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Abstract We present a probabilistic and a possibilistic model for assessing the

risk of a service level agreement for a computing task in a cluster/grid environment.

These models can also be applied to cloud computing. Using the predictive prob-

abilistic approach we develop a framework for resource management in grid

computing, and by introducing an upper limit for the number of failures we

approximate the probability that a particular computing task is successful. In the

predictive possibility model we estimate the possibility distribution of the future

number of node failures by a fuzzy nonparametric regression technique. Then the

resource provider can use the probabilistic or the possibilistic model to get alter-

native risk assessments.

Keywords Grid and cloud computing � Service level agreement (SLA) �
Predictive probabilities � Predictive possibilities

1 Introduction

There is an increasing demand for computing power in scientific and engineering

applications which has motivated the deployment of high performance computing

(HPC) systems that deliver tera-scale performance. Current and future HPC systems
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that are capable of running large-scale parallel applications may span millions of

nodes. For parallel programs, the failure probability of nodes and computing tasks

assigned to the nodes has been shown to increase significantly with the increase in

number of nodes. Large-scale computing environments, such as the grids CERN

LCG, NorduGrid, TeraGrid and Grid’5000 gather (tens of) thousands of resources

for the use of an ever-growing scientific community. Many of these Grids have the

problems of any large-scale computing environment, which contributes to making

Grids relatively unreliable computing platforms. Iosup et al. (2007) collected and

present material from Grid’5000 which illustrates this contention. In a thorough

study Schroeder and Gibson (2006) analyse failure data collected over 9 years at

Los Alamos National Laboratory (LANL) which includes 23,000 failures recorded

on more than 20 different systems, mostly large clusters of SMP and NUMA nodes.

Their study includes root cause of failures, the mean time between failures, and the

mean time to repair. Iosup et al. (2007) fit statistical distributions to the Grid’5000

data using maximum likelihood estimation (MLE) to find a best fit for each of the

model parameters. They found that the best fits for the inter-arrival time between

failures, the duration of a failure, and the number of nodes affected by a failure, are

the Weibull, Log-Normal, and Gamma distributions, respectively. The results for

inter-arrival time between consecutive failures indicate an increasing hazard rate

function, i.e. the longer a computing node stays in the system, the higher the

probability for the node to fail. For the LANL dataset Schroeder and Gibson (2006)

studied the sequence of failure events and the time between failures as stochastic

processes. This includes two different views of the failure process: (1) the view as

seen by an individual node; (2) the view as seen by the whole system. They found

that the distribution between failures for individual nodes is well modeled by a

Weibull or a Gamma distribution; both distributions create an equally good visual fit

and the same negative log-likelihood. For the system wide view of the failures the

basic trend is similar to the per node view during the same time. The Weibull and

Gamma distributions provide the best fit, while the lognormal and exponential fits

are significantly worse. A significant amount of the literature on grid computing

addresses the problem of resource allocation (Brandt et al. 2005; Czajkowski et al.

2005; Magana and Serrat 2007). The presence of disparate resources that are

required to work in concert within a grid computing framework increases the

complexity of the resource allocation problem. Jobs are assigned either through

scavenging, where idle machines are identified and put to work, or through

reservation in which jobs are matched and pre-assigned with the most appropriate

systems in the grid for efficient workflow.

Cloud computing could be seen as a disruptive technology in relation to grid

computing when it was introduced to the business world in 2008. There are several

formal definitions for cloud computing but the one given by Marston et al. (2011)

captures the essence:

It is an information technology service model where computing services (both

hardware and software) are delivered on-demand to customers over a network

in a self-service fashion independent of device and location. The resources

required to provide the requisite quality-of-service levels are shared,
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dynamically scalable, rapidly provisioned, virtualized and released with

minimal service provider interaction. Users pay for the service as an operating

expense without incurring any significant initial capital expenditure, with the

cloud services employing a metering system that divides the computing

resource in appropriate blocks.

Cloud computing uses the ‘‘self-service model’’ but as shown by Rimal et al.

(2011) cloud computing also builds on mutual contracts, as the Service level

agreements (SLAs) in grid computing. Not surprisingly, early experience with

cloud computing has brought out the problems with outages that make cloud

reliance questionable. Rimal et al. (2011) have collected some statistics showing

that Microsoft Azure was out of operation for 22 h on one occasion; Google

AppEngine for about 5 h on several occasions; FlexiScale was out for 18 h due to

core network failure on one occasion, etc. Our risk assessment models for SLAs

can be applied to cloud computing as well as to grid computing; in the following

we will use grid/cloud computing unless a particular solution applies to grid

computing only.

