
ORIGINAL ARTICLE

Variability patterns for business processes in BPMN

Alaaeddine Yousfi1,2 • Rajaa Saidi1,3 •

Anind K. Dey2

Received: 10 April 2015 / Revised: 5 July 2015 / Accepted: 1 August 2015 /

Published online: 25 August 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract Many entities, both in academia and the business sector, urge an effi-

cient improvement of business processes. However, when it comes to addressing

this point, each slight disparity in the business rules and/or objectives translates into

a separate model, which is neither practical nor acceptable as it burdens the host

process-aware information system with repetitive and almost verbatim instances. To

solve this issue, we propose considering variability. Variability will serve as a

business process improvement technique to efficiently design and run a variable

business process throughout different business situations that are similar to one

another is some ways yet differ in others. First, we define variability within the

context of business processes. Second, we present a set of variability patterns and

explain how they are used. We validate our approach via the business process

improvement patterns known and used by the community. The variability design

patterns are a series of business process improvement patterns for building business

process with variability and efficiently acting on the improved process performance

metrics.

Keywords Business process improvement � Business process � BPMN �
Variability � Variability pattern

& Alaaeddine Yousfi

aeyousfi@cmu.edu

Rajaa Saidi

r.saidi@insea.ac.ma

Anind K. Dey

anind@cs.cmu.edu

1 LRIT, Research Unit Associated to the CNRST (URAC 29), FSR, Mohammed V University,

Rabat, Morocco

2 HCII, Carnegie Mellon University, Pittsburgh, PA, USA

3 INSEA, BP 6217, Rabat, Morocco

123

Inf Syst E-Bus Manage (2016) 14:443–467

DOI 10.1007/s10257-015-0290-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s10257-015-0290-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10257-015-0290-7&domain=pdf

1 Introduction

Business Processes (BPes) are steadily gaining more ground in controlling how

workflows are managed and handled. These components contribute greatly to the

optimization of important performance metrics such as timeliness, effectiveness and

correctness. They are dynamic entities able to handle a diversity of business

situations Predonzani et al. (1999). However, business processes are still intuitively

modeled in a very basic and ad hoc fashion. They are typically designed and used

based on what one feels to be true without conscious reasoning or an explicit

approach.

This has meant that when an engineer develops several business processes, she/he

represents and executes them separately from each other, even with a slight

disparity in the business rules/objectives. As a result, the host Process-Aware

Information System (PAIS) Mejia Bernal et al. (2010) ends up having an abundance

of repetitive and almost verbatim business processes, which is neither practical nor

acceptable due to the fact that this approach undermines the three major concerns of

software engineers; cost, quality and time Sinnema and Deelstra (2007).

As such, let us consider the following examples:

Example 1 Production Line

Adam, Gina and Emily stop by McDonald’s to order a Big Mac. Each of these

people has the following business requirements with regard to her/his burger to be:

– Adam does not want pickles in his burger.

– Gina does not want sauce and lettuce in her burger.

– Emily wants a regular burger.

Example 2 Assembly Line

Boeing currently builds its commercial airplanes across the state of Washington.

Each model is characterized by multiple variants. For instance, the 777 can be

772ER, 772LR, 773ER or 777F. Moreover, each variant has multiple options such

as the engine type (e.g., Rolls Royce, General Electric). Say United and Delta place

the following specific orders:

– United orders a 772LR with Rolls Royce engines.

– Delta orders a 773ER with General Electric engines.

Based on both examples, McDonald’s does not make new production lines to fulfill

each different requirement of the same Big Mac. Neither does Boeing build multiple

assembly lines to fulfill each different requirement of the same 777. A production

line costs money. So does an assembly line. For McDonald’s, a clerk handles all the

customer requirements through the same system that is offering multiple variants

(e.g., pickle, sauce and lettuce). For Boeing, the airlines’ requirements are fulfilled

through the same assembly line for each model (e.g., one existing assembly line for

the 777 in Everett, Washington). Note both examples use a variation throughout the

444 A. Yousfi et al.

123

same production/assembly line of reference to fulfill the specific requirements of

each customer.

The production (e.g., McDonald’s) and the assembly (e.g., Boeing) lines are two

specific examples of what was generalized in early 1990s (when business processes

were officially introduced) as workflow. A business process workflow is a sequence

of connected steps that go from a mission objective to a business objective. Here,

the goal is to propose a generic approach that fits within the generic nature of a

business process and models it in an efficient way. Efficiency refers to the level of

disparity between the business process outcome (product or service) and the

business situation (a set of business requirements).

To model business processes in an efficient way, we apply the technique of

Variability Hallerbach et al. (2010), Park and Yeom (2011), Khan et al. (2011),

Galster and Avgeriou (2011). Variability will serve as a Business Process

Improvement (BPI) Shtub and Karni (2010) technique to achieve more efficient

results throughout several business situations. This concept has been defined in a

variety of ways, including:

1. Variability is the propriety of an object to being changeable and the capacity of

a system to be tailored van Eijndhoven et al. (2008).

2. Variability is the ability of a core asset to vary in the different product contexts,

under conditions of environment, in a preplanned fashion, within the product

line scope Santos et al. (2010).

Subsequently, our new definition of variability, which adapts to the context of

business processes, is split among the highest and lowest levels of abstraction:

– highest or design-time: Variability is a technique for designing business

process(es), in which business rules and/or objectives are similar to one another

in some ways but different in others, by factorizing the similarity(ies) and

grouping the difference(s) into a business process of reference.

– lowest or run-time: Variability is the ability of a business process to change its

behavior, within the scope of the pre-modeled eventualities already anticipated

in the business process of reference.

