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1 Introduction

In the classical probability, the additivity of the probabilities and the expectations are assumed.
But in practice, such additivity assumption is not feasible in many areas of applications because
the uncertainty phenomena can not be modeled by using additive probabilities or additive
expectations. Non-additive probabilities and non-additive expectations are useful tools for
studying uncertainties in statistics, measures of risk, superhedging in finance and non-linear
stochastic calculus, see Denis, Martini[5], Gilboa[8], Marinacci[13], Peng[15–17, 19]. Peng[17, 19, 20]

introduced the general framework of the sub-linear expectation in a general function space
by relaxing the linear property of the classical expectation to the sub-additivity and positive
homogeneity (cf. Definition 2.1 below). Under Peng’s sub-linear expectation framework, many
limit theorems have been established recently, including the central limit theorem and weak
law of large numbers[18, 20, 21], strong law of large numbers[2, 3, 9, 26], the law of the iterated
algorithm[4, 26, 28], Donsker’s invariance principle and Chung’s law of the iterated logarithm[27],
the moment inequalities for the maximum partial sums and the Kolomogov strong law of large
numbers[29], and so on.

The limiting behavior of weighted sums is very important in many statistical problems such
as least-squares estimators, nonparametric regression function estimators and jackknife estima-
tors among others. Many limit properties of weighted sums have been obtained in classical
probability space. In the following Theorem 1.1 and Theorem 1.2, let {X,Xn; n ≥ 1} be a
sequence of i.i.d. random variables with expectation zero. Let {kn, n ≥ 1} (kn ≤ Mn, where
M is an integer not depending on n) be a sequence of positive integers and {ani, 1 ≤ i ≤ kn}
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be an array of real numbers. Define a weighted sum by Skn =
kn∑
i=1

aniXi. Thrum[24]obtained

the following result:

Theorem 1.1. If
n∑

i=1

a2ni = 1 and E|X|p < ∞ (p ≥ 2), then Sn/n
1/p → 0 a.s.

Li et al.[12] extended this result and obtained:

Theorem 1.2. If sup
1≤i≤kn

|ani| < ∞,
kn∑
i=1

a2ni = O(nδ) (δ < min{1, 2/p}) and E|X|p < ∞ (p ≥

1), then Skn/n
1/p → 0 a.s.

Wu[25] established the complete convergence theorem for ND random variables:

Theorem 1.3. Let {Xn; n ≥ 1} be a sequence of ND identically distributed random variables
with

E|X1|2/α < ∞, for some α > 1.

Then
n∑

i=1

Xi/n
α c→ 0.

There are many other strong laws for weighted sums in classical probability space. We
refer the reader to [10, 11], and so on. By Borel-Cantelli Lemma, complete convergence implies
almost sure convergence. Complete convergence theorems for weighted sums are important
limit theorems in probability theory. Many of related results have been obtained in the prob-
ability space. We refer the reader to Peligrad, Gut[14], Sung[23], Feng, Wang, Wu[6], Chen and
Sung[1], and so on. Investigating the limit theorems in sub-linear expectation space is of great
significance in the theory and application. Because sub-linear expectation and capacity are not
additive, the study of the limit theorems under sub-linear expectations becomes much more
complex and challenging. Although, Feng, Wang, Wu[7] and Zhong and Wu[31] establish the
complete convergence theorems for weighted sums, there are few related strong limit theorems
for weighted sums under sub-linear expectations. The main purpose of this article is to estab-
lish very extensive version strong laws and complete convergence theorem for weight sums of
extended negatively dependent random variables under the sub-linear expectations.

Throughout this paper, C stands for a positive constant which may differ from one place
to another. Let an ≪ bn denote that there exists a constant c > 0 such that an ≤ cbn for
sufficiently large n, and I(·) denotes an indicator function.

2 Preliminaries

We use the framework and notations of Peng[20]. Let (Ω,F) be a given measurable space and
let H be a linear space of real functions defined on (Ω,F) such that if X1, · · · , Xn ∈ H then
φ(X1, · · · , Xn) ∈ H for each φ ∈ Cl.Lip(Rn), where Cl.Lip(Rn) denotes the linear space of (local
Lipschitz) functions φ satisfying

|φ(x)− φ(y)| ≤ C(1 + |x|m + |y|m)|x− y|, ∀x,y ∈ Rn,

for some C > 0,m ∈ N depending on φ. H is considered as a space of “random variables”. If
X is an element of set H, then we denote X ∈ H.

