
ORI GIN AL ARTICLE

A semantical framework to engineering WSBPEL
processes

Mohsen Rouached Æ Walid Fdhila Æ Claude Godart

Published online: 4 March 2008

� Springer-Verlag 2008

Abstract Web services promise the interoperability of various applications run-

ning on heterogeneous platforms over the Internet, and are gaining more and more

attention. Web service composition refers to the process of combining Web services

to provide value-added services, which has received much interest in supporting

enterprize application integration. Industry standards for Web Service composition,

such as WSBPEL, provide the notation and additional control mechanisms for the

execution of business processes in Web service collaborations. However, these

standards do not provide support for checking interesting properties related to Web

Service and process behavior. In an attempt to fill this gap, we describe a formal-

ization of WSBPEL business processes, that adds communications semantics to the

specifications of interacting Web services, and uses a formal logic to model their

dynamic behavior, which enables their formal analysis and the inference of relevant

properties of the systems being built.

Keywords Web service composition � Formal verification �
Business process management

1 Introduction

There is an increasing acceptance of service-oriented architectures (SOA) as a

paradigm for integrating software applications within and across organizational

M. Rouached (&) � W. Fdhila � C. Godart

LORIA-INRIA-UMR 7503, BP 239, 54506 Vandœuvre-les-Nancy Cedex, France

e-mail: rouached@loria.fr

W. Fdhila

e-mail: fdhilawa@loria.fr

C. Godart

e-mail: godart@loria.fr

123

Inf Syst E-Bus Manage (2009) 7:223–250

DOI 10.1007/s10257-008-0081-5

boundaries. In this paradigm, independently developed and operated applications

are exposed as (Web) services that communicate with each other using XML-based

standards, most notably SOAP and associated specifications (Gustavo Alonso

2004). While the technology for developing basic services and interconnecting them

on a point-to-point basis has attained a certain level of maturity, there remain open

challenges when it comes to engineering services that engage in complex

interactions with multiple other services.

A number of approaches have been proposed to address these challenges. One

such approach, known as (process-oriented) service composition (Casati and Shan

2001) has its roots in workflow and business process management. The idea of

service composition is to capture the business logic and behavioral interface of

services in terms of process models. These models may be expressed at different

levels of abstraction, down to the executable level. A number of domain-specific

languages for service composition have been proposed, with consensus gathering

around the Business Process Execution Language for Web Services, which is known

as BPEL4WS and recently WS-BPEL (or BPEL for short).

WSBPEL (Arkin et al. 2004) is quickly emerging as the language of choice for

Web service composition. It provides a core of process description concepts that allow

for the definition of business processes interactions. This core of concepts is used both

for defining the internal business processes of a participant to a business interaction

and for describing and publishing the external business protocol that defines the

interaction behavior of a participant without revealing its internal behavior.

WSBPEL opens up the possibility of applying a range of formal techniques to the

verification of the behavior of Web services. For instance, it is possible to check the

internal business process of a participant against the external business protocol that

the participant is committed to provide; or, it is possible to verify whether the

composition of two or more processes satisfies general properties (such as deadlock

freedom) or application-specific constraints (e.g., temporal sequences, limitations

on resources). These kinds of verifications are particularly relevant in the distributed

and highly dynamic world of Web services, where each partner can autonomously

redefine business processes and interaction protocols.

Different techniques have been already applied to the verification of business

processes (see, e.g., Foster et al. 2003; Fu et al. 2004; Nakajima 2002; Narayanan and

McIlraith 2002; Pistore et al. 2004). However, current approaches do not address the

issues of how to model the requirements that the WSBPEL processes are supposed to

satisfy, and of how to manage the evolution of processes and requirements.

We are interested in particular in those techniques that are applied to the

verification of BPEL compositions: in this case, we have to verify the behaviors

generated by the interactions of a set of BPEL processes, each specifying the

workflow and the protocol of one of the services participating to the composition.

In practice, there are two different (and competing) notions of modeling Web

service compositions: orchestration and choreography. Orchestration describes how

multiple services can interact by exchanging messages including the business logic

and execution order of the interactions from the perspective of a single endpoint

(i.e., the orchestrator). It refers to an executable process that may result in a

persistent, multistep interaction model where the interactions are always controlled

224 M. Rouached et al.

123

from the point of view of a single entity involved in the process. Choreography, on

the other hand, provides a global view of message exchanges and interactions that

occur between multiple process endpoints, rather than a single process that is

executed by a party. Thus, choreography is more akin to a peer-to-peer (P2P)

architecture and offers a means by which the rules of participation for collaboration

are clearly defined and agreed upon. Even though there exists competing standards

for both the models of composition, such as WS-BPEL for orchestration and WS-

CDL for choreography, it is widely accepted that both orchestration and

choreography can (and should) co-exist within one single environment.

To adress these shortcomings, we propose in this paper a rigorous approach to

specifying, modeling, verifying and validating the behavior of Web service

compositions, implemented as BPEL processes, with the goal of simplifying the

task of designing coordinated distributed services and their interaction requirements.

More precisely, we describe a semantic framework that provides a foundation for

addressing the above limitations by supporting the following functionnalities:

1. to check the requirements for WSBPEL processes. The requirements specify

behavioral properties of the composition process, or assumptions about the

behavior of the composition as a whole, its constituent services and external

agents who interact with it.

2. to extend the approach to include models of service choreography with multiple

interacting Web services compositions, from the perspective of a collaborative

distributed composition development environment. The process of behavior

analysis moves from a single local process to that of modeling and analyzing

the behavior of multiple processes across composition domains.

3. to use the specifications of the violated requirements to generate queries for

discovering services that could substitute for malfunctioning services or

services that may become unavailable or fail to meet certain requirements.

The remainder of this paper is structured as follows. Section 2 gives an overview of

WSBPEL, introduces our event driven specification, and shows how WSBPEL

activities can be easily mapped to Event calculus (EC) semantics. Semantics of

WSBPEL communications are discussed and translated to the same formalism in

Sect. 3. Section 4 is dedicated to the analysis and the verification processes. It

presents the requirements specification and verification. In Sect. 5, we explain how

the specifications of the requirements violations can be used to generate queries for

discovering services that could substitute for malfunctioning services. Section 6

summarizes the implementation of the approach. Finally, before conclusions in

Sects. 7 and 8, discusses the related Work.

2 Modeling Web service composition

2.1 Overview of WSBPEL

The Business Process Execution Language for Web Services (BPEL) is a Web

services orchestration language that introduces a stateful interaction model

A semantical framework to engineering WSBPEL processes 225

123

providing the means for Web services to exchange sequences of messages between

business partners. A BPEL process and its partners are defined as abstract WSDL

services using abstract messages as defined by the WSDL model for message

interaction. The major parts of a BPEL process definition consist of (1) partners of

the business process (Web services that this process interacts with), (2) a set of

variables that keep the state of the process, and (3) an activity defining the logic

behind the interactions between the process and its partners. Activities that can be

performed by a business process are categorized into basic activities, structured
activities and scope-related activities. Basic activities perform simple operations

like receive, reply, invoke and others. Structured activities impose an execution

order on a collection of activities and can be nested. Scope-related activities enable

defining logical units of work and delineating the reversible behavior of each unit.

Below, we describe the main activities and show how the EC ontology (Kowalski

and Sergot 1986) is close enough to the WSBPEL specification to allow it to be

mapped automatically into the logical representation.

2.2 Mapping WSBPEL processes to EC

To analyze these processes, we firstly use a formal notation to build a model of the

semantics of a WSBPEL process. The language that we use in our transformation

scheme is based on EC. A summary of the semantics for EC are listed below.

