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Abstract Kawasaki disease (KD) is an acute, febrile, systemic vasculitis that mainly affects children under

five years of age. In this paper, we propose and study a class of 5-dimensional ordinary differential equation mod-

el describing the vascular endothelial cell injury in the lesion area of KD. This model exhibits forward/backward

bifurcation. It is shown that the vascular injury-free equilibrium is locally asymptotically stable if the basic

reproduction number R0 < 1. Further, we obtain two types of sufficient conditions for the global asymptotic sta-

bility of the vascular injury-free equilibrium, which can be applied to both the forward and backward bifurcation

cases. In addition, the local and global asymptotic stability of the vascular injury equilibria and the presence

of Hopf bifurcation are studied. It is also shown that the model is permanent if the basic reproduction number

R0 > 1, and some explicit analytic expressions of ultimate lower bounds of the solutions of the model are given.

Our results suggest that the control of vascular injury in the lesion area of KD is not only correlated with the

basic reproduction number R0, but also with the growth rate of normal vascular endothelial cells promoted by

the vascular endothelial growth factor.
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1 Introduction

Kawasaki disease (KD), also known as mucocutaneous lymph node syndrome (MCLS), is an
acute, febrile, systemic vasculitis that mainly affects children under five years of age[26]. KD
has been occurring in many countries and its incidence has been increasing[1, 11, 19, 21, 26]. To
better prevent and control KD, national epidemiological surveys are regularly conducted in
some countries, such as Japan and Korea, which have high rates of the disease[1, 21]. Over
the past 50 years since the discovery of KD by Tomisaku Kawasaki in [20], many important
advances have been made by researchers worldwide in the search for the cause of KD and its
pathogenesis[30]. Nevertheless, there are still many gaps in the etiology and pathogenesis of KD.
In developed countries, KD is the most common cause of acquired heart disease in children[26].

KD can be divided into complete KD and incomplete KD, depending on the number of
principal clinical features[23]. In patients with incomplete KD, the paucity of clinical symptoms
makes early diagnosis difficult and makes it easy to miss and misdiagnose. Untimely treatment
leads to increased risk of coronary artery aneurysms in patients with KD. In untreated cases,
the incidence of coronary artery aneurysms occurs in around 20–30%[6]. Currently, the most ef-
fective anti-inflammatory treatment for KD is early intravenous immunoglobulin (IVIG), which
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reduces the systemic inflammatory response and is effective in reducing the incidence of coro-
nary artery aneurysms. However, about 10-28% of patients are still resistant to IVIG treatment
and additional complex treatment is needed for this group of patients[6, 26]. Prompt prevention,
diagnosis and treatment of KD can go a long way towards reducing the damage the disease can
do to your child’s body.

Although the cause of KD remains unknown, many scholars have studied the pathogenesis
of KD and the understanding of its pathogenesis is increasing. Epidemiological studies suggest
the presence of infectious triggers in the pathogenesis of KD. A variety of pathogenic organisms
have been reported to be associated with the development of KD, including viruses, bacteria and
fungi[18, 27]. Many researchers believe that KD is caused by one or more unknown pathogenic
factors that trigger the disruption of the body’s immune system and the abnormal expression
of various cytokines, resulting in acute systemic vasculitis[6, 30]. Cytokines are critical in the
pathogenesis, diagnosis and treatment of KD[8]. In recent years, based on the interaction
mechanism between some important cytokines (vascular endothelial growth factors, adhesion
molecules/chemokines and inflammatory cytokines) and normal endothelial cells in the lesion
area of patients with KD, Qiang et al.[28] constructed the following ordinary differential equation
model to describe the inflammatory response of KD:

ĖN (t) = s+
αEN (t)V (t)

1 + V (t)
− βEN (t)P (t)− dNEN (t),

V̇ (t) = β1EN (t)P (t)− dvV (t),

Ċ(t) = β2EN (t)P (t) + ηV (t)− dcC(t),

Ṗ (t) = δC(t)− dpP (t).

(1.1)

In Model (1.1), EN (t), V (t), C(t) and P (t) denote concentrations of normal endothelial cells,
vascular endothelial growth factors, activated adhesion molecules/chemokines and inflammatory
cytokines in the lesion area at time t, respectively. The constants s > 0 and dN > 0 denote the
rates of proliferation and apoptosis of normal endothelial cells, respectively. The constant α > 0
denotes proliferation rate of normal endothelial cells promoted by vascular endothelial growth
factors. The vascular endothelial growth factor promotes normal endothelial cells proliferation
following the saturated functional response (αEN (t)V (t)/(1 + V (t))[22]). The constant β >
0 is the rate of injury of normal endothelial cells caused by inflammatory cytokines. The
constants β1 > 0 and β2 > 0 denote the production rates of vascular endothelial growth factors
and activated adhesion molecules/chemokines caused by inflammatory cytokines, respectively.
The constant η > 0 denotes the production rate of adhesion molecules/chemokines induced
by vascular endothelial growth factors. The constant δ > 0 denotes the production rate of
inflammatory cytokines by increasing of abnormally activated immune cells. The constants dv >
0, dc > 0 and dp > 0 denote hydrolytic rates of vascular endothelial growth factors, activated
adhesion molecules/chemokines and inflammatory cytokines, respectively. Model (1.1) exhibits
forward/backward bifurcation. In [14, 28], in order to ensure that the solution of Model (1.1)
is bounded, the authors assume that α < dN holds and study the local and global stability of
the equilibria of Model (1.1). Moreover, in [12, 15], Guo et al. further considered the effect of
time delays and nonautonomous factors on the inflammatory response in KD.

