
ORI GIN AL ARTICLE

Automating ETL processes using the domain-specific
modeling approach

Marko Petrović1 • Milica Vučković1 •

Nina Turajlić1 • Slad̄an Babarogić1 • Nenad Aničić1 •

Zoran Marjanović1

Received: 15 June 2015 / Revised: 1 May 2016 / Accepted: 30 June 2016 /

Published online: 9 July 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract The development of Extract–Transform–Load (ETL) processes is the

most complex, time-consuming and expensive phase of data warehouse develop-

ment. Yet, the dynamics of modern business systems demand a more agile and

flexible approach to their development. As a result, current research in this area is

focused on ETL process conceptualization and the automation of ETL process

development. This paper proposes a novel solution for automating ETL processes

using the domain-specific modeling (DSM) approach. The proposed solution is

based on the formal specification of ETL processes and the implementation of such

formal specifications. Thus, in accordance with the DSM approach, several new

domain-specific languages (DSLs) are introduced, each defining concepts relevant

for a specific aspect of an ETL process. The focus of this paper is the actual

implementation of the formal specification of an ETL process. To this end, a

specific ETL platform (ETL-PL) is introduced to technologically support both the

modeling of ETL processes (i.e., the creation of models in accordance with the

introduced DSLs) and the automated transformation of the created models into the

& Marko Petrović

petrovic.marko@fon.bg.ac.rs

Milica Vučković

vuckovic.milica@fon.bg.ac.rs

Nina Turajlić

turajlic.nina@fon.bg.ac.rs

Slad̄an Babarogić

babarogic.sladjan@fon.bg.ac.rs

Nenad Aničić

anicic.nenad@fon.bg.ac.rs

Zoran Marjanović

marjanovic.zoran@fon.bg.ac.rs

1 Faculty of Organizational Sciences, University of Belgrade, Belgrade, Serbia

123

Inf Syst E-Bus Manage (2017) 15:425–460

DOI 10.1007/s10257-016-0325-8

http://orcid.org/0000-0003-0419-495X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10257-016-0325-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10257-016-0325-8&domain=pdf

executable code of a specific application framework (representing ETL-PL’s exe-

cution environment). It should be emphasized that ETL-PL actually presumes the

dynamic execution of ETL models or, more precisely, the executable code is

generated at runtime. Thus the execution environment consists of code generator

components and the components implementing the application framework. ETL-PL

has been implemented as an extension of the .NET platform.

Keywords Extract–transform–load (ETL) � Model-driven development (MDD) �
Domain-specific modeling (DSM) � Domain-specific languages (DSL) � Runtime

models � Execution platform

1 Introduction

Data warehouse systems, as a specific type of information system, should enable the

acquisition of business data, its transformation into appropriate strategic business

information and the subsequent storage of the transformed data in a format that

facilitates business analysis. These systems support the decision-making process

i.e., their aim is to support the decision-makers in making better and faster

decisions. They are expected to have the right information in the right place at the

right time with the right cost in order to support the right decision (Jarke et al.

2003).

Research and practice in the field of data warehousing have already significantly

promoted the understanding of this domain and have led to considerable progress

being made with regard to the formalization and automation of data warehouse

development. Both the static and dynamic aspects of data warehouses have been

studied. In addition, research and practice have also focused on one of the most

demanding phases in the data warehouse development process—the development of

the process for the acquisition and integration of business data, its transformation

into appropriate strategic business information and the subsequent storage of the

transformed data in a format that facilitates business analysis (the extract–

transform–load process—ETL).

The development of appropriate ETL processes (which adequately fulfill their

purpose) requires overcoming several challenges as discussed in (Turajlić et al.

2014). First, it is necessary to integrate the available business data coming from

diverse data sources which are usually very heterogeneous in nature (i.e., they may

be based on different technologies, use various data models etc.). In order to resolve

the numerous structural and semantic conflicts that may exist, a wide array of

transformations must be performed. Furthermore, such transformed data must then

be translated into a form suitable for its further analysis. On the other hand, the

sheer volume of data that is to be gathered, processed, transformed, stored and

delivered, imposes strict constraints not only regarding the way the data must be

structured but also with regard to the requirements related to the performance and

scalability of data warehouse systems. Finally, these processes must be designed to

be flexible so that they are able to respond to the constant changes not only in the

state and structure of existing data sources (while at the same time allowing for the

426 M. Petrović et al.

123

inclusion of new data sources) but also to the changes in business requirements

(imposed by the dynamic business environment). A change in business requirements

calls for new business analysis to be conducted, which in turn means that new

strategic information must be provided. In other words, according to (El Akkaoui

et al. 2012) agile and flexible ETL tools are needed which can quickly produce and

modify executable code based on constantly changing needs of the dynamic

business environment.

Taking this into consideration, it could be said that the manner in which these

processes are designed and implemented significantly impacts the quality of the

obtained information, and consequently the usability and success of the system as a

whole. Moreover, it has been estimated that as much as 70 % of the time and effort

invested in the development of data warehouses is spent on the development of ETL

processes (Kimball and Caserta 2004; Kimball et al. 2010). Therefore, it is evident

that an appropriate methodological approach to ETL process development must be

adopted.

The methodological approaches, developed during the past couple of decades, are

aimed at resolving some of the problems inherent to this process such as: high

development and maintenance expenses, low productivity, failure to adequately

satisfy user requirements, etc. As previously stated, these problems stem from the

complexity of modern business systems, frequent changes in the organizational and

technological environment and the emerging need for businesses to adapt to these

changes, especially in light of the of the pervasiveness of the Internet and the

transition to e-business. Consequently, the main premise of this paper is that ETL

process development must be based on abstractions as they are the only valid

methodological means for overcoming complexity. Moreover, it is argued that

semantically richer abstractions are desired because they can encapsulate greater

knowledge thereby increasing productivity and efficiency (Greenfield et al. 2004;

Kelly and Tolvanen 2008). Furthermore, since a greater level of automation is

sought, it is necessary to formalize the existing knowledge and experience in such a

form that would allow for its reuse (Greenfield et al. 2004; Kelly and Tolvanen

2008). The possibility of reuse additionally increases productivity and efficiency,

while at the same time lowering the cost of data warehouse system development. By

elevating the semantic level and supporting it technologically development can be

significantly automated and fewer steps will be needed to implement the abstract

specifications.

In this paper a novel approach to ETL process development is proposed, and the

aim of the proposed solution is to automate the development to a significant extent.

Hence, the proposed solution was developed in accordance with the leading

approach to software development today—Model-driven development (MDD). The

main goal of MDD is to enable the automation of software development in order to

increase development productivity, reduce development time and cost, and improve

the quality and flexibility of the obtained solution. To this end it promotes the use of

abstractions which enable the analysis of a problem at different levels of detail.

MDD is based on the premise that the most important product of software

development is not the source code itself but rather the models representing the

knowledge about the system that is being developed. In other words, in MDD,

Automating ETL processes using the domain-specific… 427

123

models are primary software artifacts and the development process is automated

through appropriate model transformations, which should ultimately result in a

concrete implementation i.e., executable code. In light of the complexity of ETL

processes and the problems related to their development it can be stipulated that

they should be developed in accordance with the MDD approach.

More specifically, in this paper the Domain-Specific Modeling (DSM) approach

has been chosen for the development of ETL process. Given that DSM introduces

models as primary software artifacts it promotes the use of abstractions.

Furthermore, in the DSM approach, software development can be fully automated

through the application of model transformations (Kelly and Tolvanen 2008). In

order to enable such automatic transformations the models must be formal. Thus,

the DSM approach has been adopted not only because it allows for the formalization

of semantically rich abstractions, in a form which can be reused, but also because it

enables the generation of executable code from models representing the specifi-

cation of the system.

The proposed solution, for the development of ETL processes in the context of a

DSM approach, is based on the formal specification of ETL processes and the

implementation of such formal specifications. Several new domain-specific

languages (DSLs) are introduced, for the formal specification (i.e., modeling) of

ETL processes, which define concepts relevant for different aspects of this particular

domain. In order to reduce the complexity of the ETL process specification the

different aspects of an ETL process would be modeled separately using the

appropriate DSLs.

However, the focus of this paper is the actual implementation of the formal

specification of an ETL process. To this end, a specific ETL platform (ETL-PL) has

been developed to technologically support both the specification (i.e., creation of

models using the graphical or textual notation of the introduced DSLs) and the

automated transformation of these models into the executable code of a specific

application framework (representing the execution environment of an ETL process).

The application framework defines specific implementation concepts which are

close to the real domain concepts of the DSLs introduced for the specification of

ETL processes. By defining implementation concepts which are close to the real

domain concepts the semantic level of the solution is significantly elevated.

Furthermore, if both the specification and the application framework use concepts

close to the real ETL domain concepts the transformation between them can be fully

automated, thus significantly increasing development productivity and efficiency

while lowering the development and maintenance costs. In other words, by

elevating the semantic level, and supporting it technologically, development can be

significantly automated and fewer steps will be needed to implement the abstract

specifications. Moreover, the obtained solutions would have good performances and

be scalable and maintainable yet, at the same time, flexible (i.e., they could be easily

extended to adapt to the constant changes in the environment and new

requirements).