Event calculus is a first-order temporal formal language that can be used to specify

properties of dynamic systems using events and fluents. An event in EC is something

that occurs at a specific instance of time (e.g., invocation of an operation) and may

change the state of a system. Fluents are conditions regarding the state of a system. A

fluent, for example, can indicate that system variable has a specific value at given time

point. Fluents in EC are initiated and terminated by events. The occurrence of an event

in EC is represented by the predicate Happens(e, t). The meaning of this predicate is

that an instantaneous event e occurs at some time t. The initiation or termination of a

fluent f due to the occurrence of an event e at time t is represented in EC by the

predicates Initiates(e, f, t) and Terminates(e, f, t), respectively. An EC formula may

also use the predicates Initially(f) and HoldsAt(f, t) to denote that a fluent f holds at the

start of the execution of a system and that f holds at time t, respectively. The auxiliary

predicate Clipped(t1, f, t2) expresses whether a fluent f was terminated during a time

interval [t1, t2]. Similarly, the auxiliary predicate Declipped(t1, f, t2) expresses if a

fluent f was initiated during a time interval [t1, t2]. In our EC-based language, events

represent exchanges of messages between the services that constitute the composition

process. We distinguish 5 different types of events signifying:

1. The invocation of an operation by the composition process in one of its partner

services. The occurrence of these events is represented by the predicate:

Happensðinvoke icðPartnerService;OperationðoId; inVarÞÞ; tÞ

The term invoke_ic(PartnerService, Operation(oId, inVar)) represents the invocation

event. In this term, Operation is the name of the invoked operation, PartnerService is

the name of the service that provides Operation, oId is a variable whose value

226 M. Rouached et al.

123

determines the exact instance of the invocation of Operation within a specific instance

of the execution of the composition process, and inVar is a variable whose value is the

value of the input parameters of Operation at the time of its invocation.

2. The return from the execution of an operation invoked by the composition

process in a partner service. The occurrence of these events is represented by

the predicate:

Happensðinvoke irðPartnerService;OperationðoIdÞÞ; tÞ

The term invoke_ir(PartnerService, Operation(oId)) in this predicate represents the

return event. PartnerService, Operation and oId in this term are as defined in (1). In

cases where Operation has an output variable outVar, the value of this variable at

the return of the operation is represented by the predicate:

Initiatesðinvoke irðPartnerService;OperationðoIdÞÞ; equalToðoutVar1; outVarÞ; tÞ

This predicate expresses the initialization of a fluent variable (outVar1) with the

value of outVar.The fluent equalTo(VarName, val) signifies that value of VarName
is equal to val.
3. The invocation of an operation in the composition process by a partner service.

The occurrence of these events is represented by the predicate:

Happensðinvoke rcðPartnerService;OperationðoIdÞÞ; tÞ

The term invoke_rc(PartnerService, Operation(oId)) in this predicate represents the

invocation event. Operation and oId are as defined in (1) and PartnerService is the

name of the service that invokes the operation. In cases where Operation has an

input variable inVar, the value of this variable at the time of its invocation is

represented by the predicate

Initiatesðinvoke rcðPartnerService;OperationðoIdÞÞ; equalToðinVar1; inVarÞ; tÞ

This predicate expresses the initialization of a fluent variable inVar1 with the value

of inVar.

4. The reply following the execution of an operation that was invoked by a partner

service in the composition process. The occurrence of these events is

represented by the predicate:

HappensðreplyðPartnerService;OperationðoId; outVarÞÞ; tÞ

The term reply(PartnerService,Operation(oId, outVar)) in this predicate represents

the reply event. In this term, Operation and oId are as defined in (1), PartnerService
is the name of the service that invoked Operation, and outVar is a variable whose

value is the value of the output parameter of the operation at the time of the reply.

5. The assignment of a value to a variable. The occurrence of these events is

represented by the predicate:

HappensðassignðaIdÞ; tÞ

The term assign(aId) in this predicate represents the assignment event. aId is a

variable whose value identifies the exact instance of the assignment within a specific

instance of the execution of the process.

A semantical framework to engineering WSBPEL processes 227

123

The restriction of the events that may be used in the specification of behavioral

properties and assumptions to the above types guarantees that the specified

properties will be monitorable without the need to instrument the services involved

in the composition process.

2.3 WSBPEL specification as EC formulas

To ensure the mapping from WSBPEL activities into EC formulas, we base our

work on the transformations patterns explained below.

2.3.1 Basic activities

Basic activities in BPEL express primitive functions such as the invocation of

operations and assignments of variable values. More specifically, a basic activity

can be: (1) an invoke activity used to call an operation in one of the partner services

of the composition process; (2) a receive activity that makes the composition

process waiting for the receipt of an invocation of one of its operations by some of

its partner services; (3) a reply activity that allows the composition process to

respond to a request for the execution of an operation previously accepted through a

receive activity; (4) an assign activity used to copy the value of one composition

process variable to another variable; (5) a throw activity used to signal an internal

fault; or (6) a wait activity that forces the composition process to remain idle for a

certain period of time.

Basic WSBPEL activities are transformed into EC formulas according to the

transformations shown in Fig. 1. As shown in this figure, an invoke activity that

calls an operation O in a partner service P is represented in EC as a conjunction

of a predicate that signifies the event of calling O at some time t1
(Happens(invoke_ic(P, O(vID, vX)), t1)), a predicate that signifies the event of

the notification of the completion of O to the composition process at some time t2

Fig. 1 Mapping of basic activities

228 M. Rouached et al.

123

after t1(Happens(invoke_ir(P, O(vID)), t2)), and a predicate that signifies the

initiation of a fluent representing the value of the output variable vY of O upon its

return (Initiates(invoke_ir(P, O(vID)), equalTo(Y, vY), t2)). It should be noted that

in the EC formula for invoke, the variable vID takes as value a unique identifier

that represents the exact instance of the operation invocation in the composition

process, and the variable vX takes the value that the input variable X of O has at

the time of the invocation.

Similarly, a receive activity is represented by a predicate signifying the receipt of

the invocation of an operation O of the composition process by a partner service

P (Happens(invoke_rc(P, O(vID)), t)), and a predicate that initiates a fluent

representing the value of the input variable of O at the time of the call

(Initiates(invoke_rc(P, O(vID)), equalTo(X, vX), t)).
The use of the Initiates predicate in both the case of invoke and receive activities

is based on the principle that value bindings of variables which are visible to the

WSBPEL process should be represented by fluents in order to be accessible to the

reasoning process that checks the satisfiability of formulas.

The same principle underpins the representation of assignment activities in EC

which, as shown in Fig. 1, is a conjunction of a predicate that signifies the

assignment event (Happens(assign(vID), t1)), a predicate that signifies the value of

the source variable of the assignment (HoldsAt(equalTo(X.a, vX.a), t1)) and a

predicate that signifies the assignment of this value to the target variable of the

assignment (Initiates(assign(vID), equalTo(Y.b, vX.a), t2)).

A reply activity responding to the invocation of an operation O in the

composition process is represented by a Happens predicate signifying the

occurrence of an event which notifies the completion of the execution of O and

returns its results as the value of the output variable X of O.

Throw activities are represented by the predicate Happens(th(fN(vID, vX)), t). In

this predicate, the term th(fN(vID, vX)) signifies the generation of a fault signal (this

is indicated by the type th of the term) whose name is fN at the time point t. The

variable vID in this term takes as value the unique identifier that is generated for the

specific fault during the execution of the WSBPEL process and the variable vX takes

as value the data that are attached to the fault to allow fault handlers deal with it. In

cases where a throw activity does not specify any such data, the term representing

the fault is simplified to th(fN(ID)).