In the acute phase of KD, the concentrations of many inflammatory cytokines (such as
tumor necrosis factor (TNF)-α, interleukin (IL)-1β) are elevated[8]. Inflammatory cytokines
can injure endothelial cells and disrupt the barrier function of endothelial cells, and can fur-
ther induce injured endothelial cells to express adhesion molecules, chemokines, etc[25, 28, 29].
Therefore, it is more reasonable to divide the endothelial cells into normal endothelial cells and
injured endothelial cells in the construction of the model. We use EI(t) to denote the concen-
tration of injured endothelial cells in the lesion area of patients with KD at time t. Based on
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the above discussion and [28], we can obtain a diagram of the mechanism of action between
normal endothelial cells, injured endothelial cells, vascular endothelial growth factors, activated
adhesion factors/chemokines, and inflammatory cytokines in lesion area of KD (see Figure 1.1).
This derives the following ordinary differential equation model describing endothelial cell injury
in the lesion area of KD:

ĖN (t) = s− dNEN (t) + rEN (t)
(
1− EN (t)

K

)
+

αEN (t)V (t)

1 + V (t)
− βEN (t)P (t),

ĖI(t) = βEN (t)P (t)− dIEI(t),

V̇ (t) = γ1EI(t)− dvV (t),

Ċ(t) = γ2EI(t) + ηV (t)− dcC(t),

Ṗ (t) = δC(t)− dpP (t).

(1.2)

In Model (1.2), normal endothelial cells growth is assumed to also satisfy logistic growth

rEN (t)(1 − EN (t)
K ), where the constant r > 0 is the intrinsic growth rate, and the constant

K > 0 is carrying capacity of the logistic mitosis. The constant dI > 0 denotes the apoptosis
rate of injured endothelial cells. The constants γ1 > 0 and γ2 > 0 denote the production
rates of endothelial growth factor and activated adhesion molecules/chemokines resulting from
endothelial cell injury, respectively. The biological meanings of the remaining parameters in
Model (1.2) are the same as in Model (1.1).

Figure 1.1. Schematic diagram of Model (1.2).

We find that Model (1.2) has a backward bifurcation within a certain range of parameters,
which means that Model (1.2) has positive equilibria even if the basic reproduction number is
less than 1. Also, it is interesting to observe that the parameter α can cause the appearance
of the Hopf bifurcation at the vascular injury equilibrium (positive equilibrium), and that the
vascular injury equilibrium is always unstable when the α is relatively large. Although, the
later calculations show that the expression for the basic reproduction number of Model (1.2) is
independent of the parameter α, this also suggests that the control of KD vasculitis is closely
related to the parameter α. The presence of backward bifurcation and Hopf bifurcation in Model
(1.2) under some conditions may cause difficulties in the study of the global dynamics of Model
(1.2), in particular the global stability of the equilibria of Model (1.2). In this paper, we will
study the global stability of the vascular injury-free equilibrium (boundary equilibrium) and the
vascular injury equilibrium (positive equilibrium) of Model (1.2) by constructing appropriate
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Lyapunov functions (e.g., some construction techniques of Lyapunov functions can be found in
[2–4, 7, 13, 24] and the references therein). Moreover, we will consider the permanence of Model
(1.2) through some analytical techniques (see e.g., [10, 13, 15, 16, 32, 33] and the references
therein). Some explicit expressions are given for the ultimate lower bounds for the components
of any positive solution of Model (1.2) if the basic reproduction number is greater than 1. These
explicit expressions can be used to estimate the lower bounds of the concentrations of injured
vascular endothelial cells, vascular endothelial growth factors, adhesion molecules/chemokines
and inflammatory cytokines.

The rest of this paper is organized as follows. The well-posedness, dissipativeness and
classification of equilibria of Model (1.2) are obtained in Section 2. Section 3 studies the local
and global stability of the vascular injury-free equilibrium of Model (1.2). Section 4 studies
the permanence of Model (1.2) when the basic reproduction number is greater than 1. Section
5 studies the local stability of the vascular injury equilibria, the existence of Hopf bifurcation
caused by the parameter α, and the global stability of the vascular injury equilibrium when the
basic reproduction number is greater than 1. Some numerical simulations are given in Section
6. The last section concludes the paper.