The proposed software architecture for implementing ETL-PL is presented,

specifying the main components of ETL-PL. The components of ETL-PL are

divided into two layers: the development environment and the execution

428 M. Petrović et al.

123

environment. The development environment is comprised of tools which support the

modeling of ETL processes. More specifically, it contains tools for defining the

abstract and concrete syntax (in both a graphical and textual notation) of a DSL and

tools (syntax editors, graphical and textual) for creating models in accordance with

the defined DSL. The execution environment is responsible for the automatic

generation of executable code from the models as well as the actual execution of the

generated code. Thus the execution environment consists of code generator

components and the components implementing the application framework.

The paper is structured as follows: Sect. 2 gives an analysis of the related in work

on ETL process development. Section 3 gives a brief overview of the conceptual

framework for the formal specification of ETL processes. Section 4 explains the

motivation behind the proposed implementation of ETL process specifications. The

proposed ETL platform is outlined in Sect. 5, while the implementation details are

presented in Sect. 6. Finally, Sect. 7 concludes the paper and discusses future work.

2 Related work

There is a growing need for the formalization and automation of ETL process

development, due to the fact that it is extremely complex and time-consuming and

that it requires significant financial resources, and a good deal of research effort has

thus far been dedicated to this issue. A detailed analysis of these approaches can be

found in a previous paper (Turajlić et al. 2014), and only a brief discussion will be

presented here in order to justify the proposed approach.

It should first be emphasized that only a few approaches exist which enable the

automated development of ETL processes in the context of MDD. In order to enable

automated development, MDD requires that the models be formally expressed. Thus

far, two distinctive approaches have emerged for realizing MDD in general, which

differ primarily in the languages used for the specification of the models. One

advocates the use of general purpose modeling languages (GPMLs) and their

extension, while the other advocates the use of specially designed domain-specific

languages (DSLs). The existing body of research on ETL process development

could be classified along the same lines.

The modeling of ETL processes using existing general purpose modeling

languages (such as Unified Modeling Language—UML or Business Process Model

and Notation—BPMN), which have been extended to incorporate the concepts

specific to the ETL process domain, has been proposed in (Trujillo and Luján-Mora

2003; Luján-Mora et al. 2004; Muñoz et al. 2008, 2009; El Akkaoui and Zimányi

2009; El Akkaoui et al. 2011, 2012).At the same time, the use of DSLs which are

tailored to a particular domain has also been proposed in (Vassiliadis et al.

2002a, b, 2003, 2005; Simitsis and Vassiliadis 2003, 2008; Simitsis et al. 2005;

Simitsis 2005).

It can be argued that, since GPMLs were envisaged to support the description of

the various aspects of any given business process in any given domain (in order to

promote standardization), they include a large number of domain-neutral concepts

which are defined at a low level of abstraction. According to (Kelly and Tolvanen

Automating ETL processes using the domain-specific… 429

123

2008) GPMLs do not raise the level of abstraction above code concepts. According

to the same authors, the main benefit of DSLs is that, unlike GPMLs, they raise the

level of abstraction beyond current programming languages and their abstractions,

by specifying the solution in a language that directly uses the concepts and rules

from a particular problem domain. Furthermore, the complexity of GPMLs (i.e., too

many concepts whose semantics are imprecise) along with the fact that they are

often too technical for domain-experts to master, lead to a number of issues related

to the acceptance, utilization and value of these languages. Moreover, to extend

these languages it is necessary to be familiar with their concepts in order to be able

to identify those which can be specialized. Finally, it is up to the designer to know

the semantic rules (e.g., the legal connections and structures, the necessary data etc.)

and ensure that they are fulfilled when defining the specification. On the other hand,

the aim of DSLs is to provide only a minimal set of domain-specific concepts, with

clear and precise semantics, along with a set of strict rules controlling their usage

and the way in which they can be composed. Since DSLs allow for the inclusion of

domain rules (in the form of constraints) both the syntax and the semantics of the

concepts can be controlled, thus incorrect or incomplete designs can be prevented

by making them impossible to specify.

Therefore, in comparison with GPMLs, DSLs are more expressive (i.e., they

enable a precise and unambiguous specification of the problem) while at the same

time being more understandable and easier to use by domain experts (since they do

not include unnecessary general purpose concepts). In addition, the use of such

languages facilitates communication among the various stakeholders (from both the

business as well as the technical communities) thereby promoting teamwork which

is one of the main principles of current agile approaches to software development.

As a final point it should be noted that some of the approaches do not provide

explicit concepts which allow for the formal definition of the semantics of the data

transformations. For example, in (Vassiliadis et al. 2002a, b; Simitsis and

Vassiliadis 2003; Luján-Mora and Trujillo 2004) notes or annotations are used

for the explanation of the semantics of the transformations (e.g., type, expression,

conditions, constrains etc.), while in (Trujillo and Luján-Mora 2003) even the actual

attribute mappings are defined through notes. Since in these approaches the authors

allow for the notes to be given in a natural language (and often without any

restrictions on their content) they do not represent a formal specification.

However, in order to enable automated development, it is necessary to provide

the means for formally specifying the data transformation semantics, and the

approaches proposed in (Muñoz et al. 2008; El Akkaoui and Zimányi 2009; El

Akkaoui et al. 2011, 2012) have, to some extent, managed to address this issue.

The way in which the actual automation of software development is achieved

(Model-driven architecture—MDA or Domain-Specific Modeling—DSM) is

another point of difference between the general purpose approach and the

domain-specific approach. Generally, in order to enable the automation of the

development in accordance with MDD, it is necessary to first map the domain

concepts to design concepts and then on to programming language concepts.

In the MDA approach, software development can be partially or fully automated

through the successive application of model transformations, starting from the

430 M. Petrović et al.

123

model representing the specification of the system (i.e., the conceptual model) and

ending in a model representing the detailed description of the physical realization,

from which the executable code can ultimately be generated. The development of

ETL processes in accordance with the MDA approach is proposed in (Muñoz et al.

2008; Mazón and Trujillo 2008). Thus, the conceptual models are defined as

platform independent models—PIM which are then automatically transformed into

platform specific models—PSM (through a set of formally defined transformations)

from which the code (necessary to create data structures for the ETL process in the

corresponding platform) can be derived. However, since the PSMs must be specially

designed for a certain technology of ETL processes (i.e., each PSM must be based

on the resources of a specific technology) the proposed approach presumes that a

metamodel must be manually defined for each specific tool in order to create the

transformations from the proposed conceptual model to each deployment platform.

Furthermore, the MDA approach in general, is based on the refinement of models

through successive model transformations, yet this process usually also requires that

the automatically generated models be manually extended with additional details.

These manual extensions could lead to a discrepancy between the original and

generated models (i.e., the original models would become obsolete). This

discrepancy is further emphasized when the modification of models, previously

created by partial generation, is required. Since the correct modification of these

models remains an unresolved issue, MDA advocates using a single GPML, namely

UML, at all the levels (thereby lowering the abstraction levels of models) which not

only entails all of the previously discussed issues regarding the use of GPMLs for

modeling ETL processes, but also brings additional complexity to the development

of model transformations (Fowler 2010). Thus, an improvement of the proposed

approach has been suggested in (El Akkaoui et al. 2011) to directly obtain the code

corresponding to the target platform, bypassing the need for the defining of an

intermediate representation (metamodel) of the target tool. The conceptual model

can then be automatically transformed into the required vendor-specific code to

execute the ETL process on a concrete platform.

Conversely, in the DSM approach the implementation is automatically generated

from the specification (which can be modeled using domain-specific concepts) by

code generators which specify how the information is extracted from the models and

transformed into code. In other words, the generator reads the model based on the

metamodel of the language and maps it to code. The generators are also domain-

specific (i.e., they produce the code according to the solution domain) since,

according to (Kelly and Tolvanen 2008), this is the only way to enable full code

generation i.e., the generation of code that does not need to be additionally

modified. Usually the code generation is further supported by a domain-specific

framework which provides implementation concepts, closer to the domain concepts

used in the specification, thus narrowing the gap between the solution domain and

the problem domain that would otherwise need to be handled by the code generator.

The main benefit of DSM according to (Kelly and Tolvanen 2008) is that

generators, along with framework code, provide an automated direct mapping to a

lower abstraction level (i.e., there is no need to make error-prone mappings from

domain concepts to design concepts and on to programming language concepts)

Automating ETL processes using the domain-specific… 431

123

thus providing full code generation instead of resulting in a partial implementation.

Because the generated code can be compiled to a finished executable without any

additional manual effort, the specification (i.e., model) in fact becomes truly

executable.

In summary, it can be concluded that, if the goal is to formalize and automate the

development of ETL processes to a significant extent, the DSM approach should be

adopted not only, because it allows for the formalization of semantically rich

abstractions in a form which can be reused, but also because it enables the automatic

generation of executable code from models representing the specification of the

system. More precisely put, since DSLs allow for the formalization of semantically

rich abstractions (which capture the existing knowledge and experience in the ETL

domain) they are more appropriate for the formal specification of ETL processes.

On the other hand, the modeling concepts of GPMLs do not relate to any specific

problem domain on the modeling side while on the implementation side, they do not

relate to any particular software platform, framework, or component library.