Definition 2.1. A sub-linear expectation Ê on H is a function Ê : H → R̄ satisfying the
following properties: for all X,Y ∈ H, we have
(a) Monotonicity: If X ≥ Y then Ê[X] ≥ Ê[Y ];
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(b) Constant preserving: Ê[c] = c;

(c) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ] whenever Ê[X] + Ê[Y ] is not of the form +∞−∞
or −∞+∞;
(d) Positive homogeneity: Ê[λX] = λÊ[X], λ > 0.

Here R̄ = [−∞,+∞]. The triple (Ω,H, Ê) is called a sub-linear expectation space. Given a

sub-linear expectation Ê, let us denote the conjugate expectation Ê of Ê by

Ê [X] := −Ê[−X], ∀X ∈ H.

From the definition, we can easily get that Ê [X] ≤ Ê[X], Ê[X + c] = Ê[X] + c, Ê[X − Y ] ≥
Ê[X] − Ê[Y ] and |Ê[X] − Ê[Y ]| ≤ Ê[|X − Y |]. Further, if Ê[|X|] is finite, then Ê [X] and Ê[X]
are both finite.

Definition 2.2. (i) (Identical distribution) Let X1 and X2 be two n-dimensional random vec-

tors defined respectively in sub-linear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They are

called identically distributed, denoted by X1
d
=X2, if Ê1[φ(X1)] = Ê2[φ(X2)], ∀φ ∈ Cl.Lip(Rn),

whenever the sub-expectations are finite. A sequence {Xn; n ≥ 1} of random variables is said

to be identically distributed if Xi
d
=X1, for each i ≥ 1.

(ii) (Extended negative dependence)[30] A sequence of random variables {Xn;n ≥ 1} is said
to be upper (resp. lower) extended negatively dependent if there is some dominating constant
K ≥ 1 such that

Ê
[ n∏
i=1

φi(Xi)
]
≤ K

n∏
i=1

Ê
[
φi(Xi)

]
, ∀n ≥ 2,

whenever the non-negative functions φi ∈ Cb.Lip(R), i = 1, 2, · · · , are all non-decreasing (re-
sp. all non-increasing). They are called extended negatively dependent if they are both upper
extended negatively dependent and lower extended negatively dependent.

It is obvious that, if {Xn;n ≥ 1} is a sequence of upper (resp. lower) extended negatively
dependent random variables and f1(x), f2(x), · · · ∈ Cl.Lip(R) are non-decreasing (resp. non-
increasing) functions, then {fn(Xn); n ≥ 1} is also a sequence of upper (resp. lower) extended
negatively dependent random variables. If {Xn; n ≥ 1} is a sequence of upper (resp. lower)
extended negatively dependent random variables, then {−Xn; n ≥ 1} is a sequence of lower
(resp. upper) extended negatively dependent random variables. Hence, if {Xn; n ≥ 1} is a
sequence of extended negatively dependent random variables, then {−Xn; n ≥ 1} is a sequence
of extended negatively dependent random variables. It shall be noted that the extended negative
dependence of {Xn; n ≥ 1} under Ê does not imply the extended negative dependence under

Ê .
Next, we introduce the capacities corresponding to the sub-linear expectations. Let G ⊂ F .

A function V : G → [0, 1] is called a capacity if

V (ϕ) = 0, V (Ω) = 1 and V (A) ≤ V (B), ∀A ⊆ B, A,B ∈ G.

It is called to be sub-additive if V (A ∪B) ≤ V (A) + V (B) for all A,B ∈ G with A ∪B ∈ G.
Let (Ω,H, Ê) be a sub-linear expectation space, and Ê be the conjugate expectation of Ê.

