
Acta Mathematicae Applicatae Sinica, English Series

Vol. 40, No. 1 (2024) 109–128

https://doi.org/10.1007/s10255-024-1102-y
http://www.ApplMath.com.cn & www.SpringerLink.com

Acta Mathema�cae Applicatae Sinica,

English Series

© The Editorial Office of  AMAS & 
     Springer-Verlag GmbH Germany 2024

The Perturbed Compound Poisson Risk Model with

Proportional Investment

Nai-dan DENG, Chun-wei WANG†, Jia-en XU

School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China

(†E-mail: wangchunwei@haust.edu.cn)

Abstract In this paper, the insurance company considers venture capital and risk-free investment in a con-

stant proportion. The surplus process is perturbed by diffusion. At first, the integro-differential equations

satisfied by the expected discounted dividend payments and the Gerber-Shiu function are derived. Then, the
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1 Introduction

In recent years, the study of the compound Poisson risk model with diffusion has become
a new branch of the financial risk model. Gerber[12] introduced the compound Poisson risk
model perturbed by diffusion and obtained the asymptotic estimate of the ruin probability.
After that, many scholars have extensively studied more complex perturbed risk models, see
references [8–11, 14, 15, 21, 22, 25], etc., for details.

We begin to introduce the perturbed compound Poisson risk model mentioned in [12]. The
surplus at time t of the company is

Xt = x+ ct− St + σ1B1t, t ≥ 0, (1.1)

where x ≥ 0 is the initial capital, c > 0 represents the premium received per unit time.

St =
Nt∑
i=1

Yi is the total claims until t, {Nt}t≥0 is a homogeneous Poisson process with parameter

λ > 0 and Nt = sup{j : T1+T2+· · ·+Tj ≤ t} is the claim number during the time interval [0, t],
and inter-claim times {Ti}∞i=1 is a sequence of mutually i.i.d. following exponential distribution.
{Yi}∞i=1 is a set of nonnegative i.i.d. random variables with common distribution function FY (·)
and probability density function fY (·). {B1t}t≥0 is a standard Brownian motion, and σ1 > 0 is
the diffusion coefficient representing an additional uncertainty of the surplus process. Denote
the time of ruin by T = inf{t : Xt ≤ 0}. Define the ruin probability with the initial surplus x
by ψ(x) = P{T <∞|X0 = x}.

As we all know, investment refers to that investors invest a certain amount of funds in the
current period and expect to obtain certain income in the future; insurers also hope to provide
insurance strategies to avoid property risks in the investment process. The various risk models
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with investment have been studied by many researchers. Jostein Paulsen[17] considered the risk
model under stochastic return on investments as well as a stochastic level of inflation. It was
concluded that the random environment has a great influence on the ruin probability in [17].
Cai[2] studied the ruin problems of the classical risk model with stochastic interest rates. Yang
et al.[23] studied a renewal risk model with stochastic investment return process. For further
study on the problem of stochastic return, see references [3, 4, 7, 26, 27].

The actual operation of insurance companies is usually portfolio investment, including both
risk-free investment and risk-based investment. Where the risk-free asset {Pt}t≥0 satisfies

dPt = rPtdt, (1.2)

where r(r > 0) is interest rate of risk-free asset. The risky asset process {Qt}t≥0 following a
Lévy process defined as

Qt = eZt , (1.3)

Zt = a∗t+ σ2B2t, (1.4)

where a∗(a∗ > 0) represents the instant rate of the expected return of risky asset and σ2(σ2 > 0)
denotes the volatility rate of risky asset. {B2t}t≥0 represents the uncertainty related to the
return on investment, which is a standard Brownian motion. We assume that {Yi}∞i=1, {Nt}t≥0,
{B1t}t≥0 and {B2t}t≥0 are mutually independent. The risky asset process {Qt}t≥0 satisfies

dQt

Qt
=

(
a∗ +

1

2
σ2
2

)
dt+ σ2dB2t. (1.5)

Let p represent the proportion of the capital invested in the risky asset, where 0 < p < 1.
Obviously, the rest 1−p means the proportion of risk-free investment. Thus, the surplus process
under the two kinds of investments satisfies

dXt = pXt−
dQt

Qt
+ (1− p)Xt−

dPt

Pt
+ cdt− dSt + σ1dB1t, (1.6)

where Xt− indicates the left limit when the surplus approaches t from the left.
De Finetti[5] proposed a dividend strategy in the insurance risk model to optimize the

surplus in the insurance portfolio. Since then, scholars have studied the dividend problem
on various risk models, including [1, 6, 20]. Wan[21] studied the dividend payments and ruin
problems in the perturbed compound Poisson process with a dividend barrier strategy, but the
investment was not considered in that document. Chen and Ou[3] applied a dividend barrier
strategy to the stochastic return risk model; they used the sinc numerical method to obtain the
approximate solutions of the expected discounted dividend function and the expected penalty
function. Based on their research model[3], we consider the influence of the disturbance of the
classical model.

In the risk model (1.6), we consider dividend payments will be distributed to shareholders at
a constant rate α (0 < α ≤ c) when the surplus is above a constant barrier b(b > 0); however, no
dividend when the surplus is below b. The surplus process with dividend payments is denoted
by {Xbt}t≥0, then, we have

dXbt =


pXbt−

dQt

Qt
+ (1− p)Xbt−

dPt

Pt
+ cdt− dSt + σ1dB1t, Xbt− < b,

pXbt−
dQt

Qt
+ (1− p)Xbt−

dPt

Pt
+ (c− α)dt− dSt + σ1dB1t, Xbt− ≥ b

=

{
σ1dB1t + pσ2Xbt−dB2t + (βXbt− + c)dt− dSt, Xbt− < b,

σ1dB1t + pσ2Xbt−dB2t + (βXbt− + c− α)dt− dSt, Xbt− ≥ b,
(1.7)
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where β = (a∗+ 1
2σ

2
2)p+(1−p)r, and the positive security-loading condition is c−α > λE[Y1].

The present value of the total discounted dividend under the threshold dividend policy
controlled by boundary b is

Dx,b = α

∫ Tb

0

e−δtI(Xbt > b)dt

representing the discounted dividends add up to Tb, where δ > 0 is the discount factor, Tb =
inf{t : Xbt ≤ 0} is the moment of ruin. It is clear that Dx,b ∈ (0, α/δ). For x ≥ 0, V (x; b) is
the expectation of Dx,b, V (x; b) = E[Dx,b|X0 = x]. Denoting the set of all dividend strategies
by D , and we find the optimal dividend threshold b∗, satisfying V (x; b∗) = sup

b∈D
V (x; b).