In grid/cloud computing a resource provider [RP] offers resources and services to

other users based on agreed SLAs. The research problem we have addressed is

formulated as follows:

• the RP is running a risk being in violation of his SLA if one or more of the

resources [nodes in a cluster, grid or cloud] he is offering to prospective

customers will fail when carrying out the tasks

• the RP needs to work out methods for a systematic risk assessment [RA] in order

to judge if he should offer the SLA or not if he wants to work with some

acceptable risk profile

In the context we are going to consider (a generic grid/cloud computing

environment) resource providers are of various types which mean that the resources

they manage and the risks they have to deal with are also different; we have dealt

with the following RP scenarios (but we will report only on extracts due to space):

• RP1 manages a cluster of n1 nodes (where n1 \ 10) and handles a few (\5)

computing tasks;

• RP2 manages a cluster of n2 nodes (where n2 \ 150) and handles numerous

(&100) computing tasks; RP2 typically uses risk models building on stochastic

processes (Poisson–Gamma) and Bayes modeling to be able to assess the risks

involved in offering SLAs;

• RP3 manages a cluster of n3 nodes (where n3 \ 10) and handles numerous

(&100) computing tasks; if the computing tasks are of short duration and/or the

requests are handled online then RP3 could use possibilistic models that will

offer robust approximations for the risk assessments;

• RP4 manages a cluster of n4 nodes (where n4 \ 150) and handles numerous

(&100) computing tasks; if the computing tasks are of short duration and/or the

requests are handled online, then hybrid models which combine stochastic

processes and Bayesian modeling with possibility models could be used for

handling this type of cases.
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During the execution of a computing task the fulfilment of the SLA has the

highest priority, which is why an RP often is using resource allocation models to

safeguard against expected node failures. When spare resources at the RP’s own site

are not available outsourcing will be an adequate solution for avoiding SLA

violations.

The risk assessment modeling for an SLA violation builds on the development of

predictive probabilities and possibilities for possible node failures in combination

with the availability of spare resources. The rest of the paper will be structured as

follows: in Sect. 2 we will work out the basic conceptual framework for risk

assessment, in Sects. 3, 4 we will introduce the Bayesian predictive probabilities as

they apply to the SLAs for RPs in grid/cloud computing, in Sects. 5, 6 we will work

out the corresponding predictive possibilities, in Sect. 7 we show a lower limit for

the probability of success of computing tasks in a grid/cloud and, finally, in Sect. 8

there is a summary and conclusions of this study.

2 Risk assessment

There is no universally accepted definition of business risk but in the RP context we

will understand risk to be a potential problem which can be avoided or mitigated

(Carlsson and Weissman 2009). The potential problem for an RP is that he has

accepted an SLA and may not be able to deliver the necessary computing resources

in order to fulfil a computing task within an accepted time frame T. Risk assessment
is the process through which a resource provider tries to estimate the probability for

the problem to occur within T and risk management the process through which a

resource provider tries to avoid or mitigate the problem. In classical decision theory

risk is connected with the probability of an undesired event; usually the probability

of the event and its expected harm is outlined with a scenario which covers the set of

risk, regret and reward probabilities in an expected value for the outcome. The

typical statistical model has the following structure,

Rðh; dðxÞÞ ¼
Z

Lðh; dðxÞÞf ðxjhÞdx ð1Þ

where L is a loss function of some kind, x is an observable event (which may not

have been observed) and d(x) is an estimator for a parameter h which has some

influence on the occurrence of x. The risk is the expected value of the loss function.

The statistical models are used frequently because of the very useful tools that have

been developed to work with large datasets.

3 Predictive probabilities

In the following we will use node failures in a cluster of a grid/cloud as the focus,

i.e. we will work out a model to predict the probabilities that n nodes will fail in a

period covered by an SLA (n = 0, 1, 2, 3, …). In the interest of space we have to

16 C. Carlsson, R. Fullér

123



do this by sketches as we deal with standard Bayesian theory and modeling

(Carlsson and Weissman 2009).

The first step is to determine a probability distribution for the number of node

failures for a time interval (t1, t2] by starting from some basic property of the

process we need to describe. Typically we assume that the node failures represent a

Poisson process which is non-homogenous in time and has a rate function k(t),
t [ 0.

The second step is to determine a distribution for k(t) given a number of

observations on node failures from r comparable segments in the interval (t1, t2].

This count normally follows a Gamma(a, b) distribution and the posterior

distribution pðkt1;t2Þ; given the count of node failures, is also a Gamma distribution

according to the Bayes’ theory. Then, as we have been able to determine kt1;t2 we

can calculate the predictive distribution for the number of node failures in the next

time segment; Bayes’ theory shows that this will be a Poisson–Gamma distribution.

The third step is to realize that a computing task can be carried out successfully

on a cluster (or a grid) if all the needed nodes are available for the scheduled

duration of the task. This has three components: (1) a predictive distribution on the

number of nodes needed for a computing task covered by an SLA; (2) a distribution

showing the number of nodes available when an assigned set of nodes is reduced by

the predicted number of node failures and an available number of reserve nodes is

added (the number of reserve nodes is determined by the resource allocation policy

of the RP); (3) a probability distribution for the duration of the task.

