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1 Introduction

The purpose of this paper is to investigate a global stochastic maximum principle (SMP) for
optimal problem governed by the following fully coupled mean-field control system

dXv(t) = b(t,Πv(t),PΛv(t), v(t))dt+ σ(t,Πv(t),PΛv(t), v(t))dW (t), t ∈ [0, T ],

dY v(t) = −f(t,Πv(t),PΛv(t), v(t))dt+ Zv(t)dW (t), t ∈ [0, T ],

Xv(0) = x0, Y
v(T ) = Φ(Xv(T ),PXv(T )),

(1.1)

where Πv(t) = (Xv(t), Y v(t), Zv(t)), Λv(t) = (Xv(t), Y v(t)); W is a standard d-dimensional
Brownian motion; Pξ = P ◦ ξ−1 is the law of random variable ξ ∈ L1(Ω,F ,P;Rd); v is a
control process taking values in a set U ⊂ Rl, not necessarily convex; the coefficients (b, σ, f) :
[0, T ]×Rn×Rm×Rm×d×P2(Rn+m)×U → R, Φ : Rn×P2(Rn) → Rm. The accurate assumptions
on b, σ, f,Φ are given in Section 3. The cost functional is defined by J(v(·)) = Y v(0), where
(Xv(·), Y (·), Z(·)) is the unique solution of the above equation.

Define admissible control set

Uad =
{
v(·)

∣∣v(·) is an Ft-adapted process with value in U such that

sup
0≤t≤T

E|u(t)|8 < +∞
}
. (1.2)

Our control problem can be described as:

Problem (MFFC). Find an admissible control u∗(·) such that

J(u∗(·)) = min
v∈Uad

J(v(·)),
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subject to (1.1). u∗ is called optimal control and (X∗(·), Y ∗(·), Z∗(·)), the solution of (1.1) with
u∗(·), is the optimal trajectory.

The motivation of our work comes from two aspects. i) Recently, the rapid development of
the theory of fully coupled general mean-field forward-backward stochastic differential equations
(FBSDEs) has made many scholars pay attention to the investigation in related fields, see
Chassagneux, Crisan, Delarue[9], Li[20], Pham, Wei[28, 29], Shi, Wen, Xiong[30]. ii) Following
Peng’s open problem being solved completely by Hu[16], Hu, Ji, Xue[17], it becomes possible to
investigate the necessary condition of optimality of system (1.1).

As everyone knows, a powerful tool to study optimal control problems is stochastic maximum
principle (SMP). We refer to Kushner [18], Bismut[3], Bensoussan[2] for an early investigation on
this topic; refer to Peng[25] for the case where the diffusion coefficients of SDEs depend on control
and the control domain is unnecessarily convex. In 1997, El Karoui, Peng, Quenez[11] proposed
the notion of more general recursive utilities via the solutions of BSDEs. For those recursive
stochastic optimal control problems, a lot of works have been published in the last few decades,
such as, Peng[26] obtained a local SMP when the control space is convex. The control problem
for nonconvex case is proposed by Peng[27] as an open problem. By regarding Z(·) as a control
process and the terminal condition Y (T ) = Φ(X(T )) as a constraint, Yong[34] obtained an
optimality variational principle by means of Ekeland variation. With similar argument, Wu[33]

considered a stochastic recursive optimal control problem. Note that the SMPs obtained in
the last two works above contain unknown parameters. In fact, Peng’s open problem has not
been solved completely by Hu[16] until 2017. Hu, Ji, Xue[17] generalized Hu’s work from the
decoupled control system to the fully coupled control system. It should be pointed out that
in[16, 17] an important observation is the following equality

Y 1,ε(t) = p(t)X1,ε(t), t ∈ [0, T ], (1.3)

where (X1,ε(·), Y 1,ε(·)) is the solution of the first-order variational equation, which is a fully
coupled linear FBSDE; p(·) is the solution of the first-order adjoint equation.

As for the optimal problems for mean-field systems, this direction has also drawn great
attention, for example, when the control domain is convex, Andersson, Djehiche[1] proved a
maximum principle for SDE of mean-field type. In the same action space, Li[19] obtained the
SMP in the mean-field controls. If the control domain is unnecessarily convex, we refer to
Buckdahn, Djehiche, Li[5] for a general SMP for mean-field SDEs in expectation form, and
Buckdahn, Li, Ma[6] for mean-field SDEs in law form, and Hao, Meng[15] for general mean-field
forward-backward stochastic systems. The SMP of mean-field type for other various problems
were investigated in Du, Huang, Qin[10], Shen, Meng, Shi[31], Guo, Xiong[12] and so on.

There is only a few literature on the SMP of mean-field FBSDEs. Min, Peng, Qin[23]

studied fully coupled mean-field FBSDEs and related SMP with convex control domain. Li
and Liu[21] considered an optimal control problem for fully coupled mean-field FBSDE in the
case where the diffusion coefficient depends on control and the control domain is not assumed
to be convex. Hafayed, Tabet, Boukaf[13] proved a SMP for mean-field FBSDE with jump.
Wang, Xiao, Xing[32] investigated an optimal control problem for mean-field FBSDE with noisy
observation. In all of the above works, the coefficients of the forward-backward systems depend
on the expectation of the solution, but not the law of the solution. To our knowledge, up to
now, there is no works published on the SMP for fully coupled general mean-field FBSDEs in
the existing literature.

Since we need to deal with the fully coupled forward-backward mean-field control system
(1.1), there are some potential obstacles met in our analysis. Let us explain it in detail.

First, in[6], the first-order adjoint equation is a mean-field BSDE, which can be obtained by
Fubini Theorem. We argue that for the solution of their first-order adjoint equation, we only
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have

E[Y 1,ε(t)] = E[p(t)X1,ε(t)], t ∈ [0, T ], (1.4)

but not the relation (1.3). However, (1.4) is not enough for some estimations in our case, see
Remark 4.4. Inspired by the work of Hu, Ji, Xue[17], we propose to split the single adjoint
equation into two decoupled equations (see (3.1)) and establish the following linear relation:

Y 1,ε(t) = p0(t)X
1,ε(t) + Ê[ ˆ̊p1(t)X̂1,ε(t)], t ∈ [0, T ]. (1.5)

where (p0(·), ˆ̊p1(·)) is the solution of (3.1). (1.5) plays an very important role in our calculation.
Clearly, (1.5) is slightly “stronger” than (1.4) and it is in fact the counterpart of (1.3) in mean-
field case. Besides, according to Fubini Theorem, for the process p(·) (the solution of first-order

adjoint equation (3.11)[6]) and the pair (p0(·), ˆ̊p1(·)), we have p(t) = p0(t) + Ê[˚̂p1(t)], t ∈ [0, T ]
(see (6.4)).

Second, due to the mean-field feature of our system, the second-order expansion of Y ε given
by Hu, Ji, Xue (see Lemma 3.17[17]) does not work in our case. By adopting two new and split
adjoint equations, we make the second-order expansion of Y ε:

Y ε(t) = p0(t)(X
1,ε(t) +X2,ε(t)) + Ê[ ˆ̊p1(t)(X̂1,ε(t) + X̂2,ε(t))] +

1

2
P0(t)(X

1,ε(t))2

+
1

2
Ê[ ˆ̊P1(t)(X̂

1,ε(t))2] +M(t),

where (p0(·), ˆ̊p1(·)) and (P0(·), ˆ̊P1(·)) are the solutions of the first- and second-order adjoint
systems, respectively; M(·) is the solution of some auxiliary mean-field BSDE.

Third, the fact that our control system is a fully coupled mean-field FBSDE leads to the
auxiliary BSDE (4.22) appearing in the expansion of Y ε, which is different to the case of mean-
field free[17]. It is difficult to get its precise solution of (4.22). Hence, we use the comparison
principle of mean-field SDEs to prove our SMP.

Our paper contributes to the literature in at least three points. To begin with, we propose a
method of splitting adjoint equations, and, thereby, establish the linear relation between of X1,ε

and Y 1,ε. What’s more, we show the second-order expansion of Y ε in mean-field framework
with the help of two new adjoint systems. Last but not least, the SMP for optimal control
problems governed by fully coupled general mean-field FBSDEs is proved.

This paper is arranged as follows. The preliminaries and Lions’ derivative are recalled in
Section 2. Section 3 is devoted to the introduction of two new and split adjoint equations and
the main result–SMP. In section 4 we list the first- and second-order variational equations as
well as show the proof of Theorem 3.4. In section 5 we consider the square integrable case.
The relation between Buckdahn et al.’s SMP and our SMP is stated in Section 6. An auxiliary
result is given in the last section for closing our paper.

2 Preliminaries

2.1 Notations

Let Rn, Rn×d denote the n-dimensional real Euclidean space and the space of n×d real matri-
ces, respectively, on which the scalar product ⟨·, ·⟩ and the norm | · | are defined as usual, i.e, for

a = (ai), b = (bi) ∈ Rn, ⟨a, b⟩ =
n∑

i=1

aibi, ||a|| =
√

n∑
i=1

(ai)2; for A = (aij), B = (bij) ∈ Rn×d,

⟨A,B⟩ = tr{ABᵀ}, ||A|| =
√
tr{AAᵀ}, where ᵀ denotes the transpose of matrices or vectors.
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Next let us introduce some usual spaces. For α ≥ 1,
• Lα(F ;Rn) =

{
F-measurable Rn-value random variables ξ with ||ξ||αLα = E|ξ|α < +∞

}
,

• Sα
F (0, T ;Rn) =

{
Ft-adapted α-th integrable processes φ(·) over [0, T ] with

E
[

sup
0≤t≤T

|φ(t)|α
]
< +∞

}
,

• Hα,β
F (0, T ;Rn) =

{
Ft-adapted stochastic processes φ(·) over [0, T ] with{

E
[( ∫ T

0

|φ(t)|αdt
) β

α
]} 1

β

< +∞
}
.

Throughout the paper by δx we denote the Dirac measure at x; ρ : (0,+∞) → (0,+∞) denotes
a function with ρ(ε) → 0 as ε → 0; L is a positive constant, which maybe change from line to
line; for p ≥ 2, we define

Λp :=
{
(φ,ψ)

∣∣∣E[ sup
0≤t≤T

|φ(t)|p +
(∫ T

0

|ψ(t)|2dt
) p

2
]
< +∞

}
,

Γp :=
{
(ϕ, φ, ψ)

∣∣∣E[ sup
0≤t≤T

(|ϕ(t)|p + |φ(t)|p) +
(∫ T

0

|ψ(t)|2dt
) p

2
]
< +∞

}
.

(2.1)

2.2 Lp Estimation for Decoupled Mean-field FBSDEs

Suppose the mappings

b : Ω× [0, T ]× Rn × Rm × Rm×d × P2(Rn+m+m×d) → Rn,

σ : Ω× [0, T ]× Rn × Rm × Rm×d × P2(Rn+m+m×d) → Rn×d,

f : Ω× [0, T ]× Rn × Rm × Rm×d × P2(Rn+m+m×d) → Rm,

Φ : Ω× Rn × P2(Rn) → Rm

(2.2)

satisfies

Assumption 2.1. i) For given adapted process (y(·), z(·)) and p ≥ 2,

E
{
|Φ(0, δ0)|p +

(∫ T

0

|b(t, 0, y(t), z(t),P(0,y(t),z(t)))|+ f(t, 0, 0, 0, δ0)|dt
)p

+
(∫ T

0

|σ(t, 0, y(t), z(t),P(0,y(t),z(t)))|2dt
) p

2
}
< +∞,

where 0 = (0, 0, 0).
ii) For x, x̄ ∈ Rn, y, ȳ ∈ Rm, z, z̄ ∈ Rm×d, t ∈ [0, T ], ξ, ξ̄ ∈ L2(F ;Rn), η, η̄ ∈ L2(F ;Rm),
ζ, ζ̄ ∈ L2(F ;Rm×d) and h = b, σ, there exists a constant C1 > 0 such that P-a.s.,

|h(t, x, y, z,P(ξ,η,ζ))− h(t, x̄, y, z,P(ξ̄,η,ζ))| ≤ C1(|x− x̄|+ ||ξ − ξ̄||L2),

|f(t, x, y, z,P(ξ,η,ζ))− f(t, x̄, ȳ, z̄,P(ξ̄,η̄,ζ̄))|
≤C1(|x− x̄|+ |y − ȳ|+ |z − z̄|+ ||ξ − ξ̄||L2 + ||η − η̄||L2 + ||ζ − ζ̄||L2),

|Φ(x,Pξ)− Φ(x̄,Pξ̄)| ≤ C1(|x− x̄|+ ||ξ − ξ̄||L2).

Lemma 2.1. Let Assumption 2.1 be in force, for p ≥ 2 and for any given a pari of adapted
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process (y(·), z(·)), the following decoupled mean-field BSDE:
dX(t) = b(t,X(t), y(t), z(t),P(X(t),y(t),z(t)))dt

+ σ(t,X(t), y(t), z(t),P(X(t),y(t),z(t)))dW (t),

dY (t) = −f(t,X(t), Y (t), Z(t),P(X(t),Y (t),Z(t)))dt+ Z(t)dW (t), t ∈ [0, T ],

X(0) = x0, Y (T ) = Φ(X(T ),PX(T ))

(2.3)

exists a unique adapted solution

(X(·), Y (·), Z(·)) ∈ Sp
F(0, T ;R

n)× Sp
F(0, T ;R

m)×H2,p
F (0, T ;Rm×d),

and, moreover, there exists a constant Kp > 0 depending only on p, T, C1 such that

E
[

sup
0≤t≤T

(|X(t)|p + |Y (t)|p) +
(∫ T

0

|Z(t)|2dt
) p

2
]

≤KpE
{[∫ T

0

|b(t, 0, y(t), z(t),P(0,y(t),z(t)))|+ |f(t, 0, 0, 0, δ0)|dt
]p

+
[ ∫ T

0

σ(t, 0, y(t), z(t),P(0,y(t),z(t)))|2dt
] p

2

+ |Φ(0, δ0)|p + |x0|p
}
, (2.4)

where 0 = (0, 0, 0).

Proof. Define, for (t, x, ξ) ∈ [0, T ]× Rn × L2(F ;Rn),

b̄(t, x, [P ◦ (y(·), z(·))−1]ξ) : = b(t, x, y(t), z(t),P(ξ,y(t),z(t))),

σ̄(t, x, [P ◦ (y(·), z(·))−1]ξ) : = σ(t, x, y(t), z(t),P(ξ,y(t),z(t))),

where [P ◦ (y(·), z(·))−1] denotes the law induced by the pair (y(·), z(·)). From Assumption 2.1
we know, for h = b̄, σ̄, and (t, x) ∈ [0, T ]× Rn,

|h(t, x, [P ◦ (y(·), z(·))−1]ξ)− h(t, x, [P ◦ (y(·), z(·))−1]ξ̄)| ≤ C1

(
|x− x̄|+ ||ξ − ξ̄||L2

)
,

and

E
[( ∫ T

0

|b̄(t, 0, δ(y(·),z(·))0 )|dt
)p

+
(∫ T

0

|σ̄(t, 0, δ(y(·),z(·))0 )|2dt
) p

2
]
< +∞,

where δ
(y(·),z(·))
· denotes the Dirac measure corresponding to the induced measure [P◦(y(·), z(·))−1].

From Burkholder-Davis-Gundy inequality and Gronwall lemma, we know that, for p ≥ 2, the e-
quation (2.3) possesses a unique solution X ∈ Sp

F(0, T ;Rn) and, moreover, there exists a Kp > 0
depending only on p, T, C1 such that

E
[

sup
0≤t≤T

|X(t)|p
]

≤KpE
{(∫ T

0

|b̄(t, 0, δ(y(·),z(·))0 )|dt
)p

+
(∫ T

0

|σ̄(t, 0, δ(y(·),z(·))0 )|2dt
) p

2

+ |x0|p
}
,

i.e.,

E
[

sup
0≤t≤T

|X(t)|p
]
≤KpE

{(∫ T

0

|b(t, 0, y(t), z(t),P(0,y(t),z(t)))|dt
)p
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+
(∫ T

0

|σ(t, 0, y(t), z(t),P(0,y(t),z(t)))|2dt
) p

2

+ |x0|p
}
. (2.5)

Once knowing X(·), the second equation in (2.3) becomes a mean-field BSDE. By Corollary
5.3[24] (setting dN(t) = (X(t)+||X(t)||L2+|f(t, 0, 0, 0, δ0)|)dt, dV (t) = dt, dR(t) = 0, dD(t) = 0)
and (2.5), we have (2.4).

2.3 Lp Estimation for Coupled Mean-field FBSDEs

In this subsection we prove Lp estimation for fully coupled mean-field FBSDEs on a short time
interval via Lemma 2.1.