We denote a pair (V,V) of capacities by

V(A) := inf{Ê[ξ] : I(A) ≤ ξ, ξ ∈ H}, V(A) := 1− V(Ac), ∀A ∈ F ,

where Ac is the complement set of A. It is obvious that V is sub-additive and V(A) :=

Ê[I(A)], V(A) := Ê [I(A)], if I(A) ∈ H,

Ê[f ] ≤ V(A) ≤ Ê[g], Ê [f ] ≤ V(A) ≤ Ê [g], if f ≤ I(A) ≤ g, f, g ∈ H. (2.1)
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This implies Markov inequality: ∀X ∈ H,

V(|X| ≥ x) ≤ Ê[|X|p]/xp, ∀x > 0, p > 0

from I(|X| ≥ x) ≤ |X|p/xp ∈ H. By Lemma 4.1 of Zhang[28], we have Hölder inequality:
∀X,Y ∈ H, p, q > 1, satisfying p−1 + q−1 = 1,

Ê[|XY |] ≤ (Ê[|X|p])
1
p (Ê[|Y |q])

1
q ,

particularly, Jensen inequality:

(Ê[|X|r]) 1
r ≤ (Ê[|X|s]) 1

s , for 0 < r ≤ s.

Definition 2.3 (see [28]). A function V : F → [0, 1] is called to be countably sub-additive if

V
( ∞∪

n=1

An

)
≤

∞∑
n=1

V (An), ∀An ∈ F .

We define the Choquet integrals/expecations (CV, CV) by

CV (X) :=

∫ ∞

0

V (X ≥ x)dx+

∫ 0

−∞
(V (X ≥ x)− 1)dx

with V being replaced by V and V, respectively. If lim
c→+∞

Ê[(|X| − c)+] = 0, then Ê[|X|] ≤
CV(|X|) (see Lemma 4.5(iii) of [28]).

In order to prove our results, we need the following lemmas.

Lemma 2.4. Let {Xn; n ≥ 1} be a sequence of upper extended negatively dependent random

variables in (Ω,H, Ê), with Ê[Xn] ≤ 0, n ≥ 1. Let Sn =
n∑

i=1

Xi, Bn =
n∑

i=1

Ê[X2
i ]. Then for all

x > 0, a > 0,

V(Sn > x) ≤ V
(

max
1≤k≤n

Xk > a
)
+K exp

{
− x2

2(xa+Bn)

}
. (2.2)

By Theorem 3.1 of [30], we can have (2.2).

Lemma 2.5 (Borel-Cantelli Lemma[28]). Let {An;n ≥ 1} be a sequence of events in F . Suppose

that V is a countably sub-additive capacity. If
∞∑

n=1
V (An) < ∞, then

V (An, i.o.) = 0, where (An, i.o.) =
∞∩

n=1

∞∪
m=n

Am.

Lemma 2.6. Suppose X ∈ H, Then for any c > 0,

(i) CV(|X|p) < ∞ ⇔
∞∑

n=1

V(|X| > cn1/p) < ∞; (2.3)

(ii) CV(|X|p) < ∞ ⇔
∞∑

n=1

nV(|X| > cn2/p) < ∞; (2.4)

(iii) CV(|X|p) < ∞ ⇒ lim
x→∞

x4/3V(|X| > cx
4
3p ) = 0. (2.5)
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Proof. (i) Obviously, CV(|X|p) < ∞ is equivalent to CV(|X|p/cp) < ∞ for any c > 0. Note that

CV(|X|p/cp) < ∞ ⇔
∫ ∞

0

V(|X| > cx1/p)dx < ∞ ⇔
∞∑

n=1

V(|X| > cn1/p) < ∞.

(ii)

CV(|X|p/cp) =
∫ ∞

0

V(|X| > cx1/p)dx =

∫ ∞

0

2xV(|X| > cx2/p)dx,

CV(|X|p/cp) < ∞ ⇔
∞∑

n=1

nV(|X| > cn2/p) < ∞.

Hence, (2.4) holds.
(iii) By

∫∞
0

V(|X| > cx1/p)dx < ∞ and V(|X| > cx1/p) ↓, we have

lim
x→∞

xV(|X| > cx
1
p ) = 0,

which is equivalent to

lim
x→∞

x4/3V(|X| > cx
4
3p ) = 0.