The fourth step is to determine the probability of an SLA failure. Consider a grid/

cloud of k clusters, each of which contains nc nodes, leading to the total number of

nodes n =
P

nc, where c = 1, …, k. Let k(t), t [ 0, denote generally a time non-

homogeneous rate function for a Poisson process N(t). We will assume that we have

the RP4 scenario as our context, i.e. we will have to deal with hundreds of nodes and

hundreds of computing tasks with widely varying computational requirements over

the planning period.

To illustrate the predictive nature of Bayesian characterizations of uncertainty,

we use a simple example model and contrast the strategy with the maximum

likelihood method. Consider a data set comprising information from six exchange-

able sampling units, each of which can raise a number Xi of events, such as errors in

coding, software, transmission etc, for i = 1, …, 6. When Xi = 0, it is concluded

that no errors occurred within the ith sampling unit. If it is anticipated that the

number of realized errors is small in relation to the number of potentially possible

errors, a Poisson distribution is one common characterization of the uncertainty

related to the intensity at which the errors occur among comparable sampling units.

Using this distribution as the likelihood component for each of the observations, we

obtain the joint conditional distribution of the data as,

pðx1; . . .; x6jkÞ / expð�6kÞk
P6

i¼1
xi ; ð2Þ

where k is the unknown Poisson intensity parameter. In our example we have a

single unknown quantity, the Poisson parameter k, for which the uncertainty is

quantified prior to the arrival of the observations x1, …, x6. The standard prior used
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for this purpose is the Gamma(a, b) family of distributions, which has the following

density representation,

pðkja; bÞ ¼ ba

CðaÞ k
a�1 expð�bkÞ:

The posterior distribution of the intensity parameter k, i.e. the conditional distri-

bution of k given the data x = (x1, …, x6), is then also a Gamma distribution and its

density function equals,

pðkjxÞ ¼ ðbþ 6Þaþz

Cðaþ zÞ kaþz�1 expð�ðbþ 6ÞkÞ;

where z =
P

i=1
6 xi is the value of the sufficient statistic for the data under the

Poisson model. Under a squared error loss, the Bayesian estimate of k equals the

posterior mean, which can be written as (a ? z)/(b ? 6).

In many technological applications it is not of primary interest to estimate model

parameters, but rather use a statistical model for handling uncertainty in a given

situation. For instance, in our example it might be of interest to provide a probability

statement regarding whether a future number of events Xn?1 would exceed a certain

threshold, deemed crucial for the acceptability of the error rate in the system. The

Bayesian answer to this question is the predictive distribution of the anticipated

future observations, given the knowledge accumulated so far. Formally, this

distribution is defined as,

pðx7jx1; . . .; x6Þ ¼
Z1

0

pðx7jkÞpðkjx1; . . .; x6Þdk; ð3Þ

where p(k|x1, …, x6) is the posterior distribution,

pðkjx1; . . .; x6Þ /
expð�6kÞky ba

CðaÞ k
a�1 expð�bkÞR1

0
expð�6kÞky ba

CðaÞ k
a�1 expð�bkÞdk

/ expð�6kÞkyka�1 expð�bkÞR1
0

expð�6kÞkyka�1 expð�bkÞdk
;

which is recognized as the Gamma(a ? z, b ? 6) distribution. By evaluating the

integral (3) with respect to the above Gamma distribution, we obtain a special case

of a Poisson–Gamma distribution, which is a mixture of Poisson distributions.

4 Predictive probabilities in grid/cloud computing management

Using the predictive probabilistic approach, our aim here is to develop a framework

for resource management in grid/cloud computing. The works cited earlier illustrate

the substantial level of variation that exists over different grids/clouds with respect

to the degree of exploitation, maintenance policies and system reliability. Several
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factors are of importance when the uncertainty about the expected number of

resources available at a given time point is considered. In the current work we

consider explicitly the effects of computing task characteristics in terms of

execution time and the number of resources required, as well as failure rate and

maintenance for individual system components. A basic predictive model with a

modular structure is derived, such that several ramifications with respect to the

distributional assumptions can be made when deemed necessary for any particular

grid environment. Consider a grid/cloud of k clusters, each of which contains nc

operative units termed nodes, with the total number of nodes in the grid/cloud

denoted by, n =
P

c=1
k nc. For simplicity of notation, we will below treat the clusters

as exchangeable units concerning predictive statistical learning.