Let the mappings given in (2.2) satisfy the following assumptions:

Assumption 2.2. i) There exist three constants Li, i = 1, 2, 3 such that, for x, x̄ ∈ Rn, y, ȳ ∈
Rm, z, z̄ ∈ Rm×d, ξ, ξ̄ ∈ L2(F ;Rn), η, η̄ ∈ L2(F ;Rm), ζ, ζ̄ ∈ L2(F ;Rm×d), t ∈ [0, T ], P-a.s.,

|b(t, x, y, z,P(ξ,η,ζ))− b(t, x̄, ȳ, z̄,P(ξ̄,η̄,ζ̄))|
≤C1(|x− x̄|+ ||ξ − ξ̄||L2) + C2(|y − ȳ|+ |z − z̄|+ ||η − η̄||L2 + ||ζ − ζ̄||L2),

|σ(t, x, y, z,P(ξ,η,ζ))− σ(t, x̄, ȳ, z̄,P(ξ̄,η̄,ζ̄))|
≤C1(|x− x̄|+ ||ξ − ξ̄||L2) + C2(|y − ȳ|+ ||η − η̄||L2) + C3(|z − z̄|+ ||ζ − ζ̄||L2),

|f(t, x, y, z,P(ξ,η,ζ))− f(t, x̄, ȳ, z̄,P(ξ̄,η̄,ζ̄))|
≤C1(|x− x̄|+ ||ξ − ξ̄||L2 + |y − ȳ|+ ||η − η̄||L2 + |z − z̄|+ ||ζ − ζ̄||L2).

ii) For some given real constant β > 1, Φ(0, δ0) ∈ Lβ(F ;Rm), b(t, 0, 0, 0, δ0) ∈ H1,β
F (0, T ;Rn),

f(t, 0, 0, 0, δ0) ∈ H1,β
F (0, T ;Rm), σ(t, 0, 0, 0, δ0) ∈ H2,β

F (0, T ;Rn×d), where 0 = (0, 0, 0).
For p ≥ 2, define

Θp := Kp4
p(1 + T )p(max{C2, C3})p,

where Kp is given in (2.4).

Theorem 2.2. Under Assumption 2.2, for p ≥ 2, if Θp < 1, the following fully coupled mean-
field FBSDE:

dX(t) = b(t,Π(t),PΠ(t))dt+ σ(t,Π(t),PΠ(t))dW (t), t ∈ [0, T ],

dY (t) = −f(t,Π(t),PΠ(t))dt+ Z(t)dW (t), t ∈ [0, T ],

X0 = x0, Y (T ) = Φ(X(T ),PX(T ))

(2.6)

admits a unique solution (X(·), Y (·), Z(·)) ∈ Sp
F(0, T ;Rn) × Sp

F(0, T ;Rm) × H2,p
F (0, T ;Rm×d),

and there exists a positive constant Kp > 0 depending on p, T, L1, L2, L3 such that

E
[

sup
0≤t≤T

(|X(t)|p + |Y (t)|p) +
(∫ T

0

|Z(t)|2dt
) p

2
]

≤KpE
{(∫ T

0

|b(t,0, δ0)|dt
)p

+
(∫ T

0

|f(t,0, δ0)|dt
)p

+
(∫ T

0

|σ(t,0, δ0)|2dt
) p

2

+ |Φ(0, δ0)|p + |x0|p
}
, (2.7)

where Π(t) = (X(t), Y (t), Z(t)), 0 = (0, 0, 0).
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Proof. Given a pair of adapted process (y(·), z(·)), consider
dX(t) = b(t,X(t), y(t), z(t),P(X(t),y(t),z(t)))dt

+ σ(t,X(t), y(t), z(t),P(X(t),y(t),z(t)))dW (t), t ∈ [0, T ],

dY (t) = −f(t,X(t), Y (t), Z(t),P(X(t),Y (t),Z(t)))dt+ Z(t)dW (t), t ∈ [0, T ],

X(0) = x0, Y (T ) = Φ(X(T ),PX(T )).

(2.8)

Suppose (y(·), z(·)) ∈ Λp (see (2.1)). Thanks to Assumption 2.2 and Lemma 2.1, we have
X(·) ∈ Sp

F(0, T ;Rn) and (Y (·), Z(·)) ∈ Λp, which allows to define a mapping Υ : Λp → Λp by
Υ(y(·), z(·)) = (Y (·), Z(·)).

Next let us show that Υ is contractive. In fact, let (yi(·), zi(·)) ∈ Λp, i = 1, 2 and by
(Xi(·), Y i(·), Zi(·)), i = 1, 2 we denote the solution of (2.8) with (yi(·), zi(·)), i = 1, 2.

Set ∆X = X1 −X2, ∆Y = Y1 − Y2, ∆Z = Z1 − Z2, ∆y = y1 − y2,∆z = z1 − z2. Then

d∆X(t) =
{
α1(t)∆X(t) + β1(t)∆y(t) + γ1(t)∆z(t)

+ ᾱ1(t)||∆X(t)||L2 + β̄1(t)||∆Y (t)||L2 + γ̄1(t)||∆z(t)||L2

}
dt

+
{
α2(t)∆X(t) + β2(t)∆y(t) + γ2(t)∆z(t)

+ ᾱ2(t)||∆X(t)||L2 + β̄2(t)||∆Y (t)||L2 + γ̄2(t)||∆z(t)||L2

}
dW (t),

d∆Y (t) = −
{
α3(t)∆X(t) + β3(t)∆y(t) + γ3(t)∆z(t)

+ ᾱ3(t)||∆X(t)||L2 + β̄3(t)||∆Y (t)||L2 + γ̄3(t)||∆z(t)||L2

}
+∆Z(t)dW (t),

∆X(0) = 0, ∆Y (t) = α4(T )∆X(T ) + ᾱ4(T )||∆X(T )||L2 ,

where

α1(t) =


b(t, π1(t),Pπ1(t))− b(t, π2(t),Pπ1(t))

X1(t)−X2(t)
, if X1(t) ̸= X2(t),

0, if X1(t) = X2(t),

ᾱ1(t) =


b(t, π2(t),Pπ1(t))− b(t, π2(t),Pπ2(t))

||X1(t)−X2(t)||L2

, if ||X1(t)−X2(t)||L2 ̸= 0,

0, if ||X1(t)−X2(t)||L2 = 0,

and π1(t) = (X1(t), y1(t), z1(t)), π2(t) = (X2(t), y1(t), z1(t)). β1, γ1, · · ·ᾱ4 can be understood in
the same manner.

From Assumption 2.2, we know that αi, βi, γi, ᾱi, β̄i, γ̄i, i = 1, 2, 3, 4 are bounded. Since
for any square integrable variable ξ, g(Pξ) := E|ξ|2 =

∫
Rn x

2Pξ(dx), thanks to Lemma 2.1, it
follows, for p ≥ 2,

E
[

sup
0≤t≤T

(
|∆X(t)|p + |∆Y (t)|p

)
+

(∫ T

0

|∆Z(t)|2dt
) p

2
]

≤E
{(∫ T

0

(|β1(t)||∆y(t)|+ |γ1(t)||∆z(t)|+ |β̄1(t)|||∆y||L2 + |γ̄1(t)|||∆z||L2)dt
)p

+
(∫ T

0

(|β2(t)||∆y(t)|+ |γ2(t)||∆z(t)|+ |β̄2(t)|||∆y||L2 + |γ̄2(t)|||∆z||L2)2dt
) p

2
}

≤Kp4
p(1 + T )p(max{C2, C3})pE

{
sup

0≤t≤T
|∆y(t)|p +

(∫ T

0

|∆z(t)|2dt
) p

2
}
.

Due to Θp = Kp4
p(1 + T )p(max{C2, C3})p < 1, the contractive mapping theorem allows to

show that the mapping Υ exists a unique fixed point (Y (·), Z(·)) ∈ Λp. Then according to
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the existence and uniqueness theorem of mean-field SDEs (see, for example, Hao and Li[14] for
jump case), the forward equation in (2.8) possesses a unique solution X(·) for this fixed point
(Y (·), Z(·)). From this, one can see that (X(·), Y (·), Z(·)) is the unique solution of (2.6).

(2.7) can be obtained following the argument of the proof of Theorem 2.2[17]. Hence, we
omit it.

2.4 Lions’ Derivative

Let P2(Rd) be the space of all square integrable probability measures over (Rd,B(Rd)), which
is endowed with 2-Wasserstein metric: for ν1, ν2 ∈ Rd,

W2(ν1, ν2) = inf
{(∫

Rd×Rd

|y1 − y2|2ρ(dy1, dy2)
) 1

2

, ρ ∈ P2(R2d) satisfying

ρ(A× Rd) = ν1(A), ρ(Rd ×B) = ν2(B), A,B ∈ B(Rd)
}
.

Now we introduce the differentiability of a function with respect to a measure following the
idea of Lions. Suppose the probability space (Ω,F ,P) is “rich enough”, i.e., for each µ ∈ P2(Rd),
there exists a random variable ξ ∈ L2(Ω,F ,P;Rd) (L2(F ;Rd) for short) such that Pξ = µ. Let
f : P2(Rd) → R and define the “lift” function f̄ by f̄(ξ) := f(Pξ), ξ ∈ L2(F ;Rd). We call that
f is differentiable in µ0 = Pξ0 , if the “lift” function f̄ is differentiable at ξ0 in Fréchet sense.
That means there exists a linear continuous mapping Df̄(ξ0) : L2(F ;Rd) → R such that for
ζ ∈ L2(F ;Rd),

f̄(ξ0 + ζ)− f̄(ξ0) = Df̄(ξ0)(ζ) + o(||ζ||L2),

with ||ζ||L2 → 0. According to Riesz’s Representation Theorem, there exists an η ∈ L2(F ;Rd)
such that Df̄(ξ0)(ζ) = E[η · ζ]. The random variable η is in fact of the form h(ξ0), where
h(·) : Rd → Rd is Borel function depending on the law of ξ0, but not the random variable ξ0
itself. Hence, we have, for ζ ∈ L2(F ;Rd),

f(Pξ0+ζ)− f(Pξ0) = E[h(ξ0) · ζ] + o(||ζ||L2).

The function ∂µf(Pξ0 ; a) := h(a), a ∈ Rd is called the derivative of f : P2(R2) → R at Pξ0 .
Note that ∂µf(Pξ0 ; a) is only Pξ0(da)-a.e. uniquely determined (see[8] for more detail).

Now we explain the Lions’ derivative by an example.

Example 1. Assume φ : R → R, ψ : R → R, ϕ : R2 → R are three continuously differentiable
functions with bounded derivatives. Define for ξ, η ∈ L2(F ;R),

h(Pξ) := φ(E[ψ(ξ)]), g(P(ξ,η)) := φ(E[ϕ(ξ, η)]).

Then

∂νh(Pξ) = φ′(E[ψ(ξ)])ψ′(a), ∂νah(Pξ) = φ′(E[ψ(ξ)])ψ′′(a), a ∈ R,
∂µ1g(P(ξ,η); a1, a2) = (∂µg)1(P(ξ,η); a1, a2) = φ′(E[ψ(ξ, η)])ϕa1(a1, a2),

∂µ1a1g(P(ξ,η); a1, a2) = φ′(E[ψ(ξ, η)])ϕa1a1(a1, a2), a1, a2 ∈ R.

∂µ2g(P(ξ,η); a1, a2) and ∂µ2a2g(P(ξ,η); a1, a2) can be understood similarly.
In particular, if φ(x) = x, ψ(x) = x, ϕ(x1, x2) = x1 + x2, x, x1, x2 ∈ R, i.e., h(Pξ) := E[ξ],

g(P(ξ,η)) := E[ξ] + E[η], we have

∂νh(Pξ) = 1, ∂νah(Pξ) = 0, ∂µ1g(P(ξ,η); a1, a2) = 1, ∂µ1a1g(P(ξ,η); a1, a2) = 0.
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3 SMP for Bounded Cases

In this section we show the main result–SMP. For simplicity of editing, let us restrict m = n =
d = 1. However, our results also hold true for multidimensional case. Recall that U is a subset
of R, unnecessarily convex.

Suppose the mappings

(b, σ, f) : [0, T ]× R× R× R×P2(R2)× U → R,
Φ : R× P2(R) → R

satisfy

Assumption 3.1. For h = b, σ, f,
i) h, hx, hy, hz, hµ and Φ,Φν are continuous with respect to (x, y, z, µ, u) and (x, ν), sepa-

rately; hx, hy, hz, hµ,Φν are bounded; h and Φ are linear growth with respect to their respective
variable, i.e., there exists a constant C0 > 0 such that

|h(t, x, y, z, µ, v)| ≤ C0

(
1 + |x|+ |y|+ |z|+

(∫
R2

a2µ(da)
) 1

2

+ |v|
)
,

|Φ(x, ν)| ≤ C0

(
1 + |x|+

(∫
R
a2ν(da)

) 1
2
)
,

and for z ∈ R, v, v̄ ∈ U , t ∈ [0, T ],

|h(t, 0, 0, z, δ0, v)− h(t, 0, 0, z, δ0, v̄)| ≤ C0(1 + |v|+ |v̄|).

ii) For arbitrary 2 ≤ β ≤ 8, Θβ = Kβ4
β(1+T β)(max{C2, C3})β , where Kβ is given in (2.4)

with C1 = max{||bx||∞, ||bµ1 ||∞, ||σx||∞, ||σµ1 ||∞, ||fx||∞, ||fy||∞, ||fz||∞, ||fµ1 ||∞, ||fµ2 ||∞,
||Φx||∞, ||Φν ||∞}, C2 = max{||by||∞, ||bz||∞, ||bµ2 ||∞, ||σy||∞, ||σµ2 ||∞}, C3 = ||σz||∞.

iii) All the second-order derivatives of h and Φ with respect to (x, y, z, µ) are bounded and
continuous in (x, y, z, µ, v), and (x, ν), respectively.

Hamiltonian Functions: For x, y, z ∈ R, µ ∈ P(R2), p0, q0, p1, q12 ∈ R, we define

H0(t, x, y, z, µ, u, p0, q0) = b(t, x, y, z, µ, u)p0 + σ(t, x, y, z, µ, u)q0 + f(t, x, y, z, µ, u),

H1(t, x, y, z, µ, u, p1, q12) = b(t, x, y, z, µ, u)p1 + σ(t, x, y, z, µ, u)q12.

Next let us introduce some notations used in our setting. Let (Ω̄, F̄ , P̄) be an intermediate
probability space and independent of (Ω,F ,P), B̄ a 1-dimensional Brownian motion over this

space (Ω̄, F̄ , P̄), Ē the expectation under probability P̄. Let (Ω̂, F̂ , P̂, B̂, Ê) be the independent
copy of (Ω̄, F̄ , P̄, B̄, Ē), which means that

i) (Ω̂, F̂ , P̂) is independent of (Ω̄, F̄ , P̄);
ii) P̂ξ̂ = P̄ξ̄, ξ̄ ∈ L1(Ω̄, F̄ , P̄), ξ̂ ∈ L1(Ω̂, F̂ , P̂).

(Ω̃, F̃ , P̃, B̃, Ẽ) can be understood similarly.
By φ̄(·) we denote the stochastic process defined on space (Ω̄, F̄ , P̄), i.e., φ̄(t) = φ(t, ω̄), t ∈

[0, T ], ω̄ ∈ Ω̄; ¯̂φ(·) the stochastic process over product space (Ω̂× Ω̄, F̂ ⊗ F̄ , P̂⊗ P̄), i.e., ¯̂φ(t) =
φ(t, ω̂, ω̄), t ∈ [0, T ], (ω̂, ω) ∈ Ω̂× Ω̄; ¯̊φ(·) the stochastic process over product space (Ω× Ω̄,F ⊗
F̄ ,P⊗ P̄), i.e., ¯̊φ(t) = φ(t, ω, ω̄), t ∈ [0, T ], (ω, ω) ∈ Ω× Ω̄. Similarly, ˚̄φ(·) denotes the stochastic
process over product space (Ω̄×Ω, F̄⊗F , P̄⊗P), i.e., ˚̄φ(t) = φ(t, ω̄, ω), t ∈ [0, T ], (ω, ω) ∈ Ω̄×Ω.

Moreover, due to the independence of (Ω̄, F̄ , P̄) and (Ω̂, F̂ , P̂), the expectation of any random

variable defined on product space (Ω̂× Ω̄, F̂ ⊗ F̄ , P̂⊗ P̄) can be calculated as follows:

ĒÊ[ ˆ̄ξ] = Ē
[ ∫

Ω̂

ξ(ω̄, ω̂)dP̂
]
=

∫
Ω̄

[ ∫
Ω̂

ξ(ω̄, ω̂)dP̂
]
dP̄.
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Suppose v(·) is an admissible control. For ϕ = b, σ, f,Φ, ℓ = x, y, z, define

ϕ(t) = ϕ(t,X∗(t), Y ∗(t), Z∗(t),P(X∗(t),Y ∗(t)), u
∗(t)),

ϕℓ(t) = ϕℓ(t,X
∗(t), Y ∗(t), Z∗(t),P(X∗(t),Y ∗(t)), u

∗(t)),

δϕ(t) = ϕ(t,X∗(t), Y ∗(t), Z∗(t),P(X∗(t),Y ∗(t)), v(t))− ϕ(t),

δϕℓ(t) = ϕℓ(t,X
∗(t), Y ∗(t), Z∗(t),P(X∗(t),Y ∗(t)), v(t))− ϕℓ(t),

δϕ(t,Ξ) = ϕ(t,X∗(t), Y ∗(t), Z∗(t) + Ξ(t),P(X∗(t),Y ∗(t)), v(t))− ϕ(t),

δϕℓ(t,Ξ) = ϕℓ(t,X
∗(t), Y ∗(t), Z∗(t) + Ξ(t),P(X∗(t),Y ∗(t)), v(t))− ϕℓ(t),

where Ξ(·) is an Ft-adapted process, and for θ = µ1, µ2,

ˆ̊
ϕθ(t) := ϕθ(t,X

∗(t), Y ∗(t), Z∗(t),P(X∗(t),Y ∗(t)), u
∗(t); X̂∗(t), Ŷ ∗(t)),

δ
ˆ̊
ϕθ(t) := ϕθ(t,X

∗(t), Y ∗(t), Z∗(t),P(X∗(t),Y ∗(t)), v(t); X̂
∗(t), Ŷ ∗(t))− ˆ̊

ϕθ(t).