3 Strong Limit Theorems

In this section we show the main result–strong limit theorems. Firstly, we define Xn →
X a.s. V(V) and Xn → X complete converge as follows:

Definition 3.1. A sequence of random variables {Xn;n ≥ 1} is said to converge to X almost
surely V (a.s. V ), denoted by Xn → X a.s. V as n → ∞, if V (Xn 9 X) = 0.

V can be replaced by V and V respectively. By V ≤ V and V(A) + V(Ac) = 1 for any
A ∈ F , it is obvious that Xn → X a.s. V implies Xn → X a.s. V , but Xn → X a.s. V does not
imply Xn → X a.s. V. Further

Xn → X, a.s. V ⇔ V(Xn → X) = 1 ⇔ V(|Xn −X| > ε, i.o.) = 0, for ∀ε > 0,

and
Xn → X, a.s. V ⇔ V(Xn 9 X) = 0 ⇔ V(Xn → X) = 1.

Definition 3.2. A sequence of random variables {Xn;n ≥ 1} is said to converge completely to

X, denoted by Xn
c→ X as n → ∞, if

∞∑
n=1

V(|Xn −X| > ε) < ∞, for any ε > 0.

Our results are as follows.

Theorem 3.3. Suppose that V is countably sub-additive. Let {Xn;n ≥ 1} be a sequence of ex-

tended negatively dependent and identically distributed random variables in (Ω,H, Ê) satisfying

Ê[|X1|p] ≤ CV(|X1|p) < ∞, for some p > 0. (3.1)

If p > 1, suppose that

Ê[X1] = Ê [X1] = 0. (3.2)
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Let {kn, n ≥ 1} (kn ≤ Mn, where M is an integer not depending on n) be a sequence of positive
integers and {bni, 1 ≤ i ≤ kn, n ≥ 1} is an array of real positive numbers satisfying

max
1≤i≤kn

bni = O(n−1/p). (3.3)

(1) If p > 2 and

kn∑
i=1

b2ni = o((log n)−1), (3.4)

then

lim
n→∞

Tkn = lim
n→∞

kn∑
i=1

bniXi = 0, a.s. V. (3.5)

(2) If 0 < p ≤ 2 and

kn∑
i=1

bpni = O(n−δ), for some δ > 0, (3.6)

then (3.5) holds.

Remark 3.4. Theorem 3.3 is a very general result. If we take bni = ani/n
1/p, where {ani}

satisfying max
1≤i≤n

|ani| = O(1), then we can obtain the results of Theorem 1.1 and Theorem 1.2

for array of real positive numbers {ani} in sub-linear expectations space from our Theorem 3.3.

Theorem 3.5. Suppose that 0 < p ≤ 2. Let {Xn;n ≥ 1} be a sequence of extended negatively

dependent and identically distributed random variables in (Ω,H, Ê). Suppose (3.1) for 0 < p ≤ 2
and (3.2) holds. Assume that {bni, 1 ≤ i ≤ kn, n ≥ 1} is an array of real positive numbers
satisfying

max
1≤i≤kn

bni = O(n−2/p), (3.7)

and

kn∑
i=1

bpni = o((log n)−1). (3.8)

Then

Tkn =

kn∑
i=1

bniXi
c→ 0. (3.9)

Remark 3.6. Theorem 3.5 is a very general result. If we take p = 2/α, α > 1, bni = n−α =

n−2/p,
n∑

i=1

bpni = n−1 = o((log n)−1) in Theorem 3.5, then we have
n∑

i=1

bniXi =
n∑

i=1

Xi/n
α c→ 0.

Hence, we can obtain the result of Theorem 1.3.

Proof of Theorem 3.3. Without loss of generality, assume that kn = n for every n ≥ 1. In
order to prove (3.5), we need to prove:

lim sup
n→∞

Tn = lim sup
n→∞

n∑
i=1

bniXi ≤ 0, a.s. V, (3.10)
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and

lim inf
n→∞

Tn = lim inf
n→∞

n∑
i=1

bniXi ≥ 0, a.s. V. (3.11)

We only need to prove (3.10). Because of using {−Xn;n ≥ 1} instead of {Xn;n ≥ 1} in (3.10),
we can obtain (3.11).