To introduce a stochastic model for tendencies of node failures, let

k(t) [ 0, t C 0, denote generally a time-nonhomogeneous rate function for a

Poisson process N(t). The rate function specifies the expected number of failure

events in any given time interval (t1,t2] according to,

kt1;t2 ¼
Zt2

t1

kðtÞdt:

Under many circumstances it is feasible to simplify the Poisson model by assuming

that the rate function is constant over time, or over certain time segments. In the

Poisson process it is assumed that the waiting times between successive events are

exponentially distributed with the rate parameter k governing the expected waiting

times. Consider a time interval (t1, t2] with the corresponding rate parameter kt1;t2 ;
such that x events have been observed during (t1, t2]. Then, the likelihood function

for the rate parameter is given by,

pðxjkt1;t2Þ ¼
e�kt1 ;t2 ðkt1;t2Þ

x

x!
:

By collecting data (counts of events) x1, …, xr from r comparable time segments,

we obtain the joint likelihood function,

pðx1; . . .; xrjkt1;t2Þ / e�rkt1 ;t2 ðkt1;t2Þ
Pr

i¼1
xi :

In accordance with the predictive example considered in the previous section, using

the Gamma prior distribution for kt1;t2 we then obtain the predictive Poisson–

Gamma probability of having y events in the future on a comparable time interval,

which equals,

ðbþ rÞaþz

Cðaþ zÞ
Cðaþ zþ yÞ

y!ðbþ r þ 1Þaþzþy ;

where z =
P

i=1
r xi.

When a computing task is slated for execution in a grid/cloud environment, its

successful completion will require a certain number of nodes to be available over a

given period of time. To assess the uncertainty about the resource availability, we
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need to model both the distribution of the number of nodes and the length of

the task required by the tasks. The most adaptable choice of a distribution

for the number of nodes required, say M, is the multinomial distribution,

p(M = m) = pm, m = 1, …, u, where u is an a priori specified upper limit for

the number of nodes. Such a vector of probabilities will be denoted by p in the

sequel. Here u could, e.g. equal the total number of nodes in the system, however,

such a choice would lead to an inefficient estimation of the probabilities, and

therefore, the upper bound value should be carefully assessed using empirical

evidence.

An advantage of the use of the multinomial distribution in this context is its

ability to represent any types of multimodal distributions for M, in contrast to the

standard parametric families, such as the Geometric, Negative Binomial and

Poisson distributions. For instance, if there are two major classes of computing tasks

or maintenance events, such that one class is associated with relatively small

numbers of required nodes, and the other with relatively large numbers, the system

behavior in this respect is well representable by a multinomial distribution. On the

other hand, standard parametric families of distributions would not enable an

appropriate representation, unless some form of a mixture distribution were utilized.

Such a choice would complicate the inference about the underlying parameters due

to the fact that the number of mixture components would be unknown a priori. In

general, estimation of parameters and calculation of predictive probabilities under a

mixture model requires the use of a Monte Carlo simulation technique, e.g. the

EM- or Gibbs sampler algorithm (Robert and Casella 2005).

A disadvantage of the multinomial distribution is that it contains a large number

of parameters when u is large. However, this difficulty is less severe when the

Bayesian approach to the parameter estimation is adopted. Given observed data on

the number of nodes required by computing tasks, the posterior distribution of the

probabilities p is available in an analytical form under a Dirichlet prior, and its

density function can be written as,

pðpjwÞ ¼ Cð
Pu

m¼1 am þ wmÞQu
m¼1 Cðam þ wmÞ

Yu

m¼1

pamþwm�1
m ;

where wm corresponds to the number of observed tasks utilizing m nodes, am is the

a priori relative weight of the mth component in the vector p, and w is the vector

(wm)m=1
u . The corresponding predictive distribution of the number of nodes required

by a generic computing task in the future equals the Multinomial–Dirichlet distri-

bution, which is obtained by integrating out the uncertainty about the multinomial

parameters with respect to the posterior distribution. The Multinomial–Dirichlet

distribution is in our notation defined as,

pðM ¼ m�jwÞ ¼
C
Pu

m¼1 am þ wm

� �
Qu

m¼1 Cðam þ wmÞ
�
Qu

m¼1 Cðam þ wm þ Iðm ¼ m�ÞÞ
C 1þ

Pu
m¼1 am þ wm

� � :

To simplify the inference about the length of a task affecting a number of nodes we

assume that the length follows a Gaussian distribution with expected value l and

variance r2. Let the data t1, …, tb represent the lengths (say, in minutes) of b tasks.
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This leads to the sample mean �t ¼
Pb

i¼1 ti and variance s2 ¼ b�1
Pb

i¼1ðti � �tÞ2:
Assuming the standard reference prior (see Bernardo and Smith 1994) for the

parameters, we obtain the predictive distribution for the length of a future task, say

T, which has the t-distribution with parameters �t; ððb� 1Þ=ðbþ 1ÞÞs2; b� 1; i.e. the

probability density of the distribution equals,

pðtj�t; ððb� 1Þ=ðbþ 1ÞÞs2; b� 1Þ ¼ Cðb=2Þ
Cðb�1

2
ÞCð1=2Þ

1
ðbþ1Þs2

� �1
2� 1þ 1

ðbþ1Þs2 t � �tð Þ2
h i�b

2

:

The probability that a task lasts longer than any given time t equals

P(T [ t) = 1 - P(T B t), where P(T B t) is the cumulative distribution function

(CDF) of the t-distribution. The value of the CDF can be calculated numerically

using functions existing in most computing environments. However, it should also

be noted that for a moderate to large b, the predictive distribution is well

approximated by the Gaussian distribution with the mean �t and the variance s2 ðbþ1Þ
ðb�3Þ :

Consequently, if the Gaussian approximation is used, the probability P(T B t) can

be calculated using the CDF of the Gaussian distribution.