Our first-order adjoint system consists of the following two BSDEs
dp0(t) = −

{
H0

x(t) + p0(t)H
0
y (t) + k0(t)H

0
z (t)

}
dt+ q0(t)dW (t), t ∈ [0, T ],

d ˆ̊p1(t) = − ˆ̊
F1(t)dt+ ˆ̊q11(t)dW (t) + ˆ̊q12(t)dŴ (t), t ∈ [0, T ],

p0(T ) = Φx(T ), ˆ̊p1(T ) =
ˆ̊
Φν(T ),

(3.1)

where

ˆ̊
F1(t) = H0

y (t)
ˆ̊p1(t) +H0

z (t)
ˆ̊
k1(t) +

ˆ̊
H0

µ1
(t) +

ˆ̊
H0

µ2
(t)p̂0(t) + Ē[ ¯̊H0

µ2
(t)ˆ̄p1(t)]

+
ˆ̊
H1

x(t) +
ˆ̊
H1

y (t)p̂0(t) +
ˆ̊
H1

z (t)k̂0(t) + Ē[ ¯̊H1
y (t)ˆ̄p1(t)] + Ē[ ¯̊H1

z (t)
ˆ̄k1(t)]

+ Ē[ ˆ̊̄H1
µ1
(t)] + Ē[ ˆ̊̄H1

µ2
(t)p̄0(t)] + ĒẼ[ ˜̊̄H1

µ2
(t)ˆ̃p1(t)],

k0(t) = (1− σz(t)p0(t))
−1(p0(t)σx(t) + σy(t)(p0(t))

2 + q0(t)),

ˆ̊
k1(t) = (1− σz(t)p0(t))

−1
{
σy(t)p0(t)ˆ̊p1(t) + ˆ̊σµ1(t)p0(t) +

ˆ̊σµ2(t)p0(t)p̂0(t)

+ ˆ̊q11(t) + p0(t)Ē[¯̊σµ2(t)ˆ̄p1(t)]
}
,

H0
x(t) = bx(t)p0(t) + σx(t)q0(t) + fx(t),

ˆ̊
H0

µ1
(t) =

ˆ̊
bµ1(t)p0(t) +

ˆ̊σµ1(t)q0(t) +
ˆ̊
fµ1(t),

ˆ̊
H1

x(t) = b̂x(t)ˆ̊p1(t) + σ̂x(t)ˆ̊q12(t),
ˆ̊̄
H1

µ1
(t) = ˆ̄bµ1

(t)¯̊p1(t) + ˆ̄σµ1
(t)¯̊q12(t),

Π∗(t,ΞIEε) = (X∗(t), Y ∗(t), Z∗(t) + Ξ(t)IEε(t)).

(3.2)

H0
y (t),H

0
z (t),

ˆ̊
H0

µ2
(t),

ˆ̊
H1

y (t),
ˆ̊
H1

z (t),
ˆ̊̄
H1

µ2
(t) can be understood similarly.

Remark 3.1. Buckdahn, Li and Ma[6] investigated the following optimal control problem
(without recursive utility) governed by a general mean-field control system:

Problem (BLM). Minimize J(v(·)) = E[
∫ T

0
f(t,Xv(t),PXv(t), v(t))dt+Φ(Xv(T ),PXv(T ))],

subject to{
dXv(t) = b(t,Xv(t),PXv(t), v(t))dt+ σ(t,Xv(t),PXv(t), v(t))dW (t), t ∈ [0, T ],

Xv(0) = x0.
(3.3)
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By Fubini Theorem, a single adjoint equation is built to deal with the first-order variation of
Xε, which is described as follows:

dp(t) = −
{
bx(t)p(t) + Ê[˚̂bν(t) · p̂(t)] + σx(t)q(t) + Ê[̊σ̂ν(t) · q̂(t)]

+ fx(t) + Ê[˚̂fν(t)]
}
dt+ q(t)dW (t), t ∈ [0, T ],

p(T ) = Φx(T ) + Ê[˚̂Φν(T )].

(3.4)

If we define

Y v(t) = EFt

[
Φ(Xv(T ),PXv(T )) +

∫ T

t

f(t,Xv(t),PXv(t), v(t))dt
]
,

following the scheme of El Karoui, Peng and Quenez[11] there exists an adapted process Zv(·)
such that

Y v(t) =Φ(Xv(T ),PXv(T )) +

∫ T

t

f(t,Xv(t),PXv(t), v(t))dt

−
∫ T

t

Zv(s)dW (s), t ∈ [0, T ]. (3.5)

By Y 1,ε we denote the first-order variation of Y ε, where (Y ε, Zε) is the solution of (3.5) with
vε(·) := u∗(·)I(Eε)c + v(·)IEε instead of v(·). For the solution of the above adjoint equation
(3.6) one can check

E[Y 1,ε(t)] = E[p(t)X1,ε(t)], t ∈ [0, T ]. (3.6)

It should be pointed out that because we have to deal with the fully coupled mean-field
control system, the equality (3.6) is not sufficient for our case (see Remark 4.4). In fact, we
need a slightly “strong” result

Y 1,ε(t) = p0(t)X
1,ε(t) + Ê[ ˆ̊p1(t)X̂1,ε(t)], t ∈ [0, T ], P-a.s.

This is why we introduce the split first-order adjoint equation (3.1).

The first equation in (3.1) is a classical BSDE, whose coefficient does not satisfy Lipschitz
condition. However, from Lemma 3.3, Assumption 3.4, Remark 3.5[17], we know that if C2 and
C3 are small enough, the first equation in (3.1) possesses a unique solution (p0, q0) with

|p0(t)| ≤ L0, t ∈ [0, T ], P-a.s., q0 ∈ H2,β
F (0, T ), (3.7)

where L0 is a positive constant depending on C1 and C2.
The second equation in (3.1) is mean-field BSDE with non-Lipschitz coefficient, we make

the following assumption:

Assumption 3.2. Suppose the second equation in (3.1) exists a unique solution (ˆ̊p1, ˆ̊q11, ˆ̊q12)

with | ˆ̊p1(t)| ≤ L0, t ∈ [0, T ], P⊗ P̂-a.s., and ˆ̊q11, ˆ̊q12 ∈ H2,β

F⊗F̂
(0, T ), where L0 is positive constant

depending on C1 and C2.

Assumption 3.3. Suppose q0(·) and ˆ̊q11(·), ˆ̊q12(·) are bounded.
Next let us introduce the split second-order adjoint equation

dP0(t) = −
{
P0(t)[(Dσ(t)

ᵀ[1, p0(t), k0(t)]ᵀ)2 + 2Db(t)ᵀ[1, p0(t), k0(t)]ᵀ +H0
y ]

+ 2Q0(t)Dσ(t)
T [1, p0(t), k0(t)]

ᵀ +H0
z (t)K0(t)

+ [1, p0(t), k0(t)]D
2H0(t)[1, p0(t), k0(t)]

ᵀ}dt+Q0(t)dW (t),

P0(T ) = Φxx(T ),

(3.8)
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d
ˆ̊
P1(t) = −

{ ˆ̊
P1(t)[(Dσ̂(t)

ᵀ[1, p̂0(t), k̂0(t)]ᵀ)2 + 2Db̂(t)ᵀ[1, p̂0(t), k̂0(t)]ᵀ + Ĥ0
y (t)]

+ Ē[ ˆ̄P1(t)(
¯̊
H0

µ2
(t) +

¯̊
H1

y (t) + Ẽ[ ˜̊̄H1
µ2
(t)])] + 2

ˆ̊
Q12(t)Dσ̂(t)

ᵀ[1, p̂0(t), k̂0(t)]ᵀ

+ [1, p̂0(t), k̂0(t)]D
2 ˆ̊H1(t)[1, p̂0(t), k̂0(t)]

ᵀ +
ˆ̊
H1

z (t)K̂0(t) + Ĥ0
z (t)

ˆ̊
K1(t)

+ Ē[
¯̊
H1

z (t)
ˆ̄K1(t)] + (

ˆ̊
H0

µ2
(t) +

ˆ̊
H1

y (t) + Ē[
¯̂
H̊1

µ2
(t)])P̂0(t)

+
ˆ̊
H0

µ1a1
(t) +

ˆ̊
H0

µ2a2
(t)(p̂0(t))

2 + Ē[
¯̂
H̊1

µ1a1
(t)] + Ē[

¯̂
H̊1

µ2a2
(t)(p̄0(t))

2]
}
dt

+
ˆ̊
Q11(t)dW (t) +

ˆ̊
Q12(t)dŴ (t), t ∈ [0, T ],

ˆ̊
P1(T ) =

ˆ̊
Φνa(T ),

where

K0(t) = (1− p0(t)σz(t))
−1

{
p0(t)σy(t) + 2[σx(t) + σy(t)p0(t) + σz(t)k0(t)]

}
P0(t)

+ (1− p0(t)σz(t))
−1

{
Q0(t) + p0(t)[1, p0(t), k0(t)]D

2σ[1, p0(t), k0(t)]
ᵀ},

ˆ̊
K1(t) = (1− p0(t)σz(t))

−1
{
p0(t)ˆ̊σµ2(t)P̂0(t) + p0(t)σy(t)

ˆ̊
P1(t) + p0(t)Ē[¯̊σµ2(t)

ˆ̄P1(t)]

+
ˆ̊
Q11(t) + p0(t)ˆ̊σµ1a1(t) + p0(t)ˆ̊σµ2a2(t)(p̂0(t))

2
}
,

¯̊
H0

µ2
(t) =

¯̊
bµ2(t)p0(t) +

¯̊σµ2(t)q0(t) +
¯̊
fµ2(t),

¯̊
H1

y (t) = by(t)¯̊p1(t) + σy(t)¯̊q12(t),

¯̂
H̊1

µ2
(t) =

¯̂
bµ2(t)

¯̊p1(t) + ¯̂σµ2(t)
¯̊q12(t),

ˆ̊
H0

µ2a2
(t) =

ˆ̊
bµ2a2(t)p0(t) +

ˆ̊σµ2a2(t)q0(t) +
ˆ̊
fµ2a2(t),

¯̂
H̊1

µ2a2
(t) =

¯̂
bµ2a2(t)

ˆ̊p1(t) + ¯̂σµ2a2(t)
ˆ̊q12(t).

(3.9)

Under Assumption (A3.1), Assumption (A3.2) and Assumption (A3.3), the first equation
in (3.8) is a BSDE with Lipschitz coefficient. Hence, it possesses a unique solution (P0, Q0) ∈
S4
F(0, T )×H2,2

F (0, T ). Once knowing (P0, Q0), the second equation in (3.8) is a mean-field BSDE

over product space (Ω× Ω̂,F⊗ F̂,P⊗ P̂). From Theorm 7.1 (see Appendix), the second equation

in (3.8) exists a unique solution (
ˆ̊
P1,

ˆ̊
Q11,

ˆ̊
Q12) ∈ S4

F⊗F̂(0, T )×H2,2

F⊗F̂
(0, T )×H2,2

F⊗F̂
(0, T ).

Let us consider an algebra equation

Ξ(t) =p0(t)
(
σ(t,X∗(t), Y ∗(t), Z∗(t) + Ξ(t),P(X∗(t),Y ∗(t)), v(t))

− σ(t,X∗(t), Y ∗(t), Z∗(t),P(X∗(t),Y ∗(t)), u
∗(t))

)
. (3.10)

Clearly, Ξ(t) depends on p0(t), v(t) and u
∗(t).

Lemma 3.2. Let Assumption (A3.1) and Assumption (A3.2) holds true, the algebra equation
(3.10) exists a unique solution Ξ(·) and

|Ξ(t)| ≤ L0(1 + |X∗(t)|+ |Y ∗(t)|+ ||X∗(t)||L2 + ||Y ∗(t)||L2 + |v(t)|+ |u∗(t)|),
sup

0≤t≤T
E[|Ξ(t)|8] < +∞. (3.11)

The proof is similar to that of Lemma 3.9[17]. Hence, we omit it.

Define

H(t, x, y, z, µ, v, p0(t), Ê[˚̂p1(t)], q0(t), Ê[̊q̂12(t)], P0(t), Ê[ ˚̂P1(t)])
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=(p0(t) + Ê[˚̂p1(t)])b(t, x, y, z + Ξ(t), µ, v) + f(t, x, y, z + Ξ(t), µ, v)

+ (q0(t) + Ê[̊q̂12(t)])σ(t, x, y, z + Ξ(t), µ, v) +
1

2
(P0(t) + Ê[ ˚̂P1(t)])

· (σ(t, x, y, z + Ξ(t), µ, v)− σ(t,X∗(t), Y ∗(t), Z∗(t),P(X∗(t),Y ∗(t)), u
∗(t)))2, (3.12)

where Ξ(t) is introduced in (3.10), but with v instead of v(t).

Theorem 3.3. Let Assumption (A3.1), Assumption (A3.2) and Assumption (A3.3) be in force,
and let u∗ be the optimal control. By (X∗, Y ∗, Z∗) we denote the optimal trajectory. Let

((p0(·), q0(·)), (ˆ̊p1(·), ˆ̊q11(·), ˆ̊q12(·))) and ((P0(·), Q0(·)), ( ˆ̊P1(·), ˆ̊Q11(·), ˆ̊Q12(·))) be the solutions of

the first- and second-order adjoint equations, respectively. Moreover, we assume P⊗ P̂-a.s.,
ˆ̊
H0

µ2
(t) +

ˆ̊
H1

y (t) + Ē[
¯̂
H̊1

µ2
(t)] + p0(t)fz(t)ˆ̊σµ2(t)σy(t)(1− p0(t)σz(t))

−1 ≥ 0,

ˆ̊
H1

z (t) = b̂z(t)ˆ̊p1(t) + σ̂z(t)ˆ̊q12(t) = 0, t ∈ [0, T ],
(3.13)

where
ˆ̊
H0

µ2
(t),

ˆ̊
H1

y (t),
¯̂
H̊1

µ2
(t) is introduced in (3.2). Then

H(t,X∗(t), Y ∗(t), Z∗(t),P(X∗(t),Y ∗(t)), v, p0(t), Ê[˚̂p1(t)], q0(t), Ê[̊q̂12(t)], P0(t), Ê[ ˚̂P1(t)])

≥H(t,X∗(t), Y ∗(t), Z∗(t),P(X∗(t),Y ∗(t)), u
∗(t), p0(t), Ê[˚̂p1(t)], q0(t), Ê[̊q̂12(t)], P0(t), Ê[ ˚̂P1(t)]),

v ∈ U, a.e., a.s,

Remark 3.4. i) If the coefficients b, σ, f,Φ are mean-field free, one can check ˆ̊p1(·) = ˆ̊q11(·) =
ˆ̊q12(·) = 0, which means P× P̂-a.s.,

ˆ̊
H0

µ2
(t) +

ˆ̊
H1

y (t) + Ē[
¯̂
H̊1

µ2
(t)] + p0(t)fz(t)ˆ̊σµ2(t)σy(t)(1− p0(t)σz(t))

−1 = 0,

ˆ̊
H1

z (t) = 0, t ∈ [0, T ].
(3.14)

Hence, from this point of view, the SMP obtained by Hu, Ji and Xue[17] is a special case of our
SMP.

ii) Obviously, if b, σ are independent of z, the assumption
ˆ̊
H1

z (t) = 0, t ∈ [0, T ], P⊗ P̂-a.s.
holds true.

4 Variational Equations

Two variational equations are studied in this section, which are the building materials of our
SMP. In view of the fact that the control domain is not necessarily convex in our case, the
method of “spike variation” is borrowed to investigate our optimal problem. Let Eε be a subset
of [0, T ] with Lebesgue measure |Eε| = ε. For any v(·) ∈ Uad, define

vε(·) := u∗(·)I(Eε)c + v(·)IEε ,

where u∗(·) is the optimal control. By (Xε, Y ε, Zε) we denote the solution of (1.1) with vε, i.e.,
(Xε, Y ε, Zε) := (Xvε

(·)Y vε

(·), Zvε

(·)).