The Gerber-Shiu function of the model (1.7) is defined by

Φ(x; b) = E[e−γTbω(XTb− , |XTb
|)I(Tb < +∞)|X0 = x], (1.8)

where ω(x0, y0), ( x0 ≥ 0, y0 ≥ 0), is a nonnegative penalty function, XTb− represents the
instantaneous surplus before ruin, and XTb

represents the deficit at ruin time, γ > 0 is the
discounted factor, and I(·) is the indicative function. In particular, if γ = 0 and ω(0, 0) = 1,
Φ(x; b) is converted to the ruin probability ψ(x; b) = P{Tb < ∞|X0 = x}. Let (Ω,F ,F,P)
be a filtered probability space containing all processes and random variables, satisfy the usual
conditions, i.e., Ft is right continuous and P-complete. In this paper, V (x; b) and Φ(x; b) are
fully smooth.

The rest of this paper is arranged as follows. In Section 2, we derive the equations and
the boundary conditions satisfied by V (x; b) and Φ(x; b). In Section 3, we use sinc numerical
method to find the approximate solutions of the equations. In Section 4, we give some examples
to describe the influence of investment proportion p on the dividend payments V (x; b) and ruin
probability ψ(x; b).

2 Integro-differential Equations

2.1 The Expected Discounted Dividend Payments

In this section, we will get the integro-differential equations satisfied by the expected discounted
dividend payments V (x; b). Clearly, V (x; b) behaves differently when the value range of x is
different. Hence, for convenience, we write V1(x; b) for 0 ≤ x ≤ b, and V2(x; b) for x > b. The
following theorems are two cases when the expression of the function V (x; b) is different.

Theorem 2.1. For 0 ≤ x ≤ b, V (x; b) satisfies the integro-differential equation

1

2
(σ2

1 + p2x2σ2
2)V

′′

1 (x; b) + (βx+ c)V
′

1 (x; b)− (δ + λ)V1(x; b)

+ λ

∫ x

0

V1(x− y; b)dFY (y) = 0, (2.1)

and for b < x < +∞, V (x; b) satisfies the integro-differential equation

1

2
(σ2

1 + p2x2σ2
2)V

′′

2 (x; b) + (βx+ c− α)V
′

2 (x; b)− (δ + λ)V2(x; b)

+ λ
[∫ x−b

0

V2(x− y; b)dFY (y) +

∫ x

x−b

V1(x− y; b)dFY (y)
]
+ α = 0, (2.2)

the boundary conditions are

V1(0; b) = 0; (2.3)
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lim
x→+∞

V2(x; b) =
α

δ
. (2.4)

Proof. For convenience, let

h1t =σ1dB1t + pxσ2dB2t + (βx+ c)dt,

h2t =σ1dB1t + pxσ2dB2t + (βx+ c− α)dt.

Furthermore, P (T1 > dt) = e−λdt = 1 − λdt + o(dt), P (T1 ≤ dt) = λdt + o(dt), considering a
small interval (0, dt], and discussing the time of the first claim, we get the formula for 0 ≤ x ≤ b

V1(x; b) = e−δdt{e−λdtE[V1(x+ h1t; b)] + (1− e−λdt)E[V1(x+ h1t − Y1; b)]}
= (1− δt)(1− λdt)E[V1(x+ h1t; b)]

+ (1− δt)(λdt)E
[∫ x+h1t−b

0

V1(x+ h1t − y; b)dFY (y)
]
+ o(t). (2.5)

By Itô formula, we get

E[V1(x+ h1t; b)] = E[V1(x; b) + V
′

1 (x; b)h1t +
1

2
V

′′

1 (x; b)(h1t)
2] + o(t).

If b < x < +∞,

V2(x; b) =e
−δdt{αdt+ e−λdtE[V2(x+ h2t; b)]}
+ e−δdt(1− e−λdt)E[E[V2(x+ h2t − Y1; b)|Y1 ∈ (0, x+ h2t − b)]

+ E[V1(x+ h2t − Y1; b)|Y1 ∈ (x+ h2t − b,+∞)]]

=(1− δt){αdt+ (1− λdt)E[V1(x+ h2t; b)]}

+ (1− δt)λdtE
[ ∫ x+h2t−b

0

V2(x+ h2t − y; b)dFY (y)
]

+ (1− δt)λdtE
[ ∫ +∞

x+h2t−b

V1(x+ h2t − y; b)dFY (y)
]
+ o(t). (2.6)

By Itô formula, we have

E[V2(x+ h2t; b)] = V2(x; b) + E
[
V

′

2 (x; b)h2t +
1

2
V

′′

2 (x; b)(h2t)
2
]
+ o(t).

Subtracting V1(x; b) and V2(x; b) on both sides of (2.5) and (2.6) respectively, dividing dt and
then letting dt→ 0, we obtain the integro-differential equations (2.1) and (2.2).

Moreover, when X0 = 0, ruin is immediate and no dividend is paid. When X0 tends to
infinity, ruin will never happen, and dividends are always paid at the rate α per unit time. So
we obtain (2.3) and (2.4). The proof of Theorem 2.1 is completed.

Remark 2.1. Because of the smoothness of the discounted aggregate penalty function, we
obtain V1(b−; b) = V2(b+; b);V

′

1 (b−; b) = V
′

2 (b+; b). A detailed discussion can be seen in [21].

2.2 The Expected Discounted Penalty Function

Obviously, Φ(x; b) also behaves differently, depending on the value between its initial surplus x
and the barrier level b. Hence, for convenience, we denote Φ(x; b) = Φ(x; b) if 0 ≤ x ≤ b and
Φ(x; b) = Φ2(x; b) if x > b. Using the similar proof method in equations (2.1) and (2.2), we get
the following theorems.
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Theorem 2.2. For 0 ≤ x ≤ b, Φ(x; b) satisfies

1

2
(σ2

1 + p2x2σ2
2)Φ

′′

 (x; b) + (βx+ c)Φ
′

(x; b)− (λ+ γ)Φ(x; b)

+ λ
[∫ x

0

Φ(x− y; b)dFY (y)+

∫ +∞

x

ω(x, y − x)dFY (y)
]
= 0, (2.7)

and for b < x < +∞, Φ(x; b) satisfies integro-differential equation

1

2
(σ2

1 + p2x2σ2
2)Φ

′′

 (x; b) + (βx+ c− α)Φ
′

(x; b)− (λ+ γ)Φ(x; b)

+ λ
[∫ x−b

0

Φ(x− y; b)dFY (y) +

∫ x

x−b

Φ(x− y; b)dFY (y)

+

∫ +∞

x

ω(x, y − x)dFY (y)
]
= 0, (2.8)

the boundary conditions are

Φ(0; b) = ω(0, 0); (2.9)

lim
x→+∞

Φ(x; b) = 0. (2.10)

Proof . Since the proof process of equations (2.7) and (2.8) is similar to equations (2.1) and
(2.2), we will not repeat it here. When x = 0, it goes to ruin immediately, then, Tb = 0. In this
case, both of the instantaneous surplus before ruin and deficit at ruin are zero, thus condition
(2.9) is met; when x→ +∞, ruin does not happen at all, hence Tb = ∞ and condition (2.10)
is also satisfied.

