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1 Introduction

The purpose of this paper is to investigate a global stochastic maximum principle (SMP) for
optimal problem governed by the following fully coupled mean-field control system

dX"(t) = b(t, 11 (t), Prv ey, v(t))dt + o (t, 11°(t), Ppo(ey, v(t))dW (t), t € [0,T],

de(t) = _f(ta Hv(t)7 IP)A“(t)7 ’U(t))dt + ZU(t)dW(t)7 te [Oa T]a (11)

X(0) = zo, Y(T) = &(X"(T),Pxo (1)),
where I1V(t) = (X"(t),Y"(t), Z"(t)), A"(t) = (X" (¢),Y"(t)); W is a standard d-dimensional
Brownian motion; Pe = P o ¢! is the law of random variable ¢ € L'(Q, F,P;RY); v is a
control process taking values in a set U C R!, not necessarily convex; the coefficients (b, o, f) :
[0, T] xR xR™x R™*dx Py (R*M)xU — R, @ : R"xPy(R") — R™. The accurate assumptions
on b,o, f,® are given in Section 3. The cost functional is defined by J(v(:)) = Y¥(0), where

(X¥(),Y("), Z(+)) is the unique solution of the above equation.
Define admissible control set

Una :{v()’v() is an F-adapted process with value in U such that

sup Elu(t)|® < —i—oo}. (1.2)

0<t<T
Our control problem can be described as:

Problem (MFFC). Find an admissible control v*(-) such that
J(u*(-)) = min J(o(-
() = min J(v(-)),
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subject to (1.1). u* is called optimal control and (X*(-),Y*(:), Z*(-)), the solution of (1.1) with
u*(-), is the optimal trajectory.

The motivation of our work comes from two aspects. i) Recently, the rapid development of
the theory of fully coupled general mean-field forward-backward stochastic differential equations
(FBSDEs) has made many scholars pay attention to the investigation in related fields, see
Chassagneux, Crisan, Delaruel®, Lil?%l, Pham, Weil®®: 29 Shi, Wen, Xiong[®"!. ii) Following
Peng’s open problem being solved completely by Hul'®!, Hu, Ji, Xuel'™), it becomes possible to
investigate the necessary condition of optimality of system (1.1).

As everyone knows, a powerful tool to study optimal control problems is stochastic maximum
principle (SMP). We refer to Kushner (18] Bismut[®!, Bensoussan? for an early investigation on
this topic; refer to Peng[?%! for the case where the diffusion coefficients of SDEs depend on control
and the control domain is unnecessarily convex. In 1997, El Karoui, Peng, Quenez!'!] proposed
the notion of more general recursive utilities via the solutions of BSDEs. For those recursive
stochastic optimal control problems, a lot of works have been published in the last few decades,
such as, Peng[?] obtained a local SMP when the control space is convex. The control problem
for nonconvex case is proposed by Pengl?”! as an open problem. By regarding Z () as a control
process and the terminal condition Y (T) = ®(X(T)) as a constraint, Yong!®¥ obtained an
optimality variational principle by means of Ekeland variation. With similar argument, Wul?3]
considered a stochastic recursive optimal control problem. Note that the SMPs obtained in
the last two works above contain unknown parameters. In fact, Peng’s open problem has not
been solved completely by Hul'® until 2017. Hu, Ji, Xuel'” generalized Hu’s work from the
decoupled control system to the fully coupled control system. It should be pointed out that
inl1% 17 an important observation is the following equality

YhE(t) = p() X (1),  t€0,T], (1.3)

where (X1¢(+),Y1¢(+)) is the solution of the first-order variational equation, which is a fully
coupled linear FBSDE; p(+) is the solution of the first-order adjoint equation.

As for the optimal problems for mean-field systems, this direction has also drawn great
attention, for example, when the control domain is convex, Andersson, Djehichel’) proved a
maximum principle for SDE of mean-field type. In the same action space, Lil'?) obtained the
SMP in the mean-field controls. If the control domain is unnecessarily convex, we refer to
Buckdahn, Djehiche, Li% for a general SMP for mean-field SDEs in expectation form, and
Buckdahn, Li, Mal® for mean-field SDEs in law form, and Hao, Meng!*® for general mean-field
forward-backward stochastic systems. The SMP of mean-field type for other various problems
were investigated in Du, Huang, Qin!'%!, Shen, Meng, Shil*!!, Guo, Xiong!"? and so on.

There is only a few literature on the SMP of mean-field FBSDEs. Min, Peng, Qin!?3]
studied fully coupled mean-field FBSDEs and related SMP with convex control domain. Li
and Liu?! considered an optimal control problem for fully coupled mean-field FBSDE in the
case where the diffusion coefficient depends on control and the control domain is not assumed
to be convex. Hafayed, Tabet, Boukafl'®! proved a SMP for mean-field FBSDE with jump.
Wang, Xiao, Xing[*?! investigated an optimal control problem for mean-field FBSDE with noisy
observation. In all of the above works, the coefficients of the forward-backward systems depend
on the expectation of the solution, but not the law of the solution. To our knowledge, up to
now, there is no works published on the SMP for fully coupled general mean-field FBSDEs in
the existing literature.

Since we need to deal with the fully coupled forward-backward mean-field control system
(1.1), there are some potential obstacles met in our analysis. Let us explain it in detail.

First, inl0, the first-order adjoint equation is a mean-field BSDE, which can be obtained by
Fubini Theorem. We argue that for the solution of their first-order adjoint equation, we only
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have
E[Y"S ()] = E[p(t) X" (t)],  te[0,T], (1.4)

but not the relation (1.3). However, (1.4) is not enough for some estimations in our case, see
Remark 4.4. Inspired by the work of Hu, Ji, Xuel'”, we propose to split the single adjoint
equation into two decoupled equations (see (3.1)) and establish the following linear relation:

YEE(t) = po() X V() + E[py () X2 (1)],  tel0,T]. (1.5)

where (po(-), p1(-)) is the solution of (3.1). (1.5) plays an very important role in our calculation.
Clearly, (1.5) is slightly “stronger” than (1.4) and it is in fact the counterpart of (1.3) in mean-
field case. Besides, according to Fubini Theorem, for the process p(-) (the solution of first-order
adjoint equation (3.11)[) and the pair (po(-),ﬁ1(~)), we have p(t) = po(t) + E[ﬁl(t)], te[0,T]
(see (6.4)).

Second, due to the mean-field feature of our system, the second-order expansion of Y¢ given
by Hu, Ji, Xue (see Lemma 3.17[17]) does not work in our case. By adopting two new and split
adjoint equations, we make the second-order expansion of Y¢:

Y(8) = po(0) (X1 () + X2 (8)) + Epa (6)(X(8) + X>(8))] + %Po(t)(Xl’E(t))2

+ SE[P(6)(X (1)) + M(8),
where (po(), p1(+)) and (Py(-), Pi(-)) are the solutions of the first- and second-order adjoint
systems, respectively; M(-) is the solution of some auxiliary mean-field BSDE.

Third, the fact that our control system is a fully coupled mean-field FBSDE leads to the
auxiliary BSDE (4.22) appearing in the expansion of Y¢, which is different to the case of mean-
field freel'”]. Tt is difficult to get its precise solution of (4.22). Hence, we use the comparison
principle of mean-field SDEs to prove our SMP.

Our paper contributes to the literature in at least three points. To begin with, we propose a
method of splitting adjoint equations, and, thereby, establish the linear relation between of X 1+
and Y1, What’s more, we show the second-order expansion of Y¢ in mean-field framework
with the help of two new adjoint systems. Last but not least, the SMP for optimal control
problems governed by fully coupled general mean-field FBSDEs is proved.

This paper is arranged as follows. The preliminaries and Lions’ derivative are recalled in
Section 2. Section 3 is devoted to the introduction of two new and split adjoint equations and
the main result—-SMP. In section 4 we list the first- and second-order variational equations as
well as show the proof of Theorem 3.4. In section 5 we consider the square integrable case.
The relation between Buckdahn et al.’s SMP and our SMP is stated in Section 6. An auxiliary
result is given in the last section for closing our paper.

2 Preliminaries

2.1 Notations

Let R™, R™"*? denote the n-dimensional real Euclidean space and the space of n x d real matri-
ces, respectively, on which the scalar product (-, -) and the norm |- | are defined as usual, i.e, for

a=(a;), b=(b;) € R", {(a,b) = > ab;, |la|| = /> (a;)?; for A = (ai;), B = (bi;) € R™*4
i=1 i=1

(A, B) = tr{ABT},||A]| = /tr{AAT}, where T denotes the transpose of matrices or vectors.
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Next let us introduce some usual spaces. For a > 1,

o L*(F;R") = {F-measurable R"-value random variables ¢ with ||{[|¢. = E|¢|* < +o00},
o S2(0,T;R") =

Fi-adapted a-th integrable processes ¢(-) over [0,T] with
E[ sup [p(t)]"] < +oc.
0<t<T

o Hﬁ’ﬁ(O,T; R™) = {]-'t-adapted stochastic processes ¢(-) over [0, T] with

5] /OT o) < oo},

Throughout the paper by 0, we denote the Dirac measure at z; p : (0,4+00) — (0, +00) denotes

a function with p(e) — 0 as e — 0; L is a positive constant, which maybe change from line to
line; for p > 2, we define

AP — {(w,qp)’]E[oi?gTIw(tﬂp + (/OT \1/J(t)|2dt)g] < +OO}’

. . (2.1)
= {6 0)[E[ sup (0P +e0P) + ([ lwioPar)”

] < oo}

2.2 [P Estimation for Decoupled Mean-field FBSDEs
Suppose the mappings

: Q% [0,T] x R™ x R™ x R™*4 x Py(RFmHmxdy R
(X [0,T] x R™ x R™ x R™*4 x Py(RPFmFm>d) _, grxd,

~

(2.2)
Q% [0,T] x R® x R™ x R™M*4 x Py(RFMFmxd) _, R
D :QxR" x P(R") - R™

satisfies

Assumption 2.1. i) For given adapted process (y(-),z(:)) and p > 2,

T p
B{[00.80) + ([ 6(t.0.9(0),20), B y00,0000)| + £(2,0.0.0,50) )
0

T -
([ 1ot.0.500). 20 Pioyio op) )} < +oc.

where 0 = (0,0,0). B
ii) For #,2 € R",y,y € R™, 2,z € R™>d t € [0,T], &,€ € L2(F;R"),n,7 € L*>(F;R™),
¢, ¢ € L3(F;R™*4) and h = b, 0, there exists a constant C; > 0 such that P-a.s.,

‘h(t7x7yazvp(£,n,ﬁ)) - h(tvayvzvp(g,n,()” < Cl(|x - ‘f| + ||£ - EHLQ)?
|t 2y, 2. Pene) — (62,9, 2,Peqe)l

<Ci(lz =2+ Iy =gl + 1z = 21+ [I€ = Elle2 + [In = Allz2 + 1€ = Cllz2),
@ (2, Pe) — @(2, Pe)| < Cu(lz — 2| +[I§ — ][ 2)-

Lemma 2.1. Let Assumption 2.1 be in force, for p > 2 and for any given a pari of adapted
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process (y(+), z(+)), the following decoupled mean-field BSDE:

dX(t) = b(t, X(1),y(t), 2(1), Px(t),y(t),2(1)) )t

+o(t, X (), y(t), 2(t), Px(s),(0),2(0) ) AW (1),
dY (t) = —f(t, X(t),Y(#), Z(t),Px),v),z@))dt + Z({)dW(t),  te€]0,T],
X(0) = zo, Y(T) = &(X(T),Px (1))

erists a unique adapted solution
(X(),Y (), Z(-)) € SE(0,T;R™) x SE(0, T;R™) x HZP (0, T; R™),

and, moreover, there exists a constant K, > 0 depending only on p,T,C; such that

[ sup (xop + v+ ([ 1z0ra)’]