4.1 First-order Variational Equation

The first order variational equations can be written as

dX1,ε(t) =
{
bx(t)X

1,ε(t) + by(t)Y
1,ε(t) + bz(t)(Z

1,ε(t)− Ξ(t)IEε(t))
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+ Ê[ˆ̊bµ1(t)X̂
1,ε(t)] + Ê[ˆ̊bµ2(t)Ŷ

1,ε(t)]
}
dt

+
{
σx(t)X

1,ε(t) + σy(t)Y
1,ε(t) + σz(t)(Z

1,ε(t)− Ξ(t)IEε(t))

+ Ê[ˆ̊σµ1(t)X̂
1,ε(t)] + Ê[ˆ̊σµ2(t)Ŷ

1,ε(t)] + δσ(t,Ξ)IEε(t)
}
dW (t), (4.1)

dY 1,ε(t) = −
{
fx(t)X

1,ε(t) + fy(t)Y
1,ε(t) + fz(t)(Z

1,ε(t)− Ξ(t)IEε(t))

+ Ê[ ˆ̊fµ1(t)X̂
1,ε(t)] + Ê[ ˆ̊fµ2(t)Ŷ

1,ε(t)]− q0(t)δσ(t,Ξ)IEε(t)

− Ê[ˆ̊q12(t)δσ̂(t,Ξ)IEε(t)]
}
dt+ Z1,ε(t)dW (t), t ∈ [0, T ],

X1,ε(0) = 0, Y 1,ε(T ) = Φx(T )X
1,ε(T ) + Ê[ ˆ̊Φν(T )X̂

1,ε(T )].

(4.1) is a fully coupled linear mean-field FBSDE. According to Theorem 6[23], (4.1) exists a
unique solution.

Proposition 4.1. Under Assumptions (A3.1)-(A3.3) and suppose (3.7) hold true, then for
t ∈ [0, T ], P-a.s.,

Y 1,ε(t) = p0(t)X
1,ε(t) + Ê[ ˆ̊p1(t)X̂1,ε(t)],

Z1,ε(t) = k0(t)X
1,ε(t) + Ê[ˆ̊k1(t)X̂1,ε(t)] + Ξ(t)IEε(t),

(4.2)

where k0 and
ˆ̊
k1 are introduced in (3.2); Ξ(·) is the solution of (3.10).

Proof. Consider the following linear mean-field SDE:

dx(t) =
{
x(t)(bx(t) + by(t)p0(t) + bz(t)k0(t))

+ Ê[x̂(t)(by(t)ˆ̊p1(t) + bz(t)
ˆ̊
k1(t) +

ˆ̊
bµ1(t) +

ˆ̊
bµ2(t)p̂0(t) + Ē[¯̊bµ2(t)ˆ̄p1(t)])]

}
dt

+
{
x(t)(σx(t) + σy(t)p0(t) + σz(t)k0(t)) + δσ(t,Ξ)IEε(t)

+ Ê[x̂(t)(σy(t)ˆ̊p1(t) + σz(t)
ˆ̊
k1(t) + ˆ̊σµ1(t) +

ˆ̊σµ2(t)p̂0(t)

+ Ē[¯̊σµ2(t)ˆ̄p1(t)])]
}
dW (t),

x(0) = 0.

(4.3)

From Assumption 3.1, Assumption 3.2 and (3.7), we know that (4.3) exists a unique solution,
refer to Theorem 6[23].

Define y(t) = p0(t)x(t)+ Ê[ ˆ̊p1(t)x̂(t)], z(t) = k0(t)x(t)+ Ê[ˆ̊k1(t)x̂(t)]+Ξ(t)IEε(t). Applying

Itô’s formula to Ê[ ˆ̊p1(t)x̂(t)] we have

dÊ[ ˆ̊p1(t)x̂(t)]

=Ê[x̂(t)ˆ̊p1(t)(b̂x(t) + b̂y(t)p̂0(t) + b̂z(t)k̂0(t))

+ x̂(t)ˆ̊q12(t)(σ̂x(t) + σ̂y(t)p̂0(t) + σ̂z(t)k̂0(t))− ˆ̊
F1(t)]

+ ĒÊ[x̄(t)ˆ̊p1(t)(b̂y(t)¯̂p1(t) + b̂z(t)
¯̂
k1(t) +

¯̂
bµ1(t) +

¯̂
bµ2(t)p̄0(t) + Ẽ[˜̂bµ2(t)¯̃p1(t)])]

+ ĒÊ[x̄(t)ˆ̊q12(t)(σ̂y(t)¯̂p1(t) + σ̂z(t)
¯̂
k1(t) + ¯̂σµ1(t) +

¯̂σµ2(t)p̄0(t) + Ẽ[˜̂σµ2(t)¯̃p1(t)])]

+ Ê[ˆ̊q12(t)δσ̂(t,Ξ)IEε(t)] + Ê[x̂(t)ˆ̊q11(t)]dW (t), (4.4)

where
ˆ̊
F1(t) is given in (3.2). Notice

ĒÊ[x̄(t)ˆ̊p1(t)b̂y(t)¯̂p1(t)] = ÊĒ[x̂(t)¯̊p1(t)b̄y(t)ˆ̄p1(t)] = Ê[Ē[ ¯̊p1(t)b̄y(t)ˆ̄p1(t)]x̂(t)],
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ĒÊ[x̄(t)ˆ̊p1(t)
¯̂
bµ1(t)] = ÊĒ[x̂(t)¯̊p1(t)ˆ̄bµ1(t)] = Ê[Ē[ ¯̊p1(t)ˆ̄bµ1(t)]x̂(t)],

ĒÊ[x̄(t)ˆ̊p1(t)Ẽ[
˜̂
bµ2(t)¯̃p1(t)]] = ĒÊẼ[x̄(t)ˆ̊p1(t)

˜̂
bµ2(t)¯̃p1(t)]

=ÊĒẼ[x̂(t)¯̊p1(t)˜̄bµ2(t)ˆ̃p1(t)] = Ê
[
ĒẼ[ ¯̊p1(t)˜̄bµ2(t)ˆ̃p1(t)]x̂(t)

]
,

(4.4) can be written as

dÊ[ ˆ̊p1(t)x̂(t)]

=Ê
[
x̂(t)

{
ˆ̊p1(t)(b̂x(t) + b̂y(t)p̂0(t) + b̂z(t)k̂0(t)) + ˆ̊q12(t)(σ̂x(t) + σ̂y(t)p̂0(t) + σ̂z(t)k̂0(t))

+ Ē[ ¯̊p1(t)(b̄y(t)ˆ̄p1(t) + b̄z(t)
ˆ̄k1(t) +

ˆ̄bµ1(t) +
ˆ̄bµ2(t)p̄0(t) + Ẽ[˜̄bµ2(t)ˆ̃p1(t)]

)
+ ¯̊q12(t)(σ̄y(t)ˆ̄p1(t) + σ̄z(t)

ˆ̄k1(t) + ˆ̄σµ1
(t) + ˆ̄σµ2

(t)p̄0(t) + Ẽ[˜̄σµ2
(t)ˆ̃p1(t)])

]}
− ˆ̊
F1(t)]dt+ Ê[ˆ̊q12(t)δσ̂(t,Ξ)IEε(t)]dt+ Ê[x̂(t)ˆ̊q11(t)]dW (t). (4.5)

For convenience, we denote

F0(t) = H0
x(t) + p0(t)H

0
y (t) + k0(t)H

0
z (t).

The Itô’s formula to p0(t)x(t) allows to show

dp0(t)x(t)

=x(t)
{
p0(t)(bx(t) + by(t)p0(t) + bz(t)k0(t)) + q0(t)(σx(t) + σy(t)p0(t)

+ σz(t)k0(t))− F0(t)
}
dt+ Ê

[
x̂(t)

{
p0(t)(by(t)ˆ̊p1(t) + bz(t)

ˆ̊
k1(t)

+
ˆ̊
bµ1(t) +

ˆ̊
bµ2(t)p̂0(t) + Ē[¯̊bµ2(t)ˆ̄p1(t)]) + q0(t)(σy(t)ˆ̊p1(t) + σz(t)

ˆ̊
k1(t)

+ ˆ̊σµ1(t) +
ˆ̊σµ2(t)p̂0(t) + Ē[¯̊σµ2(t)ˆ̄p1(t)])

}]
dt

+
{
x(t)p0(t)(σx(t) + σy(t)p0(t) + σz(t)k0(t)) + p0(t)δσ(t,Ξ)IEε(t)

+ p0(t)Ê[x̂(t)(σy(t)ˆ̊p1(t) + σz(t)
ˆ̊
k1(t) + ˆ̊σµ1(t)

+ ˆ̊σµ2(t)p̂0(t) + Ē[¯̊σµ2(t)ˆ̄p1(t)])]
}
dW (t). (4.6)

Combining (4.5)–(4.6) and the definition of
ˆ̊
F1 (see (3.2)), we arrive at

dy(t) = −
{
fx(t)x(t) + fy(t)y(t) + fz(t)z(t) + Ê[ ˆ̊fµ1(t)x̂(t)] + Ê[ ˆ̊fµ2(t)ŷ(t)]

− q0(t)δσ(t,Ξ)IEε(t)− Ê[ˆ̊q12(t)δσ̂(t,Ξ)IEε(t)]
}
dt

+ z(t)dW (t), t ∈ [0, T ],

y(T ) = Φx(T )x(T ) + Ê[ ˆ̊Φµ(T )x̂(T )],

which means that (x, y, z) solves (4.1). Then Theorem 2.2 allows to show (x, y, z) = (X1,ε,
Y 1,ε, Z1,ε).

Remark 4.2. It should be pointed out that (4.2) plays an important role in our analysis.
As mentioned in Remark 3.1, the relation (3.6) established by Buckdahn, Li and Ma[6] is not
enough to handle the fully coupled mean-field control systems. We need a bit “strong” relation
(4.2).
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Proposition 4.3. Let Assumption (A3.1) i)–ii), Assumption (A3.2) and Assumption (A3.3)
be in force, then for arbitrary 2 ≤ β < 8, there exists a constant L > 0 depending on
C0, C1, C2, C3, L0, β, T such that

i) E
[

sup
t∈[0,T ]

(
|X1,ε(t)|β + |Y 1,ε(t)|β

)]
+ E

[( ∫ T

0

|Z1,ε(t)|2dt
) β

2
]
≤ Lε

β
2 ;

ii) E
[

sup
t∈[0,T ]

(
|Xε(t)−X∗(t)|β + |Y ε(t)− Y ∗(t)|β

)]
+ E

[( ∫ T

0

|Zε(t)− Z∗(t)|2dt
) β

2
]
≤ Lε

β
2 ;

iii) E
[

sup
t∈[0,T ]

(
|Xε(t)−X∗(t)−X1,ε(t)|4 + |Y ε(t)− Y ∗(t)− Y 1,ε(t)|4

)]
+ E

[( ∫ T

0

|Zε(t)− Z∗(t)− Z1,ε(t)|2dt
)2]

≤ Lε4.

(4.7)

Proof. i) From Theorem 2.2, one has

E
[

sup
t∈[0,T ]

(
|X1,ε(t)|β + |Y 1,ε(t)|β

)]
+ E

[( ∫ T

0

|Z1,ε(t)|2dt
) β

2
]

≤LE
[( ∫ T

0

(|bz(t)|+ |fz(t)|)|Ξ(t)|IEε(t) + |Ê[ˆ̊q12(t)δσ̂(t,Ξ)IEε(t)]|

+ |q0(t)δσ(t,Ξ)IEε(t)|dt
)β]

+ LE
[( ∫ T

0

[|σz(t)Ξ(t)IEε(t)|2 + |δσ(t,Ξ)IEε(t)|2]dt
) β

2
]

≤LE
[( ∫

Eε

1 + |X∗(t)|+ |Y ∗(t)|+ ||X∗(t)||L2 + ||Y ∗(t)||L2 + |v(t)|

+ |u∗(t)|+ E|v(t)|+ E|u∗(t)|)dt
)β]

+ LE
[( ∫

Eε

1 + |X∗(t)|2 + |Y ∗(t)|2 + ||X∗(t)||2L2 + ||Y ∗(t)||2L2 + |v(t)|2 + |u∗(t)|2)dt
) β

2
]

≤Lε
β
2 .

ii) Define X 1(t) = Xε(t)−X∗(t),Y1(t) = Y ε(t)− Y ∗(t),Z1(t) = Zε(t)− Z∗(t). Then
dX 1(t) = (b(t,Πε(t),PΛε(t), v

ε(t))− b(t,Π∗(t),PΛ∗(t), u
∗(t)))dt

+ (σ(t,Πε(t),PΛε(t), v
ε(t))− σ(t,Π∗(t),PΛ∗(t), u

∗(t)))dW (t), t ∈ [0, T ],

dY1(t) = −(f(t,Πε(t),PΛε(t), v
ε(t))− f(t,Π∗(t),PΛ∗(t), u

∗(t)))dt+ Z1(t)dW (t), t ∈ [0, T ],

X 1(0) = 0, Y1(T ) = Φ(Xε(T ),PXε(T ))− Φ(X∗(T ),PX∗(T )).

For h = b, σ, f and ℓ = x, y, z, define

hεℓ(t) =

∫ T

0

hℓ(t,Π
∗(t) + λ(Πε(t)−Π∗(t)),PΛ∗(t)+λ(Λε(t)−Λ∗(t)), v

ε(t))dλ,

ˆ̊
hεµ1

(t) =

∫ T

0

hµ1(t,Π
∗(t) + λ(Πε(t)−Π∗(t)),PΛ∗(t)+λ(Λε(t)−Λ∗(t)), v

ε(t);

Λ̂∗(t) + λ(Λ̂ε(t)− Λ̂∗(t)))dλ.

(4.8)
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Since

b(t,Πε(t),PΛε(t), v
ε(t))− b(t,Π∗(t),PΛ∗(t), u

∗(t))

=bεx(t)(X
ε(t)−X∗(t)) + bεy(t)(Y

ε(t)− Y ∗(t)) + bεz(t)(Z
ε(t)− Z∗(t))

+ Ê[ˆ̊bεµ1
(t)(X̂ε(t)− X̂∗(t))] + Ê[ˆ̊bεµ2

(t)(Ŷ ε(t)− Ŷ ∗(t))] + δb(t; vε(t)),

we have 

dX 1(t) =
(
bεx(t)X 1(t) + bεy(t)Y1(t) + bεz(t)Z1(t)

+ Ê[ˆ̊bεµ1
(t)X̂ 1(t)] + Ê[ˆ̊bεµ2

(t)Ŷ1(t)] + δb(t; vε(t))
)
dt

+
(
σε
x(t)X 1(t) + σε

y(t)Y1(t) + σε
z(t)Z1(t) + Ê[ˆ̊σε

µ1
(t)X̂ 1(t)]

+ Ê[ˆ̊σε
µ2
(t)Ŷ1(t)] + δσ(t; vε(t)

)
dW (t), t ∈ [0, T ],

dY1(t) = −
(
fεx(t)X 1(t) + fεy (t)Y1(t) + fεz (t)Z1(t) + Ê[ ˆ̊fεµ1

(t)X̂ 1(t)]

+ Ê[ ˆ̊fεµ2
(t)Ŷ1(t)] + δf(t; vε(t))

)
dt+ Z1(t)dW (t), t ∈ [0, T ],

X 1(0) = 0, Y1(T ) = Φε
x(t)X 1(T ) + Ê[ ˆ̊Φε

ν(t)X̂ 1(T )].