Remark 2.2. Because of the smoothness of the discounted aggregate penalty function, we
obtain Φ(b−; b) = Φ(b+; b) and Φ

′

(b−; b) = Φ
′

(b+; b).

3 Sinc Asymptotic Numerical Analysis

Since the exact solutions of the integro-differential equations (2.1)–(2.2) and (2.7)–(2.8) are not
easy to obtain, we will provide a numerical approximation method by using the sinc function
in this section.

3.1 Sinc Function Preliminaries

Since Frank Stenger[19] developed the sinc numerical method, subsequently, this method has
been widely used in the field of numerical analysis, see, e.g. [4, 13, 18]. Because the explicit
solutions of the equations are difficult to obtain, we will discuss the numerical solution. Nu-
merical analysis is widely used in various fields, such as the approximate transformation of
orthogonal transformation, the approximate solutions of ordinary differential equations and
partial differential equations[24].

We use the Cardinal function C(g, h) to characterize sinc methods, which is the sinc expan-
sion of function g, defined as

C(g, h)(u) =
∑
k∈n

g(kh)sinc
{u
h
− k

}
, −∞ < u < +∞. (3.1)
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where h > 0 is the step size, and the sinc function is defined on the real field R, by

sinc(u) =


sinc(πu)

(πu)
, u ̸= 0,

1, u = 0.

For any h > 0, the translation sinc functions with equally spaced nodes are represented as

S(j, h)(u) = sinc
(u− jh

h

)
, j = 0,±1,±2 · · · .

When u takes the interpolating points kh, the above formula is converted to

S(j, h)(kh) = δ
(0)
jk =

{
0, k ̸= j,

1, k = j.

Definition 3.1 (Definition 1.5.2[18]). On the real number field R, let ν represents a smooth one-
to-one mapping from Γ (∈ C) to R, with end-point s1 and s2 onto R, such that ν(s1) = −∞
and ν(s2) = +∞. Let κ = (ν)−1 represents the inverse map, so that

Γ = {u ∈ C : u = κ(x), x ∈ R}.

Based on ν, κ and a positive number h, we define the sinc points uk

uk = uk(h) = κ(kh), k = 0,±1,±2 · · · ,

and a function ζ, by ζ(u) = eν(u).

Let α̂, β̂ and d̂ be in R+, and Lα̂,β̂,d̂(ν) is the set of all functions g defined on Γ , here

g(u) =

{
O(|ζ(u)|α̂), u→ s1,

O(|ζ(u)|−β̂), u→ s2,

and the Fourier transform {g ◦ ν−1}∼ satisfies the relation

{g ◦ ν−1}∼(ξ) = o(e−d̂|ξ|)

for all ξ ∈ R, where α̂, β̂ ∈ (0, 1], and d̂ ∈ (0, π). Another family of functions is Mα̂,β̂,d̂(ν)

defined on Γ , such that ϑ = g − Lg ∈ Lα̂,β̂,d̂(ν) and where Lg is defined by

Lg(u) =
g(s1) + ζ(u)g(s2)

1 + ζ(u)
.

Writing N∗(N∗ > 0) as a integer, and integers M∗, m∗ are defined as

m∗ =
[ β̂N∗

α̂

]
, m∗ =M∗ +N∗ + 1.

A diagonal matrix Dm∗(g) and a computational operator Vm∗ are defined as

Dm∗(g) = diag[g(u−M∗), · · · , g(uN∗)],

Vm∗(g) = (g(u−M∗), · · · , g(uN∗))T ,
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where [·] represents the maximum integer, g is a function defined on (0,+∞), and T means
transpose. Set

h =
( πd̂

β̂N∗

) 1
2

,

γj = S(j, h) ◦ ν, j = −M∗, · · · , N∗,

ωj = γj , j = −M∗ + 1, · · · , N∗ − 1,

ω−M∗ =
1

1 + ζ
−

N∗∑
j=−M∗+1

γj
1 + ejh

,

ωN∗ =
ζ

1 + ζ
−

N∗−1∑
j=−M∗

ejhγj
1 + ejh

,

ω∗
−M∗ = (1 + e−M∗h)

[ 1

1 + ζ
−

N∗∑
j=−M∗+1

γj
1 + ejh

]
,

ω∗
N∗ = (1 + e−Nh)

[ ζ

1 + ζ
−

N∗−1∑
j=−M∗

ejhγj
1 + ejh

]
,

Ωm∗ = (ω−M∗ , · · · , ωN∗),

Ω∗
m∗ = (ω∗

−M∗ , ω−M∗+1, · · · , ωN∗−1, ω
∗
N∗).

Let

δ
(−1)
kj =

1

2
+

∫ k−j

0

sin(πt)

πt
dt,

then we denote matrix I(−1) = [δ
(−1)
kj ] whose elements in row k and column j are given by δ

(−1)
kj .

Theorem 3.1[16]. Let ν be a one-to-one conformal transformation defined on Γ . Then

δ
(0)
jk = [S(j, h) ◦ ν(u)]|u=uk

=

{
0, k ̸= j,

1, k = j,

δ
(1)
jk = h

d

dν
[S(j, h) ◦ ν(u)]|u=uk

=

{ (−1)
k−j

k − j
, k ̸= j,

0, k = j,

and

δ
(2)
jk = h2

d2

dν2
[S(j, h) ◦ ν(u)]|u=uk

=

{ −2(−1)
k−j

(k − j)
2 , k ̸= j,

−π
2

3
, k = j.

(3.2)

3.2 Numerical Approximate Solution of V (x; b)

To construct an approximate estimate on the interval (0,+∞), let ν(x) = log x, then we define
the one to one mapping of R+ → R, thus ζ(x) = eν(x) = x. For all h > 0, the sinc grid points
xk (k = 0,±1,±2, · · · ) take the form

xk = ν−1(kh) = ekh.
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Based on the sinc method, we get the composite translated sinc functions

Sj(x) = S(j, h) ◦ ν(x) = sinc
(ν(x)− jh

h

)
on the interval (0,+∞) for u ∈ Γ .

We apply the sinc method steps to rearrange the integro-differential equations (2.1)–(2.2)
into

1

2
(σ2

1 + p2x2σ2
2)V

′′(x; b) + (βx+ c− αI(x > b))V ′(x; b)− (δ + λ)V (x; b)

+ λ

∫ x

0

V (x− y; b)fY (y)dy + αI(x > b) = 0, (3.3)

by applying convolution formula, the above equation can further be written as

1

2
(σ2

1 + p2x2σ2
2)V

′′(x; b) + (βx+ c− αI(x > b))V ′(x; b)− (δ + λ)V (x; b)

+ λ

∫ x

0

V (y; b)fY (x− y)dy + αI(x > b) = 0, (3.4)

with boundary conditions

V (0; b) = 0, lim
x→∞

V (x; b) =
α

δ
.

It can be seen from the Definition 3.1 of sinc function that

LV (x; b) =
V (x1; b) + ζ(x)V (x2; b)

1 + ζ(x)
.