0<t<T

T p
<EB{[ [ 1b0.0.5(0) 20)- Pioyio )| + £(0:0.0.0. 0]

P
2

T
+| / o(£,0,5(8), 2(), Py, 2] + 10(0,60) 7 + ol }. (2.4)

where 0 = (0,0,0).
Proof. Define, for (t,z,€) € [0,T] x R® x L?(F;R"),
B(t,l‘, [P © (y(')a Z('))_l]f) = b(t,x,y(t), z(t)’P(E,y(t),z(t)))v
o(t,z, [P o (y(+), Z('))_I]E) r=o(t,z,y(t), Z(t%P(&y(t)vZ(t)))’
where [P o (y(-), 2(-)
we know, for h = b,

[A(t 2, [Po (y(-), 2(-))"e) = hlt, 2, [Po (y(-), 2(:) )| < Cr(lz — 2| + |I€ = €ll12),

)~1] denotes the law induced by the pair (y(-), 2(+)). From Assumption 2.1
g, and (t,z) € [0,T] x R™,

and
0 0

where 6/)*()) denotes the Dirac measure corresponding to the induced measure [Po(y(-), z(+)) 71].
From Burkholder-Davis-Gundy inequality and Gronwall lemma, we know that, for p > 2, the e-
quation (2.3) possesses a unique solution X € Sf(0,T; R™) and, moreover, there exists a K, > 0
depending only on p, T, C; such that

E[ sup |X())7]
0<t<T

SKPE{(/OT |B(t,0,6éy(‘)’z(')))|dt)p+ (/OT| (t,0,6{/(=(D)2 dt)

pa
2

+ o},

ie.,

B[ s 1x(0r] <mB{( [ " B(8.0,5(0). (0, B .00 )

0<t<T
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+ (/OT|U(7570’:U(75)7 (), Po.y(t).z(t))] dt) + Ixolp}- (2.5)

Once knowing X(-), the second equation in (2.3) becomes a mean-field BSDE. By Corollary
5.3124] (setting AN (t) = (X (t)+|| X (t)]| 22 +|f(£,0,0,0,80)|)dt, dV (t) = dt,dR(t) = 0,dD(t) = 0)
and (2.5), we have (2.4). O

2.3 [P Estimation for Coupled Mean-field FBSDESs

In this subsection we prove LP estimation for fully coupled mean-field FBSDEs on a short time
interval via Lemma 2.1.
Let the mappings given in (2.2) satisfy the following assumptions:

Assumption 2.2. i) There exist three constants L;, i = 1,2, 3 such that, for x,Z € R",y,y €
R™ z,z € Rm*4 ¢ &€ c L2(F;R"), n,7 € L2(F;R™), ¢, € L3(F;R™¥4) ¢ € [0,T], P-as.,

b(t, 2, y, 2, P pc)) — b(t, 2,7, Z, ]P’(g,ﬁ,g))\
<Ci(lx — |+ [|€ = &||z2) + Cally — gl + |z — 2| + |In — 71l| 2 + [IC = {l[£2),
ot 2,y 2, Penc) — (6, 5,5, 2, Pg .0l
<Ci(|z — | + 1€ = &llz2) + Caly — 7l + [In — 7l £2) + Cs(|z — 2| + [IC = (]l 2),
[f (2,9, 2, Peng) = (62,0, % P a0l
<Ci(lz — | + 116 = &llrz + |y = gl + lln = llz2 + |2 = 2[ +]I¢ = Cllz2)-
ii) For some given real constant 3 > 1, ®(0,d9) € L?(F;R™), b(t,0,0,0, ) € HIIF’B(O,T; R™),

F(t,0,0,0,80) € Hp? (0, T;R™), o(t,0,0,0,80) € Ho'’ (0, T; R™ ), where 0 = (0,0,0).
For p > 2, define

®p = Kp4p(1 + T)p(max{Cg, Cg})p,
where K, is given in (2.4).

Theorem 2.2. Under Assumption 2.2, for p > 2, if ©, < 1, the following fully coupled mean-
field FBSDE:

X (t) = b(t, 1(t), Pryyy )dt + o (t, 11(t), Prigy) )W (t), € (0,77,
(t) = —f(t, 1(t), Pug))dt + Z(t)dW (1), € (0,71, (2.6)
Xo = zo, Y(T) O(X(T),Px (1))

)) € SE(0,T;R™) x SE(0,T;R™) x HZP(0, T; R™*4),

admits a unique solution (X(-),Y(-), ) €
t 0 depending on p,T, Ly, Ly, L3 such that

Z(:
and there exists a positive constant K, >

IE[ sup (| X ()P + Y (1)) + (/OT |Z(t)|2dt)%}

0<t<T

SKPE{(/T| b(t,0,d0)ldr ) + (/ 7(t,0.50)]dt)”
+ (/OT a(t,0,00)] dt)% +|9(0, 80)[7 + |ac0|p} (2.7)

where TI(t) = (X (), Y (1), Z(t)), 0 = (0,0,0).
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Proof. Given a pair of adapted process (y(-), z(+)), consider

dX(t) = b(t, X(1),y(t), 2(t) Px () u(t).2(0)) )t

+o(t, X(1),y(t), 2(t), Pix 0),y(),2())AW (), t€[0,T],
dy (t) = —f(t, X(),Y (), Z(1),Px)yw).zwy)dt + Z(H)dW(t),  te€l0,T],
X(0) = Y(T) = o(X(T),Px(1))-
(

Suppose (y(-),z(-)) € AP (see (2.1)). Thanks to Assumption 2.2 and Lemma 2.1, we have
X(-) € SR(0,T;R™) and (Y(-), Z(-)) € AP, which allows to define a mapping Y : AP — A? by

T(y(), 2()) = (Y(). 2().

Next let us show that T is contractive. In fact, let (yl(),z’()) € AP, i = 1,2 and by
(X(+),Yi(-), Z%(-)),i = 1,2 we denote the solution of (2.8) with (y*(-), z%(})), i = 1,2.
Set AX =X —Xo, AY=Y1-Y5, AZ=71—275, Ay=y1 —y2,Az = 21 — 2z9. Then
dAX (t) = {a1(t) )+ Br(t)Ay(t) +71(t)Az(t)
+ al( )HAX( ez + BiOIAY (1)l 2 + T ()] |Az(t)]| 2 }at
+ {a2()AX (1) + Ba(t) Ay(t) + 72(t) Az ()
+ax ()| AX (#)]|z2 + B2 (OIIAY (1) 22 + T2 (Ol A2(1)]| 2 AW (2)
dAY (t) = —{as(t) AX () + Bs(t) Ay(t) + v3(t) Az(t)
+as(O)|AX 1)Lz + Bs()IAY ()] |12 + Fs ()| A2(t)]| L2 } + AZ()dW (1),
AX(0) =0,  AY(t) = as(T)AX(T) + aa(T)[[AX(T)|| 2,

(2.8)

where

b(tu 1 (t)a Pﬂ'l (t)) - b(t7 T2 (t)7 Pﬂ'l(t))

if X3 (1) # Xa(0),

ay(t) = X1(t) = Xa(t) ’
0, it X1 (6) = Xalt),
b(t,ﬂ'g(t),[@ﬂ.l(t)) — b(t,ﬂ'g(t),[?m(t)) : B .
6&1<t): |‘)<—1(t)7)(2(15)”[/2 ) f||‘X'1(t> X2(t>||L #Oa
0, if || X1(t) = Xa(8)|[L2 = 0,

and m1(t) = (X1(t), y1(t), 21(t)), m2(t) = (X2(t), y1(t), 21(¢)). B1,71, - -@4 can be understood in
the same manner.

From Assumption 2.2, we know that s, 8;,7:, a4, B, 7,1 = 1,2,3,4 are bounded. Since
for any square integrable variable &, g(P¢) := E[¢|* =[5, 2°P¢(dz), thanks to Lemma 2.1, it
follows, for p > 2,

]E[ sup (|AX(t)|p+|AY(t)|p)+(/OT|AZ(t)2dt>g}

0<t<T

<E{( / (1B (1 Ay(0)] + I O A20] + Bl Ayl[z2 + 17 (O]1|Az]]2)dt )

(NS

T —
+ (/O UB2O[Ay ()] + 2| Az()] + |B2()[[[Ayl[ 2 + I%(t)IHAZIILZ‘)th)

}
<0+ 1 R s ke + ([ 100 )

Due to ©, = K,4P(1 4+ T')P(max{C5, Cs})? < 1, the contractive mapping theorem allows to
show that the mapping T exists a unique fixed point (Y'(-),Z(:)) € AP. Then according to
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the existence and uniqueness theorem of mean-field SDEs (see, for example, Hao and Lil'"* for
jump case), the forward equation in (2.8) possesses a unique solution X (-) for this fixed point
(Y(-),Z(-)). From this, one can see that (X(-),Y(-), Z(:)) is the unique solution of (2.6).

(2.7) can be obtained following the argument of the proof of Theorem 2.2['7). Hence, we
omit it. O

2.4 Lions’ Derivative

Let P2(R?) be the space of all square integrable probability measures over (R%, B(R?)), which
is endowed with 2-Wasserstein metric: for vy, vy € R?,

Wa(vy,ve) = inf { (/ ly1 — y2|*p(dy1, dyg)) 5, p € P2(R*?) satisfying
R4 x R4
p(A x RY) = 11 (A), p(R? x B) = 1n(B), A,B e B(Rd)}.

Now we introduce the differentiability of a function with respect to a measure following the
idea of Lions. Suppose the probability space (€2, F,P) is “rich enough”, i.e., for each 1 € Py(R?),
there exists a random variable £ € L?(Q, F,P;RY) (L?(F;R?) for short) such that P¢ = u. Let
f: P2(RY) — R and define the “lift” function f by f(¢) := f(P¢), £ € L*(F;R?). We call that
f is differentiable in po = Pg,, if the “lift” function f is differentiable at &y in Fréchet sense.
That means there exists a linear continuous mapping Df (&) : L?(F;R?) — R such that for

¢ € LX(F;RY),
F(&o +¢) = f(&) = DF(€0)(¢) + ol[C][L2),

with [|¢[|zz — 0. According to Riesz’s Representation Theorem, there exists an n € L?(F; R?)
such that Df(&)(¢) = E[n - ¢]. The random variable 7 is in fact of the form h(&y), where
h(-) : R — R? is Borel function depending on the law of &, but not the random variable &,
itself. Hence, we have, for ¢ € L?(F;R?),

f(Peyi¢) = f(Pgy) = E[A(&o) - €] + o([[C]]2)-

The function 9, f(Pg,;a) := h(a),a € R? is called the derivative of f : P2(R?) — R at Pg,.
Note that 0, f(P¢,; a) is only P¢, (da)-a.e. uniquely determined (seel® for more detail).
Now we explain the Lions’ derivative by an example.

Example 1. Assume ¢ : R - R, 1 :R = R, ¢: R? — R are three continuously differentiable
functions with bounded derivatives. Define for £, € L?(F;R),

h(Pe) := @(E[E)]);,  9(Pen) = »(E[B(E,n)]).
Then
Oh(Pe) = @' (B[ ()Y (a), dvah(Pe) = ' (E[W(£)])¥"(a), a € R,

O 9(Pe i ar, a2) = (0u9)1 (P, ar, az2) = @ (E[W(E,m)])¢a, (a1, a2),
Oprar 9(Pe.mys a1, a2) = @ (E[Y(E,m)])aya, (a1, a2), a1,a2 € R,

01, 9(P(¢.mys a1, a2) and Opya,g(Pe ) a1, a2) can be understood similarly.
In particular, if p(z) = z,¢(z) = z, ¢(z1,22) = 21 + 22, x, 21,22 € R, ie., h(P¢) := E[¢],
9(Pie.m) = E[§] + E[n], we have

Oh(Pe) =1, Ouah(Pe) =0, 0., 9(Penyia,a2) =1, Ouia,9(Pen);a1,a2) = 0.