Why variability? Via variability we obtain a number of advantages that we

enumerate below (by gain):

1. the wasted time and money spent on modeling separate business processes with

commonalities is reduced. (time and cost)

2. the expenditures for maintenance are minimized because of the business

processes’ flexibility. (cost)

3. a business process life-cycle lasts longer since agility reduces maintenance

frequency. (time and cost)

4. portions of business processes can be reused in other business processes due to

the reason that variability supports reusability. (time and cost)

Variability patterns for business processes in BPMN 445

123

5. the process variants are dynamic and reflect the dynamics of real-world

environments. (quality)

All in all, without variability, fulfilling the business requirements of each instance is

usually accomplished by treating each variation as a distinct process, which leads to

redundancy and inconsistency among the business processes Milani et al. (2012).

As a matter fact, the goal of this paper is to propose a solution to coherently and

efficiently design and run business processes with similarities yet have some

differences. Building on that, the contributions of this paper are threefold. First, we

establish the new concepts of variable business process, variable partition and

variability objective. Second, we define two forms of variability patterns: product

patterns and process patterns. The first are design elements while the second are two

straightforward processes for generating business processes with variability at both

design-time and run-time.

A variability modeling technique is a procedure for modeling variability, while a

variability mechanism is a way to introduce or implement variability. In fact, this

manuscript is structured as follows: Sect. 2 synthesizes previous work in both

directions of variability (modeling technique and mechanism) and highlights their

shortcomings. Section 3 describes our approach in managing variability within

business processes in BPMN while Sect. 4 presents an illustrative example of our

approach. Afterwards, Sect. 5 discusses the validation of the approach while Sect. 6

concludes this paper, discusses the results and considers future work.

2 Existing variability modeling techniques

Although BPMN1 is a BPML2 that has been shown to have great value in Business

Process Management (BPM) Jeston and Nelis (2014), its variability modeling

techniques are still relatively nascent. Authors of Santos et al. (2010) suggest

analyzing existing BP models, to discover possible variations, and applying a Non-

Functional Requirement (NFR) procedure so as to assure a process configuration.

They unfortunately fail to address how their proposed NFR methodology can be

used to produce the resulting diagrams. In addition, they consider all BPMN

elements to be potential variation points which is somehow paradoxical since, for

instance, saying a pool may be a decision point appears unsound. Similarly, authors

of Weidmann et al. (2011) offer an incipient approach as it still does not explain

how their methodology can be applied to real world use cases. They plan to explore

this in their future work.

Alternatively, the variability modeling techniques proposed by La Rosa et al.

(2008), Schnieders and Puhlmann (2006) are a promising stepping stone toward our

suggested approach. The authors borrow the concept of stereotype from UML 2 to

establish their mechanisms. Hereafter, we synthesize their work.

1 Business Process Model and Notation.
2 Business Process Modeling Language.

446 A. Yousfi et al.

123

Based on the achievements of La Rosa et al. (2008), each BPMN task can have

one of the seven stereotypes (� VarPoint �; � Abstract �;� Null �;
� Optional �;� Alternative �;� Variant � and� Default �) attached to it.

Judging by their specification, we can group, actually, each of which into two

separate sets referring to, either a Rule of Choosing (RC), or, a Rule of Being

Chosen (RBC).

RC 2

� Abstract �
� Null �
� VarPoint �

[
� Optional �
� Alternative �

8
>>>>>>>><

>>>>>>>>:

AND RBC 2
� Default �
� Variant �

�

Figure 1 shows an excerpt of a stereotyped business process model using the

‘‘Basic Mechanisms’’. Variability here sets the rules regarding the ordering of a

credit card(s). On account of this variability, the customer may order a credit card

from her/his bank depending on the variants offered (package card, gold and

platinum). The task ‘‘Order credit card’’ is the Generic Task. The presence of the

label � Stereotype � indicates that the rule for ordering the card(s) differs

depending on the value of this label, which may be one of the RC set elements.

To get Table 1, we substitute the label � Stereotype � from the generic task

with each value belonging to the first subset of RC apart; we identify the default

variant and count the number of additional ones. Note, we disregard both �
Optional � and � Alternative �, in this paper, since they are exceptional cases of

� Null � and � Abstract �, respectively, with a unique variant.

BPMN basic stereotypes, even though pioneering, are considered elementary

since they only accept atomic variants and offer simple variability. To address this,

authors of Schnieders and Puhlmann (2006) propose a set of advanced variability

Table 1 Basic mechanisms’ explanatory and synthesized table (for the case of three variants)

Basic mechanism Default variant Cardinality

� Abstract � Package card 1

� Null � None (� Default � is replaced by � Variant � on Fig. 1) 0..3

� VarPoint � Package card 1..3

Fig. 1 Stereotyped basic
mechanism variability

Variability patterns for business processes in BPMN 447

123

mechanisms in which the variants are involved. Five complex mechanisms are

introduced (Encapsulation of Sub-Processes (ESP), Parameterization, Inheritance,

Extension Points and Design Patterns). The encapsulation of sub-processes along

with the extension points are, ultimately, progressive forms of the two basic

mechanisms � Abstract � and � Null �, respectively. Unlike these two basic

mechanisms, the two advanced mechanisms support non-atomic variants which are

sub-processes. The design patterns are, however, excluded in some references

limiting the number of advanced mechanisms to four since this component is simply

a combination of the others. For this reason, we will deal, henceforward, with the

first four evolved mechanisms and not consider the ‘‘Design Patterns’’.

The Encapsulation of Sub-Processes (ESP) imposes that a single and unique sub-

process variant be chosen. Figure 2 elucidates how a bank customer should ask for

either a short-term loan or a long-term loan with the former option being the default

one. Choosing both types of loans is not authorized. This is analogous to the

� Abstract � basic stereotype in the cardinality except for the variants’ atomic

nature.

The Extension Points mechanism specifies that all offered options (sub-

processes) are possible, including no choice. Figure 3 illustrates that the bank

customer may subscribe to Internet-based remote banking, the Mobile-based remote

banking, to both services or to neither (no default variant is required). This is

analogous, too, to the � Null � basic mechanism except for the variants’ atomic

nature.

The Inheritance mechanism, as mentioned by Schnieders and Puhlmann (2006),

modifies an existing (default) sub-process by adding either activities or pools to

match specific business rules. This supports having alternative variation points.