Finally, wait activities are represented by a time constraint requiring that the

value of the time variable of the latest predicate in the EC formula representing the

activity before it (i.e., maxt(A)) should be less or equal to the value of the time

variable of the earliest predicate in the formula representing the activity after the

wait (i.e., mint(B)) (the terms EC(A, []) and EC(B, []) in the pattern for a wait
activity are explained below).

2.3.2 Structured activities

Structured activities in WSBPEL provide the control and data flow structures that

enable the coordination of basic activities into a composition process. A structured

activity in WSBPEL may be

A semantical framework to engineering WSBPEL processes 229

123

• A sequence activity specifies an ordered list of other activities that must be

performed sequentially.

• A switch activity specifies an ordered list of one or more conditional branches

that include other activities and may be executed subject to the satisfiability of

the conditions associated with them.

• A flow activity specifies a set of two or more other activities that should be

executed concurrently. A flow activity completes when all of the activities in it

have completed. Synchronization dependencies between activities inside a flow

can be specified using links. Each link defines a target activity that cannot start

before the completion of a source activity which is also defined by the link.

• A pick activity forces the composition process to wait for different events and

perform different activities associated with each of these events as soon as it

occurs.

• A while activity is used to specify the iterative execution of one or more

activities for as long as a condition is true.

Figure 2 presents examples of transformation patterns which are applied to transform

the previous activities into EC formulas. As in Mahbub and Spanoudakis (2004), in

these patterns, (1) actType can be any type of a basic or structured WSBPEL activity;

(2) EC(A, [t1, ..., tn]) represents the EC formulas that an activity A is transformed to

after replacing the quantifiers of all universally quantified time variables in [t1, ..., tn]

with the existential quantifier;1 (3) mint(A) represents the time variable of the earliest

predicate in the formulas of activity A (i.e., the predicate that is expected to occur the

first given the constraints between the time variables of the predicates representing

A); and (4) maxt(B) represents the time variable of the latest predicate in the formulas

of activity B (i.e., the predicate that is expected to occur the latest given the

constraints between the time variables of the predicates representing B).

2.4 Illustrative example

Consider, for instance, a car rental scenario (CRS) implemented as a composition

process and involves five atomic services. A car broker service (CBS) acts as a

broker offering its customers the ability to rent cars provided by different car rental

companies directly from car parks at different locations. CBS is implemented as a

service composition process which interacts with car information services (CIS),

and customer management service (CMS). CIS services are provided by different

car rental companies and maintain databases of cars, check their availability and

allocate cars to customers as requested by CBS. CMS maintains the database of the

customers and authenticates customers as requested by CBS. Each car park also

provides a car sensor service (CSS) that senses cars as they are driven in or out of

car parks and inform CBS accordingly. The end users can access CBS through a

user interaction service (UIS). Finally, a car payment service (CPS) is used by the

CBS to take electronic payments for car rentals.

1 EC(A, []) indicates that there should be no changes to the quantifiers of universally quantified time

variables in A and EC(A,[*]) indicates that all the universally quantified time variables in A should be

existentially quantified in the formula resulting from the transformation.

230 M. Rouached et al.

123

A complete WSBPEL specification of this case study and the equivalent EC

representation is given in http://www.loria.fr/*rouached/crs.zi. In Fig. 3, we just

consider a fragment of this specification in order to show how the mapping scheme

can be applied. This fragment refers to the part of process that receives a request for

a car and checks for available cars.

The first implication in the EC formula represents the link rec-to-auth in the flow
activity of the process. Conditions of this implication represent the receive activity

receiveRequest, and its consequence represents the sequence activity in the process.

The second implication represents the ordering of the constituent activities of the

sequence activity: its conditions represent the assign activity a1 and its consequence

represents the invocation of activity findCar.

3 Semantics of WSBPEL communication

A detailed translation of WSBPEL to EC models is given in previous sections,

however, we add to this the semantics for how to translate the connectivity and

communication between activities of the partner processes rather than from a

single process focus. To commence this we require a process to analyze which

activities are partnered in the compositions. For example, invoke from the UIS

Fig. 2 Mapping of structured activities

A semantical framework to engineering WSBPEL processes 231

123

http://www.loria.fr/~rouached/crs.zi

service (a rental request) will be received by the CRS process (receive a rental

request). Equally the CRS invokes activity, to check the availability of cars by

contacting CIS, will be aligned with receive in the CRS process. In WSBPEL,

the communication is based upon a protocol of behavior for a local service.

However, the partner communication can concisely be modeled using the

synchronous event passing model, described in Magee and Kramer (1999). The

Sender–Receiver example discussed uses Channels to facilitate message/event

passing between such a sender and receiver model. The representation of a

channel in WSBPEL is known as a port. The significant element of this

discussion used in our process is that of synchronization of the invoking and

receiving events within compositions between ports and whether this has been

constructed concurrently (flow construct in WSBPEL) or as a sequence (sequence
construct in WSBPEL) of activities.

In the following, we seek to further our modeling of WSBPEL interactions

through two viewpoints. Firstly, we examine the interactions within the choreog-

raphy layer of Web service compositions collaborating in a global goal. Secondly,

through further behavior analysis, we model the interaction sequences built to

support multiple-partner conversations across enterprize domains and with a view of

wider goals.

Fig. 3 Example of EC formulas extracted from the WSBPEL process for CRS

232 M. Rouached et al.

123

3.1 Modeling interactions

To model interacting Web service compositions there is clearly a need to elaborate

our analysis of implementations by linking compositional interactions based upon:

• activities within the process

• identifying invocation style (rendezvous or request only)

• identifying and recording the points at which interaction occurs

• the abstract interface

• linking between the private process activities and the public communication

interface declared in the abstract WSDL service description.

To model the semantics of linking interactions between processes requires a

mapping between activities in each of the processes translated (using the translation

rules described in Sect. 2.2) and building an event port connector for each of the

interaction activities linking invoke (input) with receives, and replies (output) and

with the returned message to an invoke.

The physical linking of partnerlinks, partners and process models is undertaken

as follows. For each invocation in a process, a messaging port is created. WSBPEL

defines communication in a synchronous messaging model. WSBPEL process

instance support in the specification specifies that in order to keep consistency

between process activities, a synchronous request mechanism must be governed.

The synchronous model can be formed by the following process (Fig. 4).

For every composition process selected for modeling we extract all the interaction

activities in this process. As mentioned previously, interaction activities are service

Fig. 4 Interactions modeling algorithm

A semantical framework to engineering WSBPEL processes 233

123

operation invocations (requests), receiving operation requests and replying to operation

requests. In addition to an invocation request, we also add an invocation reply to

synchronize the reply from a partner process with that of the requesting client process.

The list is then analyzed for invocation requests, and for each one found a partner/port

lookup is undertaken to gather the actual partner that is specified in a partnerlink

declaration. To achieve this, a partner list is used and the partner referenced in the

invocation request is linked back to a partnerlink reference. The partnerlink specifies

the porttype to link operation and partner with an actual interface definition. To

complete the partner match, all interface definitions used in te composition analysis are

searched and matched on porttype and operation of requesting client process. This

concludes the partner match. A port connector bridge is then built to support either a

simple request invocation (with no reply expected) or in ‘‘rendezvous’’ style, building

both invoke/receive and reply-invokeoutput models. This supports the model mapping.

