*.* Transport=http/> </receiver>
<content> /*Service endpoint descripton in OWL-DL or KIF) */ </content>
<ontology>literal-syntax-based</ontology>
<sa-msg-id> msg-ABCD-1234-xyz-maths-addRequest</sa-msg-id>
<in-reply-to>converse-ABCD-1234-xyz-maths-add</in-reply-to>

</WSAACLQuery>
</wsa:To> ……………

(05) </S:Header> ……………

4.2 Loose coupling method affecting both ‘‘Provider’’ and ‘‘Consumer’’
environment

The previous sub-section explained how changes to the consumer side orchestration

environment help to achieve several robust non-functional properties that are not

available to the applications otherwise. To limit ripples of the changes do not cross

our own boundary, and to ensure compatibility and inter-operability with existing

services infrastructure no changes were suggested to the ‘‘Provider’’ environment.

However to reap maximum benefits of loose coupling provider environment also

should provide infrastructure based support. One approach is to depend upon the

OWL-S annotation of WSDL services (Martin et al. 2004a, b) to select partner links.

The OWL-S coalition (Martin et al. 2007) in their original proposal had submitted

automatic service discovery and invocation as one of its goal. Hence OWL-S

infrastructure will sure to evolve to meet this goal (Talantikitea et al.

2009; Maleshkova et al. 2010). In this case \aciaf:WSAACLQuery[tag shall

embed a semantic web query languages such as SPARQL that return equivalent

service end points that carryout same contact as the design time end point. The

ACIAF engine shall interpret the results based on the language attribute of this tag

(in this case it would be OWL-S and SPARQL result processor plugin of ACIAF

loose coupler module). Since OWL-S infrastructure is very generic for the purpose

of each operation of the port type may have to be encoded into a message template

and provided as part of infrastructure (Venkatesan and Sridhar 2016). As the details

A novel programming framework for architecting next… 513

123

of this technique is very elaborate, it is proposed to be documented as a separate

work at a later date.

The practicality of the loose coupling described here is simulated in Axis2

environment using Java programming language based research prototype. Based on

the experience gained in using research prototype, this capability is being

incorporated in ACIAF engine.

5 Case study based evaluation of ACIAF mobility construct

Problems requiring orchestration of external services based solutions include:

interconnecting and inter-operation of multiple, autonomous, ‘self-interested’

existing legacy systems e.g. expert systems or decision support systems, problems

whose solutions draw from distributed autonomous experts, e.g. in health care

provisioning or electricity distribution, problems that are inherently distributed, e.g.

geographically as in distributed sensor networks or air-traffic control and problems

whose solutions require the collation and fusion of information, knowledge or data

from distributed, autonomous and ‘selfish’ information sources, e.g. personal travel

assistance prototype application. Multi-agent solutions at the very least require

problems that tackle distributed resource allocation problems. The case study

illustrated below demonstrate one of the key ingredient of an agent system namely

mobility and reduction of processing overhead at compute node due to proximity of

data and code. To evaluate the feasibility of carrying out the ACIAF proposal for

developing mobility based internet application and its performance with respect to

other methods of realizing this functionality a case study was carried out.

5.1 Description of MATHTUTOR case study

MathTutor (say designated as compute node MT) intend to conduct an online quiz

for a group of students say G. The quiz question paper has a HTML form with two

elements f1, f2 to show system generated numbers and three answer sections namely

S1, S2, and S3. S1 deals with ‘‘addition’’ mathematical operation on f1,f2 (which

can be carried out by CN1 only), S2 deals with ‘‘subtraction’’ mathematical

operation on f1,f2 (which can be carried out by CN2 only), S3 deals with

‘‘multiplication’’ mathematical operation (carried out by CN3). Let the quiz Q is

about presenting a pair of numbers (a HTML form with elements f1, f2 of type

integer) and asking students to find its ‘‘addition’’ (S1 part captured by HTML form

element SA1), ‘‘subtraction’’ (S2 part captured by HTML form element SA2) and

‘‘multiplication’’ (S3 part captured by HTML form element SA3) values. MT on its

own does not have capability to carry out the functionality carried out by CN1 or

CN2 or CN3. In other words CN1, CN2, and CN3 are the one with specialized

capabilities that must be leveraged by the MATHTUTOR node ‘‘MT’’ to carry out

its functionality This situation and all the stake holders involved are depicted in

Fig. 5. Assume MT, CN1, CN2, and CN3 nodes capabilities are exposed as web

services namely MathTutor, AdditionWS, SubtractionWS, and MultiplicationWS.

514 D. Venkatesan, S. Sridhar

123

The number of G may vary according to the student batch size. For simulating

load on application server and evaluating server computation time and network

overhead, we assume three (test) situations of examination that involve a group size

of 100, 1000, 10,000 students. This case study was physically carried out on actual

software platforms used in real life such as web service application servers

(Tomcat), web services, Java web service clients, WS-BPEL engine (Apache ODE)

and mobBPEL engine. However to simplify the test environment setup, geographic

separation of nodes CN1,CN2,CN3 and MT could not be enforced and simulated in

a LAN (local area network). Testing and measurement effected here indicate

feasibility of carrying out the actual implementation and its response to various load

conditions could be ascertained.

5.2 Description of MATHTUTOR system implementation cases

This application can be realized using three distinct approach but all using WS

technology. First approach (CASE1) involve a purely client–server architecture with

MT as client (java web service client) and CNs as web application servers hosting

addition, subtraction and multiplication services (depicted in Fig. 6a). Second

approach (CASE2) is also a client –server architecture solution just like first test

setup but CNs instead of directly exposing web services to clients like MT, expose

‘ADDITION’ specialist compute node “CN1"
(Deals with S1 section of Q-Paper)

‘MULTIPLICATION’ specialist compute node “CN3"
(Deals with S3 section of Q-paper)

MATH TUTOR
Compute node “MT”

‘SUBTRACTION’ specialist compute node “CN2"
(Deals with S2 section of Q-paper)

Q-Paper = f1 , f2, S1 section from
CN1,S2 section from CN2,S3
section from CN3

Fig. 5 MATHTUTOR examination server involving compute nodes CN1, CN2 and CN3

ADDITION
WEB SERVICE

ON AXIS2

ADDITION APACHE
O.D.E SERVER

SUBTRACTION
WEB SERVICE

ON AXIS2

MULTIPLICATION
WEB SERVICE

ON AXIS2

MATH TUTOR
AGENT

SUBTRACTION APACHE
O.D.E SERVER

MULTIPLICATION APACHE
O.D.E SERVER

SOAP CALL

SOAP CALL

SOAP CALL

ADDITION
WEB SERVICE

ON AXIS2

SUBTRACTION
WEB SERVICE

ON AXIS2

MULTIPLICATION
WEB SERVICE

ON AXIS2

MATH TUTOR
AGENT

SOAP CALL

SOAP CALL

SOAP CALL

ADDITION
WEB SERVICE

ON AXIS2

ADDITION APACHE
MobBPEL O .D.E SERVER

SUBTRACTION
WEB SERVICE

ON AXIS2

MULTIPLICATION
WEB SERVICE

ON AXIS2

MATH TUTOR
AGENT

SUBTRACTION APACHE
MobBPEL O .D.E SERVER

mobBPEL agent
migration

MULTIPLICATION APACHE
MobBPEL O .D.E SERVER

mobBPEL agent
migration

mobBPEL agent
migration

mobBPEL agent
migration

A B C

mobBPEL agent
Launcher &

receiver

Fig. 6 MATHTUTOR test scenarios: a WS-based based, b ODE based, c mobBPEL based

A novel programming framework for architecting next… 515

123

themselves to Apache ODE 1.3.x server that orchestrate them to create end user

applications for consumption (that are also exposed as web services). Since WS are

stateless, adding ODE process layer over this plain WS add persistence, state and

other benefits to WS. But the purpose of this test case is to measure the overhead of

adding ODE process layer over and above plain WS (depicted in Fig. 6b).

Third approach (CASE3) involve usage of ACIAF to create mobility script encoded

in tag extended WS-BPEL. One most important difference from the view point of MT is

in the previous two cases it act as a simple web service client to CNs and invoke them as a

java web service client while in this case MT will create a mobBPEL script using ACIAF

paradigm codifying the application logic with mobility inserted at appropriate places.

Typically WS-BPEL scripts has one receive and response pair only exposed to outside

world through WSDL. Inside that script it can invoke any number of partner links that it

orchestrates. The setup of various services and nodes interaction in this test case is

illustrated in Fig. 6c. The logic of MATHTUTOR case study encoded using ACIAF is

given below as pseudo-code in Listing 6.

Listing 6 ACIAF based MATHTUTOR mobBPEL script implementation logic – pseudo code.