(4.9)

Thanks to Theorem 2.2, Assumption 3.1-i) and (4.9), it yields

E
[

sup
0≤t≤T

(
|X 1(t)|β + |Y1(t)|β

)
+
(∫ T

0

|Z1(t)|2dt
) β

2
]

≤LE
[( ∫ T

0

|δb(t; vε(t))|+ |δf(t; vε(t))|dt
)β

+
(∫ T

0

|δσ(t; vε(t))|2dt
) β

2
]

≤LE
[( ∫ T

0

(1 + |X∗(t)|+ |Y ∗(t)|+ ||X∗(t)||L2 + ||Y ∗(t)||L2 + |v(t)|+ |u∗(t)|)dt
)β]

+ LE
[( ∫ T

0

(1 + |X∗(t)|2 + |Y ∗(t)|2 + ||X∗(t)||2L2 + ||Y ∗(t)||2L2 + |v(t)|2 + |u∗(t)|2)dt
) β

2
]

≤Lε
β
2 .

iii) For simplicity of the redaction, we denote X 2(t) = Xε(t) − X∗(t) − X1,ε(t),Y2(t) =
Y ε(t)− Y ∗(t)− Y 1,ε(t),Z2(t) = Zε(t)− Z∗(t)− Z1,ε(t). Then it yields

dX 2(t) =
[
bεx(t)X 2(t) + bεy(t)Y2(t) + bεz(t)Z2(t) + Ê[ˆ̊bεµ1

(t)X̂ 2(t)] + Ê[ˆ̊bεµ2
(t)Ŷ2(t)] +Aε

2(t)
]
dt

+
[
σε
x(t,ΞIEε)X 2(t) + σε

y(t,ΞIEε)Y2(t) + σε
z(t,ΞIEε)Z2(t)

+ Ê[ˆ̊σε
µ1
(t,ΞIEε)X̂ 2(t)] + Ê[ˆ̊σε

µ2
(t,ΞIEε)Ŷ2(t)] +Bε

2(t)
]
dW (t), t ∈ [0, T ],

dY2(t) = −
[
fεx(t)X 2(t) + fεy (t)Y2(t) + fεz (t)Z2(t) + Ê[ ˆ̊fεµ1

(t)X̂ 2(t)] + Ê[ ˆ̊fεµ2
(t)Ŷ2(t)]

+ Cε
2(t)

]
dt+ Z2(t)dW (t), t ∈ [0, T ],

X 2(0) = 0, Y2(0) = Φε
x(T )X 2(T ) + Ê[ ˆ̊Φε

ν(T )X̂ 2(T )] +Dε
2(T ),

where

σε
x(t,ΞIEε) =

∫ 1

0

σx(t,Π
∗(t,ΞIEε) + λ(Πε(t)−Π∗(t,ΞIEε)),PΛ∗(t)+λ(Λε(t)−Λ∗(t)), v

ε(t))dλ,

ˆ̊σε
µ1
(t,ΞIEε) =

∫ 1

0

σµ1(t,Π
∗(t,ΞIEε) + λ(Πε(t)−Π∗(t,ΞIEε)),PΛ∗(t)+λ(Λε(t)−Λ∗(t)), v

ε(t);
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Λ̂∗(t) + λ(Λ̂ε(t)− Λ̂∗(t)))dλ,

Aε
2(t) = (bεx(t)− bx(t))X

1,ε(t) + (bεy(t)− by(t))Y
1,ε(t) + (bεz(t)− bz(t))Z

1,ε(t) + δb(t)IEε(t)

+ Ê[(ˆ̊bεµ1
(t)− ˆ̊

bµ1(t))X̂
1,ε(t)] + Ê[(ˆ̊bεµ2

(t)− ˆ̊
bµ2(t))Ŷ

1,ε(t)] + bz(t)Ξ(t)IEε(t),

Bε
2(t) = (σε

x(t,ΞIEε)− σx(t))X
1,ε(t) + (σε

y(t,ΞIEε)− σy(t))Y
1,ε(t)

+ (σε
z(t,ΞIEε)− σz(t)) · (Z1,ε(t)− Ξ(t)IEε(t))

+ Ê[(ˆ̊σε
µ1
(t,ΞIEε)− ˆ̊σµ1(t))X̂

1,ε(t)] + Ê[(ˆ̊σε
µ2
(t,ΞIEε)− ˆ̊σµ2(t))Ŷ

1,ε(t)],

Cε
2(t) = (fεx(t)− fx(t))X

1,ε(t) + (fεy (t)− fy(t))Y
1,ε(t) + (fεz (t)− fz(t))Z

1,ε(t)

+ q0(t)δσ(t,Ξ)(t)IEε(t) + Ê[( ˆ̊fεµ1
(t)− ˆ̊

fµ1(t))X̂
1,ε(t)]

+ Ê[( ˆ̊fεµ2
(t)− ˆ̊

fµ2(t))Ŷ
1,ε(t)] + fz(t)Ξ(t)IEε(t) + δf(t)IEε(t),

Dε
2(t) = (Φε

x(T )− Φx(T ))X
1,ε(T ) + Ê[( ˆ̊Φε

ν(T )−
ˆ̊
Φν(T ))X̂

1,ε(T )].

Thanks to Theorem 2.2, we have

E
[

sup
t∈[0,T ]

(
|X 2(t)|4 + |Y2(t)|4

)
+
(∫ T

0

|Z2(t)|2dt
)2]

≤LE
{(∫ T

0

|Aε
2(t)|dt

)4

+
(∫ T

0

|Cε
2(t)|dt

)4

+
(∫ T

0

|Bε
2(t)|2dt

)2

+ |Dε
2(T )|4

}
. (4.10)

Now we analyse Cε
2(t).

a1) According to the Lipschitz property of fz and (4.7)-i), ii), we have

E
[( ∫ T

0

|fεz (t)− fz(t)|Z1,ε(t)dt
)4]

≤
{
E
[ ∫ T

0

|fεz (t)− fz(t)|8dt
]} 1

2
{
E
[( ∫ T

0

|Z1,ε(t)|2dt
)4]} 1

2

≤L
{
E
[

sup
0≤t≤T

(
|X 1(t)|8 + |Y1(t)|8 + ||X 1(t)||8L2 + ||Y1(t)||8L2

)
+

(∫ T

0

|Z1(t)|2 + |δfz(t)|2IEε(t)dt
)4]} 1

2
{
E
[( ∫ T

0

|Z1,ε(t)|2dt
)4]} 1

2 ≤ Cε4.

a2) Thanks to Assumption (A3.1), one can check

δf(t) = f(t,Π∗(t),PΛ∗(t), v(t))− f(t,Π∗(t),PΛ∗(t), u
∗(t))

= f(t,X∗(t), Y ∗(t), Z∗(t),P(X∗(t),Y ∗(t)), v(t))− f(t, 0, 0, Z∗(t), δ0, v(t))

− (f(t,X∗(t), Y ∗(t), Z∗(t),P(X∗(t),Y ∗(t)), u
∗(t))− f(t, 0, 0, Z∗(t), δ0, u

∗(t)))

+ f(t, 0, 0, Z∗(t), δ0, v(t))− f(t, 0, 0, Z∗(t), δ0, u
∗(t))

≤ L(1 + |X∗(t)|+ |Y ∗(t)|+ ||X∗(t)||L2 + ||Y ∗(t)||L2 + |v(t)|+ |u∗(t)|).

Hence, E
[( ∫ T

0
|δf(t)|IEε(t)dt

)4] ≤ Lε4.

a3) Since | ˆ̊fεµ1
(t)− ˆ̊

fµ1(t)| ≤ L(|X 1(t)|+|Y1(t)|+|Z1(t)|+||X 1(t)||L2+||Y1(t)||L2+|X̂ 1(t)|+
|Ŷ1(t)|), then it follows from Hölder inequality and (4.7)-i), ii),

E
[( ∫ T

0

|Ê[( ˆ̊fεµ1
(t)− ˆ̊

fµ1(t))X̂
1,ε(t)]|dt

)4]
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≤LE
[

sup
t∈[0,T ]

|X1,ε(t)|4
]
E
[( ∫ T

0

Ê[| ˆ̊fεµ1
(t)− ˆ̊

fµ1(t)|2]dt
)2]

≤ Lε4.

Consequently, E
[( ∫ T

0
|Cε

2(t)|dt
)4] ≤ Lε4.

As for Bε
2(t), we only estimate the terms of (σε

z(t,ΞIEε)− σz(t))(Z
1,ε(t)− Ξ(t)IEε(t)) and

Ê[(ˆ̊σε
µ2
(t,ΞIEε)− ˆ̊σµ2(t))Ŷ

1,ε(t)].

b1) Notice

|σε
z(t,ΞIEε)− σz(t)|

≤|σz(t,Π∗(t,ΞIEε),PΛ∗(t), v
ε(t))− σz(t)|+ |σε

z(t,ΞIEε)− σz(t,Π
∗(t,ΞIEε),PΛ∗(t), v

ε(t))|
≤L(1 + |X∗(t)|+ |Y ∗(t)|+ ||X∗(t)||L2 + ||Y ∗(t)||L2 + |v(t)|+ |u∗(t)|+ |Ξ(t)|)IEε(t)

+ L(|X 1(t)|+ |Y1(t)|+ |Z1(t)− Ξ(t)IEε(t)|+ ||X 1(t)||L2 + ||Y1(t)||L2),

and

Z1,ε(t)− Ξ(t)IEε(t) = k0(t)X
1,ε(t) + Ê[ˆ̊k1(t)X̂1,ε(t)]

(see (4.2)). From the boundness of k0,
ˆ̊
k1(t) and (4.7)-i), ii), we can get

E
(∫ T

0

|(σε
z(t,ΞIEε)− σz(t))(Z

1,ε(t)− Ξ(t)IEε(t))|2dt
)2

≤ Lε4. (4.11)

b2) With the help of the Lipschitz property of ˆ̊σµ2 , we obtain

ˆ̊σµ2(t,ΞIEε)− ˆ̊σµ2(t) ≤δ ˆ̊σµ2(t,Ξ)IEε(t) + |X 1(t)|+ |Y1(t)|+ |Z1(t)− Ξ(t)IEε(t)|
+ ||X 1(t)||L2 + ||Y1(t)||L2 + |X̂ 1(t)|+ |Ŷ1(t)|.

The boundness of ˆ̊σµ2 , p0,
ˆ̊p1, the relation (4.2) and Hölder inequality can imply

Ê[(ˆ̊σε
µ2
(t,ΞIEε)− ˆ̊σµ2(t))Ŷ

1,ε(t)]

=Ê[(ˆ̊σε
µ2
(t,ΞIEε)− ˆ̊σµ2(t))p̂0(t)X̂

1,ε(t)] + Ê[(ˆ̊σε
µ2
(t,ΞIEε)− ˆ̊σµ2(t))Ē[ ¯̂p1(t)X̄

1,ε(t)]]

≤L
{
Ê[|ˆ̊σε

µ2
(t,ΞIEε)− ˆ̊σµ2(t)|2]

} 1
2
{
E|X1,ε(t)|2

} 1
2

+ LE
[

sup
t∈[0,T ]

|X1,ε(t)|
]
Ê[|ˆ̊σε

µ2
(t,ΞIEε)− ˆ̊σµ2(t)|].

Hence, from (4.7)-i) we obtain

E
(∫ T

0

|Ê[(ˆ̊σε
µ2
(t,ΞIEε)− ˆ̊σµ2(t))Ŷ

1,ε(t)]|2dt
)2

≤ Lε4.

Similar to Cε
2(t), B

ε
2(t), we also have E

[( ∫ T

0
|Aε

2(t)|dt
)4

+ |Dε
2(T )|4

]
≤ Lε4. The proof is com-

plete.

Remark 4.4. It should be point that if (4.2) does not hold true, we can not obtain (4.11).

In fact, we have to calculate E
[ ∫ T

0
|Z1(t)Z1,ε(t)|2dt

]
= E

[ ∫ T

0
|(Zε(t)−Z∗(t))Z1,ε(t)|2dt

]
when

estimating (4.11). But from (4.7)-i), ii), we can not get E
( ∫ T

0
|Z1(t)Z1,ε(t)|2dt

)2 ≤ Lε4. Hence,
the relation (4.2) plays an important role in our analysis.
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4.2 Second-order Variational Equation

The second-order variational equation can be read as

dX2,ε =
{
bx(t)X

2,ε(t) + by(t)Y
2,ε(t) + bz(t)Z

2,ε(t) + Ê[ˆ̊bµ1(t)X̂
2,ε(t)] + Ê[ˆ̊bµ2(t)Ŷ

2,ε(t)]

+
1

2
(X1,ε(t))2[1, p0(t), k0(t)]D

2b(t)[1, p0(t), k0(t)]
ᵀ +

1

2
Ê[ˆ̊bµ1a1(t)(X̂

1,ε(t))2]

+
1

2
Ê[ˆ̊bµ2a2(t)(X̂

1,ε(t))2(p̂0(t))
2] + δb(t,Ξ)IEε(t)

}
dt

+
{
σx(t)X

2,ε(t) + σy(t)Y
2,ε(t) + σz(t)Z

2,ε(t) + Ê[ˆ̊σµ1(t)X̂
2,ε(t)]

+
1

2
(X1,ε(t))2[1, p0(t), k0(t)]D

2σ(t)[1, p0(t), k0(t)]
ᵀ +

1

2
Ê[ˆ̊σµ1a1(t)(X̂

1,ε(t))2]

+
1

2
Ê[ˆ̊σµ2a2(t)(X̂

1,ε(t))2(p̂0(t))
2] + δσx(t,Ξ)IEε(t)X

1,ε(t) + Ê[ˆ̊σµ2(t)Ŷ
2,ε(t)]

+ δσy(t,Ξ)IEε(t)p0(t)X
1,ε(t) + δσz(t,Ξ)IEε(t)k0(t)X

1,ε(t)
}
dW (t), t ∈ [0, T ],

X2,ε(0) = 0,



dY 2,ε(t) = −
{
fx(t)X

2,ε(t) + fy(t)Y
2,ε(t) + fz(t)Z

2,ε(t) + Ê[ ˆ̊fµ1(t)X̂
2,ε(t)]

+ Ê[ ˆ̊fµ2(t)Ŷ
2,ε(t)] +

1

2
(X1,ε(t))2[1, p0(t), k0(t)]D

2f(t)[1, p0(t), k0(t)]
ᵀ

+
1

2
Ê[ ˆ̊fµ1a1(t)(X̂

1,ε(t))2] +
1

2
Ê[ ˆ̊fµ2a2(t)(p̂0(t))

2(X̂1,ε(t))2] + [q(t)δσ(t,Ξ)

+ δf(t,Ξ)]IEε(t)
}
dt+ Z2,εdW (t), t ∈ [0, T ],

Y 2,ε(T ) = Φx(T )X
2,ε(T ) + Ê[Φµ(T )X

2,ε(T )] +
1

2
Φxx(T )(X

1,ε(T ))2 +
1

2
Ê[Φνa(T )(X̂

1,ε(T ))2].

Proposition 4.5. Under Assumptions (A3.1)–(A3.3), for any 2 ≤ β ≤ 4, there exists a
constant L > 0 such that

E
[

sup
0≤t≤T

(
|X2,ε(t)|β + |Y 2,ε(t)|β

)
+
(∫ T

0

|Z2,ε(t)|2dt
) β

2
]
≤ Lεβ .

Proof. Thanks to Theorem 2.2, (4.7) and Hölder inequality, one can obtain

E
[

sup
t∈[0,T ]

(
|X2,ε(t)|β + |Y 2,ε(t)|β

)
+
(∫ T

0

|Z2,ε(t)|2dt
) β

2
]

≤LE
[( ∫ T

0

(|δb(t,Ξ)|+ |δσ(t,Ξ)|+ |δf(t,Ξ)|)IEε(t) + |X1,ε(t)|2 + E[|X1,ε(t)|2])dt
)β]

+ LE
[( ∫ T

0

|X1,ε(t)|4 + E[|X1,ε(t)|4] + |X1,ε(t)|2IEε(t)dt
) β

2
]

≤Lε
β
2 E

[( ∫
Eε

(1 + |X∗(t)|+ |Y ∗(t)|+ ||X∗(t)||L2 + ||Y ∗(t)||L2 + |v(t)|+ |u∗(t)|)dt
) β

2
]

+ LE
[

sup
t∈[0,T ]

|X1,ε(t)|2β
]
+ Lε

β
2 E

[
sup

t∈[0,T ]

|X1,ε(t)|β
]
≤ Lεβ .
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Lemma 4.6. Let Assumptions (H3.1) hold and let (Ω̃, F̃ , P̃) be an intermediate probability space
and independent of space (Ω,F ,P), and let (φ1(ω, ω̃, t))t∈[0,T ], (φ2(ω̃, t))t∈[0,T ] be two stochastic

processes defined on the product space (Ω×Ω̃,F×F̃ ,P⊗P̃) and the space (Ω̃, F̃ , P̃), respectively.
Moreover, assume φi, i = 1, 2 satisfies the following properties:

i) There exists a constant C > 0 such that, for t ∈ [0, T ], |φ1(ω, ω̃, t)| ≤ C,P⊗ P̃-a.s.
ii) For β ≥ 1, there exists a constant Cβ depending on β such that Ẽ[supt∈[0,T ] |φ2(ω̃, t)|2β ] ≤

Cβ. Then

E
[ ∫ T

0

|Ẽ[φ1(ω, ω̃, t)φ2(ω̃, t)X̃
1,ε(t)]|4dt

]
≤ ε2ρ(ε). (4.12)

Proof. Insert (4.2) into (4.1), we have

dX1,ε(t) =
{
Ê
[
X̂1,ε(t)

(
by(t)ˆ̊p1(t) + bz(t)

ˆ̊
k1(t) +

ˆ̊
bµ1(t) +

ˆ̊
bµ2(t)p̂0(t)

+ Ē[¯̊bµ2(t)ˆ̄p1(t)]
)]

+X1,ε(t)
(
bx(t) + by(t)p0(t) + bz(t)k0(t)

)}
dt

+
{
Ê
[
X̂1,ε(t)

(
σy(t)ˆ̊p1(t) + σz(t)

ˆ̊
k1(t) + ˆ̊σµ1(t) +

ˆ̊σµ2(t)p̂0(t)

+ Ē[¯̊σµ2(t)ˆ̄p1(t)]
)]

+X1,ε(t)
(
σx(t) + σy(t)p0(t)

+ σz(t)k0(t)
)
+ δσ(t,Ξ)IEε(t)

}
dW (t), t ∈ [0, T ],

X1,ε(0) = 0.

(4.13)

Notice the coefficients of the above equation are bounded, similar to the proof of Proposition
4.3[6], we have the desired result.

Proposition 4.7. We make the same assumption as Proposition 4.5, then

Y ε(0) = Y ∗(0) + Y 1,ε(0) + Y 2,ε(0) + o(ε).