A Global Optimality Principle 387

3 SMP for Bounded Cases

In this section we show the main result—SMP. For simplicity of editing, let us restrict m =n =
d = 1. However, our results also hold true for multidimensional case. Recall that U is a subset
of R, unnecessarily convex.
Suppose the mappings
(b0, f):[0,T] x Rx R xR x Po(R?) x U — R,
P :RxP(R) =R

satisfy

Assumption 3.1. For h =b,0, f,

i) h,hg, hy, h., h, and ®,®, are continuous with respect to (z,v, z, 1, u) and (x,v), sepa-
rately; hy, hy, h., h,, ®, are bounded; h and ® are linear growth with respect to their respective
variable, i.e., there exists a constant Cy > 0 such that

1
g2, < Co( Lt el + ol +1el + ([ autd))” + 1ol
R

O(z,v)| <Coll+|z|+ /a21/da 5,
2, 0)] < Co (14 Jal + ([ aPulda))”)
and for z e R, v,0 € U, t € [0,T],
|h(ta07072a§07v) - h(t70707'z750a1—})| < CO(I + ‘/Ul + |1_)|)

ii) For arbitrary 2 < 8 <8, O = K4?(1 + T7)(max{Cz,C3})?, where K is given in (2.4)
with C1 = max{|[bz||oc, [|bu |locs |0z [oos [0, [loos [ fzl|oos | fylloos [ f2lloos [ fiur loos [ fuzlloos
192 ]loc, [1Pu o}, C2 = max{{[bylloc, 162l oo, 1Bz lloos oy lloos |opslloc}s Cs = |0z ||oo-

iii) All the second-order derivatives of h and ® with respect to (z,y, z, ) are bounded and
continuous in (z,y, z, 4, v), and (z, V), respectively.

Hamiltonian Functions: For z,y, 2z € R, u € P(R?), po, qo, p1, q12 € R, we define

Ho(ta x,Y,z, L, U, Po, QO) = b(t,x,y,z,,u,u)po + U(twfvya Z,M,U)QQ + f(t,.f(}, Y, Za:U/7u)a
Hl(tax7yaza,u'7uaplaq12) = b(t,x,y,Z,u,u)pl + O'(t,LE,y,Z,,u,U)(hQ.

Next let us introduce some notations used in our setting. Let (€, F,P) be an intermediate
probability space and independent of (2, F,P), B a 1-dimensional Brownian motion over this
space (£, F, ]P’) E the expectation under probability P. Let (Q F,P,B IE) be the independent
copy of (Q, F,P, B,E), which means that

(), F,P) is independent of (2, F,P);
e, E€ LY(Q,F,P), £ € LY(Q, F,P).
, can be understood similarly.
(- ) we denote the stochastic process defined on space (Q, F,P), i.e. , p(t) = p(t,w), t
[0,T], @ € €; $(-) the stochastic process over product space QxQ,FoF,PoP),ie., ot )
o(t,w,w),t € [0,T],(@,w) € Q x Q; ¢(-) the stochastic process over product space (2 x Q, F ®
F,PP), ie., ¢(t) = ¢(t,w,@), t € [0,T], (w,w) € 2 x Q. Similarly, ¢(-) denotes the stochastic
process over product space (AxQ, FRF,PRP), ie., ¢(t) = o(t,@,w), t € [0,T], (@,w) € AxQ.
Moreover, due to the independence of (Q, F,P) and (€, F,P), the expectation of any random
variable defined on product space ( Q xQ,FRF,Pw PP) can be calculated as follows:

/gwadlp //5 dIP’d]P’

N2
—~
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Suppose v(+) is an admissible control. For ¢ = b, 0, f, ®, { = x,y, z, define

ot) = o(t, X™(1), Y7 (1), 27 (1), Prx=(),v= (1)), u"(#)
Pe(t) = Ge(t, X7(8), Y™(£), Z7 (1), Prx+ ),y + ), u (
59(t) = o(t, X7(1), Y (1), Z7(£), P(x+ ),y = (1), v(1)) — (1),
5¢e(t) = Go(t, X7 (1), Y7 (1), Z7(1), P(x-(1),y (19 0(F)) — e (1),

0¢(t,Z) = ¢(t, X7 (1), Y™ (1), Z"(t) + Z(1), P(x= (1), v+ (1)), 0(1)) — o(1),
0¢e(t,Z) = @e(t, X7(), Y™ (1), Z7 () + E(), P(x+(1),v+ 1)), v(t) — de(t),

);

)
t
) —
t)

where Z() is an Fy-adapted process, and for 6 = uq, o,

00(t) 1= do(t, X* (1), Y* (1), Z° (£), B (x- 0.y (- u” (£): X7 (1), V* (1)),
50(t) = ot X7 (1), Y™ (1), Z°(t), B(x o).y (o) 0(0); X7 (8), V() — G 0)
Our first-order adjoint system consists of the following two BSDEs
dpo(t) = —{H° )+ po(t)Hy (t) + ko(t)H () }dt + qo(t)dW (t), t€[0,T],
A (t) = — L (8)dt + G (AW (1) + G (AW (1), t € [0, ], (3.1)
po(T) = @,(T),  u(T) = ,(T),
where
Fy(t) = HO(0)pa(8) + HO()ka(8) + HY, (1) + HY, ()po(t) + B[, (1)1 (1)
+ HA(t) + H)(t)po(t) + H(£)kol(t) + @«><M+mewwn
B) + (t

VR (6)] + B (0po(t)] + EE[IL, (15 (1)),

N =

Fo(t) = (1= 0 (D)po(t)) ™ (po(£) 0 (1) + 0 (1) (po ()2 + o (1)),
k1 (t) = (1= 0. (O)po(£)) ™oy (o (£)P1 (£) + &y ()P0 (£) + &,y (E)po(£)Po(£) (32)
+mﬂ)+m()bm@)(ﬂ}

HR(8) = bu(t)po(t) + 0w (t)ao(t) + fo(t), Hp, (t) = by (DP0() + 61 ()0(t) + Fy (1),

p
HY(t) = bo (00 (1) + 62 (Ddra(t), L (8) = by (051 (1) + Gy (Do (2),
I(t, Bl ) = (X*(£), Y*(1), Z*(t) + E(t)1. (1)).

H)(t), H2(t) HO (t), H,(t), H(t), H},,(t) can be understood similarly.

77T 2

Remark 3.1. Buckdahn, Li and Mal® investigated the following optimal control problem
(without recursive utility) governed by a general mean-field control system:

Problem (BLM). Minimize J(v fo Jt, XV(t), Pxoy,v(t))dt + S(XV(T),Pxo )],
subject to

{dX“(t) =b(t, X (t), Pxog),v(t))dt +o(t, X(t), Pxo,v(t)dW(t), t € 0,77, (3.3)

XU(O) B
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By Fubini Theorem, a single adjoint equation is built to deal with the first-order variation of
X< which is described as follows:

= —{ba(t)p(?)
+ fo(t) +
p(T) = B, (T) + B[d, (T

+B[b, () - ()] + 0 (Da(t) + E[6, (¢) - (1)
[ (D)}t + q()dW (£), £ € [0,T), (3.4)

+E
(T)]-

If we define

YU = B[R (D). o) + [0 X°(0). P vt

following the scheme of El Karoui, Peng and Quenez!'!) there exists an adapted process Zv(+)
such that

YO (t) =(X"(T),Pxv(r)) —l—/t F(t, X(t), Pxogy, v(t))dt

- /T Z°(s)dW (s), t € [0,T]. (3.5)

By Y we denote the first-order variation of Y¢, where (Y¢, Z¢) is the solution of (3.5) with
ve() == u*(-)I(g.)e +v(-)Ip, instead of v(-). For the solution of the above adjoint equation
(3.6) one can check

EYMe ()] =EptX=(t),  te€l0,T]. (3.6)

It should be pointed out that because we have to deal with the fully coupled mean-field
control system, the equality (3.6) is not sufficient for our case (see Remark 4.4). In fact, we
need a slightly “strong” result

YY) = po()) X V5 (t) + E[py ()X 12(8)],  te[0,T], P-as.
This is why we introduce the split first-order adjoint equation (3.1).

The first equation in (3.1) is a classical BSDE, whose coefficient does not satisfy Lipschitz
condition. However, from Lemma 3.3, Assumption 3.4, Remark 3.5[17], we know that if C and
C35 are small enough, the first equation in (3.1) possesses a unique solution (pg, go) with

lpo(t)| < Lo,  t€0,T], P-as., qo€H2"(0,T), (3.7)

where Lg is a positive constant depending on C7 and Cs.
The second equation in (3.1) is mean-field BSDE with non-Lipschitz coefficient, we make
the following assumption:

Assumption 3.2. Suppose the second equation in (3. 1) exists a unique solution (;31, qi1, (512)
with |p1 t)| < Lo, t €[0,T7, P®P-as., and 11, q12 € H
depending on C7 and Cj.

]F®F( T), where Ly is positive constant

Assumption 3.3. Suppose ¢o(-) and 511(~),(§12(~) are bounded.
Next let us introduce the split second-order adjoint equation

dPy(t) = —{ Po(D)[(Do(t)T[L, po(t), ko(D)]T)? + 2Db()T[L, po(t), ko(1)]T + HY)
+2Qo() o (H)" L, po(t), ko(D]T + HY () Ko (1)

+[1,po(t), ko ()IDH (t)[1, po(t), ko (t)]T }dt + Qo(t)dW (t),
Py(T) = ®,..(T),

(3.8)
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dPy(t) = —{P(1)[(Dé (8)T[1, polt ) ko(D)]T)? + 2Db(t)T[1, po(t), ko()]T + Hy (1))
+ B[Py (£) (HY, (1) + H) (¢ )JrIE[H1 (D] +2Q12(6) Dé (1)1, o 1), ko (1))
[ o (), Fo(O)ID*H ()[1, fo(t), ko(6)]" + HX (1)Ko () + () Ka (1)

+E[H1()f<1()] + (HO,(6) + HL(t) + E[HL, (0]) Po(t)

+H31a1( )+ um( )(Po(t))? +E[Hﬁ1al( )] +E[H,i2a2( )(Po(t))?]}dt
+Q11( t)dw (t )+Q12( )dW( ), t€[0,T],
PUT) = d,0(T),

where
Ko(t) = (1 = po(t)o=(£)) " {po(t)ay(t) + 2[o(t) + oy (t)po(t )+0z t)ko ()]} Po(t)
+ (1 —po( (1) 7HQo () + po(t)[1, po(t), ko ()] D1, po(t), ko(1)]T }
Ki(t) = (1= po(t)o= ()~ {po(t)5,u5 (t) Po(t) + po(t)oy () Pr () + po(t)E[5, (¢ )P 1(¢)]

+Qult) +po(t )%a (£) + Po(t)0uzas (8) (B0 ()},
2 (DP0(8) + 6 (D0 (1) + fua (8), Hy(8) = by (D)B1(1) + 0y (D)2 (1),

Hy, 0 (8) =
(t) l; 2( ) ( )+Uu2(t)§12(t)7
[Lgaz (t) b#zaQ( ) ( ) + &#2112 (t)qo(t) + fﬂ2a2 (t)v
(t

ugag ) bu2a2( ) ( )+ gltzaz (t)q812(t)

Under Assumption (A3.1), Assumption (A3.2) and Assumption (A3.3), the first equation
in (3.8) is a BSDE with Lipschitz coefficient. Hence, it possesses a unique solution (Pp, Qo) €
S(0,T)xHz*(0,T). Once knowing (Py, Qo), the second equation in (3.8) is a mean-field BSDE
over product space (2 x Q, F®TF, IP’®I@’) From Theorm 7.1 (see Appendix), the second equation

in (3.8) exists a unique solution (P, @11, ng) € S;@F(O T) x 7_[2 2 2(0,7) H;;F(O 7).