Precondition: math-tutor invoke this mobBPEL script(“MP”) with quiz data.
1) Receive quiz question & answers array data of all students, call it [D]
2) Migrate to partner link CN1- //a mobBPEL ODE engine that exposes “additionWS”
3) compute [CA1]:addition test result using local “additionWS” //to verify SA1
4) update mobBPEL script state data; [D] = [D] || [CA1]
5) Migrate to partner link CN2- //a mobBPEL ODE engine that exposes “subtractWS”
6) compute [CA2]:subtraction test result using local “subtractWS” //to verify SA2
7) update mobBPEL script state data; [D] = [D] || [CA2]
8) Migrate to partner link CN3- //a mobBPEL ODE engine that exposes “multiplyWS”
9) compute [CA3]:multiply test result using local “multiplyWS” //to verify SA3
10) update mobBPEL script state data; [D] = [D] || [CA3]
11) Migrate to partner link MT //business case completed; invoker analyze result

Postcondition: math-tutor receives computed answers & award mark to quiz participants

5.3 Test situation description

‘‘MT’’ presents a quiz to all virtual students (for workload simulation) in G (having

100, 1000, 10,000 virtual students as three test runs noted in row 2, 3 and 4 of

Table 1 Test results

Number of user-

objects Transmitted

at a time (G size)*

[C1]

CASE1: SOAP

based Client–

server

interaction? [C2]

CASE2: Apache

ODE based

orchestration? [C3]

CASE3: ACIAF

mobility enhanced

script? (mobbpel

based) [C4]

JADE

Agent? [C5]

100 265 865 400 47

1000 1046 2085 968 93

10,000 7834 12,657 4423 312

* Transmitted from MT to a single server node CN. Transmitted data contains array of complex data type

object that contains 2 integers and one string, apart other placeholder fields CA1, CA2 and CA3 to be

filled by CNs

? All times are in measured milli-seconds for each batch of user data processed ‘per client-to-server

node’ interaction

516 D. Venkatesan, S. Sridhar

123

Table 1) and they solve S1, S2 and S3 parts (time factor for this task is not measured

or accounted in experimentation). Once the quiz is answered by all students in G,

MT must package and dispatch question (HTML elements f1, f2) and S1 section

answers (HTML element SA1) to CN1, questions and S2 section answers to CN2

and questions and S3 section answers to CN3. This involve sending ‘‘Array’’ of

‘‘Array’’ complex data type of integers having four attributes f1, f2 and SA1 or SA2

or SA3 and CA (of type integer) of array size 100 using SOAP protocol to CN1,CN2

and CN3 to compute correct answers ‘‘CA’’. For example CN1 replies back to MT

by sending back the same array of array with one more field ‘CA’ filled out that

indicate the correct answers computed by CN1. Upon receipt of reply from compute

nodes, MT can compare SA1 with CA (computed by CN1), SA2 with CA (from

CN2) and SA3 with CA (from CN3) and proceed with declaration of results. This

way client workload, network data transfer, server side processing is simulated.

The parameter measured here is batch size of data sent from MT to CN1/CN2/CN3

and its computation and turnaround time to get back to MT with an answer. The time is

measured and tabulated ‘‘per client to a server interaction’’ in CASE1 and CASE2. Full

MATHTUTOR case study application execution time that spans CN1, CN2 and CN3

from MT need not be measured for CASE1, CASE2 as it do not offer any additional

insight (However this assumes after the agent. If overall execution time is indeed

required, it can be arrived at by arithmetic addition of each MT-CN interactions in the

case study. The ‘‘per client to a server interaction’’ time is calculated from the moment

data is submitted (as SOAP message) from MT to CNs and receipt of the reply from CNs

and it is tabulated for each group size and test scenarios CASE1 and CASE2. In case of

CASE3 per node time is computed based on time taken to migrate from one server node

to another server node and time spent on a given compute node carrying out computation.

Thus all measurements made and reported here are indicative of underlying

computational issues and may not extrapolate to system level behavioral issues.

In CASE3 math tutor partner link node just initiate the mobility script by

submitting quiz answer data packets and wait for the arrival of finished computation

card (as a message in asynchronous mode) unlike client–server model where it

orchestrates each steps as in typical web-based online examinations. The observed

elapsed time durations are noted and reported in Table 1.

This experiment is useful to validate the ‘‘code mobility’’ aspects of ACIAF

application. However it can be seen that this test environment can be extended to

test ‘‘loose coupling’’ aspects of ACIAF application as well. This can be done by

providing clustered environment on CN1, CN2 and CN3 and by providing different

versions of addition, subtraction and multiplication services with same functionality

in each of these clusters so that the client orchestrator (middleware) can choose any

one of the service (using speech acts) at run time based on service meta data such as

QoS, Cost and performance.

There exist other software development environments that also can claim to provide

mechanism and framework to realize mobility based applications. Traditional agent

technology belongs to that category. This work chooses Java Agent Development

Environment (JADE) (Bellifemine et al. 2005) for qualitative comparison. JADE is a

popular traditional agent platform. Using JADE agents MT, CN1, CN2 and CN3

functionality are realized on a single machine and CASE3 situation is enacted on G

A novel programming framework for architecting next… 517

123

size of 100, 1000 and 10,000. The time duration is measured and tabulated in column

C5 of Table 1. While ACIAF modeling, development and testing environment used

services standard tools and technologies, JADE environment used a more traditional

third generation development, testing and monitoring environment. The overall

development experience with ACIAF was of full satisfaction as it used industry

standard SOA compliant tools for design, testing and monitoring.

6 Architectural and technological assessment of ACIAF

6.1 Criteria for choosing modeling paradigms and evaluation of their
software engineering properties

Efforts to arrive at consensus on orchestration languages is elaborate (Aalst 2003).

WS-BPEL is industrially popular business orchestration language and is compatible

with Business Process Modeling Notation (BPMN) (BPMN 2016). Typically any

suggestions to enhance these languages needed to be meticulously presented and

analyzed to ensure absolute necessity of the extension (Aalst 2003). Architectural

Table 2 Comparison of architectural properties of software modeling paradigms

Architectural

properties (C1)

Client–server Java/

C?? (C2)

Web services/

BPEL (C3)

Traditional agent

technology (C4)

Proposed fusion-

ACIAF (C5)

Autonomy -(very poor) - ??(very good) ??

Conceptual Depth - - ?? ??

Delegation - - ?? ??

Layering - ? ? ??

Maintainability - ? - ??

Modelability ? ? - ??

Modifiability - ? - ??

Performance -? ? ? ??

Portability - ?? - ??

Reliability - ? ? ??

Scalability - ? - ??

Security - ?? - ??

Simplicity - ? - ??

Specifiability ? ? - ??

Visibility - ? - ??

Workflow - -? ? ??

Modeling notation ? ?? - ??

Software engineering tools ? ?? - ??

Openness and fluidity ? ?? - ??

Interoperability ? ?? - ??

Easy accessibility ?? ?? - ??

Maturity ?? ?? - ?-

518 D. Venkatesan, S. Sridhar

123

properties (Sudeikat et al. 2004; Medvidovic and Taylor 2000) of the technologies

govern the nature of the end product realized, its quality and their fundamental

behavior. Table 2 lists some important architectural properties desired of modern

information system. They originate chiefly based on stakeholder’s experience and

felt need. Attributes like autonomy, conceptual depth and delegation originates from

the need expressed by agent technologists while others originate based on ISO/IEEE

standard on Systems and software Quality Requirements (ISO25010). The quality

attributes of a system depict the degree to which the system satisfies the stated and

implied needs of its various stakeholders. A technology possessing very strong

(??) architectural primitives for autonomy shall allow the application to adapt to

plan for reaching the goal at run time based on the perceived environment. This

aspect is known as planning in Artificial Intelligence (AI). Conceptual depth permit

architectural constructs to capture mental actions and capacities on system design

such as concurrency, speech acts, compartmentalization, migration and transfor-

mation of code and data. Delegation permit divide and conquer of a large task and

facilitate composition. Maintainability results from hierarchical composition of

participating components, encapsulation of related item together leading to lesser

coupling and improved cohesion. Modelability deals with pictorial specification of

user requirements using standardized stereotypes and step-wise refinement up to

implementation and deployment phase. More importantly usage of same entity/

property/role names permit easy stepwise refinement, back-and-forth refinements,

cross verification, validation and iterative enhancement across life cycle

deliverables.

Many criteria were chosen in Table 2 for architectural reasons (Medvidovic and

Taylor 2000) and while some others were chosen to be in conformance with latest

software quality standards (ISO25010 2011). The ISO/IEC quality attributes are

derived based on quality in use and static and dynamic software product quality

criteria. These defined characteristics of software systems form a consistent

terminology for specifying, measuring, and evaluating software product quality.

Some other criteria were chosen on the basis of authors vast experience in building

information systems, agent-based applications and in analyzing interoperability

approaches. They include the following:

• Software engineering: This criteria emphasis support for life cycle stages of the

application development such as analysis and modeling, design, implementation

and deployment, monitoring and testing using industrially popular CASE tools

and technologies.

• Notation: This criteria emphasis the availability of industry standard notations to

describe the models and deliverables that help the architects, designer and

developers in designing and understanding systems. Furthermore, applicability,

availability and use of a formal notation to allow a deeper study of the system,

with automatic tools (such as based on Petri net or automata), ability to discover

and define dependencies and collaboration requirements.