Proof. DefineX 3(t) = Xε(t) − X∗(t) − X1,ε(t) − X2,ε(t),Y3(t) = Y ε(t) − Y ∗(t) − Y 1,ε(t) −
Y 2,ε(t),Z3(t) = Zε(t)− Z∗(t)− Z1,ε(t)− Z2,ε(t). Then we have

dX 3(t) =
{
bx(t)X 3(t) + by(t)Y3(t) + bz(t)Z3(t) + Ê[ˆ̊bµ1(t)X̂ 3(t)]

+ Ê[ˆ̊bµ2(t)Ŷ3(t)] +Aε
3(t)

}
dt

+
{
σx(t)X 3(t) + σy(t)Y3(t) + σz(t)Z3(t) + Ê[ˆ̊bµ1(t)X̂ 3(t)]

+ Ê[ˆ̊bµ2(t)Ŷ3(t)] +Bε
3(t)

}
dW (t),

dY3(t) = −
{
fx(t)X 3(t) + fy(t)Y3(t) + fz(t)Z3(t) + Ê[ ˆ̊fµ1(t)X̂ 3(t)]

+ Ê[ ˆ̊fµ2(t)Ŷ3(t)] + Cε
3(t)

}
dt+ Z3(t)dW (t), t ∈ [0, T ],

X 3(0) = 0, Y3(T ) = Φx(T )X 3(T ) + Ê[ ˆ̊Φν(T )X̂ 3(T )] +Dε
3(T ),

(4.14)

where

Aε
3(t) =

{
δbx(t,Ξ)X 1(t) + δby(t,Ξ)Y1(t) + δbz(t,Ξ)

(
Z1(t)− Ξ(t)IEε(t)

)
+ Ê[δˆ̊bµ1(t,Ξ)X̂ 1(t)] + Ê[δ ˆ̊σµ2(t,Ξ)Ŷ1(t)]

}
IEε(t)

+
1

2
[X 1(t),Y1(t), (Z1(t)− Ξ(t)IEε(t))]D

2bε(t,ΞIEε)

[X 1(t),Y1(t), (Z1(t)− Ξ(t)IEε(t))]
ᵀ
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− 1

2
(X1(t))

2[1, p0(t), k0(t)]D
2b(t)[1, p0(t), k0(t)]

ᵀ

+
1

2
Ê[ˆ̊bεµ1a1

(t)(X̂ 1(t))2 − ˆ̊
bµ1a1(t)(X̂

1,ε(t))2]

+
1

2
Ê[ˆ̊bεµ2a2

(t)(Ŷ1(t))2 − ˆ̊
bµ2a2(t)(Ŷ

1,ε(t))2],

Bε
3(t) =

{
δσx(t,Ξ)X 2(t) + δσy(t,Ξ)Y2(t) + δσz(t,Ξ)Z2(t)

+ Ê[δ ˆ̊σµ1(t,Ξ)X̂ 2(t)] + Ê[δ ˆ̊σµ2(t,Ξ)Ŷ2(t)]
}
IEε(t)

+
1

2
[X 1(t),Y1(t), (Z1(t)− Ξ(t)IEε(t))]D

2σε(t,ΞIEε)

[X 1(t),Y1(t), (Z1(t)− Ξ(t)IEε(t))]
ᵀ

− 1

2
(X1,ε(t))2[1, p0(t), k0(t)]D

2σ(t)[1, p0(t), k0(t)]
ᵀ (4.15)

+
1

2
Ê[ˆ̊σε

µ1a1
(t)(X̂ 1(t))2 − ˆ̊σµ1a1(t)(X̂

1,ε(t))2]

+
1

2
Ê[ˆ̊σε

µ2a2
(t)(Ŷ1(t))2 − ˆ̊σµ2a2(t)(Ŷ

1,ε(t))2],

Cε
3(t) =

{
δfx(t,Ξ)X 1(t) + δfy(t,Ξ)Y1(t) + δfz(t,Ξ)

(
Z1(t)− Ξ(t)IEε(t)

)
+ Ê[δ ˆ̊fµ1(t,Ξ)X̂ 1(t)] + Ê[δ ˆ̊fµ2(t,Ξ)Ŷ1(t)]

}
IEε(t)

+
1

2
[X 1(t),Y1(t), (Z1(t)− Ξ(t)IEε(t))]D

2fε(t,ΞIEε)

[X 1(t),Y1(t), (Z1(t)− Ξ(t)IEε(t))]
ᵀ

− 1

2
(X1,ε(t))2[1, p0(t), k0(t)]D

2f(t)[1, p0(t), k0(t)]
ᵀ

+
1

2
Ê[ ˆ̊fεµ1a1

(t)(X̂ 1(t))2 − ˆ̊
fµ1a1(t)(X̂

1,ε(t))2]

+
1

2
Ê[ ˆ̊fεµ2a2

(t)(Ŷ1(t))2 − ˆ̊
fµ2a2(t)(Ŷ

1,ε(t))2],

Dε
3(T ) =

1

2

(
Φε

xx(T )(X 1(T ))2 − Φxx(T )(X
1(T ))2

)
+

1

2
Ê
[
ˆ̊
Φε

νa(T )(X̂ 1(T ))2 − ˆ̊
Φνa(T )(X̂

1(T ))2
]
.

Let us consider a fully coupled mean-field linear FBSDE:

dR(t) =
{
fy(t)R(t) + by(t)S(t) + σy(t)L(t) + Ê[˚̂fµ2(t)R̂(t)] + Ê[˚̂bµ2(t)Ŝ(t)]

+ Ê[̊σ̂µ2(t)L̂(t)]
}
dt+

{
fz(t)R(t) + bz(t)S(t) + σz(t)L(t)

}
dW (t),

dS(t) = −
{
fx(t)R(t) + bx(t)S(t) + σx(t)L(t) + Ê[˚̂fµ1(t)R̂(t)] + Ê[˚̂bµ1(t)Ŝ(t)]

+ Ê[̊σ̂µ1(t)L̂(t)]
}
dt+ L(t)dW (t),

R(0) = 1, S(T ) = Φx(T )R(T ) + Ê[˚̂Φν(T )R̂(T )].

(4.16)

Applying Itô formula to S(t)X 3(t)−R(t)Y3(t), we have

d
(
S(t)X 3(t)−R(t)Y3(t)

)
=
{
S(t)Aε

3(t) + L(t)Bε
3(t) +R(t)Cε

3(t)
}
dt+

{
S(t)Ê[ˆ̊bµ1(t)X̂ 3(t)]−X 3(t)Ê[˚̂bµ1(t)Ŝ(t)]

+R(t)Ê[ ˆ̊fµ1(t)X̂ 3(t)]−X 3(t)Ê[˚̂fµ1(t)R̂(t)] + L(t)Ê[ˆ̊σµ1(t)X̂ 3(t)]−X 3(t)Ê[̊σ̂µ1(t)L̂(t)]
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+ S(t)Ê[ˆ̊bµ2(t)Ŷ3(t)]− Y3(t)Ê[˚̂bµ2(t)Ŝ(t)] +R(t)Ê[ ˆ̊fµ2(t)Ŷ3(t)]− Y3(t)Ê[˚̂fµ2(t)R̂(t)]

+ L(t)Ê[ˆ̊σµ2(t)Ŷ3(t)]− Y3(t)Ê[̊σ̂µ2(t)L̂(t)]
}
dt+ {· · ·}dW (t).

Integrating from 0 to T and taking expectation as well as notice

E
[
S(t)Ê[ˆ̊bµ1(t)X̂ 3(t)]−X 3(t)Ê[˚̂bµ1(t)Ŝ(t)]

]
= 0,

we obtain

Y3(0) = E[Y3(0)] = E
[
R(T )Dε

3(T ) +

∫ T

0

(
S(t)Aε

3(t) + L(t)Bε
3(t) +R(t)Cε

3(t)
)
dt
]
.

Now let us estimate Y3(0) one by one.
a) First, from Hölder inequality, Assumption (A3.1) and Proposition 4.2 and notice X 1(t) =

X1,ε(t) + o(ε), it yields

E[|R(T )Dε
3(T )|]

≤L
{
E
[∣∣∣1
2

(
Φε

xx(T )(X 1(T ))2 − Φxx(T )(X
1,ε(T ))2

)
+

1

2
Ê[( ˆ̊Φε

νa(T )(X̂ 1(T ))2 − ˆ̊
Φνa(T )(X̂

1,ε(T ))2)]
∣∣∣2]} 1

2

≤L
{
E
[
(Φε

xx(T )− Φxx(T ))|2|X1,ε(T )|4 + Ê[|˚̂Φε
νa(T )−

˚̂
Φνa(T )|2|X̂1,ε(T )|4]

]} 1
2

+ o(ε2)

=o(ε2).

b) Let us now analyse E
[ ∫ T

0
S(t)Aε

3(t)dt
]
. Since E

[
sup

0≤t≤T
|S(t)|2

]
< +∞, it is enough to

prove E
[( ∫ T

0
|Aε

3(t)|dt
)2]

= o(ε2). We only prove the following two estimates:

i) E
[( ∫ T

0

bεzz(t,ΞIEε)(Z1(t)− Ξ(t)IEε(t))− bzz(t)(k0(t))
2(X1,ε(t))2dt

)2]
= o(ε2),

ii) E
[( ∫ T

0

Ê[ˆ̊σε
µ2a2

(t)(Ŷ1(t))2 − ˆ̊σµ2a2(t)(Ŷ
1,ε(t))2]dt

)2]
= o(ε2),

(4.17)

because the other terms can be calculated similarly.

As for i), since Z1(t)− Ξ(t)IEε(t) = Z2(t) + k0(t)X
1,ε(t) + Ê[ˆ̊k1(t)X̂1,ε(t)], we have

E
[( ∫ T

0

bεzz(t,ΞIEε
)
(
Z1(t)− Ξ(t)IEε

(t)
)
− bzz(t)(k0(t))

2(X1,ε(t))2dt
)2]

≤LE
[( ∫ T

0

bεzz(t,ΞIEε)|Z2(t)|+ (bεzz(t,ΞIEε)− bzz(t))(k0(t))
2(X1,ε(t))2

+ bεzz(t,ΞIEε)|Ê[
ˆ̊
k1(t)X̂

1,ε(t)]|2dt
)2]

≤LE
[( ∫ T

0

|Z2(t)|2dt
)2]

+ LE
[ ∫ T

0

|bεzz(t,ΞIEε)− bzz(t)|2|X1,ε(t)|4dt
]

+ LE[
∫ T

0

|Ê[ˆ̊k1(t)X̂1,ε(t)]|4dt]. (4.18)

According to (4.7)-iii), Lemma 4.6 and the continuity property of bzz, we obtain (4.17)-i).
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On the other hand, due to Y1(t) = Y2(t) + Y 1,ε(t), the boundness of ˆ̊σµ2a2 and Hölder
inequality allow to show

E
[( ∫ T

0

Ê[ˆ̊σε
µ2a2

(t)(Ŷ1(t))2 − ˆ̊σµ2a2(t)(Ŷ
1,ε(t))2]dt

)2]
≤LE

[
sup

t∈[0,T ]

|Y2(t)|4
]
+ L

{
E
[

sup
t∈[0,T ]

|Y2(t)|4
]} 1

2
{
E
[

sup
t∈[0,T ]

|Y 1,ε(t)|4
]} 1

2

+ LEÊ
[ ∫ T

0

|ˆ̊σε
µ2a2

(t)− ˆ̊σµ2a2(t)||Y 1,ε(t)|4dt
]
.

Then (4.17)-ii) comes from Proposition 4.3 and the continuity property of ˆ̊σµ2a2(t).

c) In order to estimate E[
∫ T

0
L(t)Bε

3(t)dt], we need to calculate the following four estimates:

i) E
[ ∫ T

0

L(t)δσz(t,Ξ)
(
Z1(t)− Ξ(t)IEε(t)

)
IEε(t)dt

]
= o(ε);

ii) E
[ ∫ T

0

L(t)Ê[δ ˆ̊σµ1(t,Ξ)X̂ 1(t)]IEε(t)dt
]
= o(ε);

iii) E
[ ∫ T

0

L(t)
(
σε
zz(t,ΞIEε)(Z1(t)− ΞIEε(t))

2 − σzz(t)(k0(t))
2(X1,ε(t))2

)
dt
]
= o(ε);

iv) E
[ ∫ T

0

L(t)Ê[ˆ̊σε
µ2a2

(t,Ξ)(Ŷ1(t))2 − ˆ̊σµ2a2(t)(Ŷ
1,ε(t))2]dt

]
= o(ε).

(4.19)

For i), recall

Z1(t)− Ξ(t)IEε(t) = Z2(t) + Z1,ε(t)− Ξ(t)IEε(t) = Z2(t) + k0(t)X
1,ε(t) + Ê[ˆ̊k1(t)X̂1,ε(t)],

then we get from the boundness of σz and Hölder inequality,

E
[ ∫ T

0

L(t)δσz(t,Ξ)
(
Z1(t)− Ξ(t)IEε(t)

)
IEε(t)dt

]
≤LE

[ ∫ T

0

|L(t)||Z2(t) + k0(t)X
1,ε(t) + Ê[ˆ̊k1(t)X̂1,ε(t)]|IEε(t)dt

]
≤L

{
E
[ ∫ T

0

|L(t)|2IEε(t)dt
]} 1

2
{
E
[ ∫ T

0

|Z2(t)|2dt
]} 1

2

+ Lε
1
2

{
E
[ ∫ T

0

|L(t)|2IEε(t)dt
]} 1

2
{
E
[

sup
t∈[0,T ]

|X1,ε(t)|2
]} 1

2

.

Proposition 4.3 can show E
[ ∫ T

0
L(t)δσz(t,Ξ)

(
Z1(t) − Ξ(t)IEε(t)

)
IEε(t)dt

]
≤ Lερ(ε), where

ρ1(ε) := L
{
E
[ ∫ T

0
|L(t)|2IEε(t)dt

]} 1
2 . From Dominated Convergence Theorem, ρ1(ε) tends to

0, as ε → 0. (4.19)-ii) can be proved by Proposition 4.3, Hölder inequality and Dominated
Convergence Theorem. Let us focus on (4.19)-iii). First,

E
[ ∫ T

0

L(t)
(
σε
zz(t,ΞIEε)(Z1(t)− Ξ(t)IEε(t))

2 − σzz(t)(k0(t))
2(X1,ε(t))2

)
dt
]
= I1(ε) + I2(ε),

where

I1(ε) := E
[ ∫ T

0

L(t)
(
σε
zz(t,ΞIEε)(Z1(t)− Ξ(t)IEε(t))

2 − σzz(t)
(
k0(t)X

1,ε(t)
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+ Ê[ˆ̊k1(t)X̂1,ε(t)]
)2)

dt
]
;

I2(ε) := E
[ ∫ T

0

L(t)σzz(t)
[(
k0(t)X

1,ε(t) + Ê[ˆ̊k1(t)X̂1,ε(t)]
)2 − (k0(t))

2
(
X1,ε(t)

)2]
dt
]
.

For I2(ε), the boundness of σzz and Lemma 4.6 can show

I2(ε) ≤ 2E
[ ∫ T

0

|L(t)||σzz(t)||Ê[ˆ̊k1(t)X̂1,ε(t)]|2dt
]
≤ ερ(ε). (4.20)

Let us now estimate I1(ε). Notice I1(ε) ≤ I11(ε) + I12(ε), where

I11(ε) := E
[ ∫ T

0

|L(t)||σε
zz(t,ΞIEε)− σzz(t)|(k0(t)X1,ε(t) + Ê[ˆ̊k1(t)X̂1,ε(t)])2dt

]
;

I12(ε) := E
[ ∫ T

0

|L(t)||σε
zz(t,ΞIEε)||Z2(t)||Z1(t)− Ξ(t)IEε(t) + k0(t)X

1,ε(t)

+ Ê[ˆ̊k1(t)X̂1,ε(t)]|dt
]
.

Due to

I11(ε) ≤ LE
[ ∫ T

0

|L(t)||σε
zz(t,ΞIEε)− σzz(t)|

(
sup

0≤t≤T
|X1,ε(t)|+ E[ sup

0≤t≤T
|X1,ε(t)|]

)2
dt
]

≤ L
{
E
[

sup
0≤t≤T

|X1,ε(t)|4
]} 1

2
{
E
(∫ T

0

|L(t)||σε
zz(t,ΞIEε)− σzz(t)|dt

)2} 1
2

,

it is easy from Dominated Convergence Theorem and (4.7) to get I11(ε) ≤ ερ(ε). The boundness
of σzz implies

I12(ε)

≤E
[ ∫ T

0

|L(t)||Z2(t)||σε
zz(t,ΞIEε)||k0(t)X1,ε(t) + Ê[ˆ̊k1(t)X̂1,ε(t)]|dt

]
+ E

[ ∫ T

0

|L(t)||Z2(t)||σε
zz(t,ΞIEε)(Z

1(t)− Ξ(t)IEε(t))|dt
]

≤L
{
E
[

sup
0≤t≤T

|X1,ε(t)|2
]} 1

2
{
E
[ ∫ T

0

|L(t)|2dt
]} 1

2
{
E
[ ∫ T

0

|Z2(t)|2dt
]} 1

2

+ E
[ ∫ T

0

|L(t)||Z2(t)||2
∫ 1

0

σz(t,Π
∗(t,ΞIEε

) + λ(Πε(t)−Π∗(t,ΞIEε
)),

PΛ∗(t)+λ(Λε(t)−Λ∗(t)), v
ε(t))− σz(t,Π

∗(t,ΞIEε),PΛ∗(t), v
ε(t))dλ|dt

]
+ E

[ ∫ T

0

|L(t)||Z2(t)||σzx(t)X 1(t) + σzy(t)Y1(t) + Ê[ˆ̊σzµ1(t)X̂ 1(t) + Ê[ˆ̊σzµ2(t)Ŷ1(t)]|dt
]
.