Let us consider an algebra equation
E(t) =p0(t) (O'(t, X*(t), Y* (t), z* (t) + E(t), ]P(X*(t),Y* ) U(t))
- U(t7 X (t)a & (t)a z* (t)a P(X*(t),Y*(t))v u* (t))) . (310)
Clearly, Z(t) depends on po(t), v(t) and w*(¢).

Lemma 3.2. Let Assumption (AS8.1) and Assumption (A3.2) holds true, the algebra equation
(3.10) exists a unique solution =Z(-) and

IE@O] < Lo(L+ [ X0 + YO + [ X (O] 2 + Y Ol] 22 + [o()] + [w"(#)]),

sup E[|Z(t)]®] < +oo. (3.11)
0<t<T

The proof is similar to that of Lemma 3.9['"). Hence, we omit it.

Define

H(ta T, Y, %, Wy va(J(t)v E[ﬁl (t)]v QO(t)7 E[ém(t)]v PO(t)v IAE“EDI (t)])
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=(po(t) + E[pr ())b(t, 2, y, 2 + E(t), 1, v) + f(t, 2,9, 2 + E(t), 11, 0)
+ (a0(t) + Elduo (0o (t, 9,2 + 2(0), p,v) + 5 (Po(t) + BIA 1)
oty 2+ E1), pyv) — o, X (1), YY), Z*(£), Pix- 1), v+ (1)), u* (1)), (3.12)
where E(t) is introduced in (3.10), but with v instead of v(t).

Theorem 3.3. Let Assumption (A3.1), Assumption (A3.2) and Assumption (A3.3) be in force,
and let u* be the optimal control. By (X*,Y* Z*) we denote the optimal trajectory. Let

((Po()>90()); (P1 (), @11 (), dr2(+))) and ((Po(-), Qo(:)), (P (), Qu1(-), Qua("))) be the solutions of
the first- and second-order adjoint equations, respectively. Moreover, we assume P ® P-a.s.,
HO L (1) + ( )+E[ﬁfﬁ2(t)] +Po(t) f2 ()04, (8o (D)(1 = po(t)= () ™" > 0,

s A (3.13)
H(t) = ba()pr(t) + 62()qia(t) = 0, ¢ € [0, T,

50 51 5 1 L .
where H,, (t), H,(t), H,,(t) is introduced in (5.2). Then

H(t, X (1), Y (£), Z* (t), P (1), (1)) v 2o (£), E[pr (8)], 00 (1), E[Q12(t)]aPo(t)aﬁ[f’l(t)])
SH(, X (4), Y (1), Z7(£), P (1), v+ ey 0 (1), o (£), Elp1 (1)), a0 (£), Elgu2 (1)), Po(t), E[Py(8)]),

v eU,a.e., a.s,

Remark 3.4. i) If the coefficients b, o, f, ® are mean-field free, one can check p1(-) = ¢11(-) =
Q12(') = 0, which means P x P-a.s.,

HY, (1) + HY (1) +E[I§,ﬁ2(t)] + o) £ ()0 (Do (D1 = po(t)o= (1)~ =0,

) (3.14)
Ht)=0, te[0,T).

Hence, from this point of view, the SMP obtained by Hu, Ji and Xuel'” is a special case of our
SMP. .

i) Obviously, if b, o are independent of z, the assumption Hzl(t) =0,te€[0,7T], P® P-a.s.
holds true.

4 Variational Equations

Two variational equations are studied in this section, which are the building materials of our
SMP. In view of the fact that the control domain is not necessarily convex in our case, the
method of “spike variation” is borrowed to investigate our optimal problem. Let E. be a subset
of [0, T] with Lebesgue measure |E.| = e. For any v(-) € Uyq, define

v* () = uw (OLgye +0( )1k,
where u*(+) is the optimal control. By (X¢,Y*¢, Z¢) we denote the solution of (1.1) with v¢, i.e
(X5, Z9) = (X7 ()Y (1), 27 ())-
4.1 First-order Variational Equation

The first order variational equations can be written as

dXVE(t) = {b () X5 (t) + by ()Y V5 (t) + b () (214 (t) — E(H)1E. (1))

=
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+ Blby ()X (0] + Blby (0F (0]}t
+ {0 ()X () + oy ()Y 15 (1) + 0 () (Z05(1) — ()1, (1))
+ B[G, ()X (0] + Elo,, ()Y (0] + 80 (1, =
dYPE(t) = —{fo()X V() + f, ()Y V() + f(0)(Z1 (1) — E
+ E[fm(t)Xl “(t )] + E[fuz( Y4 ()] = go(t)0o(t, E)1p. (¢)
E[qi2(t)36 (1, E)p. (8)] }dt + Z"*()dW (1), ¢ € [0,T),
XE(0) =0, YYE(T) = (I)aE(T)Xl’E(T) +B[b, (T)X(T)).
(4.1) is a fully coupled linear mean-field FBSDE. According to Theorem 6123, (4.1) exists a
unique solution.
Proposition 4.1. Under Assumptions (A3.1)-(A83.3) and suppose (3.7) hold true, then for
t€[0,T], P-a.s.,
Y1) = po(t) X4 (1) + Blpi () X (1),

\ 4.2
ZV(t) = ko() X4 (1) + [k ()X ()] + E()IE. (1), .

where ko and ky are introduced in (3.2); E(-) is the solution of (3.10).
Proof. Consider the following linear mean-field SDE:
{w (b (£) + by (po(t) + b (ko (1))
B[(1) (by (1)1 (1) + b (£)ka (£) + by (8) + by (0P (1) + Elbyey (051 (0))]
+{w (O)(02(t) + 0, (Opo(t) + 0. (ko (8)) + 60 (t, E)Ip (2)
E[3(1) o (1 > ((t) + ot );;(t) 6y (8) + Gy (Do (1)

€T
g

[ Mz( }dW

(4.3)

z(0) = 0.

From Assumption 3.1, Assumption 3.2 and (3.7), we know that (4.3) exists a unique solution,
refer to Theorem 623,

Define y(t) = po(t)z(t) +E[p1 ()2 (1)], 2(t) = ko(t)z(t) + Bl (£)3(£)] + Z() L, (£). Applying

1t6’s formula to K[, (£)%(t)] we have
dE[py ()2(t)]
=E[A( ) ( )(ba(t) + by ()P0 (t) + b2 (£)ko (1))
G (t) + 6, (Do (1) + 6 (ko () — Fi (8)]
by (t)p1(t) + b (t )kl( )+ by, (1) + by (D)0 (1) +E[§uz(t)ﬁl(t)])]
(64 ()P1(t) + 6-(8)k1 (1) + 60, (1) + Gpus ()P0 (1) + E[60, (1)1 (1)])]
)

1
+ E[q12(t)66 (t, E)1g, ()] + E[2(t) g1 ()] dW (¢ (4.4)

where Fi(t) is given in (3.2). Notice

EE[Z(t)p1 ()b, (01 ()] = EE[2 ()51 (£)b, ()51 (6)] = E[E[B1 (£)by (6)p1.()](2)],
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p w+@<f<>+mx> ax F
+ G2 (0) (0, (D1 (1) + T2 ()1 (8) + G (8) + G (
— Py(8)]dt + BlGio(£)06(t, Z)Lp, (8)]dt + B2 (E)dn (1)]dW (1), (4.5)

For convenience, we denote
Fo(t) = H(t) + po(t) Hy (1) + ko(t)HZ (t).

The It6’s formula to po(t)z(t) allows to show

dpo(t)x(t)
= (t){po(t) (b (t) + by (t)po(t) + b= (t)ko (1)) + qo(t) (02 (t) + oy (t)po(t)
o (Oko(t)) — Fol®) it + E[#(2) {po() (b, (51 (8) + b (Vs (1

by (8) + by (10 (1) + Bl (051 (1)) + a0(8) (0, (D1 (1) + 0 (1) (8)

+3H1()+8’H2() ()+E[0M2() ()])}]

+{z(t)po(t)(0x(t) + oy ()po(t) + 0= (t)ko(t)) + po(t)do(t, E)Lg, (¢)
+ po(DEE () (0 (D (£) + 7= (01 (1) + b (1)

+ 0 ()P0 () + ElG, (DB1 (D] }AW (1), (46)
Combining (4.5)—(4.6) and the definition of 15’1 (see (3.2)), we arrive at

= —{fe(®)x(t) + f,(O)y(t) + f=(t)=(t )JrfE[ng (t)z(t)] +E[fu2(t)2§l(t)]
—qo(t )50( ,E)Ip, (t) — Elqi2()66 (t, )Ip, (1)) }dt
+ ()W (2), ¢ € [0,T],

y(T) = &,(T)a(T) + B[D,,(T)#(T)),

which means that (z,y,2) solves (4.1). Then Theorem 2.2 allows to show (z,y,2) = (X1*,
Y1,57 Zl,e). O

Remark 4.2. Tt should be pointed out that (4.2) plays an important role in our analysis.
As mentioned in Remark 3.1, the relation (3.6) established by Buckdahn, Li and Mal® is not
enough to handle the fully coupled mean-field control systems. We need a bit “strong” relation
(4.2).
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Proposition 4.3. Let Assumption (A8.1) i)-ii), Assumption (A3.2) and Assumption (A8.8)
be in force, then for arbitrary 2 < [ < 8, there exists a constant L > 0 depending on
CQ,Cl,CQ,Og,LQ, ﬂ,T such that

DE[ sup (XU + Ye))] +E[</OT|Z1’E(t)|2dt)g} < Le?;

t€[0,T]

i) B[ sup (IX°() = X" () +[Y*(t) - Y*(0))]

tEOT
+E / 1Z5(%) |dt) }<Ls§;
) B[ sup (X5() = X°(0) = X0+ V(0 = V() - Y01 )

+ E[(/OT Z5(t) — Z*(t) — Zl’a(t)|2dt)2} < Let.

Proof. 1) From Theorem 2.2, one has

E| sup (IX™(0)7 + v (0)]")] +E[(/OT|Zlve(t>|2dt)§}

te[0,T)

<rE|( / (1b- ()] + |- O DIE®) Tz, () + [Eldr2(1)55 (¢, 2N, (1))

T
+lao(®)3o(t. Dz, (1)ar) ] + LE[( / o (DE () Le, (1) + 60 (t, 2L, (1) ]t

<LE[( [ 14 1X@1+ YO+ X @l + 1Y Olla + (o)
E.

E.