We now consider an approximation to the probability that a particular computing

task is successful. This happens if there will always be at least a single idle node

available in the system in the case of a node failure. Let S = 1 denote the event that

the task is successful, and S = 0 the opposite event. We formulate the probability of

the success as the sum of the probabilities P(‘‘none of the nodes allocated to the

task fail’’) ?
Pmmax

m¼1 P(‘‘m of the nodes allocated to the task fail & at least m idle

nodes are available as reserves’’). Here mmax is an upper limit for the number of

failures considered. The value can be chosen by judging the size of the contribution

of each event, determined by the corresponding probability. Thus, the sum can be

simplified by considering only those events that do not have vanishingly small

probabilities. A conservative bound for the success probability can be derived by

assuming that the m failures take place simultaneously, which leads to,

PðS ¼ 1Þ ¼ 1� PðS ¼ 0Þ

¼ 1�
Xmmax

m¼1

Pðm failures occur & less than m free nodes availableÞ

¼ 1�
Xmmax

m¼1

Pðm failures occurÞPðless than m free nodes availableÞ

� 1�
Xmmax

m¼1

Pðm failures occurÞPðless than m free nodes at any time pointÞ

ð4Þ
The probability P(m failures occur) is directly determined by the failure rate

model discussed above. The other term, the probability P(less than m free nodes at

any time point), on the other hand, is dependent both on the level of workload in the

system and the eventual need of reserve nodes by the other tasks running

simultaneously. Thus, the failure rate model can be used to calculate the probability

Probabilistic versus possibilistic risk assessment models 21

123



distribution of the number of reserve nodes that will be jointly needed by the other

tasks (that are using a certain total number of nodes) during the computation time

that has the distribution specified above for a single node. This result shows how to

decide the number of nodes to keep in reserve in order to be able to complete a

computing task successfully when the RP is willing to accept different levels of risk

to fail an SLA. The predictive probabilities model has been extensively tested and

verified with data from the LANL cluster (Schroeder and Gibson 2006). In the

AssessGrid project we collected results for the RP1 scenario where the RP is using a

cluster with only a few nodes; the test runs have been carried out also for the

scenarios RP2–RP4 (Carlsson and Weissman 2009).

5 Predictive possibilities

In this Section we will introduce a possibilistic method for simple predictive

estimates of node failures in the next planning period. We will interpret the new

model as an alternative for predicting the number of node failures. In this way we

will have a possibilistic estimates of the expected number of node failures. An RP

may use either one estimate for his risk assessment or use a combination of both. In

the AssessGrid project (Carlsson and Weissman 2009) we have implemented both

models as one software solution to give the user two alternative routes. We will now

sketch the possibilistic regression model which is a simplified version of the fuzzy

nonparametric regression model with crisp input and fuzzy number output

introduced by Wang et al. (2007). This is essentially a standard regression model

with parameters represented by triangular fuzzy numbers—typically this means that

the parameters are intervals and represent the fact that the information we have is

imprecise and/or uncertain. Fuzzy sets were introduced by Zadeh (1965) to

represent/manipulate data and information possessing non-statistical uncertainties.

Let X be a nonempty set. A fuzzy set A in X is characterized by its membership

function lA: X ? [0, 1], where lA(x) is interpreted as the degree of membership of

element x in fuzzy set A for each x [ X. It should be noted that the terms

membership function and fuzzy subset get used interchangeably and we will write

simply A(x) instead of lA(x).

A fuzzy number A is a fuzzy set of the real line R with a normal, fuzzy convex and

continuous membership function of bounded support (Carlsson and Fullér 2002).

Fuzzy numbers can be considered as possibility distributions. If A is a fuzzy number

and x 2 R then A(x) can be interpreted as the degree of possibility of the statement ‘‘x is

A’’. A fuzzy number A is said to be a triangular fuzzy number, denoted

A = (a, a, b), with center a, left width a - a[ 0 and right width b - a [ 0 if its

membership function is defined by A(t) = (t - a)/(a - a) if a B t B a, A(t) = (t -

b)/(a - b) if a \ t B b, and A(t) = 0 otherwise. If A is symmetrical, a = b, then we

use the notation A = (a, a). A triangular fuzzy number with center a may be seen as a

fuzzy quantity ‘‘x is approximately equal to a’’.