For any 1 ≤ i ≤ n, n ≥ 1 and any ε > 0, we choose some small η > 0 and large N . Let

X
(1)
ni = −b−1

ni n
−ηI(bniXi < −n−η) +XiI(|bniXi| ≤ n−η) + b−1

ni n
−ηI(bniXi > n−η),

X
(2)
ni = (Xi + b−1

ni n
−η)I(bniXi ≤ −ε/N) + (Xi − b−1

ni n
−η)I(bniXi ≥ ε/N),

X
(3)
ni = (Xi − b−1

ni n
−η)I(n−η < bniXi < ε/N),

X
(4)
ni = (Xi + b−1

ni n
−η)I(−ε/N < bniXi < −n−η),

T (l)
n =

n∑
i=1

bniX
(l)
ni , l = 1, 2, 3, 4.

Then Tn =
n∑

i=1

bniXi = T
(1)
n + T

(2)
n + T

(3)
n + T

(4)
n . Obviously, {X(1)

ni , 1 ≤ i ≤ n, n ≥ 1} is a

sequence of upper extended negatively dependent random variables.

Proof of part (1). In order to prove (3.10), it suffices to verify that

lim sup
n→∞

T (1)
n ≤ 0, a.s. V and T (l)

n = o(1), a.s. V, for l = 2, 3, 4.

We first to show lim sup
n→∞

T
(1)
n ≤ 0 a.s. V. We will show

n∑
i=1

Ê[bniX(1)
ni ] → 0 and lim sup

n→∞
(T

(1)
n −

n∑
i=1

Ê[bniX(1)
ni ]) ≤ 0 a.s. V.

In the probability space, there is an equality EI(|X| ≤ a) = P (|X| ≤ a). However, in

the sub-linear expectation space Ê is defined through continuous functions in Cl.Lip(R) and the

indicator function I(|x| ≤ a) is not continuous. Therefore, the expression Ê[I(|X| ≤ a)] does
not exist. This needs to modify the indicator function by functions in Cl.Lip(R). To this end, we
define the function g(x) ∈ Cl.Lip(R) as follows. For 0 < µ < 1, let g(x) ∈ Cl.Lip(R), 0 ≤ g(x) ≤ 1
for all x, g(x) = 1 if |x| ≤ µ, g(x) = 0 if |x| > 1, g(x) is non-decreasing if x < 0 and g(x) is
non-increasing if x > 0. Then

I(|x| ≤ µ) ≤ g(x) ≤ I(|x| ≤ 1), I(|x| > 1) ≤ 1− g(x) ≤ I(|x| > µ). (3.12)

Note that

|bniXi − bniX
(1)
ni | = |(bniXi + n−η)I(bniXi < −n−η) + (bniXi − n−η)I(bniXi > n−η)

≪ |bniXi|I(|bniXi| > n−η).

Hence by the fact Ê[Xi] = 0, (3.12), (3.1), (3.3) and (3.4), we have∣∣∣ n∑
i=1

Ê[bniX(1)
ni ]

∣∣∣ ≤ n∑
i=1

|Ê[bniX(1)
ni ]|

=
n∑

i=1

|Ê[bniXi]− Ê[bniX(1)
ni ]| ≤

n∑
i=1

Ê[|bniXi − bniX
(1)
ni |]
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≪
n∑

i=1

Ê[|bniXi|
(
1− g(nηbniXi)

)
] ≪

n∑
i=1

Ê[|bniXi|pnη(p−1)]

≪ nη(p−1)( max
1≤i≤n

|bni|)p−2
n∑

i=1

b2ni ≪ nη(p−1)−1+2/p(log n)−1 → 0, (3.13)

if η is chosen small enough such that η(p− 1) < 1− 2/p. Thus,
n∑

i=1

Ê[bniX(1)
ni ] → 0.