The sequence is then repeated for all other invocations in the selected composition

process, and then looped again for any other composition processes to analyze. We

therefore specify an algorithm that will enable mechanical linking between activities,

partners and process compositions. The algorithm supports a mechanical implemen-

tation of linking composition processes together based upon their interaction behavior.

Two build phases are required as part of the algorithm, being that of building a reply-

invokeoutput port and invoke–receive connector between partnered processes.

In summary, the algorithm described provides a port connector based

implementation of the communication between two partner processes. Where

multiple partner communication is undertaken in a composition, a port connector is

built between each instance of a message(and optionally a reply if used in

rendezvous interaction style).

3.2 Event invocations connectors

To build connected composition interactions, port connector channels are used for

each of the invocation styles between two or more partnered compositions. The

algorithm is used from the viewpoint of a process composition at the ‘‘centre of

focus’’, that is, the one in which initial process analysis is being considered. The

interface of subsequent partner interactions is used in the algorithm to obtain a link

between two partners and an actual operation. For example in Fig.5, two WSBPEL

process interact using both a request only invocation (Channel A) and a Rendez-

vous style (Channels A and B).

Our model of interactions using channels is based upon the interaction state and

not on the messaging architecture used for transport. In this way, we do not consider

synchronous against asynchronous messaging models for modeling the communi-

cation flow between compositions. The model produced from analysis of the

compositions is from the viewpoint of the composition performing as part of a role

in choreography. This makes the model an abstract view of interactions for the

purpose of linking invocations and not on the actual order of messages received by

the process host architecture [synchronous and asynchronous messaging models for

Web services can be referred to in Fu et al. (2004)].

234 M. Rouached et al.

123

3.2.1 Request only invocation (Channel A)

Web service compositions specified with the invoke construct and only an input
container attribute declare an interaction on a request only basis (there is no

immediate reply expected). More generally this requirement is for a reliable

message invocation without any output response from the service host (other

than status of receiving the request). The model for this is illustrated as follows

(Fig. 6).

8ðt1 : timeÞHappensðinvoke�icðPartnerService;OperationðoId; inVarÞÞ; t1Þ ¼)
(A t2) Happens(invoke-rc(PartnerService, Operation (oId)), t2) ^

Initiates (invoke-rc (PartnerService, Operation(oId)), equalTo (inVar1, inVar), t2)) ^ (t1 \ t2).

V (t2:time) Happens (invoke-rc (PartnerService, Operation (oId)), t2)) ^

Initiatesðinvoke�rcðPartnerService;OperationðoIdÞÞ; equalToðinVar1; inVarÞ; t2Þ ¼)
(A t1) Happens (invoke-ic (PartnerService, Operation (oId, inVar)), t1) ^ (t1 \ t2).

3.2.2 Rendezvous style invocation (Channels A and B)

‘‘Rendezvous’’ (Request and Reply) invocations are specified in WSBPEL with the

invoke construct, with both input and output container attributes. To model these

types of interactions, we use a generic port model for each process port. A

synchronous event model in Web services compositions (such as WSBPEL)

requires an additional activity of an ‘‘input_output’’ to link a reply in a partnered

process to that of the caller receiving the output of the invoke, however, this is

necessary only if the invocation style is that of rendezvous. Figure 6 shows an

Fig. 5 Channels and interaction activities of Web service compositions

A semantical framework to engineering WSBPEL processes 235

123

example to illustrate how these interactions can be established. The event

synchronisation for this port model is shown as follows.

8ðt1 : timeÞHappensðinvoke�icðPartnerService;OperationðoId1; inVarÞÞ; t1Þ ¼)
(A t2) Happens (invoke-rc (PartnerService, Operation (oId1)), t2) ^

Initiates (invoke-rc (PartnerService,Operation(oId1)), equalTo (inVar1, inVar), t2) ^ (t1 \ t2).

V (t2: time) Happens(invoke-rc (PartnerService, Operation (oId)), t2)) ^

Initiatesðinvoke�rcðPartnerService;OperationðoIdÞÞ; equalToðinVar1; inVarÞ; t2Þ ¼)
(A t1) Happens (invoke-ic(PartnerService, Operation (oId, inVar)), t1) ^ (t1 \ t2).

8ðt3 : timeÞHappensðreplyðPartnerService;OperationðoId2; outVarÞÞ; t3Þ ¼)
(A t4) Happens (invoke-ir (PartnerService, Operation (oId2)), t4) ^

Initiates (invoke-ir (PartnerService, Operation (oId2)),equalTo (outVar1, outVar), t4) ^ (t3 \ t4).

V (t4:time) Happens(invoke-ir(PartnerService,Operation(oId2)), t4)) ^

Initiatesðinvoke�irðPartnerService;OperationðoId2ÞÞ; equalToðoutVar1; outVarÞ; t4Þ ¼)
(A t3) Happens(reply (PartnerService, Operation (oId2, outVar)), t3) ^ (t3 \ t4).

3.2.3 Mapping process activities to port connectors

The next step in the port connector modeling process is to map the activities of the

WSBPEL process to the port connector activities. This is achieved using the

semantics of WSBPEL for the interaction activities discussed earlier and replacing

the port connector activities appropriately. The invoke activity in BPEl4WS is

mapped from the client process to the invoke_input action of the port connector.

This represents the initial step of a request between Web service partners. The

associated receiving action of the WSBPEL partner process is mapped to the receive

activity in the port connector. The reply from the partner process to the client

Fig. 6 Event invocation connecters: example

236 M. Rouached et al.

123

process is mapped to the reply in the partnered process. Both receive and reply
activities in the WSBPEL are discovered as part of the interface analysis described

in Sect. 3.1. Figure 4 lists the mapping explained here (Table 1).

4 Analysis and verification

We come back now to our example introduced in Sect. 2.4. In a typical situation,

CRS receives a car rental request from a UIS service and checks for the availability

of cars by contacting CIS services. If an available car can be found at the requested

location, CBS books the car rental through a CIS service, and takes payment

through the CPS service. When cars move in and out of car parks, respective CSS

services inform CBS, which subsequently invokes operations in CIS services to

update the availability status of the moved car. However, many complications may

arise. For example, CBS can accept a car rental request and allocate a specific car to

it if, due to the malfunctioning of a CSS service, the departure of the relevant car

from a car park has not been reported and, as a consequence, the car is considered to

be available by the UIS service.

4.1 Requirements specification

In this section, we present how to use the event specification and the WSBPEL

mapping scheme to specify the requirements to be monitored. The monitorable

properties may include behavioral properties of the composition process and/or

assumptions that service providers can specify in terms of events extracted from

this specification. The behavioral properties are specified in terms of: (1) events

which signify the invocation of operations in different services or the

composition process and responses generated at the completion of these

executions, (2) the effects that these events may have on state variables of the

composition (e.g., assignment of values), and (3) conditions about the values of

state variables at different time instances. The events, effects and state variable

conditions are restricted to those which can be observed during the execution of

the composition process. Assumptions are additional constraints about the

behavior of individual services in the execution environment. These constraints

are specified by system providers and must be expressed in terms of events,

effects and state variable conditions which are used in the behavioral properties

directly or indirectly.