Let F denote the set of all triangular fuzzy numbers. We consider the following

univariate fuzzy nonparametric regression model,
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Y ¼ FðxÞ þ e ¼ ðaðxÞ; aðxÞ; bðxÞÞ þ e: ð5Þ

where x is a crisp independent variable (input) with domain D; where D � R: The

output Y 2 F is a triangular fuzzy variable, F:D! F is an unknown fuzzy regression

function with its center, lower and upper limit a(x), a(x), b(x), and e may also be

considered a fuzzy error or a hybrid error containing both fuzzy and random

components.

We will take a sample of a dataset (in our case, a sample from the LANL dataset)

which covers inputs and fuzzy outputs according to the regression model. Let xi, Yi

be a sample of the observed crisp inputs and fuzzy outputs of model (1). The main

goal of fuzzy nonparametric regression is to estimate F(x) at any x 2 D from

(xi, Yi), i = 1, 2, …, n. The membership function of an estimated fuzzy output

should be as close as possible to that of the corresponding observed fuzzy number

(Wang et al. 2007). From this point of view, we shall estimate a(x), a(x), b(x) for

each x 2 D in the sense of best fit with respect to some distance that can measure the

closeness between the membership functions of the estimated fuzzy output and the

corresponding observed one. There are actually a few such distances available. We

use the distance proposed by Diamond (1988) as a measure of the fit because it is

simple to use and, more importantly, can result in an explicit expression for the

estimated fuzzy regression function when the local linear smoothing technique is

used. Let A = (a, a1, b1), B = (b, a2, b2) be two triangular fuzzy numbers. Then

the squared distance between A and B is defined by Diamond (1988), d2(A,

B) = (a1 - a2)2 ? (a - b)2 ? (b1 - b2)2. Using this distance we will extend the

local linear smoothing technique in statistics to fit the fuzzy nonparametric model

(5). Let us now assume that the observed (fuzzy) output is Yi = (a, ai, bi), then with

the Diamond distance measure and a local linear smoothing technique we need to

solve a locally weighted least-squares problem in order to estimate F(x0), for a given

kernel K and a smoothing parameter h, where

Khðjxi � x0jÞ ¼ K
jxi � x0j

h

� �
; ð6Þ

The kernel is a sequence of weights at x0 to make sure that data that is close to x0

will contribute more when we estimate the parameters at x0 than those that are

farther away, i.e. are relatively more distant in terms of the parameter h. Let

F̂ðiÞðxi; hÞ ¼ ðâðiÞðx0; hÞ; âðiÞðx0; hÞ; b̂ðiÞðx0; hÞÞ: ð7Þ

be the predicted fuzzy regression function at input xi. Compute F̂ðiÞðxi; hÞ for each xi

and let

CVðhÞ ¼ 1

l

Xl

i¼1

d2ðYi; F̂ðiÞðxi; hÞÞ: ð8Þ

We should select h0 so that it is optimal in the following expression

CVðh0Þ ¼ min
h [ 0

CVðhÞ: ð9Þ
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By solving this minimalization problem, we get the following estimate of F(x) at x0

(Wang et al. 2007),

F̂ðx0Þ ¼ ðâðx0Þ; âðx0Þ; b̂ðx0ÞÞ ¼ ðeT
1 Hðx0; hÞaY ; e

T
1 Hðx0; hÞaY ; e

T
1 Hðx0; hÞbYÞ;

ð10Þ

where Hðx0; hÞ ¼ ðXTðx0ÞWÞTðx0; hÞXðx0ÞÞ�1XTðx0ÞWðx0; hÞ,

Xðx0Þ ¼

1 x1 � x0

1 x2 � x0

..

.

1 xn � x0

0
BBB@

1
CCCA aY ¼

a1

a2

..

.

an

0
BBB@

1
CCCA aY ¼

a1

a2

..

.

an

0
BBB@

1
CCCA bY ¼

b1

b2

..

.

bn

0
BBB@

1
CCCA

and Wðx0; hÞ ¼ DiagðKhðjx1 � x0jÞ; . . .;Khðjxn � x0jÞÞ and e1 ¼ ð1; 0ÞT :
Note 1: If the observed inputs are symmetric, in a way that, ai - ai = bi - ai, then

F̂ðx0Þ is also a symmetric triangular fuzzy number. In fact, if the ith symmetric fuzzy

output is denoted by Yi = (ai, ci), where ci = ai - ai = bi - ai denotes the spread of

Yi, then the spread vector of the n observed fuzzy outputs can be expressed as cY ¼
aY � aY ¼ bY � aY : According to (10) we get, âðx0Þ � âðx0Þ ¼ b̂ðx0Þ � âðx0Þ ¼
eT

1 Hðx0; hÞcY and, therefore, F̂ðx0Þ ¼ ðeT
1 Hðx0; hÞaY ; e

T
1 Hðx0; hÞcYÞ is a symmetric

triangular fuzzy number.