We will prove

∞∑
n=1

V
( n∑

i=1

(bniX
(1)
ni − Ê[bniX(1)

ni ]) > ε
)
< ∞, ∀ ε > 0. (3.14)

We now apply Lemma 2.4. Take x = ε, a = 3n−η. Note that max
1≤i≤n

|bniX(1)
ni − Ê[bniX(1)

ni ]| ≤

2n−η, Bn =
n∑

i=1

Ê[bniX(1)
ni − Ê[bniX(1)

ni ]]
2 = o((log n)−1) from (3.4). Then by Lemma 2.4, we

have

∞∑
n=1

V
( n∑

i=1

(bniX
(1)
ni − Ê[bniX(1)

ni ]) > ε
)

≤
∞∑

n=1

C exp
{
− ε2

2(3εn−η + o((log n)−1))

}
≤C

∞∑
n=1

exp{−2 log n} < ∞. (3.15)

By Borel-Cantelli Lemma, we have V
( n∑
i=1

(bniX
(1)
ni − Ê[bniX(1)

ni ]) > ε, i.o.
)
= 0. Therefore, we

have lim sup
n→∞

T
(1)
n ≤ 0 a.s. V.

Next, we look at T
(2)
n . Note that CV(|Xi|p) < ∞ is equivalent to

∞∑
n=1

V(|Xi| ≥ cn1/p) < ∞

for any c > 0. By Borel-Cantelli Lemma, we have V(|Xi| ≥ cn1/p, i.o.) = 0. Hence, by the

definition of X
(2)
ni , we can get

n∑
i=1

|X(2)
ni | is bounded a.s. It follows that

|T (2)
n | ≤ max

1≤i≤n
|bni|

n∑
i=1

|X(2)
ni | = O(n−1/p)

n∑
i=1

|X(2)
ni | → 0, a.s. V. (3.16)

We should note that the identical distribution is defined under Ê, not under V (see Definition

2.2). The identical distribution of Xi implies Ê[f(Xi)] = Ê[f(X1)] for f(.) ∈ Cl.Lip(R), but
does not imply V(f(Xi) ∈ A) = V(f(X1) ∈ A). Therefore, in the calculation of V(f(Xi) ∈ A),

we need to convert V to Ê. As to T
(3)
n , by the definition of X

(3)
ni , the definition of extended

negative dependence, the fact g(x) is non-increasing if x > 0, (3.12), (3.1), Markov inequality,
(3.3) and (3.4), we have

V(|T (3)
n | > ε) ≤ V(there exist at least N indices i such that bniXi > n−η)

≤
∑

1≤i1<i2<···<iN≤n

V
(
bni1Xi1 > n−η, · · · , bniNXiN > n−η

)
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≤
∑

1≤i1≤n

∑
1≤i2≤n

· · ·
∑

1≤iN≤n

Ê
[ N∏
j=1

(1− g(bnijn
ηXij ))

]

≤ C
∑

1≤i1≤n

∑
1≤i2≤n

· · ·
∑

1≤iN≤n

N∏
j=1

Ê[1− g(bnijn
ηXij )]

= C
( n∑

i=1

Ê[1− g(bnin
ηXi)]

)N

≤ C
( n∑

i=1

V(bniXi > µn−η)
)N

≤ C
( n∑

i=1

npηbpniÊ[|X1|p]
)N

≤ C
(
npη max

1≤i≤n
|bni|p−2

n∑
i=1

b2ni

)N

≪ n−(1−2/p−pη)N (log n)−N . (3.17)

Choosing some small η and large N > 1 such that (1− 2/p− pη)N ≥ 1, we get
∞∑

n=1
V(|T (3)

n | >

ε) < ∞, which implies T
(3)
n → 0, a.s. V.

The proof of T
(4)
n → 0, a.s. V is similar to that of T

(3)
n , and hence we omit it.

Proof of part (2). We first prove that
n∑

i=1

Ê[bniX(1)
ni ] → 0.

If 1 < p ≤ 2, By (3.13) and (3.6), we have

|
n∑

i=1

Ê[bniX(1)
ni ]| ≤

n∑
i=1

|Ê[bniX(1)
ni ]| ≪

n∑
i=1

Ê[|bniXi|pnη(p−1)]

≤ nη(p−1)−δ → 0

if η is chosen small enough such that η(p− 1) < δ.
If 0 < p ≤ 1, by (3.12), Markov inequality and (3.1), we have∣∣∣ n∑

i=1

Ê[bniX(1)
ni ]

∣∣∣ ≤ n∑
i=1

|Ê[bniX(1)
ni ]|

≤ n−η
n∑

i=1

V(|bniXi| > n−η) +
n∑

i=1

Ê[|bniXi|g(µnηbniXi)]

≪ n−(1−p)η
n∑

i=1

Ê[|bniXi|p] + n−(1−p)η
n∑

i=1

Ê[|bniXi|p]

≪ n−(1−p)η
n∑

i=1

bpni ≪ n−(1−p)η−δ → 0, for any η > 0. (3.18)

Next, we show that lim supn→∞(T
(1)
n −

n∑
i=1

Ê[bniX(1)
ni ]) ≤ 0 a.s. V.