• Openness and fluidity: This criteria emphasis possibility to successfully use it in

environments and scenarios where only few dependencies and integration issues

A novel programming framework for architecting next… 519

123

are known at the design time. For example full adoption of XML technology

shall satisfy this requirement.

• Interoperability: This criteria emphasis the capability to exploit different

technology platforms and hardware/software environments.

• Easy accessibility: This criteria emphasis how convenient and easy for the users

(such as developers and end users) to purchase, deploy and use in real life.

Certain factors include professional support, bug fixes, continuous development

and integration of emerging new technologies defines ease of accessibility.

Popularity of programming language, regular maintenance and up gradation of

underlying technology, industry feedback also provides a measure easy

accessibility.

• Maturity: This criteria includes models, interaction, coordination, and docu-

mentation. The technology should be simple to set-up, program, deploy and test.

It should meet industry quality standards and should have well-known

theoretical models behind them. Online download availability, details on

installation procedure, multi-platform support and good documentation also

provide a measure of maturity.

To explain the above table, current agent technologies (such as Jason

AgentSpeak, 3APL, JADE/WADE, Jadex, Retsina) perform poorly in technological

aspects due to their arcane programming/design/implementation environment. They

do not have necessary software engineering properties that can be scaled up to

realize the proposals given in (Brazier et al. 2009; Okouya et al. 2013). To list few

aspects take the case of: Maintainability (hardwired to ports, configuration

parameters like DBMS, binary level machine specific messaging), Modelability

(no step-wise life-cycle wide refinement), Modifiability (cannot run seamlessly

multiple versions), Performance (cannot scale to several nodes on demand on load

factor), Portability (platform specific data/message formats), Scalability (on demand

addition of several computing node), Security (no standard compliant authentica-

tion, encryption, non-repudiation), Simplicity (low level programming constructs,

no XML messaging, Service Adaptor bus, Business rule enforcement at message

level, queue integration, no versioning), Specifiability (not possible to capture

enterprise business environment, draw a business workflow logic and refine down to

a working system), Visibility (what transpires at wire level between working

components cannot be logged and monitored in a generic fashion). This results in

ignoring vast majority of technological infrastructures developed that are widely

adopted by industry. However primitives of agent technology like design using

mental (speech) acts gives it richer conceptual representational/implementation

power of realized system, delegation and autonomous action based on situation

awareness that is built into the architectural framework itself obviating need for

programmers to plumb in ad-hoc solutions into their code.

Similar line of reasoning can be applied to web services technologies and their

pros and cons can be understood. One distinguishing aspect is its standard

compliance and platform neutrality retaining all other traits. Web service

technology separates component representation and implementation. Message

based invocation of their interfaces simplifies complexity of connector semantics

520 D. Venkatesan, S. Sridhar

123

(invocation) and permits scalability and deployability of components in server

environment. This kind of layering permits intermediaries—proxies, gateways,

firewalls, host replicators and address substitutions —to be introduced transparently

to improve performance via large-scale shared caching. From the above discussion

it is clear that proposed ACIAF provides desirable architectural modeling primitives

for novel data information system applications.

Evaluation of architectural properties of ACIAF (column C5 of Table 2) shows

software engineering characteristics of applications developed in ACIAF architec-

ture. It leads to major gain and improvement to software engineering of mobility

based internet applications in comparison with the existing state of the art AOSE

technologies (Sudeikat et al. 2004). Pluses stands for having the desired property on

the stated constraint by the software architecture under evaluation while minus

stands for the absence of the same. Considering mobile code as a web service makes

it scalable by leveraging Enterprise service bus technology (Schmidt et al. 2005) for

providing fault tolerance, transaction support, process migration, load balancing

(multiple instances to share load) and easy monitoring. It is also simple to query

agent capability (as they are exposed as port types/WSDL), interoperable and

platform neutral because it sits above web services stack that offer state of the art

interoperability, scalability and security solutions. However at times (for large

volume, highly message based application) performance WS technology may suffer

as it has to cross all these interoperability software layers to perform business logic

whereas native java technologies score/perform efficiently here.

Coding work flow logic of the agent using WS-BPEL makes the agent itself as a

web service leading to all the positives we just discussed above. Also WS-BPEL has

been widely accepted at the enterprise scale application environments and has

hugely installed base compared to other agent environments. This would facilitate

seamless integration of new ACIAF technology with the existing environment with

negligible additional expenses on software, hardware, reuse, maintenance, training

and deployment expenses. Writing an efficient new generation real world end-user

internet-applications using ACIAF such as social networking based opinion pools

(like who is the most famous pop musicians), Travel booking software applications

that accomplish complex multiple itinerary fixing, hotel/car reservation etc. based

on user constraints are possible. This new breed of ACIAF applications has

desirable properties that present day applications do not possess.

It should be noted that ACIAF as a programming language framework provides a

ready path to realize applications that support process migration to heterogeneous

platforms. It enables programmers to design network efficient compute node

proximate business data processing applications. However ACIAF capability is very

restricted in comparison to the capability of a full-fledged traditional agent

environment. Theoretically proposed and anticipated agent environments have

much richer features and functionality (Brazier et al. 2009; Okouya et al. 2013).

Thus ACIAF application is NOT presented here as a full-fledged agent application

but as a novel mobility enabled internet application. However what is argued here is

that ACIAF has all necessary ingredients for extensibility to a full-fledged multi-

agent platform at a later date. Thus based on the criteria and evaluation presented

here it is concluded ACIAF technology offers better solution.

A novel programming framework for architecting next… 521

123

6.2 An evaluation of basis of ACIAF programing language paradigm

A skeptical reader or a super specialist may object to the choice of programming

paradigm adopted in realization of AICAF framework in the first place. For example

Jade and Jadex developers and users might contest that Java (OOAD approach)

based development and programming environment is the best suited for agent

metaphor, while JaCaMo developers may argue why their declarative agent

environment is most suited. Hence an evaluation and comparison of programming

language technologies for adoption to realize the framework and platform is taken

up and an assessment is given in Table 3. It may be noted that today modular, object

oriented, aspect oriented, concurrent and distributed, service oriented and agent

oriented programming approaches are popular.

From the above comparison, it is clear that benefits offered by agent oriented

programming environment in enormous. So to realize robust information systems it

is essential to leverage its principles in structuring and design of information

systems. Hence we embrace principles of agent oriented programming in

combination with service technology to realize ACIAF technology.

6.3 Technical comparison of ACIAF applications with other mobility aware
agent environments

This part undertake to compare on the hypothetical case of traditional agent

platforms trying to provide loosely coupled, mobility based application technology

for business data processing in competition with ACIAF applications. In such case

they will be directly competing with ACIAF capabilities. In such case to bring out

the best qualities of these environments, a comparison needed to be made. For this

comparison some traditional agent platforms needed to be taken up. Purely research

and exploratory platforms that treats agents as a discipline of Artificial Intelligence

were not considered in this comparison. Given this criteria, this work select three

platforms: Jade, Retsina, Able. Jadex though very popular like Jade is an add on

layer over Jade and hence share all its core properties and hence not chosen for

comparison. The list of agent capabilities on the first column is selected based on

our own industrial experience of developing business information systems. In our

opinion these criteria should be fulfilled in the most technologically savvy manner

to make the environment usable in business deployment. The Table 4 depicts how

different agent environments address and fulfill these criteria. It depicts how

applications developed using ACIAF has several desirable traits that are very hard

to put into other agent environments. Thus it demonstrates ACIAF as a new

progression/generation in the software development paradigm that cannot be

substituted/taken over by other agent environments even after additions to their

capabilities. Since Jadex is simply an add-on layer over JADE platform it inherits all

its strength and weaknesses. Jadex adds a Belief-Desire-Intension rational agency

layer over JADE platform. Hence it is not separately shown in the comparison as

most of the observations made on JADE platform shall be applicable to it as well.