Figure 4 shows how the default and parent sub-process (withdraw money) can either

be instantiated alone or the specialized and child sub-process (withdraw money plus

the backup task) will take over by reusing the sub-process (withdraw money) for

instantiation, in case the ATM is depleted and the cash is no longer available, to

suggest a nearby ATM with available cash.

The Parameterization, unlike all the previous mechanisms, offers the possibility

to interact with both event and data. That is to say, this mechanism is both data-

based and/or event-based, which means, it could either represent a branching

Fig. 2 Stereotyped ESP
mechanism variability

Fig. 3 Stereotyped extension
points mechanism variability

448 A. Yousfi et al.

123

variability in the process where the alternatives are triggered upon an event that

occurs at the variation point, or, upon the using of process data. Figure 5 presents an

example with a double parameterization (data-based and event-based). As indicated,

the first variability simulates the frequency of collecting bank account maintenance

fees (event-based) that is either yearly or quarterly, while the second defines the

charge (data-based) that needs to be collected.

Although these synthesized mechanisms model variability in BPMN, they suffer

from the following significant issues:

1. By adding the stereotypes, the mechanisms extend BPMN and burden its

diagrams with superfluous notations. The models appear non readable. Still,

they are reserved to BPMN and stereotyped BPMN acquainted entities. More

importantly, we believe variability can be stereotype-free in BPMN.

2. It is not clear how to take these mechanisms and apply them to real field cases.

No existing approach discusses taking over the stereotyped diagrams and

applying them to field work.

3. There is redundancy in some basic and advanced mechanisms. For example, the

� Abstract � and the ESP mechanisms are similar in cardinality. So why two

mechanisms?

4. These mechanisms are both less open and less flexible for event(s) handling.

Parameterization offers very restrictive support for modeling events, while the

other mechanisms do not offer any possibility for modeling events.

The following section presents our approach to circumvent these four weaknesses.

In doing so, we reduce the complexity of process diagrams, time needed and

modeling costs by skipping unnecessary phases while designing variability for

business processes in BPMN. Moreover, we introduce variability patterns to

motivate component reuse and standardize the variability mechanisms. We also

Fig. 4 Stereotyped inheritance
mechanism variability

Fig. 5 Stereotyped parameterization mechanism variability

Variability patterns for business processes in BPMN 449

123

outline the variability configuration and derivation patterns to guide the designer

and ease the modeling task.

3 Proposed variability modeling technique

To identify and manage variability in a procedural, organized and standardized

methodology, we build our solution on the concept of patterns. Patterns are

problems and approaches to solving problems described in a generalized form

Predonzani et al. (1999). They depict a recurrent issue and its core solution. The

pattern solution makes the design more flexible, elegant and reusable Gamma et al.

(1994). Here, we use two types of patterns: Product Patterns that represent a model

to apply and Process Patterns that set a technique to follow Conte et al. (2002). The

use of product patterns helps overcome redundancy and inconsistency among the

business process models by factorizing business processes that are similar to one

another in some ways but are different in others, in a business process of reference.

Still, for each new business rule the change is incremental (not radical). In other

words, the pattern already exists as a template and the designer only adds new

variants to fulfill each new business requirement. On the other hand, the process

patterns Ambler (1998) clarify the straightforward steps to be taken to build a BP

with variability both at design-time and run-time. In short, patterns result in easier

uptakes by business process modelers and therefore information system designers.

3.1 Business process with variability

We designate by a Variable Business Process (VBP), a business process embedding

variability. Variability embedment is characterized by the presence of at least one

Variable Partition like indicated on the definition diagram of Fig. 6. The variable

partition delimits the discrepancy zone, in the process, where multiple possibilities

may occur. Each variable partition is distinguished by a Variability Objective which

describes the discrepancy handled by the variable partition (e.g., select notification

method, order credit card). Also, it is important to point out that variable partitions

may overlap within the same process. When overlapping, smaller variability

objectives are grouped into bigger ones and so forth (e.g., select package card into

choose debit card into order product).

Fig. 6 Variable business process definition model

450 A. Yousfi et al.

123

Variable partitions are, indeed, the cornerstone of our approach for building

VBPes. Therefore, we focus on presenting our standardized approach for modeling

these entities based on the concept of patterns. By embedding variable partitions

into the high-level abstraction process models, we build Configurable Process

Models (as known as CPMs) Recker et al. (2007), Derguech et al. (2012), Chun

et al. (2009). CPMs are a step forward in the systematic reuse of process models.

They offer the possibility for modeling BPes that are similar to one another in many

ways yet differ in some other ways. The CPM is, then, considered a reference model

to be employed in distinct use cases.

Our definition of variability (see Sect. 1) is split into design-time and run-time.

Actually, variability mutates from the highest to the lowest level of abstraction and

so forth throughout its cycle (Fig. 7). The way it is viewed and how it operates is

different at each stage of the cycle. Table 2 groups the different factors in relation to

the highest and lowest levels. In the modeling stage, variability is more about

anticipation of changes and dynamics: at this point, the business rules are virtual,

and the activities are generic. For the execution level, the goal is adaptation which

means, the business rules are concrete regarding a certain use-case scenario and

engender the activities to be specific.

Fig. 7 Variability mutation cycle within business processes

Table 2 Variability facets at the highest and lowest levels of abstraction

Variability facet Design-time (highest) Run-time (lowest)

Business rule Virtual Concrete

Variability goal Anticipation Adaptation

Activity Generic Specific

Variability partition Variable partition Adapted partition

Business process model Configurable process model Derived process model

Variability patterns for business processes in BPMN 451

123

3.2 Variability design patterns

3.2.1 Patterns specification

The variability design patterns are our product patterns for designing VBPes. They

share the same ground rules as Workflow Patterns Aalst et al. (2003) since they

innately deal with problems such as sequence, choice and synchronization. In

addition, they handle recurrent variability design problems and their solutions by

serving as a template for reducing the modeling and simplifying the maintenance of

each variable partition to be.