B
<Lez2.

ii) Define X1 (t) = X°(t) — X*(¢), V' (t) = Y(t) = Y*(t), 2 (t) = Z°(t) — Z*(t). Then

B
+ [ ()] + Elo(t)| + Elu (1))t ) |

X (t) = (b(t, I (1), Pac (1), v° (1)) = b(&, IT° (1), ey, w* (1)) )d

dYy'(t) =

t
+ (0 (G IE(E), Paery, 07 (1) — o (4, 117(2), Pa- 1), u™ (1)) AW (2), ¢ € [0, T,
)dt + ZL(t)dW (t), t € [0,T],

t
—(f( T (), Pac sy, v () — f(E T (), Pa- (o), u™(t)

X1(0) =0, Y(T) = ®(X*(T),Px<(r)) = 2(X*(T),Px+())-

For h =10b,0, f and ¢ = x,vy, z, define

T
hi(t) = / (8, 117(2) + AT (1) = IT°(2)), Pas o)+ aae (1) —a= (1), V7 (£) )dA,
0

~ T
hzl (t) = /0 hlll (t,H*(t) + )\(Hs(t) — H*(t))a]P)A*(t)-i-A(AE(t)—A*(t)),va(t);

A*(t) + A(AS(t) — A*(£)))dA

N

}

(4.7)

[Nl§e)

(4.8)
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Since
b, II°(2), Pacr), v (1)) — b(t, 11" (1), Pax (1), u™(2))
=03 (1) (X=(t) — X7(8)) + b5, () (YE(t) = Y™ () + b2 (t)(Z°(t) — Z*(t))
+ E[bil ()(X=(t) = X7 ()] + B[b, (£) (V= () — Y™ (£))] + 0b(t;v° (1)),
we have

dX'(t) = (b2 ()X (1) + 0, ()Y () + (D)2 (1)

FE[, (1)1 (1)) + Blbs,, ()3 (5)] + b(r: 07 () )dt

+ (02 (O)X () + oy (V') + 0(t) 2 () E[oy,, (62 (¢)]

+E[o5, (V' ()] + 6o (t:0°(1))dW (t), t € [0,T], (4.9)

aY' (1) = —(FE (X (1) + F(OY () + S22 (1) + E[f, ()2 (1)
+RIfE, (D ()] + 5 (6 0% (£))dt + ZL(H)dW (1), t € [0, T],
X1(0) = 0, YI(T) = &5 ()X} (T) + E[2, (1) X" (T)].

Thanks to Theorem 2.2, Assumption 3.1-i) and (4.9), it yields

ﬁ
E[ sup (IX(0))° + 19\t / EAOIRD)

0<t<T

<LE /|6btv())|+|(5ftv |dt /|50tv |dt }

T B
SLE[(/ (L X+ Y@+ 1X @z + 1Y @l + o)+ [w*@©))dt) ]
0

[N]e)

)

T
B[ [0 X OF + Y OF + 1Ol + 1Y O + 00 + o ()P
SLS%

iii) For simplicity of the redaction, we denote X2(t) = X¢(t) — X*(t) — X1e(1), V?(t) =

Ye(t) = Y*(t) — YYe(t), Z2(t) = Z5(t) — Z*(t) — Z14(t). Then it yields
dX?(t) = [b5(6) X2 () + bE (V2 (t) + b (6) 23(t) + E[Zil (t)X%(1)] + ]E[IS)ZQ (OY2()] + A5(t)]dt

+ [05(t, ELp, ) X2(t) + o5 (t, ELg ) V2 (t) + 05 (t, Bl ) 2%(t)
+E[65, (¢, E1p ) X%(t)] + E[65, (£, E1p, ) V(1)) + Bs(t)]dW (), t € [0,T],

dY?(t) = = [fe (X2 () + f5 (DY) + fL()Z(t) + I@[fil ()X (1) + E[f; (H)P*(1)]
+ C5(t)]dt + Z3(t)dW (1), t € [0,T],

X2(0) = 0, Y2(0) = @ (T)X(T) + E[®,(T)¥(T)] + D5(T),

where
oo (t,Z1p,) = / o (610 (8, Elg, ) + M (t) — 11" (¢, Z1E, ), Pax () 4a(as (1) == (1)), V5 (1)) dA,
0

1
t,Z1p,) = / 0 (0,10 (8, B, ) + AT (8) = T (¢, ET g, ), Pas (1) 4 A (A= (1) A= (1)) 07 (1)
0
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A () + A" (1) — A (2)))d,

A5(t) = (b5 (1) — :c(t))Xl =) + (b5 (1) — by (1)) Y2 (1) + (b2(1) — b=(£)) Z27°(t) + 3b(t) g, (1)
R[5, (8) = by () X (0)] 4+ B[, (8) — by ()Y (0] + b (DE (W (1),

B5(t) = (0, =1g. ) — Jz(t))Xl “(t) + (o3(t, Elp,) — oy (1) Y (2)
+ (

(05(t,E1p,) — 0(1) - (Z7°(t) — E(t)IE. (1))
+B[(67, (. E1p,) — 6,0, (1) X1 (8)] + E[(67, (1. E15,) — 6,0, ()Y (1)),
C5(t) = (£2(8) = fo(8) X2 (1) + (f5 () = fy ()Y 1=(8) + (f2(t) = fo(£))Z2"(t)

+qo(t)do (¢, 5)()Le, (¢ )HE[(fﬁl( )~ Fun (D)X (1)
+ BI(5, (0 — fu (0 (0] + £ (D3O, (1) + 07 (1)L, (1)
D5(t) = (25(T) — &, (T)) X (T) + E[((T) — &, (7)) X"<(T)].
Thanks to Theorem 2.2, we have

E[ sup (1220 + (1) / 122(1) |dt
t€[0,T]

SLE{(/OT|A§(t)dt + /O |C’§(t)|dt g /O |B§(t)|2dt>2+|D§(T)|4}. (4.10)

Now we analyse C5(t).
a1) According to the Lipschitz property of f, and (4.7)-i), ii), we have

5[( [ 120 - w2 0) |
<[ 1z - ora)} =] [ 1 wpa)

L{E[ swp_ (120 + 1" <t>|8+|\x ()I[2 + 1Vt >||L2)

0<t<T

IN

1
([ i or o oa) Y E][ 7 ora)]) <o
as) Thanks to Assumption (A3.1), one can check

6f(t) = fQtII°(), Pa=ry, v(t)) — f(EII°(2), Pax 1), u™ (1))
= f(t, X" (), Y™ (1), Z"(t), Px= ),y 1)), v(t) — f(t,0,0,Z7(t), 0, v(t))
— (f(t, X7(t), Y™ (1), Z*(t), P x=(), v+ ey, u* (1)) — f(t,0,0, Z*(t), do, u"(t)))
+ f(¢,0,0,Z*(t), 00, v(t)) — f(t,0,0, Z%(t), b0, u" (t))
S LA+ [X*O+ YOI+ X Oz + YOl 22 + [v@)] + [ @)]).

Hence, E[( [ [6f()|Tg. (t)dt)"] < Let.
ag) Since |f5, (8) = fu (O] < (X O]+ V1 O]+ 2 @)1 @)z + IV (0] 22 127 ()] +
|V1(t)]), then it follows from Hélder inequality and (4.7)-i), ii),

B[( [ RGO - @£l |



A Global Optimality Principle 397

gﬂ[mowwwﬂEKAqmﬁﬁwﬁmww01smé

t€[0,T)

Consequently, E|( fo |C5 (t |dt) | < Let.
As for B5(t), we only estimate the terms of (0S(¢,Zlg.) — 0, (¢))(Z4(t) — Z(t)Ig. (¢)) and

E[(67,, (8, ELs.) = 04, ()Y (1)),
b;) Notice

02 (t, ELg,) — 0-(t)]
<Joa (4, T (£, E1 g, ), Pae 1), 05 (1) — 02 (8)] + 0% (£, EL5.) — o2 (£, T (£, El s, ), Ppe ey, v° ()]
SLA+ X7+ YOI+ X Oz + Y @)l|22 + [o@)] + [u* ()] + [E() )IE. (2)

+ LX)+ (V@) + 121 () = EOLe. ()] + [|X O[22 + 1V (D) 22),

and
ZVE(8) — S(8) T, () = ko(H)X (1) + Blk: () X (1)

(see (4.2)). From the boundness of kg, ]gﬁ (t) and (4.7)-1), ii), we can get

T 2
E(/ ((05(t,Z15. ) — 0. ())(Z5(t) — E(t)IEE(t))Pdt) < L&t (4.11)
0
bs) With the help of the Lipschitz property of ffuz, we obtain

Opa (t, L, ) = 0115 (1) <06, (1, E)Lp. () + X1 (1) + V' (O)] + 12" (1) — E()1g. (1))
X O]z + POl + 1 XD+ VD).

The boundness of 3#27 po, p1, the relation (4.2) and Holder inequality can imply

o (1LELs,) = 6, (1) Y5 (1))

s (6 ELE) — Uuz(t) ot )Xl ()] + E[(07,, (t.EL5.) — 6,1, (1) E[p1 (1) X H(1)]
1

[ ) t } {E|X1 5 |2} 2

u
+LE[ sup | X1 ( t)|}]E (t,ZIg.) — 6, (B)]].
tEOT

)Y
)P

Hence, from (4.7)-i) we obtain
T .. . . 2
B( [ IBIG;,(0510) - b )V ()Pde) < L
0

Similar to C5(t), B5(t), we also have E[(fo | A5 (¢ |dt) + |D§(T)[*] < Le*. The proof is com-
plete. O
Remark 4.4. It should be point that if (4.2) does not hold true we can not obtain (4.11).
In fact, we have to calculate E[fOT |ZY(t)ZY= (1) [2dt] = [fo — Z*(t))Z"#(t)[*dt] when

estimating (4.11). But from (4.7)-i), ii), we can not get E( fo |Z1 )Z1 (t )|2dt)2 < Le*. Hence,
the relation (4.2) plays an important role in our analysis.
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4.2 Second-order Variational Equation

The second-order variational equation can be read as
ax¢ = {bu () X2(8) + by ()Y (1) + b2 (1) Z2°(t) + B, () X>(1)] + Blbyy (1)7 (1)

5

+ 5 (X15(0))?[1,po(#), ko(1D*b(1)[1, po(t), ko(t)]T + %E[bmal(t)()?l’g(t)f]

N = N =

by ()X (1) (o(1)%] + 8b(t, =T, (1)}t

+{oalOX5(0) + 0y ()Y > (0) + 0. (0) 72 (0) + Bld, () X2 (1)

+

+ (X5 ())[L, po(t), ko(£)1D?a ()[1, po(t), ko ()]T + %E[gmm(t)()?l’a(f)f]
+ %E[fgfuz@ (E)(X (1) (Po(t)?] + 6ou (t, E)p, () X1 (t) + E[o,, (£) Y 22 (1)]
+ 00y (t, E)p, ()po(t) X = (t) + do. (t, E)1p, (t)ko(t)Xl’E(t)}dW(t), t € 10,77,
X?#(0) =0,

AY3(1) = ~{ FoOXPE(0) + £,V ?2(0) + Fo0)277(0) + Bl (0K (0)
R (0F25(00] 4 5 (X (01, po(0), ko (DLD* FO[L, (1), kolD)]T
4 B ()X 2(0)?] Bl (000(0)) (X (1)) + 1) (1, )
+ 6/ (6, E)] g, () }dt + Z2aw (1), t € [0, 7],

Y2(T) = B,(T)X*(T) + BI@,(T)X>(T)] 4 Ly (T)(XV(T))? 4 SR, (T)(X#(T)).