522 D. Venkatesan, S. Sridhar

123

T
a

b
le

3
A

co
m

p
ar

is
o

n
o

f
at

tr
ib

u
te

s
o

f
m

o
d

er
n

p
ro

g
ra

m
m

in
g

la
n

g
u

ag
e

te
ch

n
o

lo
g

ie
s

D
im

en
si

o
n

ad
d

re
ss

ed

M
o

d
u

la
r

p
ro

g
ra

m
m

in
g

O
b

je
ct

o
ri

en
te

d

p
ro

g
ra

m
m

in
g

A
sp

ec
t

o
ri

en
te

d

P
ro

g
ra

m
m

in
g

C
o
n

cu
rr

en
t

an
d

d
is

tr
ib

u
te

d

P
ro

g
ra

m
m

in
g

S
er

v
ic

e
o

ri
en

te
d

p
ro

g
ra

m
m

in
g

A
g

en
t

o
ri

en
te

d
p

ro
g

ra
m

m
in

g
(e

x
is

ti
n

g
an

d

p
ro

p
o
se

d
)

S
tr

u
ct

u
ra

l
u

n
it

F
u

n
ct

io
n

s
C

la
ss

es
A

sp
ec

ts
(c

ro
ss

cu
tt

in
g

ac
ro

ss
cl

as
s

h
ie

ra
rc

h
y

)

T
h

re
ad

s,
p

ro
ce

ss
es

S
er

v
ic

es
A

g
en

ts

S
tr

u
ct

u
ra

l
co

n
st

ru
ct

s
u

se
d

in
w

ea
v
in

g
an

d
m

et
ri

cs

C
o
u

p
li

n
g

an
d

co
h

es
io

n
A

b
st

ra
ct

cl
as

se
s,

en
ca

p
su

la
ti

o
n

in
h
er

it
an

ce
,

p
o

ly
m

o
rp

h
ic

fu
n

ct
io

n
s

Jo
in

p
o

in
t,

p
o

in
tc

u
t,

as
p

ec
t

an
d

m
ix

in

M
u

te
x

,
se

m
ap

h
o

re
,

sh
ar

ed
m

em
o

ry
,

m
es

sa
g

e
q

u
eu

es

Q
u

eu
ed

m
es

sa
g

es
,

se
rv

ic
e

fl
o

w
,

su
b

st
it

u
ti

o
n

C
o

g
n

it
iv

e
m

es
sa

g
es

,
in

it
ia

ti
v

es
,

g
ro

u
p

b
el

ie
f

sh
ar

in
g

C
o
m

m
u

n
ic

at
io

n
u

n
it

F
u

n
ct

io
n

ar
g

u
m

en
ts

M
es

sa
g
es

an
d

ev
en

ts
In

je
ct

io
n

E
v
en

ts
an

d
m

es
sa

g
es

M
es

sa
g
es

,
fl

o
w

s
S

p
ee

ch
ac

ts

C
o
m

p
o

si
ti

o
n

m
et

h
o

d
C

o
u

p
li

n
g
,

co
h

es
io

n
A

ss
o

ci
at

io
n

an
d

in
h
er

it
an

ce
In

te
rc

ep
ti

o
n

E
m

b
ed

d
ed

in
to

p
ro

g
ra

m
d

es
ig

n
st

y
le

O
rc

h
es

tr
at

io
n

an
d

ch
o

re
o

g
ra

p
h

y
N

o
ex

p
li

ci
t

p
ro

g
ra

m
m

at
ic

co
m

p
o

si
ti

o
n

n
ee

d
ed

,
co

al
it

io
n

s
em

er
g

e
b

as
ed

o
n

co
m

m
it

m
en

ts
,

sp
ee

ch
ac

ts
an

d
n

o
rm

at
iv

e
b

eh
av

io
r

In
te

g
ra

ti
o
n

m
et

h
o
d

C
o
m

p
il

e
ti

m
e

o
r

ru
n

ti
m

e–
b

in
ar

y
le

v
el

C
o

m
p
il

e
ti

m
e

o
r

ru
n

ti
m

e–
b

in
ar

y
le

v
el

C
o
m

p
il

e
ti

m
e

o
r

ru
n

ti
m

e
in

je
ct

io
n

–
b

in
ar

y
le

v
el

M
es

sa
g
es

o
r

sh
ar

ed
m

em
o

ry
E

n
te

rp
ri

se
se

rv
ic

e
b

u
s

b
as

ed
–

m
es

sa
g

e
b

as
ed

C
o
g
n
it

iv
e

m
es

sa
g
e

b
as

ed
–
ze

ro
d

ep
en

d
en

cy

V
ie

w
p

o
in

ts
ad

d
re

ss
ed

P
ro

g
ra

m
m

er
A

ct
o

rs
,

p
ro

g
ra

m
m

er
s,

so
ft

w
ar

e
ar

ch
it

ec
t

P
ro

g
ra

m
m

er
an

d
so

ft
w

ar
e

d
es

ig
n

er

A
rc

h
it

ec
t,

d
es

ig
n

er
,

p
ro

g
ra

m
m

er
,

d
ev

el
o

p
er

A
ct

o
r,

co
n

su
m

er
,

p
ro

v
id

er
,

b
ro

k
er

,
in

te
g

ra
to

r,
d

ep
lo

y
er

E
n

ti
re

so
ci

et
y

–
ev

er
y

p
ar

ti
ci

p
an

t
v

ie
w

p
o

in
ts

ar
e

ad
d

re
ss

ed

D
el

iv
er

y
/p

ac
k
ag

in
g

u
n

it
A

s
li

b
ra

ry
A

s
co

m
p

o
n

en
ts

A
s

cr
o

ss
cu

tt
in

g
la

y
er

fu
n

ct
io

n
al

it
y

re
al

iz
ed

as
cl

as
se

s

R
e-

en
tr

an
t

co
d

e
b

lo
ck

o
r

cl
as

s
A

s
se

rv
ic

es
A

s
ag

en
ts

A novel programming framework for architecting next… 523

123

T
a

b
le

3
co

n
ti

n
u

ed

D
im

en
si

o
n

ad
d

re
ss

ed

M
o

d
u

la
r

p
ro

g
ra

m
m

in
g

O
b

je
ct

o
ri

en
te

d

p
ro

g
ra

m
m

in
g

A
sp

ec
t

o
ri

en
te

d

P
ro

g
ra

m
m

in
g

C
o

n
cu

rr
en

t
an

d

d
is

tr
ib

u
te

d

P
ro

g
ra

m
m

in
g

S
er

v
ic

e
o

ri
en

te
d

p
ro

g
ra

m
m

in
g

A
g

en
t

o
ri

en
te

d
p

ro
g

ra
m

m
in

g
(e

x
is

ti
n

g
an

d

p
ro

p
o
se

d
)

S
o

lu
ti

o
n

u
n

it
s

A
s

L
ib

ra
ry

o
r

ap
p
li

ca
ti

o
n
s

A
s

re
u

sa
b

le
p

at
te

rn
s

A
s

fe
at

u
re

s
(c

la
ss

li
b

ra
ry

)
T

h
re

ad
li

b
ra

ry
A

s
re

u
sa

b
le

se
rv

ic
e

ch
o

re
o

g
ra

p
h
ie

s

A
s

ag
en

t
so

ci
et

ie
s

524 D. Venkatesan, S. Sridhar

123

Table 4 A comparison of ACIAF with some traditional agent environments

Agent capability Agent environment

ACIAF JADE/WADE/

Wolf

RETSINA ABLE

Agent coding

language

WS-BPEL ? its

extensions

Java Java/C/C ?? Java

Communication/

message

transport

SOAP based ? ESB

support ? speech

acts

ACL KQML Bean events,

Proprietary

messages

Workflow

infrastructure

WS-BPEL Custom coding Custom coding Custom coding

Multi-agent

capability

SOAP & WS-BPEL

& speech act

Through ACL Speech act based

environment

Nil

Monitoring Normal WS

monitoring tool

Proprietary tool

required

Proprietary tool

required

Proprietary tool

required

Agent debugging WS-*/WS-BPEL

debugger

Native Java IDE

debugging

Native IDE

debugging

Native Java

debugging

Tracing/logging HTTP/SOAP/TCP

logger

Proprietary tool Proprietary tool Proprietary tool

Directory/content

language

W3C standard OWL-

S

Proprietary Proprietary Proprietary

Agent

deployment

environment

WS-BPEL extended

engine

Java ? agent

infrastructure

Proprietary

Java ? agent

infrastructure

Proprietary

Java ? agent

infrastructure

Proprietary

Services standard

compliance

Full. Leverage new

development in

Services technology

Proprietary. Hard

to leverage new

developments

Proprietary env.,

hard to leverage

new

developments

Proprietary env.,

hard to leverage

new things

Security support In Built (WS-

Security,WS-

Encryption)

Proprietary Proprietary Proprietary

Versioning

support

Full/Built-in Proprietary Proprietary Proprietary

Formal

concurrency

model of

application

business logic/

business

interaction

Elegant petri-net,

automata models

exist; formal proof

possible

None. There can

be no direct

translators

possible

None. There can

be no direct

translators

possible

None. There can

be no direct

translators

possible

Formal behavior

verification

Since based entirely

based on XML

technology fully

formally

specifiable/

verifiable and adds

to infrastructure

Very hard. May

be done at code

level explicitly

by programmer

added

assertions

Very hard. May

be done at code

level explicitly

by programmer

added

assertions

Very hard. May

be done at code

level explicitly

by programmer

added

assertions

Autonomy/

decoupling

None in ACIAF;

good in ACIAF-

with ESB

integration

Good Good Poor

A novel programming framework for architecting next… 525

123

7 Formal analysability of ACIAF application mobility behaviour

Advantages of using formal models of a business processes is to reduce room for

vagueness (and interpretation) and thereby limiting their erroneous behavior/usage.

Variants of Petri nets (Open workflow nets), have proper formal semantics and,

hence, one can check relevant and interesting properties on corresponding business

models through model checking (Fahland et al. 2011; Müller 2010). Open workflow

nets can capture control-flow details, of advanced constructs such as cancelation

regions and OR-joins of WS-BPEL and offers faithful complete translation of logic

of WS-BPEL/mobBPEL agent code and also data flow dependency (Müller 2010;

Awad et al. 2009; Lohmann et al. 2010). We refer to the literature on the

transformation and formal analysis of WS-BPEL code for desirable properties and

for their having deadlock free property based on patterns (Lohmann 2007, 2008;

Fahland et al. 2011). There are tools for formal soundness checking of WS-BPEL

and we refer to them without elaboration. For example Rachel tool (Lohmann et al.