Based on the meta-model of Fig. 8, this section describes the standardized

representation we adopt for modeling variable partitions in an automatic and formal

way. These partitions will be embedded in the highest level abstraction diagrams of

the targeted processes.

Because BPMN v2.0 OMG (2011) does not offer an event-based OR gateway, we

extend this version by adding the latter gateway as indicated with the thick
Generalization in the meta-model. We believe by adding a new gateway into

BPMN v2.0 we provide more flexibility for handling the event-triggered variable

partitions. The semantic of the event-based OR gateway that we introduce is similar

to the data-based one, except for the branching that is event-based. For the graphical

representation, we add an upper case E in the center of the data-based OR shape.

Authors of Dumas et al. (2010) and Gschwind et al. (2008) discuss how to

structure process models. They take already existing unstructured models and

transform them into structured ones. As a continuation to their work, the patterns we

introduce inherently help building both structured process diagrams from scratch

and less error prone model designs. Moreover, the patterns we propose meet, by

definition, the requirements of control-flow posed by BPMN OMG (2011), which

Fig. 8 Variability design patterns in BPMN meta-model

452 A. Yousfi et al.

123

enables the process model(s) holding the partitions to be flawless. As an illustration,

Fig. 9 draws a comparison between a process excerpt model both in uncontrolled

and controlled design versions. In the bloc Fig. 9a ‘‘task 1’’ holds, for instance, two

branching conditions. If the process designer in case (a) intends, for example, to

impose a single path in the workflow, these branching conditions MUST be

mutually exclusive. If she/he does not pay attention to such a critical condition, the

process will get blocked. To avoid such a disastrous situation, it is better to use a

gateway (Fig. 9b). In this case, it is of type XOR (data-based) with a catch-up

branching-condition-free default path. Obviously, the argument stands for itself in

case of OR or even non-conditional branching (Fig. 9c).

As indicated in the meta-model (Fig. 8), the variable partition definition (the area

in the business process where multiple possibilities may occur) is linked to both its

cardinality as well as its triggering method. For the cardinality, we define three

types:

1. Monomial: a sole variant among the ones offered is authorized. A default one
must be specified.

2. Multiple: several variants among the ones offered are authorized. A default
one must be specified.

3. Optional: a no choice as well as several variants among the ones offered is/are

authorized. A default one is the pristine sequence flow path.

a

b

c

Fig. 9 Example of control-flow
situations in BPMN

Variability patterns for business processes in BPMN 453

123

When we add the triggering method to the cardinality description, we arrive at our

definition of variable partitions. For that purpose, we define two types of triggering

methods:

1. Data-based variable partition: the variants are linked to the variation point by
a flow of data.

2. Event-based variable partition: the variants are linked to the variation point
by a flow of events.

Building on the previous classifications (cardinality and triggering method), our

variability design patterns are defined in Table 3, following the format introduced

by Gamma et al. (1994). The set holds six elements. Each of which is bearing the

name ‘‘triggering method (e.g., Data-based) cardinality (e.g., Monomial)’’. The

pattern problem is described by the triggering method along with the cardinality.

The solution provides the gateways (divergent and convergent) to be adopted for

solving the problem. For all patterns, the consequences are optimizing time, cost

and quality in engineering VBPes.

3.2.2 Data-based variability design patterns

Meta-Models are by definition structural diagrams. To set the requirements about the

order in which the BPMN core modeling elements appear in a data-based design

pattern, we introduce the architecture of Fig. 10. The ellipsis (...) indicate that the

number of variants is variable and up to themodeler. The patterns are delimited by two

gateways; a divergent gateway placed at the beginning of the variable partition (a

variation point) and a convergent one located at the end. The nature of the first gateway

depends absolutely on the description of each singlemechanism. The second gateway,

Table 3 Variability design patterns formal definition (TM: triggering method)

Pattern name Problem Solution Consequences

TM Cardinality TM Cardinality Divergent

gateway

Convergent

gateway

Data-

based

Monomial Data 1 XOR (data) XOR (data)

Data-

based

Multiple Data 1..* OR (data) OR (data)

Data-

based

Optional Data * OR (data) OR (data)

Event-

based

Monomial Event 1 XOR (event) XOR (data) Improve business

process

Event-

based

Multiple Event 1..* OR (event) OR (data)

Event-

based

Optional Event * OR (event) OR (data)

1..* The value of the cardinality could be between 1 and n with n an integer

* either 0, 1, 2, … n

454 A. Yousfi et al.

123

though, is placed to control the flow and avoid invalid models. As the BPMN creators

dictate OMG (2011) ‘‘If the flow does not need to be controlled, then a Gateway is not

needed’’. Otherwise, it is. The variants may be activity(ies), intermediate throwing

events or a pristine sequence flow in case of an optional variable partition.

As indicated in the meta-model, we introduce three cardinalities of variability:

Monomial, Multiple and Optional. Table 4 exemplifies the data-based patterns. The

variants [intermediate event(s) and/or the activity(ies)] may vary as long as they

follow the architecture of Fig. 10. For the sake of clarification, uniformity and space

distribution we use three variants as illustration.

3.2.3 Event-based variability design patterns

Similarly to the data-based patterns, the event-based patterns are three types:

Monomial, Multiple and Optional. In this case, the variants are event(s)-triggered.

Figure 11 illustrates our event-based patterns architecture. Unlike the data-based one,

this current representation contains amust-have layer for catching the upcoming events.

According to the BPMN v2.0 specification, the only intermediate catching events to be

implemented are: Message, Signal, Timer, Conditional and Multiple. On the other

hand, all the other characteristics of the data-based architecture stand the same.

Table 5 illustrates the event-based design patterns. The layer of intermediate

catch events as well as the variants [intermediate events and/or activity(ies)] MAY

vary as long as the architecture of Fig. 11 is respected. The Intermediate Timer

Event is placed to catch up with the flow in case no event is triggered after a certain

time. It is equivalent to the ‘‘slash’’ of the data-based architecture. Note, we use the

event-based OR gateway that we introduced at the beginning of this section for the

Multiple and Optional patterns.