Proposition 4.5. Under Assumptions (A3.1)-(A3.3), for any 2 < B < 4, there exists a
constant L > 0 such that

T B
E[ sup (|X2’5(t)|6+|Y2’5(t)\5)+(/ \Zz’e(t)|2dt) }ngﬂ.
0<t<T 0

Proof. Thanks to Theorem 2.2, (4.7) and Hoélder inequality, one can obtain
8

B sup (0P + V*4017) + ( / Ci2ewpar) ]

: B
gLE[(/O (186(t, )|+ (308, D)| +[6£(-.5)DLe () + |X <) + BIX (1)) |
- T g
+L1E_(/O XL+ E[|X (04 + | X5 ()P 1g, (t)dt) }

[V

}

<LefE|( /E (L (X + [V @)+ X @]z + 1Y @]z + lo(8)] + Ju @)t

+ LE| sup |X1’5(t)|2ﬂ +L5§E[ sup |X1’E(t)|ﬁ} < LéP.
-t€[0,T] te[0,T]
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Lemma 4.6. Let Assumptions (H3.1) hold and let (0, F,P) be an intermediate probability space
and independent of space (2, F,P), and let (1 (w,® t))te[o 11, (P2(@, t))te[() 1) be two stochastic

processes defined on the product space (% €, FxF, ]P’®]P’) and the space (Q F, IP’) respectively.
Moreover, assume @;, i = 1,2 satisfies the followmg properties:
i) There exists a constant C > 0 such that, for t € [0,T], |1 (w,@,t)| < C,P ® P-a.s.

ii) For 8 > 1, there exists a constant Cg depending on (3 such thatE[bupte[O 71 lp2(@, )] 28 <
Cg. Then

T ~ ~
E| /0 [Elipr (.8, )pa(@, )X (1) ] < 0. (4.12)
Proof. Insert (4.2) into (4.1), we have

ax*4(0) = {BIX(0) (b (0 ) + (£)ka (¢ >+bm<t> +im<tr <t>
- Blb (051 (0])] + X520 (b (1) + by (B)pot) + () }t

1 {B[X (1) (0 (0 (¢ +o—z<t>/%<>+o—m<t>+au2<> o(t) (4.13)
+IE0H2 t)ﬁlt]]+X“t( t) + oy (t)po(t)
+ 0. (t)ko(t)) + 8o (t, E)p. () }dW (t), t € [0, T,

X*€(0) = 0.

Notice the coefficients of the above equation are bounded, similar to the proof of Proposition
4.36] we have the desired result. O

Proposition 4.7. We make the same assumption as Proposition 4.5, then
Ye(0) = Y*(0) + Y12(0) + Y2(0) + o(e).
Proof. DefineX3(t) = X°(t) — X*(t) — XLe(t) — X22(t),V3(t) = Ye(t) — Y*(t) — Y1e(t) —
Y2e(t), Z3(t) = Z5(t) — Z*(t) — Z1=(t) — Z?(t). Then we have
A1) = {bu(t by (V1) + b () Z3(1) + Efb, (0 X3(0)]
+ E[ m( )y3( )| + A5(t) bt
+{o. (X3 E) + oy (V1) + 0. (1) Z3(t) + Elb,, (1) X3(1)]

+ b Mz( )V ()] + B3 (t) }dW (¢), (4.14)
V() = —{ L (DX(D) + Fy (O (0) + [ (D Z3(1) + Bl (03 (1)]

+ IE[f,Q (t)y ()] + C5(t) bt + Z3(t)dW (t), t € [0,T],
X3(0) =0, YT) = o (T)X¥T) + B[®, (T)A*(T)] + D5(T),

where
A5(t) = {0b, (¢, 2) X () 4 0by (£, E)V*(t) + 0b.(, E) (2 (t) — E(O)IE. (1))
+E[5b, (1,521 (1)] + Elb,, (£, DI (0] M. ()
+ 31X, V1), (21(5) — E(0)Le. (1)) D (1,1,
[X1(2), Y1 (1), (21 (t) — E0)1E. ()]
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(X1(1))?[1,po(t), ko (1) D?b(B)[1, po (1), ko (t)]7
BB, (X (6)? — by () (X (1))?)

+ zE[bzmx Y1)~ busan (T ()],
t) + 00y, (£, E)V(t) + b0 < =)22(t)

B5(t) = {60,(t,E)A?
+R[66,, (t,E)X2(1)] + E[66,,(t, Z)Y )] }HE. (t)

r—\[\D HM\H
A ~—

[I]

+SIX0, 910, (210 - 2015 (¢ >>1D2<rf< Elp)

10,510, (21(0) W) Te, ()"

— S po(0), ko (BP0, po(0), ko0 (4.15)
+ SB15, 0, (O = b (D))

1.

+5El8 #2a2<>< H0))? — s ()7 (1)7]
(51D + 85,0, IV + 50,520 015, 0)
+E[5fm(t =) (0] + B3 (4,2)9 (0]} (1)
£ IO, 9 (), (2'(1) ~ S(0)Te, ()] D (1, =L,
(02710, (2% = =), ()]

|

(X020, po(0). ko) D2F (D[, po(t). ho(®)]T

2
Sl (D (1) ~ fonar (X (1))
S a0 (1) ~ (N (6)7),
D3(T) = 5 (#2, ()X (1)) — @, (T) (X (7))
+ R[5, (T)(R1(T))? — () (X (7))?].

Let us consider a fully coupled mean-field linear FBSDE:
{fy (OVR(0) + by (NS () + 0y (D) L(H) + Efy (DR (D) +E[iu2< )3(1)]
B[, (1) L(8)] Yt + { f.()R(t) + b (£)S(t) + o4 (t }dW(t
= _{fx(t)Rt + b, (1)S(t) + ou(8) L(¢ )"’E[fm( )Rt )]HE[ L()S
+ E[6,, (1) L) Yt + L)W (t),
R(0) =1, S(T) = .(T)R(T) + E[@,(T)R(T)].

);
S (1)) (4.16)

Applying Ito formula to S(¢)X3(t) — R(t)V3(t), we have
d(S(t )XB( t) =RV (1))
—{3 5(8) + L(8)B5(8) + R()C5(8) ydt + {S()E[D,., (1) X3 (1)] — X% () E[b,,, (1) S (2)]
R(t)E [fm( A1) — A3(t ) [ful( YR(1)] + L(t ) [0, (D X3 (1) — X3 ()E[G,,, (£) L(1)]
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+ OB (03 (1)] — YA OBIb (DS(D)] + ROELf s ()I(0)] — YR (OR(D)]
+ L(OE[G,, ()Y (1)] = VP () E[6,, () £(0)] bt + {- - - FdW (8).
Integrating from 0 to T" and taking expectation as well as notice
E[S()B[b ()X (1)] — X (@B[b,, (0S(1)] =0,

we obtain

Y(0) = EY(0)] = E[RID)D(T) + [ (S04 + LOB50) + R(OC5 (1)) e

Now let us estimate }3(0) one by one.
a) First, from Holder inequality, Assumption (A3.1) and Proposition 4.2 and notice X' (t) =
X1E(t) + o(e), it yields

E[|R(T)D5(T)]]
gL{EH%(@E (T)(XN(T))2 — qI>M(T)(X1’E(T))2)

B[(®5,(T)(X4(T))? — Bya(T)(X (1)) ]}

1
2

+
I\D\H

<L{R[(95,(T) = B0 (1) PIX ()| + B85, (T) — @ (T)PIX4(T)1]}* + 0(e?)

=o(e?).

b) Let us now analyse E[ITS(t)Ag(t)dt}. Since E[ sup [S(t)[*] < 400, it is enough to
0<t<T

prove E ( fo |AS (¢ |dt) | = o(£?). We only prove the following two estimates:

/ b2 (1 EL6) (21 (1) — Z(05 (1) — box (ko (D)2 (X5 (1)) | = o(e?),
(4.17)

i) E[( / 1600 (D ()2 — Gy ()T (1)) | = 0(2),

because the other terms can be calculated similarly. R
As for i), since Z1(t) — E()Ig, (t) = Z2(t) + ko(t) X 1= (t) + B[k (£) X 1(t)], we have

T 2
E[( / bo.(t ELe,) (21(1) = 26, (1) — boa (D)o (1)2(X 4 (1))t ) |
<iE|( / b, (8, E15,) | Z22(1)] + (b2 (1, E1 5, ) — bas () (ko (1) 2 (X 4 (1))
5 (4 B ) [l (1) (1)) %) |
gLE[(/O |22(t)\2dt) ]+LE[/O |b§z(t,EIE€)—bzz(t)|2|X1’5(t)\4dt}
T ~
+ LE[ / (B [k (£) X 15 (1)) ] (4.18)
0

According to (4.7)-iii), Lemma 4.6 and the continuity property of b,,, we obtain (4.17)-i).
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On the other hand, due to Y'(t) = Y?(t) + Y1(¢), the boundness of 3H2a2 and Holder
inequality allow to show

E[( /OT E[67 0, (V' (1)” = Opnas (t)(Yl’E(t))Z]dt) 2}

gLE[ sup |y2(t)|4] +L{]E[ sup |y2(t)|4”%{1[<1[ sup |Y1’€(t)\4”%

te[0,T] t€[0,T
A~ T A~ ~
4 LEE[ [165,0,0) = Bpaaa 01V (0]
0

Then (4.17)-ii) comes from Proposition 4.3 and the continuity property of 7,4, ().
c¢) In order to estimate E| fOT L(t)B5(t)dt], we need to calculate the following four estimates:

T
i>E[ / £(0)50.(1,E) (21 (1) = E(0)Le. (1)L, (1] = o(e);

/ L(OE[66,, (t, )X (t)]1E, (t)dt} = o(e);
(4.19)

ii) | / £(0)(05(4,Z1p,) (21(1) = ELe. (1) — 020 (ko(1)2(X1#(1))*)dt] = ofe);

T
E| / LB 0y (1 D)V (D)? = G (DT (8))2)dt] = o).
For i), recall
Z1(t) — E(WO1g, (1) = Z2(8) + Z5(8) = ZO)Tp, (1) = 22(t) + ko() X (1) + Bl ()X = (1),
then we get from the boundness of o, and Holder inequality,

T
E[ / L(t)d0-(t,Z) (21(1) fE(t)IEE(t))IEE(t)dt}
0

<LE| / LONZ2(E) + ko(t)X (1) + Blkr (1) X1 (1)) [T, (1)t

gL{E[/OT C(t)[*1, (t)dt] } {E[/OT |z2(t)|2dt} }%
vret (] [ icopswal} {5 s xor])

Prop051t10n 4.3 can show E[fo (t)o0.(t,2) (21 (t) — E(t)Ip. (1))Ip. (t)dt] < Lep(e), where

1
p1(e) == L{E[fo |L(t)|*1p_(t)dt] } . From Dominated Convergence Theorem, pi(e) tends to
0, as ¢ — 0. (4.19)-ii) can be proved by Proposition 4.3, Holder inequality and Dominated
Convergence Theorem. Let us focus on (4.19)-iii). First,

T
B[ [ L0005 (1 SR (EH0 ~ Z0)T5 (0 = o) (o) (X)) ] = 1) + Do),

where
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+ Bl (6 X (1)) ]
L(e) == E[ /O : L(#)oaa (1) [ (ko () X2 (1) + Bl ()X (8)]) = (ko(£)( Xl,a(t))z]dt} .
For I5(¢), the boundness of ¢, and Lemma 4.6 can show
n(e) < 28] | L0l OB (X @] < 2pt6) (4:20)

Let us now estimate I;(¢). Notice I1(g) < I11(e) + I12(¢), where
T .
ha(e) = E[/ [L()||o2. (t, ELR,) — 022 (1) (ko (1) X (8) + Elkn () X 2 (1)]) *dt |5
0

T
Iia(e) == E[/O IL()|lo2, (¢, Ele.)[| Z22(1)]1 2 (t) — ()L, (t) + ko(£) X 1(t)
+IAE[I§:1(t)X1’€(t)]|dt].
Due to

T 2
I(e) < LE| / L(0)]l05. (4,E5.) = oa (O] sup |XTE(0)]+ B[ sup | X<(1)])at]

0<t<T 0<t<T

< L{E[ sup |X1’5(t)4”é{IE</OT £(8)][0%. (¢, 1 s,) —azz(t)|dt)2}%,

0<t<T

it is easy from Dominated Convergence Theorem and (4.7) to get I11(e) < ep(e). The boundness
of 0., implies

112(8)

T A S A
<E[ [ 1£OIZ0)10% 0L k00X (0 + Bl (0 X ()] ]
T
+E| / L1220, (1 ELs, ) (21 (1) — Z()1e <t>>|dt}
gL{E[Oi?ETp(“ /|£ (vf2ar] } / 2P}’
+8[ [ 10220 |\2/ (610 (1. Z L) + A (1) — 11 (1, ZL),
P (i (0-a- (0> 0° (1) = 0 (6 T (1 E18, ), Pae 0, 0 (6)) dA |t

T
B[ [ 101220020 + 02y (P (1) + Blopa (02 (1) + Blo, (03" ()]

Then, according to (4.7) and Dominated Convergence Theorem again, it follows I15(e) < ep(e).
Let us now prove (4.19)-iv). Notice that

/ LIS 0 (1 D)D) — Gy ()7 (0))) ]
<E| / LB (15Z) — Sy (O][F (1) 2]

VB[ ORI DI OF - 170
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According to Hélder inequality and the relation Y1=(¢) = po(t) X 2(t) + Elpy () X 12 (2)], it
follows

B[ [ OB = GO0
T

T bpoa [T . 3
<{B [ 1Pt} (BB [ 1670(t.2) = dans (O o017 (1) a)
0 0

Nl

+{]E/OT |£(t)|2dt}%{EE/OT|322a2(t,5)—Emaz(t)|2|]E[’:fl(t)X1’E(t)}|4dt} .