Then, according to (4.7) and Dominated Convergence Theorem again, it follows I12(ε) ≤ ερ(ε).
Let us now prove (4.19)-iv). Notice that

E
[ ∫ T

0

L(t)Ê[ˆ̊σε
µ2a2

(t,Ξ)(Ŷ1(t))2 − ˆ̊σµ2a2(t)(Ŷ
1,ε(t))2]dt

]
≤E

[ ∫ T

0

|L(t)|Ê[|ˆ̊σε
µ2a2

(t,Ξ)− ˆ̊σµ2a2(t)||Ŷ 1,ε(t)|2]dt
]

+ E
[ ∫ T

0

|L(t)|Ê[|ˆ̊σε
µ2a2

(t,Ξ)|(|Ŷ1(t)|2 − |Ŷ 1,ε(t)|2)]dt
]
.
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According to Hölder inequality and the relation Y 1,ε(t) = p0(t)X
1,ε(t) + Ê[ ˆ̊p1(t)X̂1,ε(t)], it

follows

E
[ ∫ T

0

|L(t)|Ê[|ˆ̊σε
µ2a2

(t,Ξ)− ˆ̊σµ2a2(t)||Ŷ 1,ε(t)|2]dt
]

≤
{
E
∫ T

0

|L(t)|2dt
} 1

2
{
EÊ

∫ T

0

|ˆ̊σε
µ2a2

(t,Ξ)− ˆ̊σµ2a2(t)|2|k0(t)|4|X1,ε(t)|4dt
} 1

2

+
{
E
∫ T

0

|L(t)|2dt
} 1

2
{
EÊ

∫ T

0

|ˆ̊σε
µ2a2

(t,Ξ)− ˆ̊σµ2a2
(t)|2|Ẽ[˜̂k1(t)X̃1,ε(t)]|4dt

} 1
2

.

On the one hand, Dominated Convergence Theorem allows to show{
EÊ

∫ T

0

|ˆ̊σε
µ2a2

(t,Ξ)− ˆ̊σµ2a2(t)|2|k0(t)|4|X1,ε(t)|4dt
} 1

2 ≤ ερ(ε).

On the other hand, according to Lemma 4.6 and the boundness of ˆ̊σµ2a2
, we obtain{

EÊ
∫ T

0

|ˆ̊σε
µ2a2

(t,Ξ)− ˆ̊σµ2a2(t)|2|Ẽ[
˜̂
k1(t)X̃

1,ε(t)]|4dt
} 1

2

≤L
{
Ê
[ ∫ T

0

Ẽ[˜̂k1(t)X̃1,ε(t)]|4dt
]} 1

2 ≤ ερ(ε).

Besides, thanks to the boundness of ˆ̊σµ2a2 and Proposition 4.3, one can check

E
[ ∫ T

0

|L(t)|Ê
[
|ˆ̊σε

µ2a2
(t,Ξ)|(|Ŷ1(t)|2 − |Ŷ 1,ε(t)|2)

]
dt
]

≤LE
[ ∫ T

0

|L(t)|Ê[|Ŷ1(t) + Ŷ 1,ε(t)||Ŷ2(t)|]dt
]

≤LÊ
{

sup
t∈[0,T ]

|Ŷ1(t) + Ŷ 1,ε(t)|2
} 1

2 Ê
{

sup
t∈[0,T ]

|Ŷ2(t)|2
} 1

2
{
E
∫ T

0

|L(t)|2dt
} 1

2 ≤ Lε
3
2 .

Finally, E
[ ∫ T

0
R(t)Cε

3(t)dt
]
can be calculated similar to E

[ ∫ T

0
S(t)Aε

3(t)dt
]
.

In order to prove the SMP, we show the following relation of Y 1,ε, X1,ε and X2,ε with the
help of the first- and second-order adjoint equation.

Proposition 4.8. Let Assumptions (A3.1)-(A3.3) hold true, then

Y 2,ε(t) = p0(t)X
2,ε(t) + Ê[ ˆ̊p1(t)X̂2,ε(t)] +

1

2
P0(t)(X

1,ε(t))2

+
1

2
Ê[ ˆ̊P1(t)(X̂

1,ε(t))2] +M(t),

Z2,ε(t) = k0(t)X
2,ε(t) + Ê[ˆ̊k1(t)X̂2,ε(t)] +

1

2
K0(t)(X

1,ε(t))2

+
1

2
Ê[ ˆ̊K1(t)(X̂

1,ε(t))2] + J(t) +K(t),

(4.21)

where P0,
ˆ̊
P1,K0,

ˆ̊
K1 are given in (3.8) and (3.9);

J(t) =
(
1− p0(t)σz(t)

)−1
p0(t)

{
σy(t)M(t) + σz(t)K(t) + Ê[ˆ̊σµ2(t)M̂(t)]

}
+ P0(t)δσ(t,Ξ)X

1,ε(t)IEε(t) +
(
1− p0(t)σz(t)

)−1
p0(t)X

1,ε(t)IEε(t)

·
{
δσx(t,Ξ) + p0(t)δσy(t,Ξ) + k0(t)δσz(t,Ξ)

}
;
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(M,K) satisfies

dM(t) = −
{[
H0

y (t) + σy(t)fz(t)p0(t)(1− p0(t)σz(t))
−1

]
M(t)

+ Ê
[( ˆ̊
H0

µ2
(t) +

ˆ̊
H1

y (t) + Ē[
¯̂
H̊1

µ2
(t)]

+ σy(t)fz(t)p0(t)(1− p0(t)σz(t))
−1 ˆ̊σµ2

(t)
)
M̂(t)

]
+

[
H0

z (t) + σz(t)fz(t)p0(t)(1− p0(t)σz(t))
−1

]
K(t) + Ê[ ˆ̊H1

z (t)K̂(t)]

+
[
δH0(t,Ξ) + Ê[δ ˚̂H1(t,Ξ)]

+
1

2
(P0(t) + Ê[ ˚̂P1(t)])(δσ(t,Ξ))

2
]
IEε(t)

}
dt+K(t)dW (t), t ∈ [0, T ],

M(T ) = 0,

(4.22)

with

δH0(t,Ξ) = p0(t)δb(t,Ξ) + q0(t)δσ(t,Ξ) + δf(t,Ξ),

Ê[δ ˚̂H1(t,Ξ)] = Ê[˚̂p1(t)]δb(t,Ξ) + Ê[̊q̂12(t)]δσ(t,Ξ).

Proof. Easy (but lengthy) calculations similar to Proposition 4.1 can yield (4.21). Hence, we
omit it.

Note that under Assumptions (A3.1)–(A3.3), (4.22) is a linear mean-field BSDE. According
to Theorem A.1[20], (4.22) possesses a unique solution (M(·),K(·)) ∈ Sp

F(0, T )×H2,p
F (0, T ).

In order to prove our SMP, let us first study the comparison theorem of mean-field SDEs.
By two examples we show that the comparison theorem of mean-field SDEs does not hold true
any more, if the diffusion coefficient σ depend on mean field term, or the derivative of drift
coefficient b with respect to mean-field term is negative.

Example 2. Consider

X1(t) = 1 +

∫ t

0

E[X1(s)]dW (s), s ∈ [0, T ], X2(t) =

∫ t

0

E[X2(s)]dW (s), s ∈ [0, T ].

Obviously, X1(t) = 1 +W (t), X2(t) = 0, t ∈ [0, T ]. It is clear that P(W (t) + 1 < 0) > 0 and
X1(t) < X2(t), t ∈ [0, T ] on set {W (t) + 1 < 0}.

Example 3. Let us consider two mean-field SDEs over [1, 2]:

X1(t) = (W (1))2 +

∫ t

1

−E[X1(s)]ds+

∫ t

1

dW (s),

X2(t) =

∫ t

1

−E[X2(s)]ds+

∫ t

1

dW (s).

It is easy to check X1(t) = (W (1))2 + e1−t − 1 +W (t)−W (1), t ∈ [1, 2] and X2(t) = W (t)−
W (1), t ∈ [1, 2] are the solutions of the above equations, respectively. Obviously,X1(2) < X2(2)
on {(W (1))2 < 1− e−1}, which is of strictly positive probability.

Lemma 4.9. Assume bi, i = 1, 2 are Lipschitz and linear growth, and moreover, there exists
a constant L > 0, such that, for t ∈ [0, T ], x ∈ Rn, ξ1, ξ2 ∈ L2(Ft;Rn),

b1(t, x,Pξ1)− b1(t, x,Pξ2) ≤ L
{
E
(
(ξ1 − ξ2)

+
)2} 1

2 .
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Let C(·) be a given adapted bounded process and xi0, i = 1, 2 initial value. By X1 and X2

we denote the solution of the following mean-field SDE with data (x10, b
1, C) and (x20, b

2, C),
respectively,

Xi(t) = xi0 +

∫ t

0

bi(s,Xi(s),PXi(s))ds+

∫ t

0

C(s)Xi(s)dW (s), s ∈ [0, T ].

If x10 ≤ x20 and b1(t,X2(t),PX2(t)) ≤ b2(t,X2(t),PX2(t)), P-a.s., then X1(t) ≤ X2(t), t ∈ [0, T ],
P-a.s.

Proof. Denote ∆X(t) = X1(t)−X2(t),∆x = x10 − x20. Then

∆X(t) = ∆x+

∫ t

0

(b1(s,X1(s),PX1(s))− b2(s,X2(s),PX2(s))ds+

∫ t

0

C(s)∆X(s)dW (s).

Applying Itô’s formula to ((∆X(t))+)2, it follows

d((∆X(t))+)2 = 2(∆X(t))+
(
b1(t,X1(t),PX1(t))− b2(t,X2(t),PX2(t)

)
+ I{∆X(t)>0}(C(t)∆X(t))dt+ 2(∆X(t))+C(t)∆X(t)dW (t).

Recall x10 ≤ x20 and b1(t,X2(t),PX2(t)) ≤ b2(t,X2(t),PX2(t)), P-a.s., we obtain

E
[
((∆X(t))+)2

]
≤E

[ ∫ t

0

2(∆X(s))+(b1(s,X1(s),PX1(s))− b1(s,X2(s),PX2(s))ds
]

+ E
[ ∫ t

0

I{∆X(s)>0}(C(s))
2(∆X(s))2ds

]
.

Thanks to the Lipschitz property of b1 and the boundness of C(·), one has

E
[
((∆X(t))+)2

]
≤ LE

[ ∫ t

0

(∆X(s))+(|∆X(s)|+ {E((∆X(s))+)2} 1
2 )ds

]
+ LE

[ ∫ t

0

((∆X(s))+)2ds
]
≤ LE

[ ∫ t

0

((∆X(s))+)2ds
]
.

Then the desired result comes from Gronwall inequality.

Remark 4.10. If b(s, x, ·) is differentiable on P2(Rn) and there exists a constant L > 0 such
that, for (s, x) ∈ [0, T ]× Rn, ξ ∈ L2(Fs;Rn),

0 ≤ (∂νb)(s, x,Pξ; a) ≤ L, a ∈ Rn.

Then we have b(t, x,Pξ1) − b(t, x,Pξ2) ≤ L
{
E
(
(ξ1 − ξ2)

+
)2} 1

2 . In fact, the above inequality
comes from the observation:

b(s, x,Pξ1)− b(s, x,Pξ2) =

∫ 1

0

E
[
∂νb(s, x,Pξ2+λ(ξ1−ξ2); ξ2 + λ(ξ1 − ξ2))(ξ1 − ξ2)

]
dλ

≤ LE[(ξ1 − ξ2)
+] ≤ L

{
E
(
(ξ1 − ξ2)

+
)2} 1

2 .

The reader can refer to[22] for more detail.
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Corollary 4.11. Let A(·), C(·) and
ˆ̊
B(·) be three adapted bounded processes defined on Ω and

Ω× Ω̂, respectively. By X(·) we denote the solution of the following linear mean-field SDE:{
dX(t) =

(
A(t)X(t) + Ê[ ˆ̊B(t)X̂(t)]

)
dt+ C(t)X(t)dW (t), t ∈ [0, T ],

X(0) = 1.

If 0 ≤ ˆ̊
B(t) ≤ L, t ∈ [0, T ], P⊗ P̂-a.s., then X(t) > 0, t ∈ [0, T ], P-a.s.

Proof. Consider

dX1(t) = A(t)X1(t)dt+ C(t)X1(t)dW (t), t ∈ [0, T ], X1(0) = 1.

From Lemma 4.9, it follows X(t) ≥ X1(t) > 0, t ∈ [0, T ], P-a.s.

Now let us show the proof of Theorem 3.3.

Proof of Theorem 3.4. For simplicity, we define

A(t) := Hy(t) + σy(t)fz(t)p0(t)(1− p0(t)σz(t))
−1;

ˆ̊
B(t) :=

ˆ̊
H0

µ2
(t) +

ˆ̊
H1

y (t) + Ē[
¯̂
H̊1

µ2
(t)] + σy(t)fz(t)p0(t)(1− p0(t)σz(t))

−1 ˆ̊σµ2(t);

C(t) := H0
z (t) + σz(t)fz(t)p0(t)(1− p0(t)σz(t))

−1;
ˆ̊
D(t) :=

ˆ̊
H1

z (t);

J(t,Ξ) := δH0(t,Ξ) + Ê[δ ˚̂H1(t,Ξ)] +
1

2

(
P0(t) + Ê[ ˚̂P1(t)]

)
(δσ(t,Ξ))2.

From assumption
ˆ̊
D(t) =

ˆ̊
H1

z (t) = 0, t ∈ [0, T ], P⊗ P̂-a.s., we can rewrite (4.22) as
dM(t) = −

(
A(t)M(t) + Ê[ ˆ̊B(t)M̂(t)] + C(t)K(t) + J(t,Ξ)IEε(t)

)
dt

+K(t)dW (t), t ∈ [0, T ],

M(T ) = 0.

We now consider the dual McKean-Vlasov equation:

dΓ(t) =
(
A(t)Γ(t) + Ê[ ˚̂B(t)Γ̂(t)]

)
dt+ C(t)Γ(t)dW (t), t ∈ [0, T ], Γ(0) = 1.

From Itô’s formula to M(t)Γ(t), one has

M(0) = E
[ ∫ T

0

−Γ(t)Ê[ ˆ̊B(t)M̂(t)] +M(t)Ê[ ˚̂B(t)Γ(t)] + Γ(t)J(t,Ξ)IEε(t)dt
]
.

Notice

E[Γ(t)Ê[ ˆ̊B(t)M̂(t)]] = EÊ[Γ(t) ˆ̊B(t)M̂(t)] = ÊE[Γ̂(t)˚̂B(t)M(t)].

Hence, M(0) = E
[ ∫ T

0
Γ(t)J(t,Ξ)IEε(t)dt

]
, which implies for any v ∈ U , t ∈ [0, T ], P -a.s.,

Γ(t)
(
δH0(t,Ξ) + Ê[δ ˚̂H1(t,Ξ)] +

1

2

(
P0(t) + Ê[ ˚̂P1(t)]

)
(δσ(t,Ξ))2

)
≥ 0.

According to Corollary 4.11, we obtain the desired result. The proof is complete. �
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Remark 4.12. Let us discuss two special cases:
i) If the coefficients b, σ, f,Φ are independent of mean-field term and (y, z), i.e., b(t, x, y, z, µ, v)

= b(t, x, v), σ(t, x, y, z, µ, v) = σ(t, x, v), f(t, x, y, z, µ, v) = f(t, x, v), our case reduces to the one
studied by Peng[25]. In this situation, (4.22) becomes

dM(t) = J1(t)IEε(t)dt+K(t)dW (t), t ∈ [0, T ], M(T ) = 0,

where

J1(t) =
(
b(t,X∗(t), v(t))− b(t,X∗(t), u∗(t)

)
p0(t) +

(
σ(t,X∗(t), v(t))− σ(t,X∗(t), u∗(t))

)
q0(t)

+
(
f(t,X∗(t), v(t))− f(t,X∗(t), u∗(t)

)
+

1

2
P0(t)

(
σ(t,X∗(t), v(t))− σ(t,X∗(t), u∗(t)

)2
.

ii) If the control system (1.1) is a fully coupled forward-backward control system without
mean-field term, i.e., b(t, x, y, z, µ, v) = b(t, x, y, z, v), σ(t, x, y, z, µ, v) = σ(t, x, y, z, v), f(t, x, y, z,
µ, v) = f(t, x, y, z, v), which is considered by Hu, Ji and Xue[17], (4.22) is of the form{

dM(t) = −
(
A(t)M(t) + C(t)K(t) + J2(t,Ξ)IEε(t)

)
dt+K(t)dW (t), t ∈ [0, T ],

M(T ) = 0,

where J2(t,Ξ) := δH0(t,Ξ) + 1
2P0(t)δσ(t,Ξ)

2 (see (3.41)[17]). Our SMP is just the one proved

by Hu, Ji and Xue[17].