Table 1 Mapping process activities to port connectors

WS interaction Port action BPEL4WS actions (Example)

Invoke (client) Invoke_input invoke_client_CRS_CarRequest

Receive (Partner) Receive Receive_client_CRS_CarRequest

Reply (Partner to client) Reply

Invoke_output

reply_CRS_client_CarRequest

output_CRS_client_CarRequest

A semantical framework to engineering WSBPEL processes 237

123

The behavioral properties of individual Web services are extracted automatically

from their WSDL descriptions and the WSBPEL specification of their composition

process. Following the extraction of such properties, assumptions are specified by

system providers in terms of event and state condition literals that have been

extracted from the WSBPEL specification and, therefore, their truth-value can be

established during the execution of the composition process. This specification can

be amended by service providers, who can also use the atomic formulas of the

extracted specification to additional assumptions about the composition require-

ments if appropriate.

Several requirements concerning the CRS case study were discussed in Rouached

et al. (2006). Here we just focus on the bahaviour of the CPS service to clarify our

ideas throughout the rest of the paper.

An example of a requirement for the behavior of the payment service of CRS

specified using the specification introduced so far is illustrated in Fig. 5 (Table 2).

The requirement (RCPS) indicates that if following a request for getting a payment

of an amount a from a customer card cID sent from CBS to CPS at time t1 (see

literal Happens(invoke_ic(CPS, capture (oID1, cID, a)),t1)) and the acceptance of

this request at time t2 (Happens(invoke_ir(CPS, capture(oI D1)), t2) ^ (t1 \ t2 \
t1 + 5*tm) ^ Initiates(invoke_ir(CPS, capture(oID1)), equalTo(CRes, ‘‘OK’’), t2)).

CBS sends another request to CPS for reversing the payment within 50 time units

(see literal Happens(inv oke_ic(CPS, capture_reverse(oID2, cID, a)), t3)^(t2,

t3 \ t2 + 50*tm)), CPS should reverse the payment and confirm this to CBS

within 5 time units (see literals (A t4)(t3 B t4) ^ (t4 B t3 + 5*tm) ^

Happens(invoke_ir(CPS, capture_reverse(oID2)), t4) ^ Initiates(invoke_ir(CPS,

capture_reverse(oID2)), equalTo(RRes, ‘‘OK’’), t4)). In this formula, the variable tm
refers to the minimum time between the occurrence of two events.

4.2 Requirements driven verification

Once both behavioral properties and additional assumptions are formalized, we

move to check the satisfiability of a requirement against the recorded behavior of

the composition process. More specifically, the check that is carried out is whether

the set of the recorded events that have been generated by the execution of the

Table 2 Example of CRS requirement

238 M. Rouached et al.

123

composition process entail the negation of a requirement.2 To do this we propose to

annotate the execution log with semantical information to enable reasoning on

recorded events for checking the consistency of the above properties and gathering

reasons about deviations that may arise. This means that given an event log and an

EC property (requirement), we want to check whether the observed behavior

matches the (un)expected/(un)desirable behavior.

To illustrate this, we come back to our example introduced in Sect. 2.4. As

mentioned in Spanoudakis et al. (2005), to offer higher flexibility to their customers,

the providers of CBS decide to allow customers to cancel completed rental

transactions if they are not happy with the cars that they have rented up to 40 min

following the completion of a car rental. To support this feature, CBS providers

update the UIS services deployed by CBS in order to be able to handle the relevant

requests. They also check the specification of the CPS service that CBS deploys and,

as they find that the specification does not always entail the negation of the

requirement, they decide to continue using the service. However, they also start

observing the behavior of CPS to check if it always satisfies the requirement during

the execution of the composition. For a certain period of time, CPS behaves in line

with the requirement but at some point a violation (i.e., a denial to return a payment)

is observed for a car rental cancelation request. For example, the negation of RCPS,

is entailed by the set of the recorded events of the composition process shown in

Fig. 7.

This event log fragment shows exchanges of messages related to the execution of

operations that realize a car renting transaction. More specifically, following the

receipt of request for a car rental at car park p2 (events L1–L2), CBS contacts the CIS

service to find an available car (event L3). CIS confirms the availability of veh2 at p2

and reports that veh2 would cost 10,000 (events L4–L6). Subsequently, CBS contacts

the UIS service to get a confirmation of the transaction by the customer and a credit

card number to charge the transaction on (event L7). Following the confirmation of

the transaction and the provision of a credit card number (events L8–L9), CBS

contacts the CPS service to authorize the payment for the transaction (events L10–

L12) and get this payment (events L13–L15). Following this, it confirms the car

rental with a reference number ‘‘abc1’’ to the customer through the UIS service

(event L16). Subsequently, CBS receives a cancelation request for the transaction

(events L17–L18) and CPS to reverse the payment that took earlier (event L19). CPS;

however, refuses the reversal (events L20–L21). Formally, the violation of RCPS is

detected as the entailment of RCPS by the recorded events. More specifically, the

negation of RCPS is entailed by the events L13, L14, L15 and L19 and the literal:

ð8t4Þð93� t4Þ ^ ðt4� 98Þ:Initiatesðinvoke irðCPS; capture reverseðop8ÞÞ; equal
ToðRRes; }OK}Þ; t4Þ: The latter literal is established at T = 98 when the execution

of the operation capture_reverse of the CPS service returned the value AgedOff (see

the event L21) and, due to the principle of the negation as failure, the checker can

establish that no Initiates(invoke_ir(CPS, capture_reverse(op8)), equalTo(RRes,

‘‘OK’’), t4) event occurred between times 93 and 98.

2 Formally, this is equivalent to proving that :ð8s:SpecðsÞ ¼) :RðsÞÞ where Spec(s) is the specification

of a service s and R(s) is the requirement about s.

A semantical framework to engineering WSBPEL processes 239

123

For the same case study, several others requirements verifications are discussed

in Rouached et al. (2006). Our focus now is on how the specifications of these

vialations can be used to support the discovery of replacement services that become

unavailable or fail to meet certain requirements at run-time.

5 The service discovery process

During the execution of CRS, a composed service used by CRS may become

unavailable or fail to meet certain requirements as described in the scenario below:

A customer requests CRS to find if there are cars available for renting at a specific

car park. After confirming the availability of cars at the specific location and their

prices, and checking with the customer whether he/she wants to proceed with the

rental, CRS contacts payment service CPS to get a payment for the rental. CPS,

however, is not available. To continue its operation in this scenario, CRS needs to

find another payment service to replace CPS.

One other scenario can occur. Suppose that the payment process must be

handeled under a given composition requirement. For a certain period of time, CPS

behaves in line with the requirement but at some point a violation (i.e., a denial to

return a payment) is observed for a car rental cancelation request. In this case, to

Fig. 7 The CRS event log

240 M. Rouached et al.

123

ensure uninterrupted availability to its customers, CRS should continue using CPS

while trying to find another payment service to replace it at run-time.

Dealing effectively with the above scenarios requires a run-time service

discovery framework to be able to: (1) keep the composition process alive when

a constituent service fails and until a replacement service is found; (2) monitor the

compliance of the run-time behavior of the services involved with specific

requirements; and (3) create queries based on violated requirements to find

alternative services that can satisfy these requirements.

5.1 Query specification

As mentioned so far, our framework uses the specifications of the violated

requirements to generate queries for discovering services that could substitute for

malfunctioning services. These queries incorporate both structural and behavioral

aspects of the required services.

The structural part of a query specifies the interface of the required service and

possibly a categorisation of it. The service interface is specified in WSDL. This

information is taken from the local registry of the components services maintained

by the composition manager. The behavioral part of a query is specified as a

conjunction of paths. A path is a list of typed elements with a variable number of

arguments. An element may be of type:

• Send representing a message that is dispatched by the composition process

• Receive representing a message that is received by the composition process

• State representing unknown states in the state machine of a service to be located,

or

• Predicate test representing a condition that must be true at a specific point

within a path.