2008) detects, repairs deadlocking WS-BPEL service choreographies. BPE-

L2oWFN tool (Lohmann 2007; Müller 2010) translates WS-BPEL processes into

a Petri net model. It implements a feature-complete Petri net semantics of WS-

BPEL 2.0 that in turn can be verified for control flow properties. Here we limit our

task to show the extensions provided to WS-BPEL to provide it to have agent-like-

behavior does not violate its formal semantics and still offers a formal means of

soundness/liveness/safety property verification of the underlying business process

code. This leads us to have formal faith in our suggested extension to WS-BPEL as

it has mechanism for formal analysis/interpretation/translation and testing. This

provides us an algorithm for informing mobBPEL designer/programmer if their

Table 4 continued

Agent capability Agent environment

ACIAF JADE/WADE/

Wolf

RETSINA ABLE

Declarative

composition

No No No No

Inferential

capability

Yes through OWL-S

annotation of in

ACIAF agents

Jadex has Yes Yes

Temporal

continuity

Very good; standards

based

Proprietary Proprietary Proprietary

Capability

advertisement

Very good (through

WS-inspection)

Proprietary Proprietary Proprietary

Future ready?

(semantic web)

Very good (through

OWL-S)

Not ready Not ready Not ready

Business rule

integration as

part of

middleware and

application CIM

Yes No No No

526 D. Venkatesan, S. Sridhar

123

intended mobility construct is well formed within the context of BPEL application

syntax (but not from that of business logic semantics). Otherwise designer can be

informed through error messages at the design time itself if their models are

erroneous (such as premature migration to partner link before completing all

pending activities at the node).

As there is a set working software tools for WS-BPEL flow verification using

Petri-nets, this work propose to adopt them and extend to verify proper timely

migration of ACIAF agents without any control/data flow anomalies. This

verification to be incorporated at the static time verification itself (in ODE BPEL

compiler at design time) and dynamically in partner links before reloading of the

ACIAF agent (to check if it indeed received an agent that does not show erroneous

mobility property). The formal details of this approach needs to presented separately

in another work.

7.1 Formal Verifiability of ACIAF application mobility behavior (verifiable
mobility theorms)

To simplify the model and analysis, a restricted set of ACIAF programs that use

only WS-BPEL synchronous calls without compensation and transaction is taken up

here for discussion. Graceful termination and reloading of ACIAF scripts needs to

be mathematically modeled and proved. Tools developed for Petri-net API

(Lohmann 2010) aid in this verification.

We state the basic ACIAF program mobility (or migration) theorem for load and

reload cases without proof or elaboration here. The mathematical proof of them

shall be presented elsewhere.

Theorem 1 (Sync-Migrate) Given a synchronous call only ACIAF mobBPEL

script, it is always possible to mathematically determine from script model itself

about the graceful mobility of the script without any data flow/control flow

anomalies.

Theorem 2 (Reload-Sync-Migrate) Given a migrated ACIAF mobBPEL script, it

is always possible to determine mathematically based on script model alone about

the absence of data flow/control flow anomalies in it and if it is fit for reload and re-

activation.

These theorems can be extended to agent cases with asynchronous calls,

transaction and compensation and other complex flow patterns, but is far more

complex and need an elaborate mathematical thesis based on Petri-net models and

automata theory.

7.2 Fundamental theorem on behavioural analyzability of cooperative
computing environment

This theorem is about formal behavioral analyzability of individual applications in a

group of ACIAF applications. ACIAF programs deals with data types that have

rigorous XML syntax such as XSD. Elements/Attributes/Properties of XSD types

A novel programming framework for architecting next… 527

123

constitute basic ontology of the application. These XSD types can be related to each

other using RDF triples. As each WS can be sematically annotated using OWL-S

technology, so do all BPEL scripts and AICAF scripts. Any logical composition of

these annotations of a group of such operations that may span across several

programs in a particular order (such as union, intersection, negation and projection)

can be reasoned using ontology reasoning/inference engines such as Pellet/Fact??

(Koutsomitropoulos et al. 2008).

It is already argued that real life enterprise software applications are composed of

collaborating externally provided services. Let an ACIAF program (simply called as

‘‘program’’ hence forth) community called as C1 is composed of independent

programs/applications/agents named A1, A2, A3… up to…An. Let each of the

programs/applications provide a unique non-overlapping business functionality.

This set of programs collaborate together to provide a business functionality.

Example of such cooperative computation includes travel itinerary framing that

involves air ticket, hotel and car bookings each of which carried out separate

applications but depend on each other’s results. The set of these programs all belong

to the same community in the sense that all well-formed sentences of those

programs that describe capabilities of individual programs belong to the same first

order logic (or OWL-DL) based language L (i.e. all the programs shares same

alphabets and interpretation; they all are defined by the same model). Let these A1,
A2, A3… up to… An are provisioned as independent web services each having

different URIs.

Assume all these programs carryout non-overlapping responsibilities (i.e.

programs are non-superfluous)—that is they are orthogonal. In other words each

program carry out unique work not possible by other programs. An enterprise

application must divide a work among its collaborating partner links from say A1 to

Ar programs as it is not possible to carry out all work by itself alone.

Assume each program carryout m number of responsibilities (called conversa-

tion) r1, r2,… up to rm. Each responsibility r1 or r2… or rm is further divided into

say i number of speech acts (i.e. loosely coupled composition operation in

orchestration) sa1, sa2… sai. The action performed by each speech acts can be

stated with mathematical rigor. Vieira et al. (2007) has showed formal semantics

enjoyed by several speech acts in a typical multi-agent programming environment

(in ACIAF case it uses only ‘‘ask’’ and ‘‘tell’’). It may be noted that each

responsibility of a program (i.e. web service) corresponds to an operation. Martin

et al. (2004a, b) discusses about encoding each operation (referred to as Atomic

process) of a web service in terms of logical equations using inputs, outputs,

preconditions, and effects (IOPEs). To achieve this goal experience states that a

combination of OWL-S, OWL-DL and sematic web rule language technology is

required. So it can be assumed that each operation of the port types is available as a

logical equation amenable for inference.

Thus a program can be specified symbolically as A1 {r1 {(sa1, sa2,…,

sai)},…to… rm {(sa1, sa2,…, sai)}} up to An {…} where A1, A2,… up to An
constitute individual autonomous non-superfluous ACIAF applications or agents.

Assume that each capability carried out by each operations in a web service port

type and its functionality can be coded by n number of first order logic/OWL-DL

528 D. Venkatesan, S. Sridhar

123

statements in the language L in the form pre1 ^ stmnt1 ^ stmnt2… ^ stmnt-x -
> post1 (in the case of operation 1 of web service A1).

Thus all the speech acts can be translated to first order logic/OWL-DL statements

and each program’s responsibilities also can be translated into a first order logic/

OWL-DL statement in L. The following theorem can be stated and proved about the

behavioural property of this community C1.

Theorem Assume that this community C1 reports a statement Sx then as per

theory of first order logic (and hence that of OWL-DL ? SWRL) and Craig’s

interpolation theorem for first order logic (and its extensions to Modal logics by

Johan Hans Van Bentham), it is possible to trace which programs were responsible

for collaboration and in which order they collaborated and arrived at Sx.

The above theorem follows from the work of Keisler and Keisler (2014). This

property has paramount importance in cooperative computation for security reasons

(in cases like electronic commerce). This capability permits reconstruction of

reasoning chain of collaborating partner services. The semantic web services

technology (ontology based OWL-DL markup of WS capabilities) and WS-BPEL

(and ACIAF) that enjoys necessary formal properties for composition and

distributed processing makes this kind of formal attributability and verifiability of

action possible. Other agent programming languages (or distributed computing

platforms in general) such as Jade/Jadex, JaCaMo/Jason AgentSpeak, 3APL and

will not be able to meet this requirement and demonstrate this capability in such an

elegant and infrastructure leveraging manner. Another interesting property of this

capability is each such cooperative group of application in turn contribute to

evolution of the infrastructure itself instead of being simple beneficiary. The formal

details of this theorem in ACIAF environment needs to presented separately in

another work.