5 The Case without Assumption (A3.3)

In this section we study the case without Assumption (A3.3), i.e., q0 ∈ H2,β
F (0, T ), ˆ̊q11, ˆ̊q12 ∈

H2,β

F⊗F̂
(0, T ). From the previous section, we know that Lemma 4.6 is a critical tool in proving our

SMP. The boundness of coefficients of (4.13) plays very important role in the proof of Lemma
4.6. For this, we make the following assumption:

Assumption (A5.1) b, σ are independent of z.
Clearly, under Assumptions (A3.1), (A3.2) and (A5.1), Lemma 4.6 holds. Moreover, one

can check that the solution (x(·)) of (4.3) satisfies E
[

sup
0≤t≤T

|x(t)|2
]
< +∞, which implies

Proposition 4.1 also holds true. Consequently, we have

Proposition 5.1. Suppose Assumptions (A3.1), (A3.3) and (A5.1) hold true, then

E
[

sup
0≤t≤T

|Xε(t)−X∗(t)−X1,ε(t)−X2,ε(t)|2
]
≤ ε2ρ(ε),

E
[

sup
0≤t≤T

|Y ε(t)− Y ∗(t)− Y 1,ε(t)− Y 2,ε(t)|2 +
∫ T

0

|Zε(t)− Z∗(t)− Z1,ε(t)− Z2,ε(t)|2dt
]

≤ε2ρ(ε).

Proof. Thanks to Theorem 2.2 and (4.14), we can obtain

E
[

sup
0≤t≤T

(|X 3(t)|2 + |Y3(t)|2) +
∫ T

0

|Z3(t)|2dt
]

≤LE
[( ∫ T

0

|Aε
3(t)|dt

)2

+
(∫ T

0

|Cε
3(t)|dt

)2

+

∫ T

0

|Bε
3(t)|2dt+ |Dε

3(T )|2
]
,
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where Aε
3(·), Cε

3(·), Dε
3(T ) are given (4.15), and

Bε
3(t) =

{
δσx(t,Ξ)X 2(t) + δσy(t,Ξ)Y2(t) + Ê[δ ˆ̊σµ1(t,Ξ)X̂ 2(t)] + Ê[δ ˆ̊σµ2(t,Ξ)Ŷ2(t)]

}
IEε(t)

+
1

2
[X 1(t),Y1(t)]D2σε(t,ΞIEε

)[X 1(t),Y1(t)]ᵀ

− 1

2
(X1,ε(t))2[1, p0(t)]D

2σ(t)[1, p0(t)]
ᵀ

+
1

2
Ê[ˆ̊σε

µ1a1
(t)(X̂ 1(t))2 − ˆ̊σµ1a1(t)(X̂

1,ε(t))2]

+
1

2
Ê[ˆ̊σε

µ2a2
(t)(Ŷ1(t))2 − ˆ̊σµ2a2(t)(Ŷ

1,ε(t))2].

Next we prove E
[ ∫ T

0
|Bε

3(t)|2dt
]
≤ ε2ρ(ε). We just analyse the mean-field terms. The other

terms can be estimated similarly. First, from Hölder inequality it follows

E
[ ∫ T

0

∣∣∣Ê[δ ˆ̊σµ1(t,Ξ)X̂ 2(t)]IEε(t)
∣∣∣2dt]

≤E
{∫

Eε

Ê
[

sup
0≤t≤T

|X̂ 2(t)|2
]
· Ê

[
|δ ˆ̊σµ1(t,Ξ)|2

]
dt
}

≤E
[

sup
0≤t≤T

|X 2(t)|2
]
· EÊ

[ ∫
Eε

|δ ˆ̊σµ1(t,Ξ)|2dt
]
≤ ε2ρ1(ε),

where ρ2(ε) := EÊ
[ ∫

Eε
|δ ˆ̊σµ1(t,Ξ)|2dt

]
.Dominated Convergence Theorem allows to show ρ2(ε) →

0 as ε→ 0. Second, according to the boundness of ˆ̊σµ2a2(·) and Proposition 4.3 one can check

E
[ ∫ T

0

∣∣Ê[ˆ̊σε
µ2a2

(t)(Ŷ1(t))2 − ˆ̊σµ2a2(t)(Ŷ
1,ε(t))2]

∣∣2dt]
≤LÊ

[ ∫ T

0

|Ŷ2(t)|2|Ŷ1(t) + Ŷ 1,ε(t)|2dt
]
+ 2EÊ

[ ∫ T

0

|ˆ̊σε
µ2a2

(t)− ˆ̊σµ2a2(t)|2|Ŷ 1,ε(t)|4dt
]

≤Lε3 + 2E
[

sup
0≤t≤T

|Y 1,ε(t)|4
]
EÊ

[ ∫ T

0

|ˆ̊σε
µ2a2

(t)− ˆ̊σµ2a2(t)|2dt
]
≤ ε2ρ3(ε),

where ρ3(ε) := Lε+ 2EÊ
[ ∫ T

0
|ˆ̊σε

µ2a2
(t)− ˆ̊σµ2a2(t)|2dt

]
satisfies ρ3(ε) → 0 as ε ↓ 0.

Define for x, y, z ∈ R, µ ∈ P(R2), p0, q0, p1, q12 ∈ R,

H0(t, x, y, z, µ, u, p0, q0) = b(t, x, y, µ, u)p0 + σ(t, x, y, µ, u)q0 + f(t, x, y, z, µ, u),

H1(t, x, y, z, µ, u, p1, q12) = b(t, x, y, µ, u)p1 + σ(t, x, y, µ, u)q12.

and

H(t, x, y, z, µ, v, p0(t), Ê[˚̂p1(t)], q0(t), Ê[̊q̂12(t)], P0(t), Ê[ ˚̂P1(t)])

=
(
p0(t) + Ê[˚̂p1(t)]

)
b(t, x, y, µ, v) +

(
q0(t) + Ê[̊q̂12(t)]

)
σ(t, x, y, µ, v)

+
1

2

(
P0(t) + Ê[ ˚̂P1(t)]

)(
σ(t, x, y, µ, v)− σ(t,X∗(t), Y ∗(t),P(X∗(t),Y ∗(t)), u

∗(t))
)2

+
(
t, x, y, z + p0(t)(σ(t, x, y, µ, v)− σ(t,X∗(t), Y ∗(t),P(X∗(t),Y ∗(t)), u

∗(t))), µ, v
)
.

Theorem 5.2. Under Assumption (A3.1), (A3.2) and (A5.1), let u∗ be the optimal control.

By (X∗, Y ∗, Z∗) we denote the optimal trajectory. Let
(
(p0(·), q0(·)), (ˆ̊p1(·), ˆ̊q11(·), ˆ̊q12(·))

)
and



410 T. HAO(
(P0(·), Q0(·)), ( ˆ̊P1(·), ˆ̊Q11(·), ˆ̊Q12(·))

)
be the solutions of the first- and second-order adjoint e-

quations, respectively. Moreover, we assume

ˆ̊
H0

µ2
(t) +

ˆ̊
H1

y (t) + Ē[
¯̂
H̊1

µ2
(t)] + p0(t)fz(t)ˆ̊σµ2(t)σy(t) ≥ 0, t ∈ [0, T ], P⊗ P̂-a.s.,

where
ˆ̊
H0

µ2
(t),

ˆ̊
H1

y (t),
¯̂
H̊1

µ2
(t) is introduced in (3.2). Then for v ∈ U, we have a.e., a.s,

H(t,X∗(t), Y ∗(t), Z∗(t),P(X∗(t),Y ∗(t)), v, p0(t), Ê[˚̂p1(t)], q0(t), Ê[̊q̂12(t)], P0(t), Ê[ ˚̂P1(t)])

≥H(t,X∗(t), Y ∗(t), Z∗(t),P(X∗(t),Y ∗(t)), u
∗(t), p0(t), Ê[˚̂p1(t)], q0(t), Ê[̊q̂12(t)], P0(t), Ê[ ˚̂P1(t)]).

6 The Comparison with Buckdahn et al.’s SMP

In this section, let us consider Problem (BLM) (see Remark 3.1), and show the relation
between the solutions of adjoint equations in [6] (see (3.11), (3.13)) and that of our adjoint
equations.

If our system reduces to the system (3.3), (3.1) can be written as

dp0(t) = −
{
bx(t)p0(t) + σx(t)q0(t) + fx(t)

}
dt+ q0(t)dW (t), t ∈ [0, T ],

d ˆ̊p1(t) = −
{ˆ̊
bµ(t)p0(t) + ˆ̊σµ(t)q0(t) +

ˆ̊
fµ(t) + b̂x(t)ˆ̊p1(t) + σ̂x(t)ˆ̊q12(t)

+ Ē[ˆ̄bµ(t)¯̊p1(t) + ˆ̄σµ(t)¯̊q12(t)]
}
dt+ ˆ̊q11(t)dW (t) + ˆ̊q12(t)dŴ (t),

t ∈ [0, T ],

p0(T ) = Φx(T ), ˆ̊p1(T ) =
ˆ̊
Φµ(T ).

(6.1)

Obviously, Assumption (A5.1) hold true. The boundness of the first-order derivatives of b, σ, f,Φ
allows to show that Assumption (A3.2) also hold. Besides, it is easy to see that condition (3.13)
is satisfied. As for the second-order adjoint system, (3.12) is of the form

dP0(t) = −
{
(σx(t))

2P0(t) + 2bx(t)P0(t) + 2σx(t)Q0(t) +H0
xx(t)

}
dt

+Q12(t)dW (t), t ∈ [0, T ],

P0(T ) = Φxx(T ),
d
ˆ̊
P1(t) = −

{
(σ̂x(t))

2 ˆ̊P1(t) + 2b̂x(t)
ˆ̊
P1(t) + 2σ̂x(t)

ˆ̊
Q12(t) +

ˆ̊
H1

xx(t) +
ˆ̊
H0

µ1a1
(t)

+Ē[
¯̂
H̊1

µ1a1
(t)]

}
dt+

ˆ̊
Q11(t)dW (t) +

ˆ̊
Q12(t)dŴ (t), t ∈ [0, T ],

ˆ̊
P1(T ) =

ˆ̊
Φνa(T ).

Thanks to Theorem 3.3, we have

Corollary 6.1 (Buckdahn et al.’s SMP). Under Assumption (A3.1), let u∗ be the optimal
control and X∗ be the optimal trajectory. Then

H(t,X∗(t),PX∗(t), v, p0(t), Ê[˚̂p1(t)], q0(t), Ê[̊q̂12(t)], P0(t), Ê[ ˚̂P1(t)])

≥H(t,X∗(t),PX∗(t), u
∗(t), p0(t), Ê[˚̂p1(t)], q0(t), Ê[̊q̂12(t)], P0(t), Ê[ ˚̂P1(t)]),

v ∈ U, a.e., a.s., (6.2)

where

H(t, x, µ, v, p0(t), Ê[˚̂p1(t)], q0(t), Ê[̊q̂12(t)], P0(t), Ê[ ˚̂P1(t)])
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=
(
p0(t) + Ê[˚̂p1(t)]

)
b(t, x, µ, v) +

(
q0(t) + Ê[̊q̂12(t)]

)
σ(t, x, µ, v) + f(t, x, µ, v)

+
1

2

(
P0(t) + Ê[ ˚̂P1(t)]

)(
σ(t, x, µ, v)− σ(t,X∗(t),PX∗(t), u

∗(t))
)2
. (6.3)

Next let us show that the above SMP is the same as that given by Buckdahn, Li, Ma (see
Theorem 3.5[6]). In fact, from (6.1) it follows

dÊ[˚̂p1(t)] = −
{
Ê
[̊
b̂µ(t)p̂0(t) + ˚̂σµ(t)q̂0(t) +

˚̂
fµ(t)

]
+ bx(t)Ê[˚̂p1(t)] + σx(t)Ê[̊q̂12(t)]

+ ÊĒ[̊b̄µ(t)¯̂p1(t) + ˚̄σµ(t)¯̂q12(t)]
}
dt+ Ê[̊q̂12(t)]dW (t), t ∈ [0, T ],

Ê[˚̂p1(T )] = Ê[˚̂Φµ(T )].

Notice the fact

ÊĒ[̊b̄µ(t)¯̂p1(t)] = ĒÊ[˚̂bµ(t)ˆ̄p1(t)] = Ê[˚̂bµ(t)Ē[ ˆ̄p1(t)]],

we obtain

d{p0(t) + Ê[˚̂p1(t)]} = −
{
bx(t){p0(t) + Ê[˚̂p1(t)]}+ σx(t){q0(t) + Ê[̊q̂12(t)]}+ fx(t)

+ Ê[˚̂fµ(t)] + Ê[˚̂bµ(t)(p̂0(t) + Ē[ ˆ̄p1(t))] + Ê[̊σ̂µ(t)(q̂0(t)

+ Ē[ˆ̄q12(t))]]
}
dt+

{
q0(t) + Ê[̊q̂12(t)]

}
dW (t), t ∈ [0, T ],

p0(T ) + Ê[˚̂p1(T )] = Φx(T ) + Ê[˚̂Φµ(T )].

According to the uniqueness of the solution of mean-field BSDE (see Theorem 3.1[7]), we have

p(t) = p0(t) + Ê[˚̂p1(t)], q(t) = q0(t) + Ê[̊q̂12(t)], t ∈ [0, T ], (6.4)

where (p(·), q(·)) is the solution of (3.4). Similar to the above analysis, we can also get

d
(
P0(t) + Ê[ ˚̂P1(t)]

)
= −

{
(σx(t))

2
(
P0(t) + Ê[ ˚̂P1(t)]

)
+ 2bx(t)

(
P0(t) + Ê[ ˚̂P1(t)]

)
+ 2σx(t)(Q0(t) + Ê[ ˚̂Q12(t)]

)
+H0

xx(t) + Ê[ ˚̂H1
xx(t)]

+ Ê[ ˚̂H0
xx(t) + Ē[ ˚̄̂H1

xx(t)]]
}
dt+

(
Q0(t) + Ê[ ˚̂Q12(t)]

)
dW (t),

t ∈ [0, T ],

P0(T ) + Ê[ ˚̂P1(T )] = Φxx(T ) + Ê[˚̂Φνa(T )].

Since

H0
xx(t) + Ê[ ˚̂Hxx(t)] = bxx(t)

(
p0(t) + Ê[˚̂p1(t)]

)
+ σxx(t)

(
q0(t) + Ê[̊q̂12(t)]

)
+ fxx(t),

Ê
[ ˚̂
H0

µ1a1
+ Ē[ ˚̄̂Hµ1a1(t)]

]
= Ê

[̊
b̂µ1a1(t)

(
p0(t) + Ē[ ˆ̄p1(t)]

)
+˚̂σµ1a1(t)

(
q0(t) + Ē[ˆ̄q12(t)]

)
+

˚̂
fµ1a1(t)

]
,

then according to Theorem 3.1[7] again, we have

P (t) = P0(t) + Ê[ ˚̂P1(t)], Q(t) = Q0(t) + Ê[ ˚̂Q12(t)], t ∈ [0, T ], (6.5)

where (P (·), Q(·)) is the solution of the following BSDE:
dP (t) = −

{
(σx(t))

2P (t) + 2bx(t)P (t) + 2σx(t)Q(t) +Hxx(t) + Ê[Ĥµ1a1
(t)]

}
dt

+Q(t)dW (t), t ∈ [0, T ],

P (T ) = Φxx(T ) + Ê[Φ̂νa(T )].
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and

Hxx(t) = bxx(t)p(t) + σxx(t)q(t) + fxx(t),

Hµ1a1(t) =
˚̂
bµ1a1(t)p(t) +

˚̂σµ1a1(t)q(t) +
˚̂
fµ1a1(t);

(p(·), q(·)) is the solution of (3.4). Clearly, from (6.2), (6.3), (6.4) and (6.5) we can see that our
SMP is consistent with Buckdahn et al.’s SMP.

7 Appendix

Theorem 7.1. Suppose
ˆ̊
Ai(t) : [0, T ]×Ω×Ω̂ → Rm,

ˆ̊
Bi(t),

ˆ̊
Ci(t) : [0, T ]×Ω×Ω̂ → Rm×d, i = 1, 2

are bounded stochastic processes. Let
ˆ̊
ξ : Ω× Ω̂ → Rm and

ˆ̊
D(t) : [0, T ]× Ω× Ω̂ → Rm satisfy

ÊE
[
| ˆ̊ξ|β

]
< +∞, ÊE

[( ∫ T

0

| ˆ̊D(t)|2dt
) β

2
]
< +∞, β ≥ 2.

Then the following mean-field BSDE

d
ˆ̊
Y (t) = −

{ ˆ̊
A1(t)

ˆ̊
Y (t) + Ē[ ¯̊A2(t)

ˆ̄Y (t)] +
ˆ̊
B1(t)

ˆ̊
Z11(t) + Ē[ ¯̊B2(t)

ˆ̄Z11(t)]

+
ˆ̊
C1(t)

ˆ̊
Z12(t) + Ē[ ¯̊C2(t)

ˆ̄Z12(t)] +
ˆ̊
D(t)

}
dt

+
ˆ̊
Z11(t)dW (t) +

ˆ̊
Z12(t)dŴ (t), t ∈ [0, T ],

ˆ̊
Y (T ) = ξ

exists a unique solution (
ˆ̊
Y,

ˆ̊
Z11,

ˆ̊
Z12) ∈ Sβ

F⊗F̂
(0, T ;Rm)×H2,β

F⊗F̂
(0, T ;Rm×d)×H2,β

F⊗F̂
(0, T ;Rm×d).

The proof is similar to the proof of Proposition 3.2[4].
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