The ordering of elements within a path indicates the temporal order in which the

elements must occur. A path element can be negated when it is necessary to specify

that the element should not be present at the specific point within the path (Fig. 8).

Figure 7 presents an example of a query for finding a service to replace the

payment service that becomes unavailable in scenario 1 (Query1) and scenario 2

(Query2) (see Sect. 5).

The paths in the query correspond to the messages exchanged between CRS and

the payment service in the different execution paths of the WSBPEL composition

process of CRS. The first path in the query represents an execution path in which the

composition process requests the execution of the operation authorize in the

payment service to authorize a payment ([‘‘send’’, CRS, Service, ‘‘authorise’’,

‘‘cID’’, ‘‘a’’]), receives a response that indicates the successful authorisation of the

payment ([‘‘receive’’, CRS, Service, ‘‘authorise_response’’, ‘‘OK’’]), requests the

execution of the operation capture in the payment service to get the payment

([‘‘send’’, CRS, Service, ‘‘capture’’, ‘‘cID’’, ‘‘a’’]), and receives a response that

indicates the successful completion of the payment ([‘‘receive’’, CRS, Class,

‘‘capture_response’’, ‘‘OK’’]).

A semantical framework to engineering WSBPEL processes 241

123

The behavioral part of the query is formed by paths constructed from the

WSBPEL process and from the specification of the requirement that has been

violated. The construction from the WSBPEL composition process is ensured by

using special transformation rules. As an illustration of how queries can be

constructed from WSBPEL processes, consider the following fragment of the CRS

process.

\invoke xmlns=‘‘http://schemas.xmlsoap.org/

ws/2003/03/business-process/’’

partnerLink=‘‘PaymentSystem’’

portType=‘‘ps:PaymentSystem’’

operation=‘‘authorise’’

inputVariable=‘‘authData’’/[

To transform the invocation of the operation authorise in the above WSBPEL code

fragment into a send element in the query paths shown by Query 1 of Fig. 7, the

XML element hinvokei is replaced by the element type send, and the value of the

attributes operation and inputVariable of this element are represented as arguments

of this element (i.e., authorise and the actual parts of the input variable authData,

namely cID and a). Note that some of the element arguments are variables.

Variables are signified by strings not enclosed in quote marks (‘‘’’) within a query

path element. In Fig. 7, for example, CRS is a variable representing a client of the

payment service, Service is the unknown service whose state machine should be

matched with the query, and Initial, Final1 and Final2 are unknown states in this

machine that represent the boundary states of the transition path in the state machine

that will be matched with the query (if any). An example of a query for finding the

service required in Scenario 2 is presented by Qurey 2 of Fig. 7.

In this scenario, we would like to discover a service that supports the cancelation

of payment captures within 50 min after the completion of the capture (sends the

respond capture_reverse_response(OK)) following the invocation of the operation

capture_reverse in it provided the operation was invoked up to 50 min after the

payment. The structural part of this query is the same as that of Query 1 in Fig. 7.

The behavioral part of the query is formed by paths constructed from the WSBPEL

Fig. 8 Example of queries for finding services required in Scenario 1 and 2

242 M. Rouached et al.

123

process (as in Query 1) and from the requirement RCPS that has been violated in this

scenario as we discussed in Sect. 4.2.

The transformation of the violated requirements into query paths is also based on

rules. A rule transforms EC predicates to send or receive path elements based on the

type of the EC predicate. For example, the first condition of RCPS in Fig. 9 is

transformed into a path element signifying the invocation of the capture operation

in the beginning of the path of Query 2. Time conditions in EC formulas are

transformed into predicate test elements. For example, the range of the variable t3 in

(RCPS) is transformed into the path element [‘‘after’’, Service, 50] in Query 2. The

predicate test after in this case specifies that between the element that precedes the

after element in the query path and the element that follows it there shouldn’t be a

delay of more than 50 time units.

5.2 Matching

The matching between a service requested by a query and the services described in a

service registry is based on matching the data types and signatures of service

operations (structural matching) and the behavioral models of services (behavioral
matching).

Both the structural and behavioral matching use internal representations of the

data types and behavioral models of the services. More specifically, data types are

internally represented as type graphs and behavioral service models are internally

represented as state machines. These internal representations are generated

automatically from the original descriptions of services expressed in WSDL

(service data types) and WSBPEL (service behavioral models). Our choice to use

these internal representations of service structural and behavioral descriptions has

been motivated by the genericity of type graphs and state machines that we deploy

Fig. 9 State machine of a payment service

A semantical framework to engineering WSBPEL processes 243

123

and their ability to provide common canonical representations for a wide range of

data and behavioral service representations.

To implement the run-time discovery tool of our framework, we propose to use

an extension of the path transformation tool described in Kozlenkov and Zisman

(2004). This extension assumes behavioral specifications of services expressed as

UML state machines because their expressive power is comparable to Web service

languages like WSBPEL, WSCI, and OWL-S.

The discovery process is executed in two steps. In the first step, relevant

candidate services complying with the structural part of a query are identified by

using more traditional matching and interface-based service discovery (as supported

by the use of WSDL and UDDI). In the second step, the relevant candidate services

identified in the first step are analyzed by using the path transformation tool that

combines several types of formal reasoning like goal elaboration, abduction, and

path transformation. The analysis in the second step of the discovery process

consists of verifying if the path in the behavioral part of a query (pathq) can be

transformed into a valid path in the behavioral specification of a candidate service

(paths). A valid path in a candidate service corresponds to traces in the state

machine of this service that are identified by the transformation tool during the

elaboration of a path query (pathq) (i.e., when checking if the elements in pathq

occur in the service specification following the same order). A paths is composed of

elements in the service specification such as input and output events, and guarded
internal transitions. A pathq is transformed into a paths by the tool by consuming

one by one all the elements in a query path (pathq). For more details about the

matching algorithms and the used techniques, the reader can refer to (Rouached and

Godart).

5.2.1 Example

To illustrate the discovery process, consider the example of a state machine

representing the behavioral specification for a payment service (CPS) shown in

Fig. 9 (Spanoudakis et al. 2005). According to this state machine, a payment can be

taken through a number of interactions with a client (in our case, the CRS system).

In the simplest scenario, the CPS service authorizes the payment (see the transition

from the state Authorisation to the state Init in the state machine) and after the client

confirms the customer’s identification and, possibly, a signature is obtained, it

captures (deposits) the funds (transition to the state Deposited in Fig. 9). In the case

of Query 2, consider first the situation when a candidate payment service CPS1 that

behaves exactly as specified by the state machine in Fig. 9 is discovered using

service categorisation information. The matching of the path in Query 2 with the

state machine in Fig. 7; however, would fail. This happens because in accordance to

the UML state machine semantics, given the delay of 50 min specified in Query 2,

the transition after(30) from the state Deposited to the state AgedOff will be taken,

thereby, preventing the transition from the state Deposited to the state Reverse (i.e.,

the execution of the operation capture_reverse). Thus a path cannot be constructed

to match the path in Query 2 and service CPS1 will be rejected.

244 M. Rouached et al.

123

Suppose, however, that there is a payment service CPS2 with a state machine like

the one shown in Fig. 9, but where transition after from Deposited to AgedOff is

specified to occur 60 min after the entrance to the former state (i.e., after the

completion of the execution of the operation capture). In this case, the path shown

in Fig. 9 can be constructed to match the path in Query 2 and, therefore, the overall

query will succeed. Note that in Fig. 9, element of type after in Query 2 is deleted

because the elapsed time in transition [after(60)] is greater than 50 min. Thus, the

transition from Deposited to Reverse is taken, and a valid path (paths) is

constructed. Service CPS2 would be selected as a candidate substitution for CPS. In

this case, CPS could be subsequently replaced by CPS2 in the composition process

of CRS using the instrumentation techniques discussed in Spanoudakis et al. (2005).