8 Conclusion and future work

ACIAF framework demonstrates its ability to provide a better architectural basis to

construct loosely coupled mobility based internet applications that is standard

based, efficient, extensible, modular, easily composed, offer better user experience,

increase service efficiency, reduce service complexity and network traffic and result

in simpler/elegant software model. The dynamic WS-BPEL process composition

(based on ontology markups meta data) with migration capability is certainly

possible and issues relating to it needs a separate study by using literature in

dynamic semantic web service selection and composition. The loose coupling

technique incorporated in ACIAF will have a significant impact in internet of

things-IOT-domain where an ACIAF server can loosely partner with an unlimited

number of clients (though manipulating destination addressees to point to many

class of network addresses in destination filed of WS-A messages) and carryout

monitoring and control of them. This capability needs to be demonstrated

separately. The agent script can be translated into a Petri-net model and verified

statically to determine its safety/liveness property. Cases where asynchronous

A novel programming framework for architecting next… 529

123

partner link execution is carried out, long running transactions, compensation are

not addressed in this work. Effect of those properties on migration needed to be

studied separately. This model of computation has challenges to address due to trust

and security factors. Many organizations see it as a potential risk to permit third

party code to run on their computing nodes without necessary testing due to the fear

of unknown; however by using a suitable trust and security certificate regime trusted

partner code can be permitted to execute in their compute nodes. Incorporating this

security dimension into framework remains to be studied in future. This

environment is well suited for implementing Big Data processing workflow. A

suitable case study and its demonstration needs to be undertaken in near future. This

work demonstrated only incorporation of mobility tag to WS-BPEL scripts and

work is underway to incorporate loose coupling in Apache ODE engine.

Subsequently it needed to be applied to a real life situation through a case study

and to be recorded as a separate work. This work suggested loose coupling using

some limited kind of open interaction infrastructure similar to the one suggested by

Okouya et al. This aspect needs to be studied in detail in future works. Since WS-

BPEL applications are fully XML compliant, a semantic processing layer (using

OWL-S) can be added over it and it remains to be shown what kind of semantic

business use cases can be developed using ACIAF framework. The integration of

semantic web services capability in content language of ACL embedded within WS-

A messages, and using it for orchestration is a possibility that helps ACIAF

middleware to act as a logical reasoning based open interaction infrastructure to

determine service partner links at run time. This is a great possibility but the

technology is now ripe to practically realize it and ACIAF has the technical means

to show case it practically. This needed to be demonstrated in a separate work in

future.

References

Aalst WMP (2003) Don’t go with the flow: Web services composition standards exposed. IEEE Intell

Syst 18(1):72–76

Aalst WMP (2005) Pi calculus versus Petri nets: let us eat humble pie rather than further inflate the Pi

Hype. BPTrends 3(5):1–11

Aalst WMP, van Hee K (2004) Workflow management: models, methods, and systems. MIT Press,

Cambridge. ISBN 978-0262720465

Aberg C, Lambrix P, Shahmehri N (2005) An agent-based framework for integrating workflows and web

services. WETICE’05 IEEE. doi:10.1109/WETICE.2005.17

Anderson R (2000) The end of DLL Hell. MSDN Magazine, San Francisco

Aversa R, Di Martino B, Venticinque S (2009) Integration of mobile agents technology and globus grid.

IEEE Int Conf Comput Sci Eng. doi:10.1109/CSE.2009.121

Awad A, Decker G, Lohmann N (2009) Diagnosing and repairing data anomalies in process models. In:

Rinderle-Ma S, Sadiq S (eds) BPM 2009 international workshops. Springer, Ulm

Banzi M, Caire G, Gotta D (2008) WADE: a software platform to develop mission critical applications

exploiting agents and workflows. AAMAS 2008 Industry Track

Barbacci M, Longstaff TH, Klein MH, Weinstock CB (1995) Quality attributes. Technical report, CMU/

SEI-95-TR-021, ESC-TR-95-021

530 D. Venkatesan, S. Sridhar

123

http://dx.doi.org/10.1109/WETICE.2005.17
http://dx.doi.org/10.1109/CSE.2009.121

Bass L, Clements P, Kazman R (2003) Software architecture in practice, 2nd edn. Pearson education,

Upper Saddle River. ISBN 81-77589962

Bellifemine F et al (2005) Jade: a java agent development framework, multi-agent programming.

Springer, Vol 15, II, pp 125–147. doi:10.1007/0-387-26350-0_5

Bigus JP et al (2002) ABLE: a toolkit for building multiagent autonomic systems. IBM Systems Journal

41(3):350–371. doi:10.1147/sj.413.0350

Boissiera O, Bordini RH, Hübnerc JF, Riccid A, Santid A (2013) Multi-agent oriented programming with

JaCaMo. Sci Comput Program 78(6):747–761. doi:10.1016/j.scico.2011.10.004

Bordini RH, Hübner JF, Wooldridge M (2007) Programming multi-agent systems in agentspeak using

Jason. Wiley-Blackwell, Hoboken. ISBN 0470029005

Bordini RH et al (2009) Multi-agent programming: languages, tools and applications. Springer, New

York. ISBN 0387892982

Bpel (2016) Open source BPEL engine. http://ode.apache.org/

BPMN (2016) Business process modeling notation v 2.0. http://www.omg.org/spec/BPMN/2.0/PDF/ (also

at: http://www.bpmn.org)

Bradshaw JM (ed) (1997) Software agents. AAAI Press, Cambridge, pp 1–46. ISBN 978-0262522342

Brazier FMT, Kephart JO, Parunak HVD, Huhns MN (2009) Agents and service-oriented computing for

autonomic computing: a research agenda. Internet Comput IEEE 13(3):82–87. doi:10.1109/MIC.

2009.5

Breugel F, Koshkina M (2006) Models and verification of BPEL. http://www.cse.yorku.ca/*franck/

research/drafts/tutorial.pdf

Brown WA, Laird R, Gee C, Mitra T (2008) SOA governance. IBM Press, Indianapolis. ISBN

0137147465

Bughin J, Chui M (2010) The rise of the networked enterprise: Web 2.0 finds its payday. McKinsey

Quarterly, Seattle

Chi J, Song J (2007) Intelligent-agent and web-service based service composition for E-business.

CCECE. doi:10.1109/CCECE.2007.215

Chunlin L, Zhengding L, Layuan L (2003) Design and implementation of a hybrid agent platform.

Programm Comput Softw 29(1):28–42. doi:10.1023/A:1021915913509

Constantinides E, Fountain SJ (2008) Web 2.0: conceptual foundations and marketing issues. J Direct

Data Digit Mark Pract 9:231–244. doi:10.1057/palgrave.dddmp.4350098

Cooney D, Roe P (2003) Mobile agents make for flexible web services. http://ausweb.scu.edu.au/aw03/

papers/cooney/paper.html

Covington MA (1997) Speech acts in electronic communication with special reference to KQML and

ANSI X12. In: 13th conference on system sciences. ISBN 0-8186-7862-3/97

Dastani M et al (2010) Specification and verification of multi-agent systems. Springer, New York. ISBN

978-1-4419-6984-2

Ebrahim N, Iyer SR, Punathil G, Reghunath R (2015) Identification of critical web services and their

dynamic optimal relocation. Patent numbers: US 8990388 B2, US20120124193, US20130013774,

USA Patent, 2015

Erl T (2005) Service-oriented Architecture. Prentice Hall PTR, Upper Saddle River. ISBN 0-13-185858-0

Fahland D, Favre C, Koehler J, Lohmann N, Völzer H, Wolf K (2011) Analysis on demand: instantaneous

soundness checking of industrial business process models. Data Knowl Eng 70(5):448–466

FIPA (2016) Foundation for intelligent physical agents. http://www.fipa.org/

FIPA-ACL (1998) FIPA specification-agent communication langugae: Part 2. FIPA, 1998. www.fipa.org/

repository/aclspecs.html

Gable GG, Sedera D, Chan T (2008) Re-conceptualizing information system success: the IS-Impact

Measurement Model. J Assoc Inf Syst 9(7):377–408

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns. Addison-Wesley, Boston. ISBN

0201633612

Garcı́a R (ed.) (2008) Semantic web for business: cases and applications. Information Science Reference,

2008. ISBN 978-1-60566-067-7

GeneOntology (2001) The gene ontology consortium, creating the gene ontology resource: design and

implementation. Genome Res 11:1425–1433. doi:10.1101/gr.180801

Grunbacher P, Egyed A, Medvidovic N (2003) Reconciling software requirements and architectures with

intermediate models. Softw Syst Model. doi:10.1007/s10270-003-0038-6

Gu Q, Lago P (2009) Exploring service-oriented system engineering challenges: a systematic literature

review. SOCA 3:171–188. doi:10.1007/s11761-009-0046-7

A novel programming framework for architecting next… 531

123

http://dx.doi.org/10.1007/0-387-26350-0_5
http://dx.doi.org/10.1147/sj.413.0350
http://dx.doi.org/10.1016/j.scico.2011.10.004
http://ode.apache.org/
http://www.omg.org/spec/BPMN/2.0/PDF/
http://www.bpmn.org
http://dx.doi.org/10.1109/MIC.2009.5
http://dx.doi.org/10.1109/MIC.2009.5
http://www.cse.yorku.ca/%7efranck/research/drafts/tutorial.pdf
http://www.cse.yorku.ca/%7efranck/research/drafts/tutorial.pdf
http://dx.doi.org/10.1109/CCECE.2007.215
http://dx.doi.org/10.1023/A:1021915913509
http://dx.doi.org/10.1057/palgrave.dddmp.4350098
http://ausweb.scu.edu.au/aw03/papers/cooney/paper.html
http://ausweb.scu.edu.au/aw03/papers/cooney/paper.html
http://www.fipa.org/
http://www.fipa.org/repository/aclspecs.html
http://www.fipa.org/repository/aclspecs.html
http://dx.doi.org/10.1101/gr.180801
http://dx.doi.org/10.1007/s10270-003-0038-6
http://dx.doi.org/10.1007/s11761-009-0046-7

Guan S-U, Guan S-U, Tan SL, Hua F (2004) A modularized electronic payment system for agent-based

E-commerce. J Res Pract Inf Technol 36(2):67–87

Havey M (2005) Essential business process modeling. O’Reilly, Cambridge. ISBN 0596008430

Hollingsworth D (1995) The workflow reference model (Workflow Management Coalition (WfMC)),

Document Number TC00-1003, Issue 1.1, 1995. http://www.wfmc.org/standards/docs/tc003v11.pdf

Huebscher MC, McCann JA (2008) A survey of autonomic computing. ACM Comput Surv 40(3):7

Huhns MN (2002) Agent as web services. IEEE Internet Comput 6(4):93–95. doi:10.1109/MIC.2002.