However, it is argued that the application framework (supporting the implemen-

tation of the ETL process specification in the DSM approach) should define specific

implementation concepts which are more close to the real domain concepts

introduced in the DSLs used for the specification of ETL processes. If both the

specification and the application framework use formal concepts close to the real

ETL domain concepts the transformation between them can be fully automated.

Furthermore, MDA assumes the existence of several models at different levels of

abstraction obtained through progressive refinement (which can be both automatic

and manual) thus automation is usually only partially achieved. An additional

benefit of the DSM approach is that, both the models and the code generators, can

be easily changed (and the code then only needs to be regenerated) which makes the

development process more agile. As a final point, according to (Kelly and Tolvanen

2008) domain-specific approaches are reported to be on average 300–1000 % more

productive than GPMLs or manual coding practices.

The approach, closest to fulfilling all of the posed requirements, is proposed in

(El Akkaoui and Zimányi 2009; El Akkaoui et al. 2011, 2012) in which the authors

have even provided built-in mechanisms to validate the syntactic and semantic

correctness of the created models. However it is based on the use of a single

modeling language which is built by extending a general purpose modeling

language, namely BPMN.

Finally, it should be noted, that there is a large number of commercial ETL tools

(e.g., Microsoft SQL Server Integration Services, Oracle Data Warehouse Builder,

Pentaho Data Integration, etc.) offered by both ETL vendors and Database vendors,

and the main rationale for purchasing such a tool is to minimize the development

and deployment time and, consequently, development costs. Yet one of the major

drawbacks of vendor ETL tools is their extremely high price. Even when it is

possible to buy only some of the necessary components of a tool at a smaller price,

or even obtain the tool for free (usually from Database vendors as part of a DBMS

license) it, almost always, entails some further expenses such as: extra charges for

running the tool on a different platform or even on additional CPUs; buying other

necessary components; support and maintenance costs; additional fees for providing

432 M. Petrović et al.

123

training, documentation, etc. Furthermore, it takes a significant amount of time for

developers to become proficient with the acquired tool even when they are skilled

programmers. As stated in (El Akkaoui and Zimányi 2009) each one of these tools

provides its own language which often involves implementation level considera-

tions hence they are difficult to understand, optimize, and maintain. Another crucial

limitation of most vendor ETL tools is that they do not offer adequate support for

complex custom transformations. Since the proprietary source code is rarely

available modifications and extensions cannot be easily made. Even if the code is

made available, its modification or extension requires significant technical

knowledge. Moreover, it is also necessary to ensure that the alterations do not

affect the existing functionality. In order to be competitive the vendors constantly

improve their tools, and new versions of the tools are deployed. However, this can

also present a liability, since it is a question whether the previously implemented

functionality will be compatible with the new version. Furthermore, vendors can

cease to provide support for previous versions of a tool, or even go out of business.

3 Conceptual ETL framework

One of the most important and demanding phases in the data warehouse

development process is the development of the process for transforming the

business data into strategic information i.e., the ETL process. An ETL process is

comprised of a number of activities which are to be executed in a particular order

with the aim of transforming business data into strategic information. The activities

in this process represent the actual data operations (i.e., the data flow), while the

control flow represents the execution order of these activities.

In this paper the DSM approach has been adopted for the development of ETL

process because the aim of the proposed solution is to automate the development to

a significant extent and DSM, as discussed in previous section, enables the

generation of executable code from models representing the specification of the

system. Furthermore, the main premise is that ETL development must be based on

semantically rich abstractions which encapsulate the existing knowledge and

experience in the ETL domain and DSM allows for the formalization of such

abstractions in a form which can be reused.

The first phase in ETL process development is the specification (i.e., modeling)

of ETL processes. The main goal of this phase is to define ‘‘what’’ the software

solution should provide in terms of its basic functionality. Several points where

taken into consideration regarding the manner in which the specification should be

given. Firstly, since domain experts play a key role in this phase (as they possess an

in-depth understanding of the domain i.e., the semantics of the data that is to be

transformed) the models should be expressed in terms of concepts specific to the

particular domain (i.e., the concepts and terms used by the domain experts).

Secondly, the modeling languages should be as simple as possible (i.e., they should

provide a minimal set of necessary concepts) but at the same time semantically rich

to enable the specification of the various aspects of the problem domain at the

appropriate level of abstraction. Thirdly, they should be formal in order to enable

Automating ETL processes using the domain-specific… 433

123

automatic model transformations. Thus, for the formal specification of ETL

processes, the use of DSLs is preferred over the extension of GPMLs, since they

provide only a minimal set of semantically rich domain-specific concepts which

makes them more approachable to domain experts.

Furthermore, taking into account the complexity of ETL processes, it is obvious

that the various aspects of an ETL process (e.g., the control flow, the data flow, etc.)

should be modeled separately else the specification would lead to an overly

complex, convoluted model, in which all of the various aspects of an ETL process

are interwoven. However, it can be argued that the use of a single modeling

language (be it an extended GPML or a DSL) would not be conducive since it would

include a vast amount of disparate concepts. It is therefore stipulated that each

aspect of an ETL process should be modeled by a separate language, which should

include only the concepts which are relevant for that particular aspect, thereby

keeping the languages straightforward and easy to use. These languages would then

constitute a conceptual framework for ETL process specification.

The introduced conceptual framework for ETL process specification defines

several novel DSLs for the specification of the different aspects of ETL processes.

Primarily, a language for the specification of data operations, i.e., the data flow,

(ETL-O) and a language for specification of their execution order, i.e., the control

flow, (ETL-P). Three supplementary languages are also provided: a language for the

specification of various logical and arithmetic expressions (ETL-E), a language for

the specification of transformation operation templates (ETL-T) and a language for

the specification of source and target data models (ETL-D). The introduced DSLs

define concepts which are relevant for the respective aspects of the ETL processes

and they fulfill all of the previously stated requirements regarding modeling

languages. Moreover, they are developed as new languages rather than as extensions

of generic modeling languages (such as BPMN and UML) which, in light of the

discussion in the previous section, makes them extremely appropriate for solving

problems in the given domain.

The conceptual framework defining the fundamental concepts of ETL processes

and their relationships is given in Fig. 1.

It should be emphasized that the metamodels of the introduced DSLs are

described using the concepts of a meta-language defined by Microsoft (as part of

DSL Tools) which has thus, as such, been incorporated into the implementation of

the proposed ETL platform. Therefore, the validity of the DSL metamodels is

verified against this meta-language. On the other hand, the DSL metamodels,

describing concrete models, are used for validating the concrete models.

The ETL Base package introduces the set of abstract concepts which enable the

integration of the various ETL modeling languages. The proposed ETL DSLs are

then defined as extensions of this abstract metamodel. In other words, each of the

proposed DSLs introduces its own concepts (the concepts relevant for the particular

aspect which is to be modeled) by extending the base concepts. The metamodel of

the base classes for all of the proposed DSLs is given in Fig. 2. The abstract

concepts of the this metamodel are used for specifying the ETL DSL models (the

Model concept) and their elements (the ModelElement concept), as well as for

referencing other models (the ModelRef concept) and the elements of those models

434 M. Petrović et al.

123

(the ModelElementRef concept) in order to track the dependencies (relationships)

among various models, wherein the definition of a particular model uses certain

definitions given in another model.

An ETL process is comprised of a number of activities (Data processes) which

are to be executed in a particular order with the aim of transforming business data

into strategic information. The activities in this process represent the actual data

operations (which are specified using ETL-O), while the execution order of these

activities is specified using ETL-P. In other words, ETL-P defines the fundamental

concepts necessary for specifying the execution semantics of an ETL process (i.e.,

the control flow), while ETL-O defines the fundamental concepts necessary for the

specification of ETL process activities, or more precisely, for defining the semantics

of the data operations and the order in which they are to be executed (i.e., the data

Fig. 1 Conceptual ETL framework

Fig. 2 ETL Base metamodel

Automating ETL processes using the domain-specific… 435

123

flows of an ETL process). The main concepts of the ETL-P and ETL-O metamodels

are given in Figs. 3 and 4, respectively.

Thus, the control flow of an ETL process (ETLProcess) defined using ETL-P, is

comprised of a number of actual tasks (Activities). The activities can be

SimpleActivities, such as ETLProcessCall and DataProcessCall which enable the

invocation of other ETL processes (defined in separate ETL-P models and

referenced via ETLProcessRef) and data processes (defined in separate ETL-O

models and referenced via DataProcessRef), respectively, or ComplexActivities

composed of other activities (simple and/or complex). For specifying the execution

order of activities, three concepts are provided representing the basic control

structures (i.e., SequenceFlow, ConditionalBlock and IterateBlock). An additional

concept, the ParallelBlock, representing the concurrent execution of activities, is

introduced to provide the possibility for optimizing the process execution. Through

Fig. 3 ETL-P metamodel (abridged version)

Fig. 4 ETL-O metamodel (abridged version)

436 M. Petrović et al.

123

the hierarchical composition of these concepts the execution semantics of the

overall ETL process can be represented. The expressions for specifying the

conditions and constraints, pertaining to the execution of an ETL process, are given

in the form of ETL-E expressions (defined in a separate ETL-E model and

referenced via ExpressionRef).