In the case when the state machine of a service does not have an after transition, the

path in Fig. 9 is also valid and such service also meets the requirements (Fig. 10).

6 Implementation

Our approach has been implemented in Java and has used the engine bpws4j3 and

log4j4 to generate logging events. It incorporates a requirements (behavioral

properties and assumptions) editor, an event collector, a BPEL2EC tool, and a

deviation viewer. The BPEL2EC tool is built as a parser that can automatically

transform a given WSBPEL process into EC formulas according to the transfor-

mation scheme. It takes as input the specification of the Web service composition as

a set of coordinated Web services in WSBPEL and produces as output the

behavioral specification of this composition in EC. The description of this

implementation is beyond the scope of this paper and may be found in Rouached

et al. (2006).

As a verification back-end, we have used an automated induction-based theorem

prover SPIKE (Stratulat 2001). SPIKE was chosen for the following reasons: (1) its

high automation degree, (2) its ability on case analysis, (3) its refutational

Fig. 10 A path transformation for Query 2

3 http://alphaworks.ibm.com/tech/bpws4j.
4 http://logging.apache.org/log4j/docs/.

A semantical framework to engineering WSBPEL processes 245

123

http://alphaworks.ibm.com/tech/bpws4j
http://logging.apache.org/log4j/docs/

completeness (to find counter-examples), (4) its incorporation of decision proce-
dures(to automatically eliminate arithmetic tautologies produced during the proof

attempt5).

SPIKE proof method is based on cover set induction. Given a theory, SPIKE

computes in a first step induction variables where to apply induction and induction

terms which basically represent all possible values that can be taken by the

induction variables.

The specification of the ingredients of our encoding and the EC axiomatisation

can not be detailed here due to lack of space but are discussed in Rouached and

Godart (2007).

Following this EC specification, we build an algebraic specification from it. Once

building this specification, we can check all behavioral properties by means the

powerful deductive techniques (rewriting and induction) provided by SPIKE.

Given a conjecture (requirement) to be checked, the prover selects induction

variables according to the previous computation step, and substitute them in all

possible way by induction terms. This operation generates several instances of the

conjecture which are then simplified by rules, lemmas, and induction hypotheses.

Then, when SPIKE is called, either the behavioral properties proof succeed, or the

SPIKE’s proof-trace is used for extracting all scenarios which may lead to potential

deviations. There are two possible scenarios. The first scenario is meaningless

because conjectures are valid but it comes from a failed proof attempt by SPIKE.

Such cases can be overcome by simply introducing new lemmas. The second one

concerns cases corresponding to real deviations. The trace of SPIKE gives all

necessary informations (events, fluents and timepoints) to understand the inconsis-

tency origin. Consequently, these informations help designer to detect behavioral

problems in the composite Web service. Verification results cannot be presented

here but can be found in http://www.loria.fr/*rouached/crs.zi.

7 Related work

One of the key aspects of SOAs is the ability to rapidly build new applications and

services by assembling the existing ones. Developing techniques and approaches to

facilitate such an assembly process automatically has been widely researched in

both academia and industry. However, most of the existing approaches ignore or

oversimplify multiple aspects and characteristics that are specific to Web services

and SOA, and are vital for the success of service-oriented computing paradigm, in

general. Some of the important aspects include representation of functional and

behavioral properties of services, ability to handle failure of composition, service

adaptation during composition, analysis of service substitution, and handling

semantic heterogeneity in service specifications. Without addressing these issues in

an uniform manner, the present techniques and tools can only operate in a restricted

setting, and hence cannot be applied to a wide-range of realistic problems and

application domains.

5 like x + z [y = false ^ z + x \ y = false) x + z = y.

246 M. Rouached et al.

123

http://www.loria.fr/~rouached/crs.zi

Several attempts have been made to capture the behavior of BPEL (Andrews

et al. 2003) in some formal way. Some advocate the use of finite state machines

(Fisteus et al. 2004), others process algebras (Ferrara 2004), and yet others abstract

state machines (Fahland and Reisig 2005) or Petri nets (Martens 2005; Ouyang et al.

2005; Stahl 2004). But they mainly focus on introducing a semantic discovery

service and facilitating semantic translations. The closest to our approach are the

tools presented in Foster et al. (2003) and (Fu et al. 2004). The first one, namely

LTSA-BPEL4WS, is based on the process algebra formalisms and allows for the

analysis of basic properties of WSBPEL specifications, such as safety and progress

checks. The tool currently does not support the analysis of composition of several

WSBPEL specifications and was unable to handle complex specifications as those

of the CRS case study. Moreover, it is based on the synchronous communications

model thus being restrictive with respect to the set of systems it is able to correctly

analyze. On the contrary, the WSAT tool (Fu et al. 2004) is equipped with the

synchronizability analysis techniques that allow to check whether the behavior of

the system is valid under synchronous communications semantics. However, the

techniques currently provided allow only for partial analysis. Also the provided

techniques do not exceed the limits of the synchronizability analysis, and therefore

do not allow for the reasoning about more sophisticated communication models.

Pu et al. (2006), and Koshkina and van Breugel (2004), the analysis is performed

basing on Timed Automata and inspired by process algebra notations. All these

approaches exploit only the synchronous communication semantics, thus ruling out

a certain class of composition scenarios, which are important in practice and can be

managed in the proposed framework. On the contrary the aim of our approach is to

attempt to find an appropriate specification for the given composition, under which

it behaves correctly.

Several other attempts to formalize WSBPEL specification and a detailed

comparison between them can be found in van Breugel and Koshkina (2006; Yang

et al. 2005). van Breugel and Koshkina (2006) is a tutorial that provides an

overview of the different models of BPEL that have been proposed. Furthermore,

the authors discuss the verification techniques for BPEL that have been put forward

and the verification tools for BPEL that have been developed.

In terms of choreography and Web service conversations, work on asynchronous

Web service communication has been described in Fu (2004) and Fu et al. (2004),

with an example focus on the BPEL4WS specification reported in Fu et al. (2004).

A formal specification framework is described to analyze the conversations

proposed by the asynchronous communication channels utilized on the Internet. The

technique proposed appears more useful for modeling general Web service

communications, rather than that of compositional specifics. Both the work on

asynchronous and BPEL4WS interaction modeling is achieved through the use of

Guarded Finite State Automata (GFSA) which enables data dependencies to be

modeled alongside process transitions. Brogi et al. (2004) the authors describe an

approach to formalizing conversations, by way of mapping the WSCI standard to

CCS for Web service choreography descriptions. The technique is similar to that of

formalizing compositions by way of mapping each of the actions and data

parameters between two or more partnered services in choreography. The

A semantical framework to engineering WSBPEL processes 247

123

conversation is traced by modeling the Web service invocations with that of the

receive and reply actions of the partnered service. The authors call for a common

view of representing both composition and choreography models, such that fluid

design and maintenance of individual specifications is not detrimental to the

development effort.

One common pattern of the above attempts is that they adapt static verification

techniques and therefore violations of requirements may not be detectable. This is

because Web services that constitute a composition process may not be specified at

a level of completeness that would allow the application of static verification, and

some of these services may change dynamically at run-time causing unpredictable

interactions with other services. Another important element is that the composition

and the choreography are not usually expressed within one single environment and

therefore the verification techniques must be modified before using them. Instead, in

our approach we provided a guide on how to translate the semantics of the WSBPEL

specification to EC and map implementation abstractions which preserve the

interaction behavior between services, yet also disposing of process characteristics

which are not required in the analysis. Then, we elaborated these models to analyze

the conversations of compositions across choreography scenarios, providing both

interface and behavioral compatibility verification processes.