3.3 Variability configuration pattern (design-time)

Variability configuration takes place at design-time following the definition we

introduce in Sect. 1. Here, we discuss the process pattern for variability

configuration. Its specification is discussed as follows:

Fig. 10 Data-based variability design patterns architecture

Variability patterns for business processes in BPMN 455

123

– Pattern Name: Variability Configuration

– Problem: Business rules/objectives that are similar to one another in some ways

yet differ in others

– Solution:

Table 4 Examples of data-based variable partitions for the case of a three variant data-based design pattern

Data-

based

design

pattern

Cardinality

(gateway)

Example of variants Default

variant

Variable partition

Monomial 1 (XOR) Variant 1 Subprocess (Activity)

Variant 2 Task (Activity)

Variant 3 Signal (ITE)

Variant 1

Multiple 1..* (OR) Variant 1 Subprocess (Activity)

Variant 2 Task (Activity)

Variant 3 Signal (ITE)

Variant 1

Optional * (OR) Variant 1 Sequence flow

Variant 2 Task (Activity)

Variant 3 Signal (ITE)

Variant 1

1..* The value of the cardinality could be between 1 and n with n an integer

* either 0, 1, 2, … n

456 A. Yousfi et al.

123

– Consequences: Build variable business processes at design-time (aka

configurable process models).

For indication, the right arrow in the pattern solution, means getting in the down-

level process while the left one symbolizes getting out to the up-level process. Also,

the first step can be accomplished following the work of Dijkman et al. (2011), van

Dongen et al. (2008), which we take for granted. Figure 12 clarifies the pattern

solution in BPMN. Referring to the process modeling elements, we impose the use

of the Manual Task for identifying business rules/objectives with commonalities.

Still, we use Ad-hoc type sub-process to denote that the order of processing is not

fundamental. Otherwise, either business rules or partitions, the order of treating

each, does not make the difference in generating the outcome BP with variability

arrangements. To keep traceability over the process levels, we place the (Start and

End) events on the boundaries of each single and expanded sub-process.

It is important to point out that the designer can approach the partitions either

ascending or descending. It means that the modeler may start with smaller partitions

and go higher to the bigger ones (ascending) until every condition is entirely

covered or the opposite (descending). We recall that the partitions may overlap (see

definition model in Fig. 6).

Although built in a three level architecture, the variability configuration pattern

solution does not suffer from complexity since most instructions are purely

accomplished through observation (steps 2, 3, 4, 5 and 6). Furthermore, its presence

along with the set of design patterns can provide great assistance to the designer by

guiding her/him through the steps for generating CPMs. As such, the likelihood of

digressing from the design goal is reduced.

Example: Since the variability configuration pattern is repetitive for each group of

business rules and variable partitions, we focus this illustrative example on

producing one single variable partition. So, let us consider the following group of

business rules:

– Once a credit card is inserted into an ATM, a security check procedure is

launched before offering the transactions menu.

Fig. 11 Event-based variability design patterns architecture

Variability patterns for business processes in BPMN 457

123

– Depending on the bank’s records, a credit card may either be expired, suspended

(after entering an erroneous code three times), declared stolen or valid.

– If a credit card is reported as stolen, both the authorities and the network of local

offices are informed. The card is then confiscated by the ATM.

– In case a credit card is suspended, a suspension message is displayed to the user

and the card gets ejected from the ATM.

– If the credit card is expired, an expiration message is displayed to the user and

the card is confiscated by the ATM.

By going back to the variability configuration pattern solution, the outcome of

each step is discussed as follows (we skip steps 1 and 8 because the work is

repetitive through variable partitions and their merger is discussed throughout the

illustrative example section):

Step 2. Identify the discrepancy(ies) in the group: there is a discrepancy between

the card statuses and their intended follow-ups.

Step 3. Identify the variability objective and delimit the variable partition: the

variability objective is check credit card validity. Its corresponding partition

contains the follow-ups to each credit card reported status plus the delimitation

gateways.

Step 4. Identify the variants: according to the text of the business rules, four

statuses imply four variants: stolen, expired, suspended and valid.

Table 5 Examples of event-based variable partitions for the case of a three variant event-based design

pattern

Event-

based

design

pattern

Cardinality

(gateway)

Example of variants Default

variant

Variable partition

Monomial 1 (XOR) Variant 1 Subprocess (Activity)

Variant 2 Task (Activity)

Variant 3 Signal (ITE)

Variant 3

Multiple 1..* (OR) Variant 1 Subprocess (Activity)

Variant 2 Task (Activity)

Variant 3 Signal (ITE)

Variant 3

Optional * (OR) Variant 1 Subprocess (Activity)

Variant 2 Task (Activity)

Variant 3 Sequence flow

Variant 3

458 A. Yousfi et al.

123

Step 5. Identify the relationship among the variants (cardinality): according to the

text of the business rules ‘‘...a credit card may either be...’’, implies a cardinality

of one.

Step 6. Identify the variants triggering method (event or data): according to the

text of the business rules ‘‘Depending on the bank’s records...’’, implies a data-

based variability.

Step 7. Apply the corresponding variability design pattern: XOR (data-based),

implies a monomial data-based variability design pattern.

Figure 13 presents the graphical representation of the variable partition ‘‘Check

Credit Card Validity’’ in BPMN. The default path is the one leading to the display

of the transactions menu.

3.4 Variability derivation pattern (run-time)

Once the BP designer finishes applying the variability configuration pattern, she/he

will end up with CPMs as an outcome. Each CPM is, considered a reference model

that is susceptible to undergo a derivation procedure, with the goal of getting a

Derived Process Model (DPM), with regard to each business situation. The

variability derivation pattern specification is presented as follows:

– Pattern Name: Variability Derivation

– Problem: Configurable process model

– Solution: Derivation procedure Identify and omit the the superfluous vari-

ant(s) as a response to a business situation needs.