The data flow of a single ETL process activity (i.e., the DataProcess), defined

using ETL-O concepts, consists of DataOperations, representing the atomic data

operations, with DataFlowPaths composing these operations into a single data flow.

In other words, the flow of data between the operations, i.e., the execution order of

the atomic operations, is represented by DataFlowPaths (whereby the OutputAr-

gument of one operation is related to an InputArgument of the following operation).

Since the data involved in the transformations is represented, in separate ETL-D

models, by entities which are comprised of fields (referenced via EntityRef or

FieldRef), the transformation of entities also requires the transformation of the

corresponding fields i.e., each entity transformation (EntityOperation) includes one

or more field transformations (FieldOperations). The semantics of the actual

transformation operations are another crucial element of the specification.

Therefore, transformation operations at the entity level are further refined in order

to introduce more specific concepts i.e., the operations pertaining to the ETL

process domain such as (ExtractEntity, TransformEntity and LoadEntity), while the

semantics of the transformation operations at the field level are expressed using

ETL-E. Furthermore, in order to enable a more precise specification of the

semantics of the actual transformations, specific concepts for representing both

standard/common (e.g., Join, Union, Filter, Aggregate, etc., at the entity level, or

Max, Min, Avg, Sum, etc., at the field level, in accordance with the taxonomy given

in (Vassiliadis et al. 2009)) and custom transformation operations are introduced.

For each of these operations the conditions and constraints are specified using ETL-

E expressions. In addition TemplateFieldOperations provide the necessary support

for using transformation templates defined in separate ETL-T models.

ETL-T enables the creation of new field transformation operations in the form of

Templates which can be reused (via a TemplateRef). For example, the Ex-

tractFirstName template could be defined, for which two TemplateArguments

would be specified (the full name as the InputTemplateArgument and the first name

as the OutputTemplateArgument), while the actual operation semantics are given in

the form of an ETL-E expression.

ETL-E supports the formal specification (in a textual notation) of the semantics

of the data operations, as well as the various conditions and restrictions pertaining to

the execution of an ETL process. To this end, it provides a number of expression

types for: primitive expressions (representing variable declarations, numeric and

textual constants, method invocations, etc.), methods (which are defined using ETL-

E and referenced by the concepts of the other ETL DSLs), statements

(corresponding to the basic control structures: sequence, iteration and condition)

and operators (for building complex expressions, where the operands can be

primitive and/or complex expressions). It should be noted that the evaluation result

of every expression must be of a certain data type. A defined ETL-E expression will

actually be referenced in other ETL models via an ExpressionRef.

Automating ETL processes using the domain-specific… 437

123

Finally, ETL-D provides a uniform representation of the various data models

involved in the transformations (either as their inputs or the results of their

execution). In order to reconcile the heterogeneity of the different data sources, the

various local schemata (describing these heterogeneous data sources) must be

transformed into equivalent schemata which are uniformly described using the

concepts of a consolidated model.

It should be emphasized that the problem of the design of the consolidated model,

in order to reconcile the heterogeneity of the different data sources and represent

their concepts in a uniform manner, is outside the scope of this paper, since it is

handled in the analysis phase of the data warehouse development process.

In the remainder of this paper a simplified ETL-D metamodel is utilized

(containing the Entity, Field and Relationship concepts) and it is assumed that all of

the concrete data models conform to this metamodel. The defined ETL-D model and

its elements will be referenced in other ETL models via DataModelRef and

EntityRef or FieldRef, respectively.

The introduced ETL DSLs will not be further elaborated, since the focus of this

paper is on the automated implementation of ETL processes. However, a brief

description of their fundamental concepts was included in order to give a

comprehensive overview of the proposed ETL platform.

As a final point, it should be noted that, though the presented ETL DSLs do not

constitute a complete set of languages necessary for the specification of every aspect

of the ETL process domain, this set could be easily extended to include new

languages (Fig. 5). Furthermore, the languages themselves were also envisaged to

be easily extensible through specialization.

3.1 ETL process modeling

The proposed approach to ETL process modeling involves the creation of a separate

model for each of the different aspects of an ETL process. By separating the

different aspects into different models the complexity of an ETL process model is

significantly reduced. Each model is created using the concepts of the appropriate

Fig. 5 ETL domain languages

438 M. Petrović et al.

123

DSL (e.g., ETL-O for the specification of data operations—ETL process activities,

ETL-P for the specification of the execution order of these activities etc.). Since

these models are created independently the actual order of their creation is not

predetermined. Thus it is left to the designers to decide (in accordance with their

experience, knowledge of the system that is being developed and preferences) which

aspect should be modeled first.

However, the models formed in accordance with the proposed ETL-O

specification may still be very complex, depending on the complexity of the ETL

process that is being modeled, i.e., the number of actual transformations it requires.

In order to facilitate the creation of such models it is proposed that it should be done

gradually, at different levels of abstraction, with each subsequent level progres-

sively refining the previous i.e., giving a more detailed description of the given ETL

process. The hierarchical description of a data process is accomplished by

introducing a set of diagrams. Consequently three types of diagrams are introduced:

data process diagrams, complex transformation operation diagrams and simple

transformation operation diagrams.

Therefore, the proposed approach to the modeling of an ETL process (Fig. 6)

entails the creation of these diagrams (which are specified using ETL-O concepts)

along with an additional diagram (ETL Process execution diagram) depicting the

execution of the ETL process (specified using ETL-P concepts). The concrete

syntax of the proposed ETL-O and ETL-P DSLs provides the necessary graphical

elements (representing the concepts of these languages) for constructing these

diagrams. In addition, a complete specification of an ETL process also requires the

creation of the data models (both source and target) using the ETL-D DSL, which

also provides appropriate graphical elements, as well as the specification of the

necessary ETL expressions which are expressed in textual notation using the ETL-E

DSL.

Data Process
diagram

Simple
Transformation

operation
diagrams

ETL Process
execution diagram

Complex
transformation

operation
diagrams

ETL-O

ETL-P

ETL-D

ETL-E

Fig. 6 Hierarchical specification of an ETL process

Automating ETL processes using the domain-specific… 439

123

In the following subsection an example illustrating the modeling of a concrete

ETL process through these diagrams is given.

3.2 An illustrative example

This section illustrates the creation of the models in accordance with the introduced

ETL DSLs. A simplified example is given for the development of an ETL process in

the context of a data warehouse for the Faculty of Organizational Sciences which

integrates data coming from different departments of the faculty. As previously

explained, the specification of the ETL process involves the creation of a number of

diagrams. For each type of diagram a representative example will be given. The

diagrams have been additionally annotated in this paper in order to clarify the

correspondence between the graphical elements and the concepts of the metamodels

given in Figs. 3 and 4.

The specification of the process commences with the creation of the relevant data

process diagrams. In Fig. 7 an example of a data process diagram is given in which

several data processes have been identified.

ProcessStudents, for example, processes data pertaining to students at different

study levels i.e., it extracts the MasterStudents and UndergraduateStudents data from

the relevant data sources (MasterService and UndergraduateStudentService, respec-

tively), then transforms the extracted data into the Student entity and finally loads the

transformed data into the FonDW. For each identified data process a corresponding

complex transformation operation diagram is created, representing the semantics of

the data process (i.e., the necessary entity transformation operations and the order in

which they are to be executed). For example, in Fig. 8, the execution of

Fig. 7 DataProcess diagram

440 M. Petrović et al.

123

ProcessStudents commences with the ExtractMasterStudents and ExtractUndergrad-

uateStudents operations which extract the necessary data (i.e., MasterStudents and

UndergraduateStudents, respectively) from the MasterService and UndergraduateS-

tudentService data sources. The result of the execution of these operations is depicted

by the IMasterStudents and IUndergraduateStudents entities.

The TransformMasterStudents operation performs the necessary transformations

on the IMasterStudent entities resulting in IMasterStudent_1 entities which, along

with the IUndergraduateStudent entities, represent the input of the JoinStudents

operation. The execution of this operation then results in IStudent entities which are

finally loaded into the FonDW through the LoadStudents operation. It should be

noted that the IMasterStudent, IUndergraduateStudent, IMasterStudent_1 and

IStudent entities are the intermediate results of this data process.

The semantics of the entity transformation operations are represented through

simple transformation operation diagrams. In Fig. 9a diagram representing the

TransformMasterStudent operation is given. For each field of the output entity

(IMasterStudent_1) the required transformation of one or more fields of the input

entity (IMasterStudent) is defined. For example, the value of the StudentNumber

field is obtained by executing the ProcessStudentNumber operation which takes the

value of the Number field as its input.

The semantics of the ProcessStudentNumber and ProcessEnrolmentYear oper-

ations are specified by an ETL-E expression (Fig. 10), while the semantics of the

ProcessFirstName and ProcessLastName operations are given by referencing the

appropriate templates (i.e., GetFirstNameTemplate and GetLastNameTemplate,

respectively).

The specification of the execution of the ETL process is given by the ETL

process execution diagram in which the identified data processes are represented as

Fig. 8 Complex transformation operation diagram for ProcessStudents

Automating ETL processes using the domain-specific… 441

123

ETL process activities. In Fig. 11 an ETL process execution diagram for this

particular ETL process, which begins with the parallel execution of the ProcessS-

tudents, ProcessProfessors, ProcessUCourses and ProcessMCourses activities and

ends with the parallel execution of the ProcessUStudentExams and ProcessMStu-

dentExams activities, is given.