When x1 = 0, x2 → ∞, set

W (x) = V (x; b)− LV (x; b) = V (x; b)− x

1 + x

α

δ
, (3.5)

then W (x) ∈ Lα̂,β̂,d̂(ν), so

V (x; b) =W (x) +
x

1 + x

α

δ
, (3.6)

V ′(x; b) =W ′(x) +
1

(1 + x)
2

α

δ
, (3.7)

V ′′(x; b) =W ′′(x)− 2

(1 + x)
3

α

δ
. (3.8)

Substituting (3.6)–(3.8) into (3.4), and each side of the above equation is divided by 1
2 (σ

2
1 +

p2x2σ2
2), the following equation is obtained

W ′′(x) + P1(x)W
′(x) + P2(x)W (x) + λP3(x)

∫ x

0

fY (x− y)W (y)dy +R(x) = 0, (3.9)

where

P1(x) =
2(βx+ c− αI(x > b))

σ2
1 + p2x2σ2

2

, P2(x) = − 2(δ + λ)

σ2
1 + p2x2σ2

2

, P3(x) =
2

σ2
1 + p2x2σ2

2

,

R(x) =
2αI(x > b)

σ2
1 + p2x2σ2

2

− 2α

δ

1

(1 + x)3
+
α

δ

1

(1 + x)2
P1(x) +

α

δ

x

1 + x
P2(x)
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+ λ

∫ x

0

α

δ

y

1 + y
P3(x)fY (x− y)dy.

When x equals 0 or x goes to ∞,

W (0) = 0, lim
x→∞

W (x) = 0,

Then by using Theorems 1.5.13, 1.5.14 and 1.5.20 of reference [18], we obtain

∫ x

0

fY (x− y)W (y)dy ≈
N∗∑

j=−M∗

N∗∑
i=−M∗

ωiAiWj , (3.10)

W (x) ≈ W̃ (x) =
N∗∑

j=−M∗

WjS(j, h) ◦ ν(x), (3.11)

where

A = XSX−1 = hI−1Dm∗

( 1

(ν)′

)
,

and S is a diagonal matrix. A = [Aij ] is anM
∗+N∗+1-dimensional square matrix,Wj denotes

approximate estimate of W (xj), and ν(x) = lnx.
Substituting the integral terms of (3.10) into equation (3.9), and using sinc grid points xk

(k = −M∗, · · · , N∗) to approach x, and substituting (3.11) into (3.9), we obtain

W̃ ′′(xk) + P1(xk)W̃
′(xk) + P2(xk)W̃ (xk)

+ λP3(xk)

N∗∑
j=−M∗

N∗∑
i=−M∗

ωi(xk)AiWj +R(xk) = 0, (3.12)

where

W̃ (xk) =
N∗∑

j=−M∗

Wj [S(j, h) ◦ ν(xk)] =
N∗∑

Wj=−M∗

Wjδ
(0)
jk , (3.13)

W̃ ′(xk) =
N∗∑

j=−M∗

Wj [S(j, h) ◦ ν(xk)]′ =
N∗∑

j=−M∗

Wjν
′(xk)h

−1δ
(1)
jk , (3.14)

W̃ ′′(xk) =
N∗∑

j=−M∗

Wj [S(j, h) ◦ ν(xk)]′′

=

N∗∑
j=−M∗

Wj [ν
′′(xk)h

−1δ
(1)
jk + (ν′(xk))

2
h−2δ

(2)
jk ]. (3.15)

By replacing (3.13)–(3.15) in (3.12), the following equation is obtained

N∗∑
j=−M∗

{
ν′′(xk)δ

(1)
jk h

−1 + ν′(xk)
2δ

(2)
jk h

−2 + P1(xk)ν
′(xk)δ

(1)
jk h

−1

+ P2(xk)δ
(0)
jk + λP3(xk)

N∗∑
j=−M∗

N∗∑
i=−M∗

ωi(xk)Aij

}
Wj = −R(xk). (3.16)
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Multiplying both ends of the above equation by h2

(ν′(xk))
2 , we have

N∗∑
j=−M∗

{
δ
(2)
jk + h

[ ν′′(xk)

(ν′(xk))
2 +

P1(xk)

ν′(xk)

]
δ
(1)
jk + h2

P2(xk)

(ν′(xk))
2 δ

(0)
jk

+λ
P3(xk)h

2

(ν′(xk))
2

N∗∑
i=−M∗

ωi(xk)Aij

}
Wj = − h2R(xk)

(ν′(xk))
2 . (3.17)

Since

δ
(0)
jk = δ

(0)
kj , δ

(1)
jk = −δ(1)kj , δ

(2)
jk = δ

(2)
kj ,

ν′′(xk)

(ν′(xk))
2 = −

( 1

ν′(xk)

)′
,

thus the results after transformation are as follows

N∗∑
j=−M∗

{
δ
(2)
kj + h

[( 1

ν′(xk)

)′
− P1(xk)

ν′(xk)

]
δ
(1)
kj + h2

P2(xk)

(ν′(xk))2
δ
(0)
kj

+λ
P3(xk)h

2

(ν′(xk))
2

N∗∑
i=−M∗

ωi(xk)Aij

}
Wj = − h2R(xk)

(ν′(xk))
2 , k = −M∗, · · · , N∗. (3.18)

Set I(m) = [δ
(m)
kj ], m = −1, 0, 1, 2, where δ

(m)
kj is the element in row k and column j, here, I(m)

is a square matrix of order M∗ + N∗ + 1. Equation (3.18) can be rewritten in matrix form,
such as

BW = R, (3.19)

where W = [Wj ]
T , j = −M∗, · · · , N∗,

R =

[
− h2

R(x−M∗)

(ν′(x−M∗))2
, · · · ,−h2 R(xN∗)

(ν′(xN∗))2

]
,

B = I(2) − hDm∗

((
1

ν

)′

− P1

ν′

)
I(1) + h2Dm∗

(
P2

(ν′)2

)
I(0) + h2Dm∗

(
P3

(ν′)2

)
Ω∗

m∗A.

Equation (3.19) is M∗ + N∗ + 1-dimensional, where Wj are unknown parameters, j =
−M∗, · · · , N∗, so Wj can be obtained by solving equation (3.19). Thus, the approximate
solution of W (x) is obtained from equation (3.11), and according to (3.5), the expression of the
numerical solution of V (x; b) is

V (x; b) ≈ W̃ (x) +
x

1 + x

α

δ
=

N∗∑
j=−M∗

WjS(j, h) ◦ ν(x) +
x

1 + x

α

δ
. (3.20)

We denote the sinc approximation error of the expected discounted dividend payments by

ERRV = V (x; b)−
{ N∗∑

j=−M∗

WjS(j, h) ◦ ν(x) +
x

1 + x

α

δ

}
.