– if the design pattern is of type monomial or optional with one variant

selected, the exclusive gateways (variation point and flow-control) are

omitted.

– if the design pattern is of type multiple or optional with more than one

variant selected, the inclusive gateways (variation point and flow-control)

are replaced with parallel ones.

– Consequences: Derived process model.

Step 1 Step 2 Step 3

Business rules
For each
variable partition

CPMs

For each group of
business rules

Step 4 Step 6 Step 7Step 5 Step 8

Fig. 12 Variability configuration pattern solution in BPMN

Variability patterns for business processes in BPMN 459

123

Example:
The process of Fig. 14a holds a single variable partition of type monomial data-

based, whose variability objective is ‘‘Order a product’’. Judging by this variability,

the client may order a credit card or a checkbook but not both or neither. The CPM

gathers the possibilities. Figure 14b illustrates how the desired variant is held while

the unwanted one is removed. The derived process is the result placed in Fig. 14c

that should be executed. This process is only presented for illustration purposes.

Otherwise, it is possible to change the business rule and allow the customer to order

both the credit card and the checkbook simultaneously.

Analogically to the four issues we highlighted about current variability modeling

techniques at end of Sect. 2, we can affirm how our new approach addresses each of

which as follows:

1. the design patterns are definite and do not hold any stereotype. Because they are

modeled in basic BPMN, the patterns are straightforward and require no

foreknowledge besides BPMN basics.

Fig. 13 ‘‘Check credit card
validity’’ variable partition

Sign in

Order a product

Credit cardCheckbook

Sign in

Order a product

Credit cardCheckbook

Sign in

Order a product

Checkbook

a b c

Fig. 14 CPM derivation

460 A. Yousfi et al.

123

2. the configuration and derivation patterns take the design patterns to a concrete

level and make them use-case ready through a clear set of steps.

3. the six patterns are posed with six concise specifications and no redundancy.

4. the meta-model and the two architectures are very flexible. They offer a

plethora of possibilities for designing event-based variable partitions or data-

based variable partitions with event(s) as variant(s).

In the same vein, our pattern-based approach falls under the BPI research area.

Adopting patterns implicitly indicates opting for reuse and therefore saving time and

money. Variability design patterns add the quality optimization feature since they

model more alternatives to fulfill a wide range of business requirements.

Additionally, variability configuration/derivation patterns specify the process of

using the design patterns to attain more efficient variable business processes.

4 Illustrative example

Inspired from a real-life process, this illustrative example is a simplified version of

the process whose business objective is ‘‘order a burger’’ at a typical Five Guys

restaurant.3 In this example, we show how we deal with variability configuration

and derivation using our technique. We also indicate how variable partitions can

overlap.

4.1 Variable business process scenario

For legibility and space reasons, we alter some of the characteristics related to the

process ‘‘order a burger’’ at a typical Five Guys restaurant such as the number of

toppings as well as some other steps in the process flow. We also assume that each

customer orders exactly one burger. All in all, the updated scenario of the process is

described as follows:

– In the order taken by the order clerk, the customer selects one of the four types

of burgers offered (ham burger, cheese burger, bacon burger and veggie

sandwich). She/He then chooses the toppings to have (lettuce, pickles, tomatoes,

mayo, grilled onions). Ordering French fries is optional. If and when ordered,

the customer chooses between Five Guys style and Cajun Style. The fries are

offered in three sizes, i.e., little, medium and large. The drinks are also optional,

they come either regular or large.

– Once the order is specified, the customer is given the price and proceeds with the

payment.

– After the payment is received, a receipt is printed for the customer with the order

number and an order ticket is sent to the clerk who cooks the patties (patties

clerk) and hands them to the clerk who assembles the burger (assembling clerk),

3 fiveguys.com.

Variability patterns for business processes in BPMN 461

123

http://fiveguys.com

unless the order is about a veggie sandwich, then the step of cooking the patties

is skipped.

– When assembled, the clerk transfers the burger to another clerk who handles the

fries (fries clerk), in case French fries were ordered. Otherwise, it goes straight

to the delivery.

– The delivery clerk calls the customer’s order number and hands the final product

to her/him.

4.2 Variable business process at design-time

First of all, six participants are involved in the process (customer, order clerk,

patties clerk, assembling clerk, fries clerk and delivery clerk). This condition

implies that the process ‘‘order a burger’’ is indeed a collaboration process (a

process with two or more participants). Figure 15 shows the configurable process

model of ‘‘ordering a burger’’. The model encloses seven variable partitions. We use

groups to circumscribe and highlight them. The groups delimit the variable

partitions VP1 whose variability objective is ‘‘Choose burger type’’ and is generated

from a data-based monomial pattern, VP2 whose variability objective is ‘‘Choose

toppings’’ and is generated from a data-based multiple pattern, VP3 whose

variability objective is ‘‘Order fries’’ and is generated from a data-based optional

pattern, VP4 whose variability objective is ‘‘Choose style of fries’’ and is generated

from a data-based monomial pattern, VP5 whose variability objective is ‘‘Choose

size of fries’’ and is generated from a data-based monomial pattern, VP6 whose

variability objective is ‘‘Order drink’’ and is generated from a data-based optional

pattern and VP7 whose variability objective is ‘‘Choose size of drink’’ and is

generated from a data-based monomial pattern. Note, the partitions might overlap as

it turns out to be the case of (VP3, VP4 and VP5) on one side and (VP6 and VP7) on

another side.

4.3 Variable business process at run-time

A variable business process at run-time can be also called a derived business

process. Before proceeding with the derivation let us first consider that the business

situation specifies the following business requirements:

– VP1) ham burger

– VP2) add tomatoes, grilled onions, lettuce

– VP3) want to order fries

– VP4) select Five Guys style

– VP5) select little fries

– VP6) want to order a drink

– VP7) select regular drink.