1020332

Huhns MN, Singh MP (1998) Workflow agents. Internet Comput IEEE 2(4):94–96. doi:10.1109/4236.

707813

Huhns MN, Singh MP (2005a) Service-oriented computing: key concepts and principles. Internet Comput

IEEE 9(1):75–81. doi:10.1109/MIC.2005.21

Huhns MN, Singh Munindar P (2005b) Research directions for service-oriented multiagent systems.

Internet Comput IEEE 9(6):65–70. doi:10.1109/MIC.2005.132

ISO25010 (2011) ISO/IEC 25010:2011 standard: Systems and software engineering—systems and

software quality requirements and evaluation (SQuaRE)—System and software quality models,

2011

JadexTool (2016) Jadex agent programming environment. http://www.activecomponents.org/

Juric MB, Sasa A, Rozman I (2009) WS-BPEL extensions for versioning. Inf Softw Technol

51(8):1261–1274. doi:10.1016/j.infsof.2009.03.003

Kamel Boulos MN, Wheeler S (2007) The emerging Web 20 social software: an enabling suite of

sociable technologies in health and health care education. Health Information & Libraries Journal

24(1):2–23. doi:10.1111/j.1471-1842.2007.00701.x

Kamngar F, Levine D, Zaruba GV, Thomas R (2005) Mobile agent connection establishment and

management (CEMA)—message EXCHANGE for pervasive computing environments. J Super-

comput 31:79–99. doi:10.1023/B:SUPE.0000049326.25067.80

Katasonov A, Terziyan V (2008) Semantic agent programming language (S-APL): a middleware platform

for the semantic web. 2008 IEEE Int Conf Seman Comput. doi:10.1109/ICSC.2008.82

Kazman R, Bass L (1994) Toward deriving software architectures from quality attributes. Technical

Report CMU/SEI-94-TR-10

Keisler HJ, Keisler JM (2014) Observing, reporting and deciding in networks of sentences. Ann Pure

Appl Logic 165(3):812–836. doi:10.1016/j.apal.2013.10.008

Kotis K, Vouros GA (2006) Human-centered ontology engineering: the HCOME methodology. Knowl

Inf Syst 10(1):109–131. doi:10.1007/s10115-005-0227-4

Koutsomitropoulos DA, Meidanis DP, Kandili AN, Papatheodorou TS (2008) Establishing the semantic

web reasoning infrastructure on description logic inference engines. In: Manolopoulos Y et al. (Eds.)

ICEIS 2006. LNBIP 3. Springer, pp 351–362

Lettmann T et al (2011) Modeling agents and agent systems. Trans Comput Collect Intell 5:157–181

Lloyd JW, Ng KS (2011) Declarative programming for agent applications. Auton Agent Multi Agent Syst

23:224–272. doi:10.1007/s10458-010-9138-1

Logan B (2015) A future for agent programming. In: Baldoni M et al. (ed.) Engineering multi-agent

systems. LNAI 9318, Springer. doi:10.1007/978-3-319-26184-3_1

Lohmann N (2007) A feature-complete Petri net semantics for WS-BPEL 2.0. In: Heckel MDR (eds) Web

services and formal methods, WS-FM. Proceedings, LNCS. Springer

Lohmann N (2008) Correcting deadlocking service choreographies using a simulation-based graph edit

distance. In: Dumas M et al (Eds) Business Process Management, BPM 2008, Milan, Sep 1–4, 2008,

vol. 5240 of LNCS, pp. 132–147, Springer

Lohmann N, Massuthe P, Stahl C, Weinberg D (2008) Analyzing interacting WS-BPEL processes using

flexible model geneneration. Data Knowl Eng 64(1):38–54

Lohmann N, Verbeek HMW, Ouyang C, Stahl C (2009a) Comparing and Evaluating Petri Net Semantics

for BPEL. Int J Business Process Integration and Management 4(1):60–73

Lohmann N, Verbeek HMW, Dijkman R (2009b) Petri net transformations for business processes—a

survey. Transactions on Petri Nets and Other Models of Concurrency II, Springer 2009:46–63

Lohmann N, Mennicke S, Sura C (2010) The Petri Net API: A collection of Petri net-related functions. In:

Schwarick M, Heiner M (eds) Proceedings of the 17th German Workshop on Algorithms and Tools

for Petri Nets (AWPN 2010), Cottbus, Germany, October 7–8, 2010, volume 643 of CEUR

Workshop, pp 148–155

532 D. Venkatesan, S. Sridhar

123

http://www.wfmc.org/standards/docs/tc003v11.pdf
http://dx.doi.org/10.1109/MIC.2002.1020332
http://dx.doi.org/10.1109/MIC.2002.1020332
http://dx.doi.org/10.1109/4236.707813
http://dx.doi.org/10.1109/4236.707813
http://dx.doi.org/10.1109/MIC.2005.21
http://dx.doi.org/10.1109/MIC.2005.132
http://www.activecomponents.org/
http://dx.doi.org/10.1016/j.infsof.2009.03.003
http://dx.doi.org/10.1111/j.1471-1842.2007.00701.x
http://dx.doi.org/10.1023/B:SUPE.0000049326.25067.80
http://dx.doi.org/10.1109/ICSC.2008.82
http://dx.doi.org/10.1016/j.apal.2013.10.008
http://dx.doi.org/10.1007/s10115-005-0227-4
http://dx.doi.org/10.1007/s10458-010-9138-1
http://dx.doi.org/10.1007/978-3-319-26184-3_1

Luck M, McBurney P, Shehory O, Willmott S (2005) Agent technology: computing as interaction (A

Roadmap for Agent Based Computing), AgentLink, 2005. ISBN 085432 845 9. http://www.

agentlink.org/roadmap/index.html

Maleshkova M, Pedrinaci C, Domingue J (2010) Semantic annotation of Web APIs with SWEET. In: 7th

ESWC2010

Maréchaux JL (2006) Combining service-oriented architecture and event-driven architecture using an

enterprise service bus, IBM developer works

Martin D et al (2004a) Bringing semantics to web services: The OWL-S Approach. In: Cardoso J, Sheth

A (eds) SWSWPC 2004. LNCS 3387, Springer, pp 26-42

Martin D et al (2004b) OWL-S: semantic markup for web services. W3C Member Submission. https://

www.w3.org/Submission/OWL-S/

Martin D et al (2007) Bringing semantics to web services: the OWL-S Approach. World Wide Web

10(3):243–277. doi:10.1007/s11280-007-0033-x

Mazeiar S, Ladan T (2009) Self-adaptive software: landscape and research challenges. ACM Trans

Autonomous & Adaptive Systems 4(2):14

McKean J, Shorter H, Luck M, McBurney P, Willmott S (2008) Technology diffusion: analysing the

diffusion of agent technologies. Auton Agent Multi-Agent Syst 17(3):372–396. doi:10.1007/s10458-

008-9052-y

Medvidovic N, Taylor RN (2000) A Classification and Comparison Framework for Software Architecture

Description Languages. IEEE Trans Software Eng 26(1):70–93

Milanovic N (2011) Non-functional properties in service oriented Architecture:Requirements, Models

and Methods. Model Labs, Berlin. ISBN 978-1-60566-795-9

Müller R (2010) Formal characterisation of partners of an open net. Humboldt-Universität zu Berlin

(Thesis report), Institut für Informatik

Murugesan S (2007) Understanding Web 2.0. IT Professional. doi:10.1109/MITP.2007.78

Murugesan S (2009) Handbook of research on Web 2.0, 3.0, and X.0. Information Science Reference,

Hershey. ISBN 978-1605663845

Newcomer E, Lomow G (2005) Understanding SOA with web services. Addison Wesley, Boston. ISBN

0-321-18086-0

Noy NF (2004) Semantic integration: a survey of ontology-based approaches. SIGMOD Record

33(4):65–70. doi:10.1145/1041410.1041421

Nwana HS, Ndumu DT (1999) A perspective on software agents research. Knowl Eng Rev 14(2):1–18