3.3 Numerical Approximate Solution of Φ(x; b)

Similarly, rearranging the integro-differential equations (2.7)–(2.8), we get the following equa-
tion

1

2
(σ2

1 + p2x2σ2
2)Φ

′′(x; b) + (βx+ c− αI(x > b))Φ′(x; b)− (λ+ γ)Φ(x; b)
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+ λ

∫ x

0

Φ(x− y; b)fY (y)dy + λ

∫ +∞

x

ω(x, y − x)fY (y)dy = 0, (3.21)

by applying convolution formula, the above equation can be written as

1

2
(σ2

1 + p2x2σ2
2)Φ

′′(x; b) + (βx+ c− αI(x > b))Φ′(x; b)− (λ+ γ)Φ(x; b)

+ λ

∫ x

0

Φ(y; b)fY (x− y)dy + λ

∫ +∞

x

ω(x, y − x)fY (y)dy = 0. (3.22)

with boundary conditions

Φ(0; b) = 1, lim
x→∞

Φ(x; b) = 0.

It can be seen from the Definition 3.1 of sinc function preliminaries

LΦ(x; b) =
Φ(x; b) + ζ(x)Φ(x; b)

1 + ζ(x)
,

where ζ(x) = eν(x). When x1 = 0, x2 → ∞, setting

W̄ (x) = Φ(x; b)− LΦ(x; b) = Φ(x; b)− 1

1 + x
,

then W̄ (x) ∈ Lα̂,β̂,d̂(ν), and W̄ (x) satisfies

W̄ ′′(x) + P1(x)W̄
′(x) + P2(x)W̄ (x) + λ

∫ x

0

fY (x− y)W̄ (y)dy + R̄(x) = 0, (3.23)

the boundary conditions are

W̄ (0) = 0, lim
x→+∞

W̄ (x) = 0,

where

R̄(x) =
2

(1 + x)3
− P1(x)

(1 + x)2
+

P2(x)

(1 + x)
+ λP3(x)

∫ x

0

1

1 + y
fY (x− y)dy

+
2λ

(σ2
1 + p2x2σ2

2)

∫ x

0

ω(x, y − x)dFY (y). (3.24)

Calculation method similar to V (x; b), we get

BW̄ = R̄, (3.25)

where W̄ = [W̄−M∗ , · · · , W̄N∗ ]T , W̄l represents the estimated value of W̄l(xl), we have

R̄ =
[
−h2 R̄(x−M∗)

(ν′(x−M∗))2
, · · · ,−h2 R̄(xN∗)

(ν′(xN∗))2

]
. (3.26)

Therefore, the expression of the approximate solution of Φ(x; b) is

Φ(x; b) ≈ W̄ (x) +
1

1 + x
=

N∗∑
l=−M∗

W̄lS(j, h) ◦ ν(x) +
1

1 + x
. (3.27)

We denote the sinc approximation error of the expected discounted penalty function by

ERRΦ = Φ(x; b)−
{ N∗∑

l=−M∗

W̄lS(j, h) ◦ ν(x) +
1

1 + x

}
.
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4 Numerical Illustrations

4.1 Error Analysis for a Particular Case

Gao and Yin[9] discussed the perturbed risk model with a constant dividend barrier, and ob-
tained explicit solutions (ES) of the expected discounted dividend payments and the ruin prob-
ability when the claim sizes are exponentially distributed, and the corresponding solutions of
the equation can be found in Section 6 (P.464). In the special case where σ2 = 0, r = 0, p = 0
and w(x, y) = 1, we can obtain integral-differential expressions consistent with Gao and Yin.
In this paper, the corresponding error is obtained by comparing the explicited solution with
the sinc approximation solution (SA). The values of parameters are the same in the simulation
process, and the specific situation of V (x; 8) and ψ(x; 8) can be directly listed in Tables 4.1 and
4.2.

Table 4.1. The values of V (x; 8) when σ1 = 0.8, λ = 1, δ = 0.06

x = 7.8 x = 7.85 x = 7.9 x = 7.95 x = 8.0 x = 8.05 x = 8.1 x = 8.15

SA 5.7366 5.7416 5.7467 5.7517 5.7567 5.7617 5.7666 5.7715

ES 5.5325 5.5936 5.6554 5.7177 5.7807 5.8444 5.9087 5.9737

error 0.2040 0.1480 0.0913 0.0340 0.0240 0.0827 0.1421 0.2022

Table 4.2. The values of ψ(x; 8) when σ1 = 0.8, λ = 1, δ = 0.06

x = 7.8 x = 7.85 x = 7.9 x = 7.95 x = 8.0 x = 8.05 x = 8.1 x = 8.15

SA 0.1047 0.1042 0.1037 0.1032 0.1027 0.1022 0.1018 0.1013

ES 0.0105 0.0105 0.0106 0.0107 0.0107 0.0108 0.0109 0.0110

error 0.0942 0.0936 0.0931 0.0925 0.0920 0.0914 0.0909 0.0903

It can be shown that the numerical solution obtained by sinc method is very close to the
analytical solution, and the difference between the results of the two methods is in a controllable
range.

4.2 Numerical Examples

In this section, we use the sinc approximation method to calculate the expected discounted
dividend payments and the ruin probability. When the claim sizes are exponential, mixture of
two exponential or lognormal distributions. Next, we analyze the numerical solution of V (x; b)
or ψ(x; b) in the case of exponential distribution, mixed exponential distribution or lognormal
distribution.

4.2.1 The Exponential Distribution Case

We assume that fY (y) follows an exponential distribution, in this subsection, it is assumed that
the specific expression of fY (y) is

fY (y) =

{
ηe−ηy, y > 0,

0, y ≤ 0.

Thus

fY (x− y) =

{
ηe−η(x−y), y < x,

0, y ≥ x.
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The following examples are discussed under the parameter values λ = 1, σ2 = 0.2, r = δ =
γ = 0.06, a∗ = 0.5, c = 0.4, α = 0.1, η = 5 and the barrier level b = 0.5 or b = 5.
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Figure 4.1. Curves of V (x; 0.5) when N∗ = 10, α̂ = 1
4
, β̂ = 1

2
, d̂ = π

4
,

σ1 = 0.2(left) and σ1 = 0.8(right).
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Figure 4.2. Curves of V (x; 5) when N∗ = 10, α̂ = 1
4
, β̂ = 1

2
, d̂ = π

4
,

σ1 = 0.2(left) and σ1 = 0.8(right).

Example A1. Figures 4.1 and 4.2 show the impact of investment proportion p on the results of
V (x; 0.5) and V (x; 5) for x ∈ (0, 10) under σ1 = 0.2 and σ1 = 0.8. When the diffusion coefficient
σ1 increases, the overall fluctuation trend of V (x; b) function is large, and when p increases, it
is more affected by investment risk. Combining the two groups of figures, we can observe that
with the increase of b, the fluctuation curve of dividend payments V (x; b) tends to be stable
faster. Let σ1 = 0.8 and p = 0.9, we fix the initial surplus x to seek the optimal dividend level
b∗, and obtained the following results. It can be seen that V (x; b) take the maximum value at
b = 0.4 in Table 4.3, so the optimal b∗ is around 0.4.