Following the aforementioned requirements, Fig. 16 show the derived process

model of ‘‘order a burger’’. We use the link intermediate event of type throw to

462 A. Yousfi et al.

123

F
ig
.
1
5

‘‘
O
rd
er

a
b
u
rg
er
’’
v
ar
ia
b
le

b
u
si
n
es
s
p
ro
ce
ss

at
d
es
ig
n
-t
im

e

Variability patterns for business processes in BPMN 463

123

indicate that the process continues, however, we do not cover it in the diagram since

the rest does not hold variable partitions. Note, the inclusive gateway in the variable

partition whose variability objective at design-time was ‘‘choose toppings’’ changed

to a parallel gateway as explained in the derivation pattern in Sect. 3.4.

5 Validation

The impact of the variability design patterns on an improved business process

performance metrics (i.e., time, cost, quality and flexibility) stems from the business

process improvement patterns. Introduced by Reijers and Liman Mansar (2005) and

Forster (2006), then synthesized by Shtub and Karni (2010, p. 223, 224, 225) and

employed to some extent by Dumas et al. (2013), the business process improvement

patterns summarize the impact of 43 atomic actions on the performance metrics of

an improved business process. The patterns are grouped into five views; process (17

patterns), object (4 patterns), organizational (9 patterns), informatics (2 patterns),

IT(4 patterns) and environment (7 patterns).

The BPI patterns are atomic. Each of which describes how the performance

metrics of a business process will behave with regard to a particular change. The

variability design patterns we propose are a series of applying five business process

improvement patterns. These actions lead to a variable partition. The BPI patterns

we employ are grouped in Table 6. They belong to three views; process,

Fig. 16 ‘‘Order a burger’’ VBP at run-time

Table 6 Business process improvement patterns used in the variability design patterns (?: increase, �:

decrease, x: no impact)

BPI pattern code

(view)

Description Time Quality Cost Flexibility

1 (Process) Add a process step or action ? ? ? ?

2 (Process) Eliminate a process step or action � x � x

22 (Organizational) Increase specialization of process performer � ? ? �
24 (Organizational) Assign flexible roles to perform processes ? � ? ?

40 (Environment) Integrate processes by having a common

performer

� ? � ?

464 A. Yousfi et al.

123

organization and environment. Whether data-based or event-based, the variability

design patterns are built as follows:

1. Pattern 40 (integrate processes by having a common performer): it is about

merging processes with commonalities.

2. Pattern 1 (add a process step or action): it covers adding a variation point as

well as a flow-control data-based gateway (see the architectures in Figs. 10 and

11).

3. Pattern 24 (assign flexible roles to perform processes): the data-based or event

based gateway serving as a variation point offers a wide range of flexible

alternatives for the process performer. Flexibility can be measured by the work

of Rolón et al. (2009). It computes how many alternatives a configurable

business process can offer. Having multiple alternatives in the configurable

business process model implies fulfilling a wide range of business requirements.

For F and n being respectively the flexibility measure function and the number

of outgoing branches of a divergent gateway (in our case we use XOR and OR),

we have:

FðXORÞ ¼ n ð1aÞ

FðORÞ ¼ 2n � 1 ð1bÞ

4. Pattern 22: (increase the specialization of the process performer): each variant

in the variation partition (see the architectures in Figs. 10 and 11) increases the

specialization of the process performer in the same process flow.

5. Pattern 2 (eliminate a process step or an action): at this level the repetitive

process steps after the merger are omitted to alleviate the process flow.

Ideally, the improved business process should exhibit a decrease in the time and cost

of execution as well as an increase in the quality of the end product/service and the

flexibility of the structure. These metrics go hand in hand as portrayed with the

Devil’s Quadrangle Reijers and Liman Mansar (2005). Although, it may happen that

a performance metric is sacrificed in exchange for another as indicated in pattern 22.

This is usually the call of the process-centric organization to prioritize one/some

metric(s) over other(s).

6 Conclusion, discussion and perspectives

Variability is a key concept to efficiently deal with business processes whose

business rules and/or objectives are similar to one another is some ways yet differ in

others. After reviewing the literature and highlighting its shortcomings, we define

variable business process, variable partition and variability objective. Then, we

introduce two types of variability patterns (product patterns: variability design

patterns and process patterns: configuration and derivation patterns). The variability

design patterns are a series of BPI patterns that act on the performance metrics of

Variability patterns for business processes in BPMN 465

123

the improved business process while the configuration/derivation patterns make the

steps of building a variable business process free from confusion and ambiguity.

With regard to the work done in this paper, we describe a novel formalism for

efficiently improving business processes by means of variability. The presented

technique facilitates the overall sine qua nons we extract and draw attention to, and,

eschews the limitations we highlight about prior work. By adopting the path we

pave in the direction to variability patterns, we avoid all the issues discussed at the

end of Sect. 2 that may pop up while employing the stereotyped diagrams. The

variability patterns grant a systematic reuse of the partitions, a simplification of the

modeling task, a production of structured process models as well as a straightfor-

ward procedure to narrow down the workflow with regard to each business situation.

Still, we extend BPMN v2.0 by defining a new inclusive event-based gateway and

underline its importance in handling the event-based workflow. Overall, the

configuration pattern along with the business rules generate a configurable business

process while the derivation pattern along with the business requirements generate a

derived business process that itself will generate an optimal outcome. Equally we

have to say, we did center attention on the specificity of variability along the

abstraction levels, on how it mutates in the cycle of process models and on how it

should be dealt with in each level. As a result, we provide a complete business

process improvement technique based on the concept of variability. Thus, we hope

we do add some knowledge to this chosen area of work.

As a way to evolve our approach, we intend first on proposing a standardized

approach of programming the variability patterns. This, we believe, will lead us to

extract more criteria and enlarge our approach to deal with other sectors such as

health monitoring or education.

References

Ambler Scott W (1998) Process patterns: building large-scale systems using object technology.