By (3.12), Markov inequality and (3.1), we get

Bn =
n∑

i=1

Ê[bniX(1)
ni − Ê[bniX(1)

ni ]]
2

≤ 2
n∑

i=1

Ê[bniX(1)
ni ]

2

≪
n∑

i=1

Ê[(bniXi)
2g(µnηbniXi)] + n−2η

n∑
i=1

V(|bniXi| > n−η)
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≪ n−(2−p)η
n∑

i=1

Ê[|bniXi|p] + n−(2−p)η
n∑

i=1

Ê[|bniXi|p]

≪ n−(2−p)η−δ = o((log n)−1). (3.19)

Therefore (3.15) remains true. Hence, lim sup
n→∞

T
(1)
n ≤ 0 a.s. V.

The proof of T
(2)
n = o(1) a.s. V is similar to that of (3.16). Similar to the proof of (3.17),

we have

V(|T (3)
n | > ε) ≤ C

(
npη

n∑
i=1

bni
p
)N

≤ Cn−(δ−pη)N .

Choosing some small η and large N > 1 such that (δ−pη)N ≥ 1, we get
∞∑

n=1
V(|T (3)

n | > ε) < ∞,

which implies T
(3)
n → 0, a.s. V.

The proof of T
(4)
n → 0, a.s. V is similar to that of T

(3)
n , and hence we omit it. We complete

the proof of Theorem 3.3.

Proof of Theorem 3.5. Without loss of generality, assume that kn = n for every n ≥ 1. In
order to prove (3.9), for any ε > 0, we need to prove:

∞∑
n=1

V(Tn > ε) =
∞∑

n=1

V
( n∑

i=1

bniXi > ε
)
< ∞ (3.20)

and

∞∑
n=1

V(−Tn > ε) =
∞∑

n=1

V
( n∑

i=1

−bniXi > ε
)
< ∞. (3.21)

We only need to prove (3.20). Because of using {−Xn;n ≥ 1} instead of {Xn;n ≥ 1} in (3.20),
we can obtain (3.21).

For any 1 ≤ i ≤ n, n ≥ 1 and any ε, we choose N ≥ 4. Let

X
(1)
ni = −b−1

ni n
− 2

3p I(bniXi < −n− 2
3p ) +XiI(|bniXi| ≤ n− 2

3p ) + b−1
ni n

− 2
3p I(bniXi > n− 2

3p ),

X
(2)
ni = (Xi + b−1

ni n
− 2

3p )I(bniXi ≤ −ε/N) + (Xi − b−1
ni n

− 2
3p )I(bniXi ≥ ε/N),

X
(3)
ni = (Xi − b−1

ni n
− 2

3p )I(n− 2
3p < bniXi < ε/N),

X
(4)
ni = (Xi + b−1

ni n
− 2

3p )I(−ε/N < bniXi < −n− 2
3p ),

T (l)
n =

n∑
i=1

bniX
(l)
ni , l = 1, 2, 3, 4. (3.22)

Then Tn =
n∑

i=1

bniXi = T
(1)
n + T

(2)
n + T

(3)
n + T

(4)
n . Obviously, {X(1)

ni , 1 ≤ i ≤ n, n ≥ 1} is a

sequence of upper extended negatively dependent random variables.
In order to prove (3.20), it suffices to verify that

n∑
i=1

Ê[bniX(1)
ni ] → 0, (3.23)

∞∑
n=1

V
(
T (1)
n −

n∑
i=1

Ê[bniX(1)
ni ] > ε

)
< ∞, (3.24)
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∞∑
n=1

V
(
|T (l)

n | > ε
)
< ∞, l = 2, 3, 4. (3.25)

We first show
n∑

i=1

Ê[bniX(1)
ni ] → 0. If 0 < p ≤ 1, similar to the proof of (3.18), we have

∣∣∣ n∑
i=1

Ê[bniX(1)
ni ]