8 Conclusion

In this paper we have presented a unified framework for the analysis and

verification of Web service compositions provided as BPEL specifications. This

framework enables the checking of requirements for BPEL processes. The

requirements specify behavioral properties of the composition process, or

assumptions about the behavior of the composition as a whole, its constituent

services and external agents who interact with it. Then, the approach is extended

to include models of service choreography with multiple interacting Web services

compositions, from the perspective of a collaborative distributed composition

development environment. The process of behavior analysis moves from a single

local process to that of modeling and analysing the behavior of multiple processes

across composition domains. Finally, the specifications of the violated require-

ments are used to generate queries for discovering services that could substitute

for malfunctioning services or services that may become unavailable or fail to

meet certain requirements.

References

Andrews T, Curbera F, Dholakia H, Goland Y, Klein J, Leymann F, Liu K, Roller D, Smith D, Thatte S,

Trickovic I, Weerawarana S (2003) Business process execution language for Web Services, Version

1.1. Standards proposal by BEA Systems, International Business Machines Corporation, and

Microsoft Corporation

Arkin A, Askary S, Bloch B, Curbera F (2004) Web services business process execution language version

2.0. Technical report, OASIS

248 M. Rouached et al.

123

Brogi A, Canal C, Pimentel E, Vallecillo A (2004) Formalizing web service choreographies. Electr Notes

Theor Comput Sci 105:73–94

Casati F, Shan M-C (2001) Dynamic and adaptive composition of e-services. Inf Syst 26(3):143–163

Fahland D, Reisig W (2005) ASM-based semantics for BPEL: the negative control flow. In: Beauquier D,

Börger E, Slissenko A (eds) Proceedings of 12th international workshop on abstract state machines.

Paris, France, pp 131–151

Ferrara A (2004) Web services: a process algebra approach. In: Proceedings of the 2nd international

conference on service oriented computing. ACM Press, New York, pp 242–251

Fisteus J, Fernández L, Kloos C (2004) Formal verification of BPEL4WS business collaborations. In:

Bauknecht K, Bichler M, Proll B (eds) Proceedings of the 5th international conference on electronic

commerce and Web technologies (EC-Web ’04). Lecture Notes in Computer Science, vol 3182,

Zaragoza, Spain. Springer, Berlin, pp 79–94

Foster H, Kramer J, Magee J, Uchitel S (2003) Model-based verification of web service compositions. In:

18th IEEE international conference on automated software engineering (ASE)

Fu X (2004) Formal specification and verification of asynchronously communicating Web services. Phd

Thesis, University of California, Santa Barbara

Fu X, Bultan T, Su J (2004) Analysis of interacting bpel web services. In: WWW ’04: Proceedings of the

13th international conference on World Wide Web, ACM Press, New York, pp 621–630

Gustavo Alonso HKVM (2004) Fabio Casati. Web services: concepts, architectures and applications.

Springer, Berlin

Koshkina M, van Breugel F (2004) Modelling and verifying web service orchestration by means of the

concurrency workbench. SIGSOFT Softw Eng Notes 29(5):1–10

Kowalski R, Sergot MJ (1986) A logic-based calculus of events. New Generation Comput 4(1):67–95

Kozlenkov A, Zisman A (2004) Discovering, recording, and handling inconsistencies in software

specifications. Int J Comput Inf Sci 5(2):89–108

Magee J, Kramer J (1999) Concurrency: state models & Java programs. Wiley, New York

Mahbub K, Spanoudakis G (2004) A framework for requirents monitoring of service based systems. In:

ICSOC ’04: Proceedings of the 2nd international conference on Service oriented computing, ACM

Press, New York, pp 84–93

Martens A (2005) Analyzing Web service based business processes. In: Cerioli M (ed) Proceedings of the

8th international conference on fundamental approaches to software engineering (FASE 2005).

Lecture Notes in Computer Science, vol 3442. Springer, Berlin, pp 19–33

Nakajima S (2002) Verification of web service flows with model-checking techniques. In: Proceedings of

the first international symposium on Cyber Worlds (CW 2002). IEEE Computer Society,

Washington, pp 378–385

Narayanan S, McIlraith SA (2002) Simulation, verification and automated composition of web services.

In: WWW ’02: Proceedings of the 11th international conference on World Wide Web. ACM Press, ,

New York, pp 77–88

Ouyang C, Aalst W, Breutel S, Dumas M, Verbeek H (2005) Formal semantics and analysis of control

flow in WS-BPEL. BPM Center Report BPM-05-15, BPMcenter.org

Pistore M, Roveri M, Busetta P (2004) Requirements-driven verification of web services. Electr Notes

Theor Comput Sci 105:95–108

Pu G, Zhao X, Wang S, Qiu Z (2006) Towards the semantics and verification of bpel4ws. Electr Notes

Theor Comput Sci 151(2):33–52

Rouached M, Gaaloul W, van der Aalst WMP, Bhiri S, Godart C (2006) Web service mining and

verification of properties: an approach based on event calculus. In: Proceedings 14th international

conference on cooperative information Systems (CoopIS 2006)

Rouached M, Godart C (2007) A dynamic query based discovery for Web services composition.

http://www.loria.fr/*rouached/CWSDiscovery.pdf

Rouached M, Godart C (2007) Requirements-driven verification of wsbpel processes. In: Proceedings of

the IEEE international conference on Web services (ICWS’07), Salt Lake City

Spanoudakis G, Zisman A, Kozlenkov A (2005) A service discovery framework for service centric

systems. In: SCC ’05: Proceedings of the 2005 IEEE international conference on services

computing. IEEE Computer Society, Washington, DC, pp 251–259

Stahl C (2004) Transformation von BPEL4WS in Petrinetze (In German). Master’s Thesis, Humboldt

University, Berlin

Stratulat S (2001) A general framework to build contextual cover set induction provers. J Symb Comput

32(4):403–445

A semantical framework to engineering WSBPEL processes 249

123

http://www.loria.fr/~rouached/CWSDiscovery.pdf

van Breugel F, Koshkina M (2006) Models and verification of bpel. Available at http://www.

cse.yorku.ca/ franck/research/drafts/tutorial.pdf

Yang Y, Tan Q, Xiao Y (2005) Verifying web services composition based on hierarchical colored petri

nets. In: IHIS ’05: Proceedings of the first international workshop on Interoperability of

heterogeneous information systems. ACM Press, New York, pp 47–54

250 M. Rouached et al.

123

http://www.cse.yorku.ca/ franck/research/drafts/tutorial.pdf
http://www.cse.yorku.ca/ franck/research/drafts/tutorial.pdf

	A semantical framework to engineering WSBPEL processes
	Abstract
	Introduction
	Modeling Web service composition
	Overview of WSBPEL
	Mapping WSBPEL processes to EC
	WSBPEL specification as EC formulas
	Basic activities
	Structured activities

	Illustrative example

	Semantics of WSBPEL communication
	Modeling interactions
	Event invocations connectors
	Request only invocation (Channel A)
	Rendezvous style invocation (Channels A and B)
	Mapping process activities to port connectors

	Analysis and verification
	Requirements specification
	Requirements driven verification

	The service discovery process
	Query specification
	Matching
	Example

	Implementation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