Cambridge University Press, Cambridge

Conte A, Fredj M, Hassine I, Giraudin JP, Rieu D (2002) A tool and a formalism to design and apply

patterns. In: Object-oriented information systems. Springer, pp 135–146

Derguech W, Gao F, Bhiri S (2012) Configurable process models for logistics case study for customs

clearance processes. In: Business process management workshops. Springer, pp 119–130

Dijkman R, Dumas M, Van Dongen B, Käärik R, Mendling J (2011) Similarity of business process

models: metrics and evaluation. Inf Syst 36(2):498–516

Dumas M, La Rosa M, Mendling J, Reijers HA (2013) Fundamentals of business process management.

Springer, New York

Dumas M, Garcıa-Banuelos L, Polyvyanyy A (2010) Unraveling unstructured process models. In:

Business Process Modeling Notation: Second International Workshop, BPMN 2010, Proceedings,

vol 67. Springer, Potsdam, 13–14 October, 2010, p 1

Forster F (2006) The idea behind business process improvement: toward a business process improvement

pattern framework. BPTrends, April, pp 1–13

Galster M, Avgeriou P (2011) Handling variability in software architecture: problems and implications.

In: Software Architecture (WICSA), 2011 9th Working IEEE/IFIP Conference on IEEE,

pp 171–180

Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns: elements of reusable object-oriented

software. Pearson Education, Boston

466 A. Yousfi et al.

123

Gschwind T, Koehler J, Wong J (2008) Applying patterns during business process modeling. In: Business

process management, Springer, pp 4–19

Hallerbach A, Bauer T, Reichert M (2010) Capturing variability in business process models: the provop

approach. J Softw Maint Evol: Res Pract 22(6–7):519–546

Jeston J, Nelis J (2014) Business process management. Routledge, London

Khan A, Kastner C, Koppen V, Saake G (2011) The pervasive nature of variability in soc. In: Frontiers of

Information Technology (FIT), 2011 IEEE, pp 69–74

La Rosa M, Dumas M, Ter Hofstede AHM (2008) Modelling business process variability

Mejia Bernal JF, Falcarin P, Morisio M, Dai J (2010) Dynamic context-aware business process: a rule-

based approach supported by pattern identification. In: Proceedings of the 2010 ACM Symposium

on applied computing, ACM, pp 470–474

Milani F, Dumas M, Matulevičius R (2012) Identifying and classifying variations in business processes.

In: Enterprise, business-process and information systems modeling. Springer, pp 136–150

OMG (2011) Business process model and notation 2.0. Technical report, Object Management Group,

Washington DC, USA

Ouyang C, Dumas M, Aalst WM, Ter Hofstede AHM, Mendling J (2009) From business process models

to process-oriented software systems. ACM Trans Softw Eng Methodol (TOSEM) 19(1):2

Park J, Yeom K (2011) A modeling approach for business processes based on variability. In: Software

Engineering Research, Management and Applications (SERA), 2011 9th International Conference

on IEEE, pp 211–218

Recker J, Rosemann M, van der Aalst WMP, Jansen-Vullers M, Dreiling A (2007) Configurable reference

modeling languages. In: Reference modeling for business systems analysis. Idea Group Publishing,

London, pp 22–46

Recker J, Rosemann M, van der Aalst WMP, Jansen-Vullers M, Dreiling A (2007) Configurable reference

modeling languages. In: Reference modeling for business systems analysis. Idea Group Publishing,

London, pp 22–46

Reijers Hajo A, Mansar S Liman (2005) Best practices in business process redesign: an overview and

qualitative evaluation of successful redesign heuristics. Omega 33(4):283–306

Rolón E, Cardoso J, Garcı́a F, Ruiz F, Piattini M (2009) Analysis and validation of control-flow

complexity measures with bpmn process models. In: Enterprise, business-process and information

systems modeling. Springer, pp 58–70

Santos E, Castro J, Sanchez J, Pastor O (2010) A goal-oriented approach for variability in bpmn. In:

Proceedings of the 13th Workshop on Requirements Engineering-WER, pp 17–28

Santos E, Pimentel J, Castro J, Sánchez J, Pastor O (2010) Configuring the variability of business process

models using non-functional requirements. In: Enterprise, business-process and information systems

modeling, pp 274–286

Schnieders A, Puhlmann F (2006) Variability mechanisms in e-business process families. In: 9th

International Conference on Business Information Systems (BIS 2006), vol 85, pp 583–601

Shtub A, Karni R (2010) ERP: the dynamics of supply chain and process management. Springer Science

& Business Media, heidelberg

Sinnema M, Deelstra S (2007) Classifying variability modeling techniques. Inf Softw Technol

49(7):717–739

van Der Aalst WM, Ter Hofstede AHM, Kiepuszewski B, Barros AP (2003) Workflow patterns. Distrib

Parallel Databases 14(1):5–51

van Dongen B, Dijkman R, Mendling J (2008) Measuring similarity between business process models. In:

Advanced information systems engineering. Springer, pp 450–464

van Eijndhoven T, Iacob ME, Ponisio ML (2008) Achieving business process flexibility with business

rules. In: Enterprise Distributed Object Computing Conference, 2008. EDOC’08. 12th International

IEEE, pp 95–104

Weidmann M, Koetter F, Kintz M, Schleicher D, Mietzner R (2011) Adaptive business process modeling

in the internet of services (abis). In: ICIW 2011. The Sixth International Conference on Internet and

Web Applications and Services, pp 29–34

Variability patterns for business processes in BPMN 467

123

	Variability patterns for business processes in BPMN
	Abstract
	Introduction
	Existing variability modeling techniques
	Proposed variability modeling technique
	Business process with variability
	Variability design patterns
	Patterns specification
	Data-based variability design patterns
	Event-based variability design patterns

	Variability configuration pattern (design-time)
	Variability derivation pattern (run-time)

	Illustrative example
	Variable business process scenario
	Variable business process at design-time
	Variable business process at run-time

	Validation
	Conclusion, discussion and perspectives
	References