6 Predictive possibilities in grid computing management

Suppose there are n observations, {x1, …, xn}, where xi denotes the number of node

failures in the ith planning period, and l of them are different. Without loss of generality

we will use the notation {x1, …, xl} for the l different observations. Let Xn?1 denote the

(unknown) possibility distribution of the number of node failures in the next planning

period. Then Xn?1 is defined over the set of non-negative integers {0, 1, 2, 3, …}. It is

clear that from the first n observations we can not predict the exact value of the

(n ? 1)th observation, but using a fuzzy nonparametric regression technique we can

estimate the possibility of the statement ‘‘the number of node failures in the (n ? 1)th

planning period will be x0’’ where x0 is a non-negative integer. Let us introduce a

notation vi ¼ jfj : the jth observation is equal to xigj: In our case the center of the

symmetric triangular fuzzy number will be ai = xi, and its lower and upper limits are,

ai ¼ xi �
vi

n
; bi ¼ xi þ

vi

n
:

Since we work with the symmetrical case, we shall use the notation ci = vi/n. We

should choose a kernel function and h. Let h = 1/n and let

KðxÞ ¼ 1ffiffiffiffiffiffi
2p
p exp � x2

2

� �
;

the Gaussian kernel. Let ki ¼ Khðjxn � x0jÞÞ: We calculate now the matrix

eT
1 Hðx0; hÞ by,
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ðXTðx0ÞWÞTðx0; hÞXðx0Þ ¼
Pl

i¼1 ki

Pl
i¼1 kiðxi � x0ÞPl

i¼1 kiðxi � x0Þ
Pl

i¼1 kiðxi � x0Þ2

 !
¼)

ðXTðx0ÞWÞTðx0; hÞXðx0ÞÞ�1 ¼ 1

ð
Pl

i¼1 kiÞð
Pl

i¼1 kiðxi � x0Þ2Þ � ð
Pl

i¼1 kiðxi � x0ÞÞ2

�
Pl

i¼1 kiðxi � x0Þ2 �
Pl

i¼1 kiðxi � x0Þ
�
Pl

i¼1 kiðxi � x0Þ
Pl

i¼1 ki

 !

Let s =
P

i=1
l ki, t =

P
i=1
l ki(xi - x0) and v =

P
i=1
l ki(xi - x0)2. Then,

ðXTðx0ÞWÞTðx0; hÞXðx0ÞÞ�1XTðx0Þ ¼
v� tðx1 � x0Þ . . . v� tðxl � x0Þ
sðx1 � x0Þ � t . . . sðxl � x0Þ � t

� �

and

Hðx0; hÞ ¼ ðXTðx0ÞWÞTðx0; hÞXðx0ÞÞ�1XTðx0ÞWðx0; hÞ

¼
k1ðv� tðx1 � x0ÞÞ . . . klðv� tðxl � x0ÞÞ
k1ðsðx1 � x0Þ � tÞ . . . klðsðxl � x0Þ � tÞ

� �
;

and eT
1 Hðx0; hÞ ¼ k1ðv� tðx1 � x0ÞÞ . . . klðv� tðxl � x0ÞÞð Þ; and finally,

eT
1 Hðx0; hÞaY ¼

Xl

i¼1

xikiðv� tðxi � x0ÞÞ; eT
1 Hðx0; hÞcY ¼

Xl

i¼1

cikiðv� tðxi � x0ÞÞ:

So we can write our estimation as,

F̂ðx0Þ ¼ ðeT
1 Hðx0; hÞaY ; e

T
1 Hðx0; hÞcYÞ

¼
Xl

i¼1

xikiðv� tðxi � x0ÞÞ;
Xl

i¼1

cikiðv� tðxi � x0ÞÞ
 !

;

which is the predicted possibility distribution of the symmetric triangular form of

node failures. So, the estimate of the possibility that ‘‘the number of node failures in

(n ? 1)th planning period will be x0’’, denoted by Pos(Xn?1 = x0), is computed by,

PosðXnþ1 ¼ x0Þ ¼ 1�
Pl

i¼1
xikiðv�tðxi�x0ÞÞ�x0

		 		Pl

i¼1
cikiðv�tðxi�x0ÞÞ

; if

Pl

i¼1
xikiðv�tðxi�x0ÞÞ�x0

		 		Pl

i¼1
cikiðv�tðxi�x0ÞÞ

� 1

0 otherwise:

8<
:

The possibilistic model is a faster and more robust estimate (that is the possibility of a

node failure always exceeds the probability of a node failure) and will therefore be

useful for online and real-time risk assessments with relatively small samples of data.

7 A lower limit for the probability of success of computing tasks in a grid

In this section we will consider an approximation to the probability that a particular

computing task in a grid is successful. This happens if there will always be at least a
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single idle node available in the system in the case of a node failure. We will use

the Fréchet–Hoeffding bounds for copulas to show a lower limit for the probability

of success of a computing task in a cluster (or a grid/cloud). A two-dimensional

copula is a function C: ½0; 1	2 ! ½0; 1	 which satisfies C(0, t) = C(t, 0) = 0,

C(1, t) = C(t, 1) = t for all t [ [0, 1], C(u2, v2) - C(u1, v2) - C(u2, v1) ?