Table 4.3. The values of V (5; b) when b ∈ (0, 5)

b = 0 b = 0.1 b = 0.2 b = 0.3 b = 0.4

V (5; b) 1.29675 1.29678 1.29685 1.29688 1.29690

b = 0.5 b = 1 b = 2 b = 3 b = 5

V (5; b) 1.29628 1.29226 1.29220 1.28115 1.25310

Example A2. Let δ = 0, ω(·, ·) = 1, equation (1.8) is transformed into ruin probability
ψ(x; b) = P (Tb < ∞|X0 = x). In this case,

R̄(x) =
2

(1 + x)3
− P1(x)

(1 + x)2
+

P2(x)

(1 + x)
+ λP3(x)

∫ x

0

1

1 + y
ηe−η(x−y)dy
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+
2λ

(σ2
1 + p2x2σ2

2)
e−ηx.

For x ∈ (0, 10), we calculate the specific numbers of ruin probability when N∗ takes different
numbers. Tables 4.4 and 4.5 represent the estimated values of ψ(x; 0.5) and ψ(x; 5) for different
x. It can be seen that even if N∗ is small, the values of ruin probability can tend to be stable.

Table 4.4. The results of ψ(x; 0.5) when σ1 = 0.8, p = 0.1, α̂ = π
4
, β̂ = π

4
, d̂ = π

4
in different

values of N∗

N∗ x = 0.15 x = 0.5 x = 0.8 x = 1.5 x = 3 x = 5 x = 7 x = 10

10 0.93133 0.72779 0.60107 0.41127 0.23741 0.15279 0.11332 0.09021

15 0.93299 0.72637 0.60044 0.41112 0.23736 0.15283 0.11329 0.09019

20 0.93400 0.72534 0.59981 0.41102 0.23739 0.15280 0.11331 0.09021

25 0.93474 0.72455 0.59930 0.41092 0.23740 0.15278 0.11333 0.09020

Table 4.5. The results of ψ(x; 5) σ1 = 0.8, p = 0.1, α̂ = π
4
, β̂ = π

4
, d̂ = π

4
in different values

of N∗

N∗ x = 0.15 x = 0.5 x = 0.8 x = 1.5 x = 3 x = 5 x = 7 x = 10

10 0.91720 0.70714 0.57984 0.39619 0.23103 0.15211 0.11366 0.08182

15 0.92022 0.70804 0.58051 0.39616 0.23061 0.15109 0.11347 0.08188

20 0.92210 0.70878 0.58071 0.39624 0.23085 0.15015 0.11303 0.08198

25 0.92347 0.70921 0.58093 0.39627 0.23076 0.15119 0.11349 0.08177

Example A3. Figures 4.3 and 4.4 show the impact of investment proportion p on the results
of ψ(x; 0.5) and ψ(x; 5) for x ∈ (0, 10) under σ1 = 0.2 and σ1 = 0.8. As shown in Figures 4.3
and 4.4, when p is constant, the greater σ1 is, the ruin probability fluctuates relatively large.
When σ1 is constant, the greater p is, the higher the ruin probability is. From these two sets
of figures, it can be judged that when b = 5, the inflection point of the ruin probability curve
moves forward.
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Figure 4.3. Curves of ruin probability ψ(x; 0.5) when N∗ = 10, α̂ = 1
4
, β̂ = 1
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, d̂ = π

4
,

σ1 = 0.2(left) and σ1 = 0.8(right).

4.2.2 A Mixture of Two Exponential Distributions Case

We assume that fY (y) follows a mixture of two exponential distributions, in this subsection,
the probability density function is

fY (y) =

{
τ1θe

−θy + τ2θ
∗e−θ∗y, y > 0,

0, y ≤ 0.
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where τ1, τ2 > 0, τ1 + τ2 = 1, thus

fY (x− y) =

{
τ1θe

−θ(x−y) + τ2θ
∗e−θ∗(x−y), y < x,

0, y ≥ x.
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Figure 4.4. Curves of ruin probability ψ(x; 5) when N∗ = 10, α̂ = 1
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σ1 = 0.2(left) and σ1 = 0.8(right).
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Figure 4.5. V (x; 0.5) based on parameters N∗ = 10, α̂ = 1
4
, β̂ = 1

2
, d̂ = π

4
, σ1 = 0.2(left)

and σ1 = 0.8(right).
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Figure 4.6. V (x; 5) based on parameters N∗ = 10, α̂ = 1
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, β̂ = 1
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, d̂ = π

4
, σ1 = 0.2(left)

and σ1 = 0.8(right).

We discuss the following examples under parameter values λ = 1, σ2 = 1, r = δ = γ =
0.06, a∗ = 0.5, c = 0.4, α = 0.1, θ = 3, θ∗ = 3, τ1 = 0.8, τ2 = 0.2 and the barrier level b = 0.5
or b = 5.
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Example B1. Figures 4.5 and 4.6 describe how investment proportion p affects the results of
V (x; 0.5) and V (x; 5) for x ∈ (0, 10) under σ1 = 0.2 and σ1 = 0.8. It can be seen from Figures
4.5 and 4.6, as the value of u increases, the two curves almost coincide, and the influencing
factors of volatility coefficient σ1 gradually decrease. Therefore, σ1 has a great impact on the
initial value of the expected discounted dividend payments. Comparing Figures 4.5 and 4.6, it
is obvious that the curves of V (x; 5) almost coincide when the value of b is large enough under
different p.

Table 4.6. The values of V (5; b) when b ∈ (0, 5)

b = 0 b = 0.1 b = 0.2 b = 0.3 b = 0.4

V (5; b) 1.32008 1.32013 1.32023 1.32029 1.32031

b = 0.5 b = 1 b = 2 b = 3 b = 5

V (5; b) 1.31936 1.31403 1.31406 1.30102 1.27796

By selecting the same parameter as the exponential distribution case, we get the results as
shown in the following table. It can be seen intuitively that the discounted dividend payments
reach the maximum when b = 0.4 in Table 4.6, so the optimal dividend level b∗ is around 0.4.

Example B2. By analogy with the example of the exponential distribution, when the claim
sizes follow a mixture of two exponential distributions. In this case,

R̄(x) =
2

(1 + x)3
+

2λ

(σ2
1 + p2x2σ2

2)
(τ1e

−θx + τ2e
−θ∗x)− P1(x)

(1 + x)2
+

P2(x)

(1 + x)

+ λP3(x)

∫ x

0

1

1 + y
(τ1θe

−θ(x−y) + τ2θ
∗e−θ∗(x−y))dy.

For x ∈ (0, 10), we also calculate the specific numbers of ruin probability whenN∗ takes different
results. Tables 4.7 and 4.8 show that even if N∗ is small, the values of ruin probability can also
stabilize. It can be seen from the tables that the probability of ruin can be reduced when the
value of b is increased.