4 The implementation of ETL process specifications

Once a DSL has been specified the next step is to provide its actual implementation.

The implementation of a DSL is obtained through the automatic transformation of

its specification into executable code.

Fig. 9 Simple transformation operation diagram for TransformMasterStudents

Fig. 10 Transformation expression for the ProcessStudentNumber operation

442 M. Petrović et al.

123

On the one hand the aim of the paper is to provide a means for fully automating

ETL process development in order to significantly increase development produc-

tivity and efficiency and lower the development and maintenance costs. In light of

the discussion in Sect. 2. It can be concluded that, since the MDA approach (which

is based on the refinement of models through successive model transformations)

typically requires that the automatically generated models be manually extended

with additional details, automation is usually only partially achieved with this

approach. Conversely, in the DSM approach the implementation is automatically

generated from the specification by code generators which specify how information

is extracted from the models and directly transformed into code. Since the code

generators are also domain specific, no manual modifications of the generated code

are necessary. The code generators should further be supported by a domain-specific

framework in order to narrow the gap between the problem domain and the solution

domain. If both the specification and the framework use formal concepts close to the

real ETL domain concepts, the transformation between them can be fully automated

thus the specification becomes indeed executable.

On the other hand, it is stipulated that, given the nature of ETL processes, several

additional requirements should also be fulfilled by the software solution imple-

menting the proposed DSLs:

• It should enable the dynamic execution of ETL process specifications or, more

precisely, the automated transformation of ETL models into an executable form

at runtime.

• It should provide the necessary flexibility to rapidly respond to changes in

business requirements or data sources, by allowing for ETL process specifica-

tions to be easily adapted (i.e., modified, extended or even created anew) and

immediately executed.

• It should support model versioning, i.e., the execution of different versions of a

model.

Fig. 11 ETL process execution diagram

Automating ETL processes using the domain-specific… 443

123

• It should be easily deployable and scalable without affecting the operation of the

execution environment.

• It should enable the execution of ETL processes in a distributed environment

and allow for the possibility of parallelizing the execution of different data

processes.

In order to meet these requirements, the service-oriented approach to software

development (SOA) should be adopted for the development of the supporting

software solution, because it results in extremely scalable and flexible solutions and

allows for parallelization and distributed execution. In addition, in order to achieve

the desired flexibility, the execution of the ETL process should be driven by the

relevant metadata, i.e., the ETL-P or ETL-O models that are to be executed (as well

as the supplementary ETL-E, ETL-T and ETL-D models) which would all be stored

in a model repository.

Moreover, the services, which are to be responsible for the control flow and data

flow of an ETL process, should be developed as generic services which would be

capable of executing any concrete control flow or data flow model, respectively, and

which could easily be installed on each available hardware node (so that every node

could handle the execution of any concrete service instance). The functionality of

these generic services would then be augmented, at runtime, by the execution

semantics, given in the relevant models and interpreted or compiled on demand. For

this to be possible a specific application framework should be provided which would

include: a set of implementation concepts corresponding to each of the introduced

language concepts, a specifically developed Generator component which would be

responsible for interpreting ETL-P and ETL-O models and creating corresponding

executable in-memory object models, and a Compiler component which would be

responsible for dynamically generating executable code from ETL-E models.

The execution semantics would then be obtained as follows (Fig. 12): for each

concept, specified in an ETL-P or ETL-O model, the corresponding implementation

Fig. 12 Proposed implementation of the generic services

444 M. Petrović et al.

123

concept is retrieved, instantiated and added to an in-memory object model by the

Generator component. If the implementation concepts are close to the DSL

concepts, the retrieval of the implementation concept which corresponds to a

particular DSL concept would be trivial and could be accomplished by introducing

appropriate naming conventions. However, in order to enhance the overall

performances of an ETL process it is argued that ETL-E models (giving the

specific execution logic) should be dynamically compiled into executable code

rather than interpreted. Hence, the ETL-E models, which are referenced in ETL-P

and ETL-O models, should be compiled at runtime, resulting in a set of dynamic

methods which could then be bound to the corresponding objects, along the lines of

the Adaptive model notion (Fowler 2010).

By providing such generic services, the dynamic execution of ETL process

models (i.e., the automatic generation, compilation and execution of ETL processes

at runtime) would be made possible. This would also allow for ETL process

specifications to be easily adapted (i.e., models could be modified, extended or even

created anew, and the corresponding executable code would be promptly generated

and executed) which would provide the necessary flexibility to quickly respond to

the constant changes in business requirements or data sources.

Furthermore, the deployment of a developed ETL process would be straightfor-

ward, i.e., it would be accomplished simply by storing the relevant models in the

repository. Moreover, the modification of existing models, or the creation of new

ones, wouldn’t affect the operation of the execution environment. Consequently,

such an approach would support model versioning and significantly facilitate the

testing of the created ETL processes.

Finally, such an approach would inherently enable the parallelization and

distributed execution of an ETL process, thereby making it possible to fully exploit

the existing hardware resources. Furthermore, the hardware infrastructure could be

easily augmented at runtime by adding additional hardware nodes on which only the

generic services need be installed. Those hardware nodes would then be instantly

operational thus increasing the available processing capability.

It can be concluded that by adopting such an approach not only would full

automation be supported, but the automation would actually take place in real-time.

The concrete implementation details of a solution which fulfills the posed

requirements are given in the following sections.

5 ETL platform

In this paper a specific ETL platform is proposed to technologically support the ETL

process specifications as well as to enable the automated development of ETL

processes in accordance with the DSM approach and their subsequent execution.

The proposed ETL platform (Fig. 13) would be an extension of a general purpose

platform such as Microsoft.NET or J2EE.

The bottom layer (ETL Framework) represents the execution environment and is

comprised of a set of services which are responsible for the execution and

management of ETL processes. The introduction of the application framework

Automating ETL processes using the domain-specific… 445

123

significantly elevates the semantic level of the solution and supports its automated

implementation (i.e., the automatic generation of executable code from the given

models).

The middle layer (ETL Transformations) is responsible for the automatic

transformations of models (which have been created in accordance with the defined

DSLs) into executable code. These transformations are supported by specially

developed generators.

The final layer (ETL Tools), representing the development environment, is

comprised of a number of software tools which have been developed to

technologically support the modeling of ETL processes.

An overview of the proposed ETL platform is given in Fig. 14.

The Data Environment represents the relevant, usually very heterogeneous, data

sources. All of the data sources (sources as well as targets) are uniformly

represented, using the concepts of the ETL-D language.

The Development Environment is dedicated to domain experts. It provides the

supporting infrastructure for efficient ETL process development. Thus, the first step

Fig. 13 ETL platform architecture

Fig. 14 Overview of the ETL platform

446 M. Petrović et al.

123

in ETL process development using ETL-PL, would be the modeling of the different

aspects of an ETL process using the specially developed tools for each of the

introduced ETL DSLs (as depicted in Sect. 3.2.), and the created models would then

be stored in the metadata repository (1).
The Metadata Repository (governed by the Metadata Service) is the central

component of ETL-PL. The Metadata Service thus represents the communication

channel for the automated exchange of metadata (i.e., models) between the

development and execution environments. In accordance with contemporary

methodological approaches to software development, based on models and MDD

standards, models are the central elements of the repository. In other words, models

represent the main concept which is to be stored, maintained and searched for by

users or software agents (such as components, programs, services). The repository

also stores information about model referencing (i.e., when one model uses the

definitions given in another model) to track the dependencies among the models.

Moreover, in order to achieve the desired flexibility and adaptability of ETL process

solutions, ETL-PL also uses the repository to provide model-driven execution. In

effect, ETL process execution is actually driven by the repository contents, i.e., the

models representing the ETL process. Consequently, changes in business require-

ments are realized through the adaptation of existing models, or creation of new

ones, instead of hard-coding the business logic.

The Execution Environment consists of a set of services responsible for the

automatic generation of executable code from the models, as well as the actual

execution of the generated code along with a number of supporting infrastructure

services (e.g., ETLNotifyingService, ETLLoggingService, ETLSchedulingService,

etc.).

The execution of an ETL process is set into motion upon the receiving an

Execution Request message (2). The execution can be instigated either by one of the

components of ETL-PL (e.g., the ETLSchedulingService) or by an external system.

Furthermore, the execution can be scheduled or else triggered in response to an

event in the environment. In addition, it can also be initiated by a top-level ETL

process (9), as is the case when an ETL process coordinates the execution of other

ETL processes. Both the Request-Response and One-Way Message Exchange

Patterns are supported for requesting the execution of an ETL process. In the case of

a Request-Response message exchange, the initiator will receive an Execution

Response upon the completion of the execution (10 or 11, depending on who

initiated the execution).

The execution of an ETL process is driven by the actual models that are to be

executed. Thus, following the reception of an execution request, the relevant models

(ETL-P and ETL-E models) will be retrieved from the Metadata Repository (3).
From these models the corresponding executable code will be generated, compiled

and finally, executed.