C(u1, v1) C 0 for all u1, u2, v1, v2 [ [0, 1] such that u1 B u2 and v1 B v2.

Equivalently, a copula is the restriction to [0,1]2 of a bivariate distribution function

whose margins are uniform on [0,1]. The importance of copulas in statistics is

described in the following theorem (Sklar 1959): Let X and Y be random

variables with joint distribution function H and marginal distribution functions F
and G, respectively. Then there exists a copula C such that H(x, y) =

C(F(x), G(y)). Conversely, for any univariate distribution functions F and G
and any copula C, the function H is a two-dimensional distribution function with

marginals F and G. For any copula C we have W(u, v) = max {0, u ? v -

1} B C(u, v) B M(u, v) = min {u, v}. In the statistical literature, the largest and

smallest copulas, M and W are generally referred to as the Fréchet–Hoeffding

bounds. Let us recall that in (4) we used the notations P(success) as P(S = 1)

and P(failure) as P(S = 0); furthermore, let us use the abbreviation less-than-m-

anytime for the event ‘‘less than m free nodes available at any point of time’’.

Then we can rewrite (4) as,

PðsuccessÞ ¼1� PðfailureÞ ¼ 1�
Xmmax

m¼1

Pðm failures occur &less-than-m-anytimeÞ

¼1�
Xmmax

m¼1

Pðm failures occurÞPðlessthan m free nodes availableÞ

� 1�
Xmmax

m¼1

Pðm failuresoccurÞPðless-than-m-anytimeÞ

� 1�
Xmmax

m¼1

Pðm failures occurÞ

�
Xt�

j¼1

Pðj� 1� the length of a task\j; less-than-m-anytimeÞ
(

þ Pðthe length of a task� t�; less-than-m-anytimeÞ



� 1�
Xmmax

m¼1

Pðm failures occurÞ

�
Xt�

j¼1

Pðthe length of a task\j; less-than-m-anytimeÞ
(

þ Pðthe length of a task� t�; less-than-m-anytimeÞ
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Let us introduce the following notations G(m) = P(less-than-m-anytime)

and F(t) = P(the duration of a task is less than t). Let t� be chosen such that

1� Fðt�Þ[ 0:995: Furthermore, denote the copula of F and G by H, where

Hðt;mÞ ¼ P(the duration of a task is less than t, less-than-m-anytime):

Then using the Fréchet–Hoeffding upper bound for copulas we find that,

PðsuccessÞ� 1�
Xmmax

m¼1

Pðm failures occurÞ

�
Xt�

j¼1

min

( (
Cðb=2Þ

Cðb�1
2
ÞCð1=2Þ

1

ðbþ 1Þs2

� �1
2

1þ 1

ðbþ 1Þs2
j� �jð Þ2

� ��b
2

;

Pðless than m free nodes at any time pointÞ



þPðthe length of a task is � t�; less-than-m-anytimeÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
� 0:005




If we summarize these results we get (Carlsson et al. 2009),

PðsuccessÞ�1�
Xmmax

m¼1

Pðm failures occurÞ

�
Xt�

j¼1

min
Cðb=2Þ

Cðb�1
2
ÞCð1=2Þ

1

ðbþ 1Þs2

� �1
2

1þ 1

ðbþ 1Þs2
j� �jð Þ2

� ��b
2

;

((

Pðless-than-m-anytimeÞ


:

8 Summary and conclusion

We developed a pure probabilistic and a possibilistic technique for assessing the risk

of an SLA for a computing task in a grid/cloud environment. Using the predictive

probabilistic approach we developed a framework for resource management in grid/

cloud computing, and by introducing an upper limit for the number of possible

failures, we approximated the probability that a particular computing task can be

executed. We also showed a lower limit for the probability of success of a

computing task in a grid. In the possibilistic model we estimated the possibility

distribution defined over the set of node failures using a fuzzy nonparametric

regression technique. The probabilistic models scale from 10 nodes to 100 nodes

(and then on to any number of nodes); while the possibilistic models scale to 100

nodes. The RP can use both models to get two alternative risk assessments.

In the AssessGrid project we carried out a number of validation tests in order to

find out (1) how well the predictive possibilistic models can be fitted to the LANL

dataset, (2) what differences can be found between the probabilistic and possibilistic
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predictions and (3) if these differences can be given reasonable explanations. In the

testing we worked with short and long duration computing tasks scheduled on a

varying number of nodes and the SLA probabilities of failure estimates remained

reasonable throughout the testing. The smoothing parameter h for the possibilistic

models should be determined for the actual cluster of nodes, and in such a way that

we get a good fit between the probabilistic and the possibilistic models. The

approach we used for the testing was to experiment with combinations of h and then

to fit a distribution to the results; the distribution could then be used for

interpolation.
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