On the one hand, Dominated Convergence Theorem allows to show

T 1
(BB [ 160.62) = s OF (X0 ) < ).

On the other hand, according to Lemma 4.6 and the boundness of ff@am we obtain

[N

(1]

e /oT 670006 2) = Gpna ()P Bl () X2 (1)t}
<o{a] [ Bhog o))} <o,

Besides, thanks to the boundness of 3H2a2 and Proposition 4.3, one can check
T A~
B [ 1EOIE[167,0, 0 DI 0 - 1720
0
T
<te[ [ @B @) + V015 0l
0

1 1 T 1
gm«:{ sup |y1<t>+Y1’€<t>|2} iBf swp (20)P} B / et} < Led,
te[0,T] te[0,T) 0

Finally, E [fo (t)dt] can be calculated similar to E[fo (t)A5(t)dt]. O

In order to prove the SMP, we show the following relation of Y1¢, X and X?*¢ with the
help of the first- and second-order adjoint equation.

Proposition 4.8. Let Assumptions (A3.1)-(A3.3) hold true, then

(4.21)

where Py, Py, Ko, K1 are given in (3.8) and (3.9);

J(t) = (1= po(t)o=(1)) ™ po(t){oy (DM () + o= (£)K(1) +E[3u2(t)/\;l(t)}}
+ Py(t)do(t,Z) X E( e (8) + (1 — po(t)o=(8)) " po(H) X4 (D)1 (1)
{(50:1; L E) + po(t)doy(t, ) + ko(t)do.(t, E)},
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(M, K) satisfies

aMm(t) = ~{ [H)(t) + o (1)1 (Opo(1)(1 = po(t)or=(£) ] M(1)

+ B[(H2, () + A2 + BI, (1)
10, (0 £2()po (D) (1~ o) (1)) ™ 6 (1)) M(8)]
+ [H2(t) + 0-(8) £ ()po (1) (1 — po(t)o- (1)) K1) + BIHL 0K ()] (422)
+ [SHO(t,=) + BIoH (1, Z)]
+ 5 (Po(t) + BIA(]) 6o (1, 2)] T, (1)t + K ()W (1), € [0,7],
M(T) =0,
with

SHO(t,Z) = po(t)db(t, Z) + qo(t)do(t,E) + 0 f(t, =),
E[0H" (t,Z)] = E[p1 (1)]0b(t, E) + Elgi2(t)]00 (t, Z).

Proof. Easy (but lengthy) calculations similar to Proposition 4.1 can yield (4.21). Hence, we
omit it. ]

Note that under Assumptions (A3.1)-(A3.3), (4.22) is a linear mean-field BSDE. According
to Theorem A.11201, (4.22) possesses a unique solution (M(-), K(-)) € S2(0,T) x HZ*(0,T).

In order to prove our SMP, let us first study the comparison theorem of mean-field SDEs.
By two examples we show that the comparison theorem of mean-field SDEs does not hold true
any more, if the diffusion coefficient o depend on mean field term, or the derivative of drift
coeflicient b with respect to mean-field term is negative.

Example 2. Consider

X'(t) = 1+/0 E[X!(s)]dW (s), s € [0,T], X2(t) :/O E[X?(s)]dW (s), s €[0,T].

Obviously, X1(t) = 1+ W(t), X%(t) =0, t € [0,T]. It is clear that P(W(t) +1 < 0) > 0 and
X1(t) < X2%(t), t €[0,T) on set {W(t) +1 < 0}.

Example 3. Let us consider two mean-field SDEs over [1, 2]:
¢ ¢
X'(t) = (W(1))? +/ ~E[X"(s)]ds +/ dW (s),
1 1
¢ ¢
X2(t) = / _E[X2(s)|ds + / AW (s)
1 1
It is easy to check X1(t) = (W(1))2 +el™t =1+ W(t) — W(1), t € [1,2] and X2(t) = W(¢t)

W (1), t € [1,2] are the solutions of the above equations, respectively. Obviously, X!(2) < X?(2)
on {(W(1))? < 1— e~ '}, which is of strictly positive probability.

Lemma 4.9. Assume b, i = 1,2 are Lipschitz and linear growth, and moreover, there exists
a constant L > 0, such that, for t € [0,T], 2 € R" &, & € L2(Fy;; R™),

bl(tvxvp&) - bl(t,x,P&) < L{E((f1 - 52)+)2}%'
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Let C(-) be a given adapted bounded process and zf, i = 1,2 initial value. By X' and X?
we denote the solution of the following mean-field SDE with data (x},b',C) and (x3,b%, C),
respectively,

Xi(t) = 2 + /0 b (s, X(s), Pxegs))ds + /O Cls)X()AW (s), s € [0,T].

If § < x§ and b*(t, X2(t),Px2()) < b2(t, X2(t), Px2(1)), P-a.s., then X'(t) < X%(t), t € [0,T],
P-a.s.

Proof. Denote AX (t) = X1(t) — X?(t), Ax = 2§ — 22. Then
t t
AX (1) = Az +/ (b (5, X2 (5), Pxagsy) — B2(5, X2(), Pz )dls +/ C(s)AX (s)dWV (3).
0 0

Applying Itd’s formula to ((AX(¢))T)?, it follows

d((AX(6))F)* = 2(AX (1) (0 (£, X (), Pxar)) — b2 (8, X2 (), Pxz())
+ Iiax =01 (CO)AX(8))dt + 2(AX (¢)) T C(t)AX (£)dW (t).
Recall 2§ < xf and b* (¢, X2(£), Px2()) < b2(t, X2(t), Px2(1)), P-a.s., we obtain
t

B{(AX(0)7] <E[ [ 2(AX ()05, X" (5). Pxs ) =8 5. X3(0). P s

# [ [ Taxo0) €6 (AX ()]

Thanks to the Lipschitz property of b! and the boundness of C(-), one has

E[(AX(6)")*] < LE| / (AX ()T (|AX(s)| + {E(AX ()))?}F)ds]

t t
+LE[/ ((AX(S))"’)st} < LE[/ ((AX(S))+)2ds]
0 0
Then the desired result comes from Gronwall inequality. 0

Remark 4.10. If b(s,z,-) is differentiable on P2(R™) and there exists a constant L > 0 such
that, for (s,z) € [0,7] x R", £ € L?(Fs;R"),

0 < (0ub)(s,2,P¢e;a) < L, a € R".

1
Then we have b(t,z,Pe,) — b(t,z,Pe,) < L{E((& — 52)“‘)2}2. In fact, the above inequality
comes from the observation:

1
b(s’ ‘T7HDE1) - b(s,x,PgQ = A E{aub(sv z7P£2+/\($1—€2);§2 + >‘(€1 - 52))(61 - 52):| aA

< LE[(& — &)1 < L{E((& - 52)+)2} '

The reader can refer to[2? for more detail.
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Corollary 4.11. Let A()

,C(-) and B(-) be three adapted bounded processes defined on Q and
0 x Q, respectively. By X ()

e denote the solution of the following linear mean-field SDE:

o

{ dX(t) = (A(t)X(t) + IE:[E}(t)X(t)])dt + C(t)X (t)dW(¢), t e [0,17],
X(0)=1.
FO<B(t) < L,t€0,T], P& P-as., then X(£) >0, t € [0,T], P-a.s.
Proof. Consider
dX'(t) = A)X ()dt + CH) X (t)dW (t), t€[0,T], X'(0)=1.
From Lemma 4.9, it follows X (t) > X'(t) > 0, ¢t € [0,T], P-as. O

Now let us show the proof of Theorem 3.3.

Proof of Theorem 3.4. For simplicity, we define

A(t) = Hy(t) + oy (8) 2 ()po(t)(1 = po(t)o= (1)) ™
(

B(t) = HO (1) + () + B, (0] + 0y (8) £ (0po () (1 — po(6)(£)) 6 (1):

C(t) = H2(1) + 0=() f-(D)po (1) (1 = po()o=(£) ™" D(t) := H(1);

3 (R0 + EIPy(0)]) (502, 2))%

J(t,Z) = 6HO(t,Z) + R[SH (1, 2)] + :

From assumption b(t) = I;le (t)=0, t €[0,T], P®P-as., we can rewrite (4.22) as
dM(t) = —(A®)M(t) + BIBEM()] + COK(E) + J(t,5)g, () dt
+ K(t)dW (¢), t e 0,17],
M(T) = 0.

We now consider the dual McKean-Vlasov equation:

dr(t) = (A(T(E) + BBOTE)])dt + COT W (1), t € [0,T], T(0) = 1.
From Itd’s formula to M(¢)I'(¢), one has
T N °
M(0) = E[ /O —D(®)E[B)M(H)] + MOE[BET(£)] + L(t)J (t, E)1g, (t)dt|.

Notice

Hence, M(0) = ]E[fOT D(t)J(t,E)Ig, (t)dt], which implies for any v € U, t € [0,T], P-a.s.,

D((SH(,Z) + RIS (1,2)] + 5 (o) + B[P (9]) (50 (1, 5))%) > 0.

According to Corollary 4.11, we obtain the desired result. The proof is complete. O
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Remark 4.12. Let us discuss two special cases:

i) If the coeflicients b, o, f, ® are independent of mean-field term and (y, 2), i.e., b(t, x,y, 2z, 1, v)
=b(t,z,v),0(t,x,y, 2, 1,v) = o(t,x,v), f(t,z,y, 2, u,v) = f(t, z,v), our case reduces to the one
studied by Peng!??). In this situation, (4.22) becomes

AM(t) = Jy ()1, (W) dt + K(#)dW (t),  te[0,T], M(T)=0,

where

Ji(t) = (b(t, X7 (), 0(t)) = b(t, X (), w™ (1)) po(t) + (o(t, X (8), v(t)) — o (t, X (1), u"(£))) g0 (¢)
+(f(EX5(),0(t) — f(E X (8),u" (1) + %Po(t) (o (t, X* (), 0(1)) — o (t, X*(8), u*(t))*.

ii) If the control system (1.1) is a fully coupled forward-backward control system without
mean-field term, i.e., b(t, x,y, z, u, v) = b(t, z,y, z,v),0(t, x, y, 2z, p,v) = o(t, x,y, z,0), f(t,z,y, 2,
w,v) = f(t,x,y,z,v), which is considered by Hu, Ji and Xuel'”), (4.22) is of the form

dM(t) = —(AM(t) + C(HOK(t) + Jo(t, E)IE_(t))dt + K(t)dW (t), te[0,7],
M(T) =0,

where J5(t,E) := §HO(t,Z) + S Py(t)d0(t, Z)? (see (3.41)7). Our SMP is just the one proved
by Hu, Ji and Xuel'7,

5 The Case without Assumption (A3.3)

In this section we study the case without Assumption (A3.3), i.e., gy € 'H;’ﬁ(O,T), qi1, 12 €

7—[;5@(0, T). From the previous section, we know that Lemma 4.6 is a critical tool in proving our

SMP. The boundness of coefficients of (4.13) plays very important role in the proof of Lemma
4.6. For this, we make the following assumption:

Assumption (A5.1) b, o are independent of z.
Clearly, under Assumptions (A3.1), (A3.2) and (A5.1), Lemma 4.6 holds. Moreover, one
can check that the solution (x(-)) of (4.3) satisfies E[ sup |z(¢)[*] < 4oo, which implies
0<t<T

Proposition 4.1 also holds true. Consequently, we have

Proposition 5.1. Suppose Assumptions (A3.1), (A3.3) and (A5.1) hold true, then

E[ sup [X°(t) = X*(8) = X5(8) - X>*(0)] < e2n(e),
0<t<T

T
E[ sup [VE(1) ¥ (1) - Y1E(0) - V(0 + / 25(t) — 2°(1) — 2'5(1) — 2% (1) P
0<t<T 0

§62p(€).