An ETL process is comprised of a number of activities (i.e., data processes) and

the execution of data processes is supported by a separate service. Similarly to the

execution of an ETL process, the execution of a data process commences upon

receiving an Execution Request (4). The relevant models (ETL-O, ETL-E, ETL-D

and ETL-T) will be retrieved from the Metadata Repository (5) and once again the

Automating ETL processes using the domain-specific… 447

123

corresponding executable code will be generated, compiled and finally, executed. In

the course of the execution of the data process the data is extracted from the data

sources (6), transformed and then loaded into the targets (7). Only Request-

Response message exchange is supported for data process execution, thus the

execution concludes by creating and sending an Execution Response (8).

6 ETL platform implementation

In order to develop a high-quality software solution first a stable software architecture

must be defined. Since software development can be extremely complex and time-

consuming it is necessary to raise the level of abstraction, in order to manage the

complexity, and view the solution as a set of components each providing part of the

required functionality. The identified components are then organized into layers, on

the basis of the functionality they provide, thereby simplifying the solution design. In

addition to identifying the necessary structural components, a software architecture

also defines the behavior of the system in terms of the collaboration among the

identified components. The communication between the components is realized via

interfaces (through which the components expose the functionality they provide).

The nature of ETL processes imposes strict requirements regarding the

performances and scalability of the supporting software solutions. It is, thus,

imperative to define a stable, yet flexible, software architecture which will, on the

one hand, fulfill the necessary requirements, while on the other hand, be easily

extensible to respond to the constant changes in business requirements.

In accordance with these requirements, a software architecture is proposed,

which defines the main components of ETL-PL, their roles and responsibilities,

along with a set of rules controlling the way in which they can interact. The main

components of ETL-PL are organized into two layers: the development environment

(ETLDevelopment) and the execution environment (ETLExecution).

ETLDevelopment

The development environment is comprised of tools which support the modeling of

ETL processes in accordance with the introduced ETL DSLs. More specifically it

contains tools for defining the abstract and concrete syntax (in both a graphical and

textual notation) of a DSL and tools (syntax editors, graphical and textual) for

creating models in accordance with the defined DSL. More precisely, it consists of a

set of tools (ETLProcessTool, ETLDataProcessTool, ETLExpressionTool, ETLDa-

taTool and ETLTemplateTool) which were developed to technologically support

both the introduced DSLs (ETL-P, ETL-O, ETL-E, ETL-D and ETL-T, respec-

tively) and the modeling of an ETL process using these DSLs (Fig. 15).

The development environment is also supported by several infrastructure

components, among which the ETLDocumentationTool (which can automatically

generate the ETL process documentation in a.docx format) can be singled out.

The specification of the abstract and concrete syntax of the proposed DSLs is

accomplished using Microsoft DSL Tools (Microsoft 2013), along with the open

source Irony parser generator framework (Ivantsov 2009) for languages which have

448 M. Petrović et al.

123

a textual concrete syntax, while the creation of models using these DSLs is

supported by specially developed software tools (primarily graphical editors). The

usage of the developed tools for the creation of the models, in accordance with the

proposed ETL DSLs, was illustrated in Sect. 3.2.

ETLExecution

The execution environment is responsible for the automatic generation of

executable code from the models as well as the actual execution of the generated

code. Thus the execution environment consists of code generator components and

the components implementing the application framework.

It is developed in accordance with the service-oriented approach to software

development (SOA). Hence it is comprised of a number of independent services

(communicating with one another asynchronously, via messages) responsible for the

execution and management of the developed ETL processes (or more precisely the

executable code generated from the defined models). The SOA approach was

adopted because it results in extremely scalable and flexible solutions, which is

imperative in light of the frequent changes in business requirements. Since it

promotes the loose-coupling of services, the solution can be easily extended, simply

by adding new services, or modified without affecting the existing services.

The execution environment consists of four core services (ETLProcessService,

ETLDataProcessService, ETLCompilerService and ETLMetadataService) which are

responsible for the execution and management of ETL processes (Fig. 16). More

precisely, ETLProcessService and ETLDataProcessService are responsible for

executing the control flows and data flows of an ETL process, respectively. The

ETLCompilerService handles the generation and compilation of executable code,

while the ETLMetadataService manages the ETL metadata repository. In addition to

these core components, the execution environment also contains a number of

supporting infrastructure components such as: ETLNotifyingService, ETLLog-

gingService, ETLTracingService, ETLSchedulingService, etc.

Three crucial characteristics of the execution environment should be specially

emphasized. First, the developed services enable the dynamic execution of ETL

Fig. 15 ETLDevelopment component diagram

Automating ETL processes using the domain-specific… 449

123

processes or, more precisely, the automated generation and execution of ETL processes

at runtime. The execution of a Process (be it an ETLProcess or an ETLDataProcess) is

driven by the relevant metadata (i.e., the ETL-P or ETL-O models that are to be

executed, respectively, as well as the supplementary ETL-E, ETL-T, ETL-D models).

The specially developed ETLCompilerService generates the executable code, with the

ETLMetadataService providing the relevant metadata. Second, the execution environ-

ment was developed with the possibility of parallelizing the execution of the different

services (responsible for the actual processing of data) in mind. Namely, ETL-PL allows

for the independent execution (and specification) of the different aspects of an ETL

processes by providing separate services for the execution of the control flows and data

flows of an ETL process (ETLProcessServices and ETLDataProcessServices, respec-

tively). It should be emphasized that these services are actually developed as generic

services which are capable of interpreting any concrete control flow and data flow

model, respectively. The functionality of these generic services is then augmented, at

runtime, by the concrete transformation logic (which is compiled on demand). This

opens up the possibility of parallelizing the execution of the different concrete services

comprising an ETL process. Finally, that it was designed to enable the execution of ETL

processes in a distributed environment. ETL-PL therefore presumes that the generic

services are installed on each of the available hardware nodes so that every node can

handle the execution of any concrete service instance. By parallelizing the execution of

the services, instead of executing them sequentially, the performances of an ETL process

are significantly increased. Distributing the execution of the services over the different

available hardware nodes leads to yet a further increase in performances.

Since the focus of this paper is on the implementation of ETL processes only the

ETLExecution environment will be elaborated in the following subsections while

the ETLDevelopment environment will not be further discussed.

6.1 ETL process implementation

An ETL process is comprised of a number of activities (data processes) which are to

be executed in a particular order with the aim of transforming business data into

Fig. 16 ETLExecution component diagram

450 M. Petrović et al.

123

strategic information. The specification of the control flow (i.e., execution order of

the activities) is supported by four main control structures SequenceFlow,

ConditionalBlock, IterateBlock and ParallelBlock. The activities can be either

SimpleActivities, such as actual data processes (defined in separate ETL-O models

and invoked via the DataProcessCall) or other ETL processes (defined in separate

ETL-P models and invoked via the ETLProcessCall), or ComplexActivities (i.e.,

ConditionalBlock, IterateBlock and ParallelBlock) composed of other activities,

simple and/or complex. In this section the different mechanisms, by which the

control structures have been implemented, will be elaborated, while the implemen-

tation details of the data processes will be given in the next subsection.

The main concepts of the proposed application framework (related to the ETL

process implementation) are depicted in Fig. 17.

The ETLProcessExecutor class is responsible for executing a particular ETL

process, while the ServiceProvider class is responsible for providing and managing

the various components (such as ETLMetadataService, ETLCompilerService,

ExecutionContextService, ExecutionHandlerService, ETLDataProcessService,

ETLProcessService, etc.) that are used during the execution of an ETL process.

The ExecutionContext class is used for representing the execution context of an

ETL process or an ETL process activity. It stores the state of the process or activity

that is being executed. A separate execution context is created for the execution of

each of the activities comprising an ETL process. Furthermore, if an activity is

composite (i.e., ConditionalBlock, IterateBlock and ParallelBlock) separate execu-

tion contexts must also be created for the execution of each of its subactivities, and

Fig. 17 ETLProcessService class diagram

Automating ETL processes using the domain-specific… 451

123

so forth if the subactivities are themselves also composite. Hence, these execution

contexts form a parent–child hierarchy, in which the execution context of each

composite activity contains the execution contexts of its subactivities, with the

execution context of the ETL process as a whole at the root.

The states are maintained through a set of InputArguments, OutputArgu-

mentsandLocalVariables. The three different types of Variables where introduced in

order to provide more control over their usage e.g., the value of an OutputArgument

is available only after the execution of the activity has been brought to an end (i.e.,

when its executionStatus has been set to Executed).

The execution of the activities is supported by the ExecutionHandler class. The

ExecutionHandler class is specialized (Fig. 18) to support the different types of

activities inherent to the ETL process. Each subclass implements the execute

method to provide the desired behavior. The public Execute method acts as a

wrapper for protected execute method and implements the behavior common to all

of the activities (such as error handling, logging etc.). Both methods expect an

ExecutionContext as an input parameter, and result in an ExecutionResult instance.

As depicted in the sequence diagram, given in Fig. 19, the execution of an

ETLProcess is initiated by invoking the Execute method of an ETLProcessService

instance. In other words the execution commences upon receiving an ETLPro-

cessExecutionRequest message and completes by creating and sending an

ETLProcessExecutionResponse message.