ODE (2016) Apache ODE (Orchestration Director Engine) software (WS-BPEL v 2.0 compliant

container). http://ode.apache.org/

ODEAPI (2016) BPEL-ODE Process Management API specification. http://ode.apache.org/bpel-

management-api-specification.html

ODEJaCOb (2016) Apache Orchestration director engine – Java concurrency object layer. http://ode.

apache.org/developerguide/jacob.html

Okouya D, Fornara N, Colombetti M (2013) An infrastructure for the design and development of open

interaction systems. In: Cossentino M et al (Eds) Engineering multi-agent systems, EMAS 2013,

LNCS 8245, 2013, pp 215-234. doi:10.1007/978-3-642-45343-4

Pokahr A, Braubach L, Lamersdorf W (2003) Jadex: A BDI Reasoning Engine. In: Bordini RH et al. (Ed)

Multi-agent programming. Springer, pp 149–174. ISBN: 978-0-387-26350-2. doi:10.1007/0-387-

26350-0_6

Pratschner S (2001) Simplifying deployment and solving DLL Hell with the.NET framework. MSDN

Magazine, San Francisco

Rao AS, George MP (1995) BDI agents from theory to practice. Proceedings of the First International

Conference on Multi Agent Systems, ICMAS-95, San Francisco

ResourcesAgent (2016) Historical resources on agent technology. http://agents.umbc.edu/introduction

Russell S, Norvig P (2003) Artificial intelligence, 3rd edn. Prentice-Hall, Upper Saddle River

Savarimuthu BTR et al (2005) Integrating web services with agent based workflow management system

(WfMS), Web Intelligence, 2005 IEEE/WIC/ACM. International Conference. doi:10.1109/WI.2005.

81

Schiemann B, Schreiber U (2006) OWL-DL as FIPA-ACL content language. In: Formal ontology for

communicating agents, Malaga, Spain

Schmidt MT, Hutchison B, Lambros P, Phippen R (2005) The enterprise service bus: making service-

oriented architecture real. IBM Systems Journal 44(4):781–797. doi:10.1147/sj.444.0781

A novel programming framework for architecting next… 533

123

http://www.agentlink.org/roadmap/index.html
http://www.agentlink.org/roadmap/index.html
https://www.w3.org/Submission/OWL-S/
https://www.w3.org/Submission/OWL-S/
http://dx.doi.org/10.1007/s11280-007-0033-x
http://dx.doi.org/10.1007/s10458-008-9052-y
http://dx.doi.org/10.1007/s10458-008-9052-y
http://dx.doi.org/10.1109/MITP.2007.78
http://dx.doi.org/10.1145/1041410.1041421
http://ode.apache.org/
http://ode.apache.org/bpel-management-api-specification.html
http://ode.apache.org/bpel-management-api-specification.html
http://ode.apache.org/developerguide/jacob.html
http://ode.apache.org/developerguide/jacob.html
http://dx.doi.org/10.1007/978-3-642-45343-4
http://dx.doi.org/10.1007/0-387-26350-0_6
http://dx.doi.org/10.1007/0-387-26350-0_6
http://agents.umbc.edu/introduction
http://dx.doi.org/10.1109/WI.2005.81
http://dx.doi.org/10.1109/WI.2005.81
http://dx.doi.org/10.1147/sj.444.0781

Sessions R (2007) A comparison of the top four enterprise-architecture methodologies. https://msdn.

microsoft.com/en-us/library/bb466232.aspx

Shehory O, Sturm A (eds) (2014) Agent-Oriented Software Engineering. Springer, New York. doi:10.

1007/978-3-642-54432-3

Smith CU (2015) Software performance engineering then and now: a position paper. WOSP-C’ 15:2015.

doi:10.1145/2693561.2693567

Sudeikat J et al (2004) Evaluation of agent—oriented software methodologies—examination of the gap

between modeling and platform. AOSE’04. Springer, pp. 126–141. doi:10.1007/978-3-540-30578-

1_9

Sycara K et al. (2003) The RETSINA MAS, a case study. LNCS, 2003, Springer, Vol 2603/2003,

pp.103–119. doi:10.1007/3-540-35828-5_15

Talantikitea HN et al (2009) Semantic annotations for web services discovery and composition. Computer

Standards & Interfaces 31(6):1108–1117

Trione L, Long D, Gotta D, Sacchi G, WeMash W (2009) WADE: unleash the power of collective

intelligence. In: 8th AAMAS 2009, pp 53–60

Venkatesan D (2010) Development of a novel software architecture for active internet applications.

ICWS2010. doi:10.1109/ICWS.2010.86

Venkatesan D, Sridhar S (2016) A novel method and environment for scalable web service orchestration.

In: Proceedings of IEEE 12th 2016 world congress on services computing (SERVICES 2016), San

Francisco, pp 128–129. doi:10.1109/SERVICES.2016.27

Vieira R et al (2007) On the formal semantics of speech-act based communication in an agent-oriented

programming language. J Artif Intell Res 29:221–267. doi:10.1613/jair.2221

Wang M, Wang H (2005) Intelligent agent supported business process management. In: Proceedings of

the 38th Hawaii international conference on system sciences. doi:10.1109/HICSS.2005.332

Weerawarana S, Curbera F, Leymann F, Storey T, Ferguson DF (2005) Web services platform

architecture: SOAP, WSDL, WS-Policy, WS-addressing, WSBPEL, WS-reliable messaging and

more. Prentice Hall PTR, Upper Saddle River

Weiss G (2012) Multi-agent technology, 2nd edn. MIT Press, Cambridge

Wieland M et al (2008) Context integration for smart workflows. In: 6th IEEE International Conference

2008, pp 239–242. doi:10.1109/PERCOM.2008.27

Wooldridge M (2009) Introduction to multi-agent systems, 2nd edn. Wiley, New York. ISBN 978-0-470-

51946-2

WS-Addressing (2006) Web Services Addressing 1.0 – Core standard, http://www.w3.org/TR/2006/PR-

ws-addr-core-20060321

WS-BPEL (2007) OASIS Web Services Business Process Execution Language v 2.0. http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Xu J, Pears S (2006) A dynamic shadow approach to fault-tolerant mobile agents in an autonomic

environment. Real-Time Systems 32(2006):235–252. doi:10.1007/s11241-005-4682-5

Yu L (2009) A developer’s guide to the semantic web, Springer. e-ISBN 978-3-642-15970-1. doi:10.

1007/978-3-642-15970-1

534 D. Venkatesan, S. Sridhar

123

https://msdn.microsoft.com/en-us/library/bb466232.aspx
https://msdn.microsoft.com/en-us/library/bb466232.aspx
http://dx.doi.org/10.1007/978-3-642-54432-3
http://dx.doi.org/10.1007/978-3-642-54432-3
http://dx.doi.org/10.1145/2693561.2693567
http://dx.doi.org/10.1007/978-3-540-30578-1_9
http://dx.doi.org/10.1007/978-3-540-30578-1_9
http://dx.doi.org/10.1007/3-540-35828-5_15
http://dx.doi.org/10.1109/ICWS.2010.86
http://dx.doi.org/10.1109/SERVICES.2016.27
http://dx.doi.org/10.1613/jair.2221
http://dx.doi.org/10.1109/HICSS.2005.332
http://dx.doi.org/10.1109/PERCOM.2008.27
http://www.w3.org/TR/2006/PR-ws-addr-core-20060321
http://www.w3.org/TR/2006/PR-ws-addr-core-20060321
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://dx.doi.org/10.1007/s11241-005-4682-5
http://dx.doi.org/10.1007/978-3-642-15970-1
http://dx.doi.org/10.1007/978-3-642-15970-1

	A novel programming framework for architecting next generation enterprise scale information systems
	Abstract
	Introduction
	Literature review
	SOA and web services technology
	Sematic web technology
	Business process modeling
	Popular agent environments
	Formal modeling of WS-BPEL
	Agent programming research

	ACIAF and ‘‘CODE MOBILITY’’ operation
	Adding code mobility to WS-BPEL scripts
	The ACIAF system environment
	Architectural elements of ACIAF
	ACIAF system implementation description
	The ACIAF agent scripting environment

	ACIAF and ‘‘Loose Coupling’’ operation
	Loose coupling method affecting ‘‘Consumer’’ environment alone
	Loose coupling using syntactic method
	Loose coupling using Scripts

	Loose coupling method affecting both ‘‘Provider’’ and ‘‘Consumer’’ environment

	Case study based evaluation of ACIAF mobility construct
	Description of MATHTUTOR case study
	Description of MATHTUTOR system implementation cases

	Architectural and technological assessment of ACIAF
	Criteria for choosing modeling paradigms and evaluation of their software engineering properties
	An evaluation of basis of ACIAF programing language paradigm
	Technical comparison of ACIAF applications with other mobility aware agent environments

	Formal analysability of ACIAF application mobility behaviour
	Formal Verifiability of ACIAF application mobility behavior (verifiable mobility theorms)
	Fundamental theorem on behavioural analyzability of cooperative computing environment

	Conclusion and future work
	References