∣∣∣ ≤ n∑
i=1

|Ê[bniX(1)
ni ]|

≪ n−(1−p) 2
3p

n∑
i=1

Ê[|bniXi|p] ≪ n−(1−p) 2
3p o((log n)−1) → 0. (3.26)

Note that for 1 < p ≤ 2

|Xi −X
(1)
ni | = |(Xi + b−1

ni n
− 2

3p )I(bniXi < −n− 2
3p ) + (Xi − b−1

ni n
− 2

3p )I(bniXi > n− 2
3p )

≪ |Xi|I(|Xi| > Cn
4
3p ) ≪ |Xi|p/n

4(p−1)
3p .

Hence, for 1 < p ≤ 2, by the fact Ê[Xi] = 0 and (3.12), we have∣∣∣ n∑
i=1

Ê[bniX(1)
ni ]

∣∣∣ ≤ n∑
i=1

|Ê[bniX(1)
ni ]|

=

n∑
i=1

|Ê[bniXi]− Ê[bniX(1)
ni ]| ≤

n∑
i=1

bniÊ[|Xi −X
(1)
ni |]

≪
n∑

i=1

bniÊ[|X1|p]/n
4(p−1)

3p

≪ n1−2/p/n
4(p−1)

3p = n−1/3− 2
3p → 0. (3.27)

Next, we show that
∞∑

n=1
V
(
T

(1)
n −

n∑
i=1

Ê[bniX(1)
ni ] > ε

)
< ∞. Similar to (3.19), we have

Bn =
n∑

i=1

Ê[bniX(1)
ni − Ê[bniX(1)

ni ]]
2

≪ n−(2−p) 2
3p

n∑
i=1

Ê[|bniXi|p]

≪ n−(2−p) 2
3p o((log n)−1) = o((log n)−1). (3.28)

Similar to the proof of (3.15), we have
∞∑

n=1
V
(
T

(1)
n −

n∑
i=1

Ê[bniX(1)
ni ] > ε

)
< ∞.

As to T
(2)
n , by the definition of X

(2)
ni , (3.12) and (2.4), we get

∞∑
n=1

V
(
|T (2)

n | > ε
)
≤

∞∑
n=1

n∑
i=1

V
(
|Xi| > ε/(Nbni)

)
≤

∞∑
n=1

n∑
i=1

Ê
(
1− g(NbniXi/ε)

)
≤

∞∑
n=1

n∑
i=1

Ê
(
1− g(NbniX1/ε)

)
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≤
∞∑

n=1

nV
(
|X1| > µεCn2/p/N

)
< ∞. (3.29)

As to T
(3)
n , by the definition of X

(3)
ni , the definition of extended negative dependence, (3.7),

(3.12) and (2.5), we have

V(|T (3)
n | > ε) ≤ V(there exist at least N indices i such that bniXi > n− 2

3p )

≤
∑

1≤i1<i2<···<iN≤n

V
(
bni1Xi1 > n− 2

3p , · · · , bniNXiN > n− 2
3p
)

≤
∑

1≤i1<i2<···<iN≤n

V
(
Xi1 > Cn

4
3p , · · · , XiN > Cn

4
3p
)

≤ C
∑

1≤i1<i2<···<iN≤n

Ê
( N∏

j=1

(1− g(Cn− 4
3pXij ))

)

≤ C
∑

1≤i1<i2<···<iN≤n

N∏
j=1

Ê(1− g(Cn− 4
3pXij ))

= CCN
n

[
Ê(1− g(Cn− 4

3pX1))
]N ≤ CCN

n

[
V(|X1| > Cn

4
3p )

]N
≤ CnN

[
V(|X1| > Cn

4
3p )

]N ≤ Cn−N/3
[
n4/3V(|X1| > Cn

4
3p )

]N
≤ Cn−N/3. (3.30)

Hence, choosing large N ≥ 4, we get
∞∑

n=1
V(|T (3)

n | > ε) < ∞.

The proof of
∞∑

n=1
V(|T (4)

n | > ε) < ∞ is similar to that of T
(3)
n , and hence we omit it. We

complete the proof of Theorem 3.5.
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