Subsequently, a specific application domain is created (Hazzard and Bock 2013;

Troelsen 2012) and the ETLProcessExecutor is instantiated. It should be empha-

sized that the specific application domain was introduced to support the generation

and compilation of executable code during the execution of a process.

Once the ETLProcessExecutor has been created, its Execute method will be

invoked. As previously stated, the execution of ETL processes is metadata driven,

so the first step is to retrieve the relevant metadata (i.e., the ETL-P model which is

to be executed as well as the ETL-E models it references). To this end the

LoadMetadata method of an ETLMetadataService instance is invoked.

Fig. 18 ExecutionHandlers class diagram

452 M. Petrović et al.

123

The next step is to create the root execution context (as an instance of the

ExecutionContext class) for the ETL process, based on the relevant metadata, which

is accomplished by invoking the Create method of an ExecutionContextService

instance. Finally, the Execute method of the root ExecutionContext (or more

precisely, the ExecutionHandler assigned to that context) is invoked to execute the

ETL process which actually sets off the execution of the sequence of activities

comprising the process. The activities are thus executed one by one. The execution

of each activity entails the creation of a new ExecutionContext for that activity and

the invocation of its Execute method. However, if the activity is composite, its

execution presumes that individual ExecutionContexts will be created for the

execution of each of its subactivities. Depending on the type of activity

(ConditionalBlock,IterateBlock or ParallelBlock) the actual execution will be

either sequential or parallel.

In order to create an ExecutionContext the Create method of an ExecutionCon-

textService instance is invoked. First the appropriate ExecutionContext is

Fig. 19 ETLProcessService sequence diagram

Automating ETL processes using the domain-specific… 453

123

instantiated. Then, for each referenced ETL-E expression, the corresponding

executable code must be generated and compiled, which is accomplished by

invoking the Compile method of an ETLCompilerService instance. The compilation

process (Hazzard and Bock 2013; Troelsen 2012; Microsoft 2014a, b) results in a

dynamic method (DynamicMethod) which is then attached to the ExecutionContext

instance. Finally, the appropriate ExecutionHandler instance is created (by invoking

the Create method of an ExecutionHandlerService instance) and assigned to the

ExecutionContext. It should be emphasized that a single ExecutionHandler is

created for each particular type of activity thus different execution contexts

pertaining to the same type of activity will be assigned the same ExecutionHandler

instance.

6.2 ETL DataProcess implementation

A data process consists of a number of simple data operations (i.e., the data

extraction, transformation and loading operations) which are composed into a data

flow. The flow of data between the operations (i.e., the execution order of the data

operations) is defined by DataFlowPaths, with output (OutputArgument) of one

operation providing the input (InputArgument) of the following operation. Thus, the

execution flow of a data process is driven by the interdependence of the data

operations. However, the actual scheduling of the execution time of these operations

is predetermined by the availability of the relevant data. To this end a push

mechanism has been adopted in the proposed application framework to ensure that

each data operation, upon completion, transfers the relevant data to the next

operation. The implementation of this mechanism is based on the well-known

Observer pattern with the output argument of an operation taking the role of the

Subject and the input argument of the following operation taking the role of the

Observer. The binding of these arguments is accomplished via the Subscribe

method of the IOperationOutputArgument interface.

An abridged model depicting the main concepts of the proposed application

framework (related to the implementation of ETL data processes) is given in

Fig. 20.

The DataProcessExecutor class defines two methods: Initialize for configuring

the execution environment and Execute for initiating the execution of a data process.

The data operations comprising a DataProcess are represented by the ExtractEntity,

TransformEntity and LoadEntity abstract classes, which have been further

specialized to introduce concrete data operations (ExtractEntityFromXml, Ex-

tractEntityFromSqlServer, ExtractEntityFromOracle, JoinEntity, UnionEntity,

SplitEntity, SortEntity, FilterEntity, AggregateEntity, LoadEntityIntoText, LoadEn-

tityIntoSqlServer, LoadEntityIntoOracle, etc.). The classification of data operations

is in accordance with the taxonomy of ETL operations given in (Vassiliadis et al.

2009; Petrović 2014).

The inputs and outputs of a data operation are represented by the InputArgument

and OutputArgument classes, respectively, which, in accordance with the adopted

data transfer mechanism, implement the required interfaces (IOperationInputArgu-

ment and IOperationOutputArgument).

454 M. Petrović et al.

123

The ServiceProvider class is responsible for providing and managing the various

components (such as ETLMetadataService, ETLCompilerService, ETLDataOpera-

tionService, etc.) that are used during the execution of a data process.

The ETLDataProcessService sequence diagram is given in Fig. 21.

Similarly to the execution of an ETL process, the execution of a DataProcess

commences upon receiving an ETLDataProcessExecutionRequest message and

completes by creating and sending an ETLDataProcessExecutionResponse message

(depicted in Fig. 21 by the invocation of the Execute method of a ETLDataPro-

cessService instance). A specific application domain is then created and the

DataProcessExecutor is instantiated.

However, contrary to the execution of an ETL process, all of the data operations

comprising the data process must be instantiated and bound to each other, before the

execution of the data process can commence. Thus once the DataProcessExecutor

has been created, its Initialize method will be invoked to configure the execution

environment. Since the execution of a data processes is also metadata driven, it is

first necessary to retrieve the relevant metadata (i.e., the ETL-O model which is to

be executed as well as the ETL-E models it references) by invoking the

LoadMetadata method of an ETLMetadataService instance. In accordance with

the obtained metadata, the appropriate DataProcess is instantiated and then

configured. The configuration of a data process instance entails the creation of all of

the involved data operations.

In order to create a DataOperation the Create method of a DataOperationService

instance is invoked. First the appropriate DataOperation is instantiated. Then, for

each referenced ETL-E expression, the corresponding executable code must be

generated and compiled, which is accomplished by invoking the Compile method of

an ETLCompilerService instance. The compilation process (Hazzard and Bock

Fig. 20 ETLDataProcessService class diagram

Automating ETL processes using the domain-specific… 455

123

2013; Troelsen 2012; Microsoft 2014a, b) results in a dynamic method (Dynam-

icMethod) which is then attached the DataOperation which is subsequently attached

to the to the DataProcess instance through the AddOperation method.

When all of the DataOperations have been created, the final step is to bind the

operations to each other in order to create the defined data flow. This is

accomplished by invoking the BindOperations method of the DataProcess instance

for every DataFlowPath in the obtained model.

Fig. 21 ETLDataProcessService sequence diagram

456 M. Petrović et al.

123

Once the execution environment has been configured, the Execute method of the

DataProcessExecutor instance is invoked to execute the data process. This entails

the creation of a collection of the Extract operations and the concurrent invocation

of their Execute methods. In accordance with the adopted data transfer mechanism,

the remaining data operations (i.e., the data transformation and load operations) will

automatically be executed as soon as they receive the necessary data. The execution

of the data process is completed when all of the data operations have been executed

(i.e., once the isComplete attribute of every single operation is set to true).

7 Conclusion

A novel solution, based on the Domain-Specific Modeling (DSM) approach to

software development, is proposed for the conceptualization and automation of ETL

process development. A specific platform (ETL-PL) is proposed to technologically

support, not only the automated development of ETL processes, but also their

subsequent execution.

In comparison with the existing methodological approaches, reviewed in Sect. 2,

it should first be emphasized that, as previously stated, only a few approaches exist

which enable the automated development of ETL processes in the context of MDD

(i.e., which support both the formal specification of ETL processes and the

automated transformation of such specifications into executable code), while the

remaining approaches only deal with the first aspect i.e., the modeling ETL

processes.

On the specification side, building on the identified strengths and weaknesses of

the analyzed approaches, the proposed solution provides a means for the formal

specification of the different aspects of an ETL process (e.g., the control flow, the

data flow, the data structures, etc.), using an extensible set of independent DSLs

(each providing only a minimal, yet extensible, set of semantically rich domain-

specific concepts pertaining to the relevant aspect) and even more importantly (in

order to enable automated development) for the formal definition of the semantics

of the actual data transformations. Moreover, the syntax and the semantics of the

DSL concepts are controlled, hence incorrect or incomplete designs are prevented

by making them impossible to specify. Therefore, one of the main advantages of

ETL-PL is that, since it is geared towards ETL domain experts, it doesn’t require

skilled programmers, or even technical knowledge. The fact that it is based on a

minimal set of semantically rich abstractions, which encapsulate the existing

knowledge and experience in the ETL domain, makes it possible to fully exploit the

knowledge and expertise of domain experts. Consequently, it is easier to learn and

use compared to vendor ETL tools and GPML based approaches. Furthermore, by

providing a graphical development environment, the ETL processes (which can

contain very complex custom transformation operations) are easily specified by

domain experts (who need not be technically proficient) and the actual implemen-

tation will be automatically obtained from the specification, thus significantly

increasing development productivity and efficiency, while lowering the develop-

ment and maintenance costs. Moreover, by separating the different aspects into

Automating ETL processes using the domain-specific… 457

123

different models, and allowing for complex data processes to be gradually defined

(through several diagrams at different levels of abstraction) the development of very

complex ETL processes is significantly facilitated.