Proof. Thanks to Theorem 2.2 and (4.14), we can obtain

E[OE?ET("‘?’“)F + V3 @)2) + / 20t

<om[( [ o)+ ([ 1csom) + [ miopas i)
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where A5(+), C5(+), D5(T") are given (4.15), and

t) ={00,(t, Z)X2(t) + 60, (t, E)V2(t) + E[66,, (t, Z)X2(t)] + E[65,, (t,E)Y

(X1 (1), V' (1) D?0" (¢, ELg, ) (X (1), V' (1))

()]}, (1)

_l_

l\DM—‘[\DM—‘[\DM—‘[\DM—l

= 5 (XM ()*[Lpo(t)] D* (H)[1, po(t)]T

(X)) = Fyan () (XH(1))7]

+
=
Qo>
)

Hia1

A ~

(07120, () (V1 (0)? = Gz () (Y15 (1)))-

+
ﬁ)

Next we prove E[fOT |B5(t)|2dt] < e?p(e). We just analyse the mean-field terms. The other
terms can be estimated similarly. First, from Holder inequality it follows

E[ /0 ' ’]E[53m(t75)2?2(t)]1E5 (t)‘2dt}
g]E{/ E[ sup |282(t)|2} E[wém(t,z)ﬁ]dt}

0<t<T

<[ sup |¥(0)7] -EJE[/ 56y (1) Pdt] < (o).
0<t<T E.

where ps(¢) := EE e |§zgrm( ,2)[2dt]. Dominated Convergence Theorem allows to show pa(g) —

0 as ¢ = 0. Second, according to the boundness of 3#2(12 () and Proposition 4.3 one can check

E| / " [B165s (0O — by 070 ]
<Lk / RO + V() Pdt] + 28K | / 160~ (O () at]

T
<18+ 98 sup |V (1)) EE| / Gmas (8) = G (0] < 2p3(e),
0<t<T 0

where p3(e) := Le + QEE[IO |a#2a2( ) — 3#2@ (t)|?dt] satisfies p3(e) — 0 as | 0.

Define for T,Y, 2 € RMU/ € P(R ),p07q0ap1aq12 S Ra
Ho(t z, Y,z MauaPano) = b(taxayvu"u)po + O(taxay7/’[’?u)q0 + f(ta'r7yvza,u/7u)a
Hl(t xayyzaﬂwuaplvqu) = b(tvmyya,uvu)pl + J(tvxvy7/~l/vu)q12'

and
H(t, x,y, 2, 1, v, po(t), E[p1 (1)), qo (1),
=(po(t) + E[p1 (1)])b(t, 2, y, 1, v) + (g
*(Po(t) [Pl(t)])( (t,z,y, p,v
+ (t,2,y, 2 + po(t) (o (t, z, y, p, v) —

Theorem 5.2. Under Assumption (A3.1), (A3.2) and (A5.1), let u* be the optimal control
By (X*,Y*, 2%) we denote the optimal trajectory. Let (po(-),0()), (Br()>dua (), dua())) and

)+ Elgua (D))o (t, 2, y, 1, )

o(t, X7 (1), Y (), Pix ).y (1)), u" (1))

Bldua (1)), Po(t), B[Py (£)])
ot
) 2

U(t7 X*(t)a | (t)a P(X*(t),Y*(t))v u* (t)))7 s U)-
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(Po(+), Qo(+)), (Pl(),Qll(),ng())) be the solutions of the first- and second-order adjoint e-
quations, respectively. Moreover, we assume

Hy, (1) + Hy () + E[H), ()] + po(t) f2(8)0,2 ()0 (£) 2 0, ¢ € [0,T], P® P-a.s.,
where }3122 (1), I;f; (1), I};Z (t) is introduced in (3.2). Then for v € U, we have a.e., a.s,

H(t, X* (1), Y* (1), Z* (), Pixw 1),y (1)) v Do (£), E[p1 (B)], a0 (£), Elga2 (1)), Po(t), E[}%l ®)])
>HE X (1), Y (1), Z7 (1), Px(1),y=()), v (£), po(t), Ep1(t)], o(t), Elgi2(t)], Po(t), B[Py (1))

6 The Comparison with Buckdahn et al.’s SMP

In this section, let us consider Problem (BLM) (see Remark 3.1), and show the relation
between the solutions of adjoint equations in [6] (see (3.11), (3.13)) and that of our adjoint
equations.

If our system reduces to the system (3.3), (3.1) can be written as

dpo(t) = —{ba(t)po(t) + o2 (t)qo(t) + fo(t) }dt + qo(t)dW (t), t € [0,T7,

dpr(t) = —{bu(0)po(t) + 6, (D)0 (t) + Fu (1) + B (O)pr (1) + 64 ()dna(t)
+ Blbu ()51 (1) + 64 (E)daa (8)] Yt + Guy (AW () + Gua ()W (£), (6.1)
t€[0,T],

po(T) = @, (T), pr(T) = ,,(T).

Obviously, Assumption (A5.1) hold true. The boundness of the first-order derivatives of b, o, f, ®
allows to show that Assumption (A3.2) also hold. Besides, it is easy to see that condition (3.13)
is satisfied. As for the second-order adjoint system, (3.12) is of the form
dPy(t) = —{(00(t))* Po(t) + 2bs (t) Po(t) + 204 (£)Qo(t) + H,(t) }dt
+Q12( )dW(t), te[0,T],
Py(T) = ©,,(T),
dPy(t) = —{(62(1))* Po(t) + 2bo (1) Pr(t) +200(1)Qu2(t) + HL, (1) + H,, (1)
) B}, (D]}t + Qu)dW (1) + Qua()dV (1), € (0.7,
Pi(T) = ®,,4(T).
Thanks to Theorem 3.3, we have
Corollary 6.1 (Buckdahn et al.’s SMP). Under Assumption (A3.1), let u* be the optimal
control and X* be the optimal trajectory. Then
H(t X (), Prce 1), 0,20 (8), B[P (1)), a0 (£), Eldr()], Po(t), [Py (1)])
>H(t, X (), Pxce 0y, w” (1), po (1), Elp1 (1)), 00(2), Elgra(1)], Po(t), E[P1(2)),
v e U,a.e., a.s., (6.2)

where

H(ta Ty 1y vao(t)a E[ﬁl (t)]a qO(t)v E[élZ(t)]a PO(t)a E[ﬁ)l (t)])
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=(po(t) + Ep1 (D])b(t, 7, 1, 0) + (90(t) + Elgri2()]) o (t, 2, p, 0) + F(t, 2, 1, 0)
- %(Po(t) F B[P (1)) (0(t, 2, 1, v) — o (t, X*(£), Pyegry, u (1))

Next let us show that the above SMP is the same as that given by Buckdahn, Li, Ma (see
Theorem 3.51). In fact, from (6.1) it follows

AE[fn (1)) = ~{B[b (D60(t) + 8,u()iot) + Fu(t)] + ba (DL (5] + 00 () Elda (1)
+ BE[b, ()P (1) + 6, (Ddiz(8)] dt + Blara (0]dW (2), t € [0,7),
Eff1(T)] = E[®,,(T).

Notice the fact

(6.3)

BR[b,, ()5 ()] = BRI, (£)51 ()] = Blbu (B[ (£)],
we obtain
AHpo(®) + Blpr (]} = —{ba () o(t) + B (0]} + 0w(0){ao(®) + B0} + £:(0)

)
HE[f;()] [ (1) (Po(t) + fE[ 1(8)] + E[6,(t) (do ()
+E[q12 NN}t + {qo(t) + Elgia(t)] }dW (), t € [0,T],

po(T) + E[f1 (T)] = @.(T) + E[® u(T)]-
According to the uniqueness of the solution of mean-field BSDE (see Theorem 3.1[7)), we have
p(t) = po(t) + E[pr1 ()], a(t) = qo(t) + Elgua(t)], t € 0,7, (6.4)
where (p(-),q(-)) is the solution of (3.4). Similar to the above analysis, we can also get
d(Po(t) + BIPL (1)) = —{ (0. ()% (Ro )+MHOD+%AM%U+E@ﬁm
+ 20, (H)(Qolt) + ElQualt ) + Hy, (1) + B[, (1)

RIAD, () + BIAL ()}t + (Qo(t) + E[Ors(0]) Wt
t € 10,7,

Po(T) 4+ E[PL(T)] = @0 (T) + B[ (7))
Since
HO, (8) + BlH o (1)) = boa (D) (p0(t) + Elfr (0)]) + 020 (8) (a0 (8) + Eldna(0)]) + a0,
B[HS, 0 + ElHps00 (9] = BBy (6)(polt) + Blf1 ()]
+ G0 (0 (@0(t) + Eldiz(1)]) + fusa (8)]
then according to Theorem 3.11"! again, we have
P(t) = Po() +EIP(8)], Q1) = Qo) + B[Qu(v)],  te[0,7], (6.5)
where (P(-),Q(-)) is the solution of the following BSDE:
dP(t) = —{(02(t))*P(t) + 2b,(t) P(t) + 205 ()Q(t) + Ha (1) + E[Hyi,a, (1))}t
+Q[)dW (t), t € [0,T],
P(T) = mm(T) [ (T)]
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and
Hoyo () = bpa(t)p(t) + 022 (t)q(t) + fra(t),
Hulal (t) = Bulm (t)p(t) + é,ulm (0‘]@) + fmal (t>§

(p(+),q(+)) is the solution of (3.4). Clearly, from (6.2), (6.3), (6.4) and (6.5) we can see that our
SMP is consistent with Buckdahn et al.’s SMP.

7 Appendix

5

Theorem 7.1. Suppose A;(t) : [0, T]xQxQ — R™, Bi(t), Ci(t) : [0, T]xQxQ — R™¥d =12
are bounded stochastic processes. Let € : Q0 x Q — R™ and D(t) : [0,T] x Q x 0 — R™ satisfy

~ B
o 2

BE[€]°] < +oo, ]EE[(/OT |D(t)|2dt> ] <400, B>2.

Then the following mean-field BSDE

)

dY (t) = —{ A ()Y (t) + E[As(8)Y (1)] + B (£) Zux (t) + E[Ba(t) Z11 (1))
+ 1 (8) Zua(t) + B[Ca(t) Zua(t)] + D(t) bt

F Z0n(O)dAW (1) + Zia(8)dW (£), £ € [0, T),

. . . Sz s m 2, m 2, .Tom
exists a unique solution (Y, Z11, Z12) € S§®F(O, T;R™) x ngﬁ(o’ T; R™*4) x H]F@SIE‘(O’ T; R7% ),
The proof is similar to the proof of Proposition 3.2[4.
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