Table 4.7. The results of ψ(x; 0.5) based on parameters σ1 = 0.8, p = 0.1, α̂ = π
4
, β̂ = π

4
,

d̂ = π
4

in different values of N∗

N∗ x = 0.15 x = 0.5 x = 0.8 x = 1.5 x = 3 x = 5 x = 7 x = 10

10 0.93986 0.73906 0.61213 0.41751 0.23624 0.14968 0.11022 0.08741

15 0.94204 0.73782 0.61158 0.41738 0.23618 0.14973 0.11020 0.08739

20 0.94337 0.73690 0.61099 0.41729 0.23621 0.14968 0.11022 0.08741

25 0.94433 0.73619 0.61052 0.41720 0.23622 0.14966 0.11024 0.08740

Table 4.8. The results of ψ(x; 5) based on parameters σ1 = 0.8, p = 0.1, α̂ = π
4
, β̂ = π

4
,

d̂ = π
4

in different values of N∗

N∗ x = 0.15 x = 0.5 x = 0.8 x = 1.5 x = 3 x = 5 x = 7 x = 10

10 0.90355 0.69700 0.57311 0.39176 0.22656 0.14808 0.11022 0.07906

15 0.90552 0.69751 0.57354 0.39170 0.22616 0.14706 0.11000 0.07912

20 0.90673 0.69797 0.57360 0.39174 0.22639 0.14616 0.10954 0.07921

25 0.90763 0.69822 0.57373 0.39174 0.22630 0.14716 0.11002 0.07901

Example B3. Figures 4.7 and 4.8 describe how investment proportion p affects the results
of ruin probability ψ(x; 0.5) and ψ(x; 5) for x ∈ (0, 10) under σ1 = 0.2 and σ1 = 0.8. As
shown in the Figures 4.7 and 4.8, when σ1 is constant, with the gradual increase of x value, the
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investment proportion has little effect on the ruin probability and the investment risk decreases.
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Figure 4.7. Ruin probability ψ(x; 0.5) based on parameters N∗ = 10, α̂ = 1
4
, β̂ = 1

2
, d̂ =

π
4
, σ1 = 0.2(left) and σ1 = 0.8(right).

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

ψ
(x
;5
)

σ
1
=0.2,p=0.1

σ
1
=0.2,p=0.9

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

ψ
(x
;5
)

σ
1
=0.8,p=0.1

σ
1
=0.8,p=0.9

Figure 4.8. Ruin probability ψ(x; 5) based on parameters N∗ = 10, α̂ = 1
4
, β̂ = 1

2
, d̂ = π

4
,

and σ1 = 0.2(left) and σ1 = 0.8(right).

4.2.3 The Lognormal Distribution Case

It was found that the claim sizes in automobile insurance loss obeys lognormal distribution. In
this part, we apply this distribution to our risk model. Assume that fY (y) follows a lognormal
distribution with parameter (μ, 2s2), where 2s2 is the process variance parameter. In this
subsection, we assume the probability density function of the claim amount is

fY (y) =

⎧⎨
⎩

1

2πsy
e−

(ln y−μ)2

4s2 , y > 0,

0, y ≤ 0.

Thus

fY (x− y) =

{
1

2πs(x−y)e
− [ln(x−y)−μ]2

4s2 , y < x,

0, y ≥ x.

Furthermore, let λ = 1, σ2 = 0.2, r = δ = γ = 0.06, a∗ = 0.5, c = 1.2, α = 0.1, μ = 0.08, s =
0.02 and the barrier level b = 0.5 or b = 5. We discuss the influence of parameter change on
ruin probability and the expected discounted dividend payments.

Example C1. By observing Figures 4.9 and 4.10, we can see that the curves fluctuation
range of V (x; 0.5) and V (x; 5) for x ∈ (0, 10) is large when σ1 = 0.2, and their minimum point
is around x = 1. When σ1 = 0.8, the value of V (x; b) increases with the increase of x. From the
two groups of graphs, p = 0.9 pays more dividends than p = 0.1.
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Figure 4.9. Images of V (x; 0.5) when N∗ = 10, α̂ = π
4
, β̂ = π

4
, d̂ = π

2
, σ1 = 0.2(left) and

σ1 = 0.8(right).
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Figure 4.10. Images of V (x; 5) when N∗ = 10, α̂ = π
4
, β̂ = π

4
, d̂ = π

2
, σ1 = 0.2(left) and

σ1 = 0.8(right).

Using the same procedure for the lognormal distribution as in the example above, we get
the following presentation in Table 4.9. The optimal threshold dividend level b∗ is also around
0.4.

Table 4.9. The values of V (5; b) when b ∈ (0, 5)

b = 0 b = 0.1 b = 0.2 b = 0.3 b = 0.4

V (5; b) 1.32454 1.32458 1.32460 1.32466 1.32469

b = 0.5 b = 1 b = 2 b = 3 b = 5

V (5; b) 1.32416 1.31913 1.31910 1.30420 1.26846

Example C2. Using a similar method to the above two cases, and bringing the density
function of the claim sizes to follow lognormal distribution into the equation (3.24), the result
is transformed into

R̄(x) =
2

1 + x3
− P1(x)

1 + x2
+ 2P3(x)

∫ +∞

x

1

2πsy
e−

(ln y−μ)2

4s2 dy +
P2(x)

1 + x

+ λP3(x)

∫ x

0

1

1 + y

1

2πs(x− y)
e−

[ln(x−y)−μ]2

4s2 dy.

Under x ∈ (0, 10), an approximate estimate of the ruin probability is given when N∗ takes
the following four different numbers. Tables 4.10 and 4.11 list the results of ψ(x; 0.5) and ψ(x; 5)
when the parameters take different values. By analyzing the two groups of tables, as the value
of b increases, the corresponding ruin probability gradually decreases and then tend to a stable
range eventually. Moreover, the values of N∗ have little effect on the results of ruin probability.
when N∗ is small, it will reach the exact value.
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Example C3. Comparing Figures 4.11 and 4.12, it can be seen that when σ1 = 0.2, the
changing trend of curves ψ(x; 0.5) and ψ(x; 5) for x ∈ (0, 10) first increases and then decreases,
and reaches the maximum value near x = 1.2. With the increase of σ1, the variation range of
curves decreases, which is affected by perturbed factors. In addition, with the increase of b, it
can be obtained from Figure 4.12 that the two curves of ψ(x; b) overlap regardless of the value
of investment proportion p.