On the implementation side, it should be noted that, to the best of our knowledge,

only two groups of authors deal with this aspect in the context of MDD, yet their

specifications are based on extensions of GPMLs. The introduction of ETL DSLs as

a means for the formal specification of ETL processes, as well as the automated

transformation between the specification and the application framework, signifi-

cantly elevates the semantic level of the solution whose implementation is supported

by the introduced application framework. Since both the specification and the

application framework use concepts close to the real ETL domain concepts the

transformation between them can be fully automated, thus significantly increasing

development productivity and efficiency while lowering the development and

maintenance costs. Moreover, the obtained solutions would have good performances

and be scalable and maintainable yet, at the same time, flexible (i.e., they could be

easily extended to adapt to the constant changes in the environment and new

requirements).

It should also be emphasized that an additional advantage of ETL-PL is that it

presumes the dynamic execution of ETL process models i.e., the automatic

generation, compilation and execution of ETL processes at runtime. More

importantly, in light of the constant changes in business requirements, the proposed

solution provides the necessary flexibility to quickly respond to these changes since

the process specification can easily be adapted (i.e., modified, extended or even

created anew) and the corresponding executable code will be promptly generated

and executed. In addition, the entire ETL process is well-documented.

The deployment of the developed ETL process is straightforward, since the

proposed solution presumes that the generic services (which are capable of

interpreting any concrete ETL model and whose implementation is stable) are

installed on each of the available hardware nodes, so that every node can handle the

execution of any concrete ETL process or data process model. The specific

implementation of an ETL process is given in the models, which are stored in the

metadata repository, thus the actual deployment is accomplished by simply storing

the models in the repository. Furthermore, the modification of existing models, or

the creation of new ones, doesn’t affect the operation of the execution environment.

Finally, ETL-PL is developed in accordance with the service-oriented approach

to software development (SOA). The SOA approach was adopted because it results

in extremely scalable and flexible solutions, which is imperative in light of the

frequent changes in business requirements. Since it promotes the loose-coupling of

services, the solution can be easily extended, simply by adding new services, or

modified without affecting the existing services. It was thus designed to enable

parallel and distributed execution of an ETL process. By parallelizing the execution

of the services, instead of executing them sequentially, the performances of an ETL

process are significantly increased. Distributing the execution of the services over

the different available hardware nodes leads to yet a further increase in

performances. The ever increasing volume of data that is to be processed can,

458 M. Petrović et al.

123

thus, be handled by simply increasing the hardware capabilities (by adding new

hardware nodes) and parallelizing the execution.

In order to validate the proposed solution a number of tests have been conducted

yielding promising results thus future work would be aimed at testing it in different

domains. Further work would also be aimed at exploring the possibility of

enhancing the ETL-PL execution environment by introducing a specific Execu-

tionOptimizator service which would be responsible for determining the best

possible execution plan for an ETL process based on the defined ETL process model

and the actual hardware infrastructure available at runtime.

References

El Akkaoui Z, Zimányi E (2009) Defining ETL worfklows using BPMN and BPEL. In: Proceedings of

DOLAP ‘09, (China), pp 41–48

El Akkaoui, Zimányi E, Mazón J-N, Trujillo J (2011) A model-driven framework for ETL process

development. In: Proceedings of DOLAP ‘11, (UK), pp 45–52

El Akkaoui Z, Mazón J-N, Vaisman A, Zimányi E (2012) BPMN-based conceptual modeling of ETL

processes. In: Data warehousing and knowledge discovery, LNCS 7448. Springer, Berlin, pp 1–14

Fowler M (2010) Domain-specific languages. Addison-Wesley Professional, Boston

Greenfield J, Short K, Cook S, Kent S (2004) Software factories: assembling applications with patterns,

models, frameworks, and tools. Wiley, Hoboken

Hazzard K, Bock J (2013) Metaprogramming in.NET. Manning Publications, Greenwich

Ivantsov R (2009) Irony—.NET language implementation kit. [Online] CodePlexProject Hosting for

Open Source Software: http://irony.codeplex.com/

Jarke M, Lenzerini M, Vassiliou Y, Vassiliadis P (2003) Fundamentals of data warehouses. Springer,

Berlin

Kelly S, Tolvanen JP (2008) Domain-specific modeling: enabling full code generation. Wiley, Hoboken

Kimball R, Caserta J (2004) The data warehouse ETL toolkit: practical techniques for extracting,

cleaning, conforming, and delivering data. Wiley, Hoboken

Kimball R, Ross M, Thornthwaite W, Mundy J, Becker B (2010) The Kimball group reader: relentlessly

practical tools for data warehousing and business intelligence. Wiley, Hoboken

Luján-Mora S, Trujillo J (2004) A data warehouse engineering process. In: Advances in information

systems, LNCS 3261. Springer, Berlin, pp 14–23

Luján-Mora S, Vassiliadis P, Trujillo J (2004) Data mapping diagrams for data warehouse design with

UML. In: Conceptual modeling-ER 2004, LNCS 3288. Springer, Berlin, pp 191–204

Mazón J-N, Trujillo J (2008) An MDA approach for the development of data warehouses. Decis Support

Syst 45(1):41–58

Microsoft (2013) Modeling SDK for Microsoft Visual Studio 2013. [Online] http://www.microsoft.com/

en-us/download/details.aspx?id=40754

Microsoft (2014a) Emitting dynamic methods and assemblies. [Online] https://msdn.microsoft.com/en-

us/library/8ffc3x75%28v=vs.110%29.aspx

Microsoft (2014b) Expression trees (C# and Visual Basic). [Online] https://msdn.microsoft.com/en-us/

library/bb397951.aspx

Muñoz L, Mazón JN, Pardillo J, Trujillo J (2008) Modelling ETL processes of data warehouses with

UML activity diagrams. In: On the move to meaningful internet systems: OTM 2008 workshops,

LNCS 5333. Springer, Berlin, pp 44–53

Muñoz L, Mazón JN, Trujillo J (2009) Automatic generation of ETL processes from conceptual models.

In: Proceedings of DOLAP ‘09, (China), pp 33–40

Petrović M (2014) A model driven development approach for the data warehouse extract, transform and

load process. Ph.D. Thesis final version (in Serbian), Faculty of Organizational Sciences, University

of Belgrade, Serbia

Automating ETL processes using the domain-specific… 459

123

http://irony.codeplex.com/
http://www.microsoft.com/en-us/download/details.aspx%3fid%3d40754
http://www.microsoft.com/en-us/download/details.aspx%3fid%3d40754
https://msdn.microsoft.com/en-us/library/8ffc3x75%2528v%3dvs.110%2529.aspx
https://msdn.microsoft.com/en-us/library/8ffc3x75%2528v%3dvs.110%2529.aspx
https://msdn.microsoft.com/en-us/library/bb397951.aspx
https://msdn.microsoft.com/en-us/library/bb397951.aspx

Simitsis A (2005) Mapping conceptual to logical models for ETL processes. In: Proceedings of DOLAP

‘05, (Germany), pp 67–76

Simitsis A, Vassiliadis P (2003) A methodology for the conceptual modeling of ETL processes. In:

Proceedings of the decision systems engineering—DSE ‘03, (Austria), pp 305–316

Simitsis A, Vassiliadis P (2008) A method for the mapping of conceptual designs to logical blueprints for

ETL processes. Decis Support Syst 45(1):22–40

Simitsis A, Vassiliadis P, Terrovitis M, Skiadopoulos S (2005) Graph-based modeling of ETL activities

with multi-level transformations and updates. In: Data warehousing and knowledge discovery,

LNCS 3589. Springer, Berlin, pp 43–52

Troelsen A (2012) Pro C# 5.0 and the.NET 4.5 Framework. Apress

Trujillo J, Luján-Mora S (2003) A UML based approach for modeling ETL Processes in data warehouses.

In: Conceptual modeling-ER 2003, LNCS 2813. Springer, Berlin, pp 307–320

Turajlić N, Petrović M, Vučković M (2014) Analysis of ETL process development approaches: some

open issues. In: Proceedings of SYMORG’14, pp 45–51

Vassiliadis P, Simitsis A, Skiadopoulos S (2002) Modeling ETL activities as graphs. In: Proceedings of

DMDW’02, pp 52–61

Vassiliadis P, Simitsis A, Skiadopoulos S (2002) Conceptual modeling for ETL processes. In:

Proceedings of DOLAP ‘02, (USA), pp 14–21

Vassiliadis P, Simitsis A, Georgantas P, Terrovitis M (2003) A framework for the design of ETL

scenarios. In: Advanced information systems engineering, LNCS 2681. Springer, Berlin,

pp 520–535

Vassiliadis P, Simitsis A, Georgantas P, Terrovitis M, Skiadopoulos S (2005) A generic and customizable

framework for the design of ETL scenarios. Inf Syst 30(7):492–525

Vassiliadis P, Simitsis A, Baikousi E (2009) A taxonomy of ETL activities. In: Proceedings of

DOLAP’09, (China), pp 25–32

460 M. Petrović et al.

123

	Automating ETL processes using the domain-specific modeling approach
	Abstract
	Introduction
	Related work
	Conceptual ETL framework
	ETL process modeling
	An illustrative example

	The implementation of ETL process specifications
	ETL platform
	ETL platform implementation
	ETL process implementation
	ETL DataProcess implementation

	Conclusion
	References