Table 4.10. The numerical values of ψ(x; 0.5) when σ1 = 0.8, p = 0.1, α̂ = π
4
, β̂ = π

4
, d̂ = π

4
in different values of N∗

N∗ x = 0.15 x = 0.5 x = 0.8 x = 1.5 x = 3 x = 5 x = 7 x = 10

10 0.92760 0.74796 0.68463 0.50469 0.26161 0.15576 0.11168 0.07971

15 0.92480 0.74238 0.67825 0.50376 0.26188 0.15537 0.11223 0.07956

20 0.92321 0.73983 0.67501 0.50340 0.26173 0.15559 0.11214 0.07952

25 0.92240 0.73826 0.67305 0.50324 0.26162 0.15563 0.11206 0.07962

Table 4.11. The numerical values of ψ(x; 5) when σ1 = 0.8, p = 0.1, α̂ = π
4
, β̂ = π

4
, d̂ = π

4
in different values of N∗

N∗ x = 0.15 x = 0.5 x = 0.8 x = 1.5 x = 3 x = 5 x = 7 x = 10

10 0.91561 0.72823 0.66434 0.49039 0.25559 0.15513 0.11201 0.07964

15 0.91373 0.72493 0.65923 0.48957 0.25552 0.15373 0.11241 0.07955

20 0.91280 0.72411 0.65678 0.48937 0.25558 0.15310 0.11188 0.07961

25 0.91249 0.72373 0.65553 0.48933 0.25536 0.15414 0.11221 0.07952
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Figure 4.11. Images of ruin probability ψ(x; 0.5) when N∗ = 10, α̂ = π
4
, β̂ = π

4
, d̂ = π

2
,

σ1 = 0.2(left) and σ1 = 0.8(right).
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Figure 4.12. Images of ruin probability ψ(x; 5) when N∗ = 10, α̂ = π
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, β̂ = π
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, d̂ = π
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,

σ1 = 0.2(left) and σ1 = 0.8(right).

Acknowledgements. The authors would like to thank the editors and the anonymous re-



128 N.D. DENG, C.W. WANG, J.E. XU

viewers for their comments and suggestions. We would like to thank Dr. Chen Xu for her help
with numerical simulation.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] Albrecher, H., Azcue, P., Muler, N. Optimal dividend strategies for two collaborating insurance companies.
Adv. Appl. Probab., 45(2): 515–548 (2017)

[2] Cai, J. Ruin probabilities and penalty functions with stochastic rates of interest. Stoch. Proc. Appl.,
112(1): 53–78 (2004)

[3] Chen, X., Ou, H. A compound Poisson risk model with proportional investment. J. Comput. Appl. Math.,
242: 248–260 (2013)

[4] Chen, X., Xiao ,T., Yang, X.Q. A Markov-modulated jump-diffusion risk model with randomized obser-
vation periods and threshold dividend strategy. Insur. Math. Econ., 54: 76–83 (2014)

[5] De Finetti, B. Su un impostauione alternativa della teoria collectiva del rischio. Trans. Xvth Congr.
Actuaries., 2: 433–443 (1957)

[6] Deng, C., Zhou, J.M., Deng, Y.C. The Gerber-Shiu discounted penalty function in a delayed renewal risk
model with multi-layer dividend strategy. Statist. Probab. Lett, 82(9): 1648–1656 (2012)

[7] Dong,Y.H., Wang, D.C. Uniform asymptotics for ruin probabilities in a two-dimensional nonstandard
renewal risk model with stochastic returns. J. Inequal. Appl., 2018(1): 1–18 (2018)

[8] Fang, Y., Wu, R. On optimality of the barrier strategy for the classical risk model with interest. Acta.
Math. Appl. Sin-E., 27(1): 75–84 (2011)

[9] Gao, H.L., Yin, C.C. A perturbed risk process compounded by a geometric Brownian motion with a
dividend barrier strategy. Appl. Math. Comput., 205(1): 454–464 (2008)

[10] Gao, H.L., Yin, C.C. The perturbed Sparre Andersen model with a threshold dividend strategy. J.
Comput. Appl. Math., 220(1/2): 394–408 (2008)

[11] Gao, S., Liu, Z.M. The perturbed compound Poisson risk model with constant interest and a threshold
dividend strategy. J. Comput. Appl. Math, 233(9): 2181–2188 (2010)

[12] Gerber, H.U. An extension of the renewal equation and its application in the collective theory of risk.
Scand. Actuar. J., 1970(3-4): 205–210 (1970)

[13] Liu, G.Y., Chen, X., Zhuo, W.Y. Dividends under threshold dividend strategy with randomized observa-
tion periods and capital-exchange agreement. J. Comput. Appl. Math., 366(3): 112426 (2020)

[14] Liu, Z., Chen, P., Hu, Y.J. On the dual risk model with diffusion under a mixed dividend strategy. Appl.
Math. Comput., 376: 125115 (2020)

[15] Lu, Y.H., Li, Y.F. Dividend payments in a perturbed compound Poisson model with stochastic investment
and debit interest. Ukr. Math. J+, 71(5): 718–734 (2019)

[16] Lund, J., Bowers, K. Sinc Methods for Quadrature and Differential Equations. SIAM, Philadelphia, PA,
1992.

[17] Paulsen, J. Risk theory in a stochastic economic environment. Stoch. Proc. Appl., 46(2): 327–361 (1993)
[18] Stenger, F. Handbook of Sinc Numerical Methods. CRC Press, Taylor and Francis Group, 2011.
[19] Stenger, F. Numerical Methods Based on Sinc and Analytic Functions. Springer, New York, 1993.
[20] Vierkötter, M., Schmidli, H. On optimal dividends with exponential and linear penalty payments. Insur.

Math. Econ., 72: 265–270 (2017)
[21] Wan, N. Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by

diffusion. Insur. Math. Econ., 40: 509–532 (2007)
[22] Wang, G.J. A decomposition of the ruin probability for the risk process perturbed by diffusion. Insur.

Math. Econ., 28(1): 49–59 (2001)
[23] Yang, Y., Yuen, K.C., Liu, J.F. Uniform asymptotics for finite-time ruin probability in a dependent risk

model with general stochastic investment return process. Acta. Math. Appl. Sin-E., 37(4): 847–857 (2021)
[24] Zarebnia, M., Abadi, M.G.A. A numerical sinc method for systems of integro-differential equations. Physic

Scripta, 82(5): 055011 (2010)
[25] Zhang, Z.M. On a perturbed Sparre Andersen risk model with threshold dividend strategy and dependence.

J. Comput. Appl. Math., 255: 248–269 (2014)
[26] Zhou, M., Yuen, K.C., Yin, C.C. Optimal investment and premium control in a nonlinear diffusion Model.

Acta. Math. Appl. Sin-E., 33: 945–958 (2017)
[27] Zhuo, W.Y., Yang, H.L., Chen, X. Expected discounted penalty function for a phase-type risk model with

stochastic return on investment and random observation periods. Kybernetes, 47(2): 1–15 (2018)


	Introduction
	Integro-differential Equations
	The Expected Discounted Dividend Payments
	The Expected Discounted Penalty Function

	Sinc Asymptotic Numerical Analysis
	Sinc Function Preliminaries
	Numerical Approximate Solution of V(x;b)
	Numerical Approximate Solution of (x;b)

	Numerical Illustrations
	Error Analysis for a Particular Case
	Numerical Examples
	The Exponential Distribution Case
	A Mixture of Two Exponential Distributions Case
	The Lognormal Distribution Case