2 Preliminaries

The initial condition of Model (1.2) is given as follows:

EN (0) ≥ 0, EI(0) ≥ 0, V (0) ≥ 0, C(0) ≥ 0, P (0) ≥ 0. (2.1)

Here EN (0), EI(0), V (0), C(0) and P (0) denote the initial concentrations of normal vascular
endothelial cells, injured vascular endothelial cells, vascular endothelial growth factors, adhesion
molecules/chemokines and inflammatory cytokines in the lesion area. For convenience, we define
Φ(t) = (EN (t), EI(t), V (t), C(t), P (t)).

2.1 The Well-posedness and Dissipativeness

Unlike papers [14, 28], we do not need to limit α < dN in the paper. It can also be obtained
that any solution of Model (1.2) satisfying the initial condition (2.1) is ultimately bounded.

Theorem 2.1. The solution Φ(t) of Model (1.2) with the initial condition (2.1) is existent,
unique and nonnegative on [0,+∞), and satisfies

lim sup
t→+∞

EN (t) ≤ K

2r

[
r − dN + α+

√
(r − dN + α)2 +

4rs

K

]
:= M1,

lim sup
t→+∞

EI(t) ≤
s+ (α+ r)M1

min{dN , dI}
:= M2,

lim sup
t→+∞

V (t) ≤ γ1
dv

M2 := M3,

lim sup
t→+∞

C(t) ≤ γ2M2 + ηM3

dc
:= M4,

lim sup
t→+∞

P (t) ≤ δ

dp
M4 := M5.

(2.2)

Proof. By using the standard theory of ordinary differential equations (see [17]), we can easily
prove that the solution Φ(t) of Model (1.2) with the initial condition (2.1) is existent, unique
and nonnegative on [0,+∞). Next, let us prove that any solution of Model (1.2) is ultimately
bounded.
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We define

M̃1 =
K

2r

[
(r − dN + α)−

√
(r − dN + α)2 +

4rs

K

]
< 0.

From the first equation of Model (1.2), we have, for t ≥ 0,

ĖN (t) ≤s− dNEN (t) + rEN (t)
(
1− EN (t)

K

)
+ αEN (t)

=− r

K
(EN (t)− M̃1)(EN (t)−M1),

which implies that

lim sup
t→+∞

EN (t) ≤ M1. (2.3)

By (2.3), we see that, for any ε > 0, there exits a t̄ > 0, such that EN (t) ≤ M1 + ε for t > t̄.
We define

G(t) = EN (t) + EI(t).

Calculating the derivative of G(t) along the solution of Model (1.2), it follows that, for t ≥ 0,

Ġ(t) =s− dNEN (t) + rEN (t)
(
1− EN (t)

K

)
+

αEN (t)V (t)

1 + V (t)
− dIEI(t)

≤s+ (r + α)EN (t)− dNEN (t)− dIEI(t).

Then, we have, for t > t̄,

Ġ(t) ≤ s+ (r + α)(M1 + ε)−min{dN , dI}G(t),

which implies that

lim sup
t→+∞

G(t) ≤ s+ (r + α)(M1 + ε)

min{dN , dI}
. (2.4)

Since (2.4) holds for any ε > 0, we have lim sup
t→+∞

G(t) ≤ M2. Thus, we can obtain lim sup
t→+∞

EI(t) ≤

M2. Similarly, we can obtain lim sup
t→+∞

V (t) ≤ M3, lim sup
t→+∞

C(t) ≤ M4 and lim sup
t→+∞

P (t) ≤ M5.

Theorem 2.1 indicates that the concentrations of normal vascular endothelial cells, injured
vascular endothelial cells, vascular endothelial growth factors, adhesion molecules/chemokines
and inflammatory cytokines in the lesion area of the patients with KD changes within some
limited ranges.

From Theorem 2.1, it is not difficult to obtain the following result; we omit the proof.

Lemma 2.2. The solution Φ(t) of Model (1.2) with the initial condition (2.1) satisfies

lim inf
t→+∞

EN (t) ≥ K

2r

[
r − dN − βM5 +

√
(r − dN − βM5)2 +

4rs

K

]
:= m1.

Moreover, the following bounded set

Ω1 :=
{
(EN , EI , V, C, P )T ∈ R5

+ : m1 ≤ EN ≤ M1, EN + EI ≤ M2,

V ≤ M3, C ≤ M4, P ≤ M5

}
is positively invariant and attractive with respect to Model (1.2).
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2.2 Basic Reproduction Number and the Equilibria

Obviously, Model (1.2) always has a vascular injury-free equilibrium (boundary equilibrium)
Q0 = (E0, 0, 0, 0, 0), where

E0 =
K

2r

[
(r − dN ) +

√
(r − dN )2 +

4sr

K

]
.

Except for Q0, Model (1.2) has no other boundary equilibria.
First, we define the following matrices:

F̂ =


0 0 0 βE0

0 0 0 0

0 0 0 0

0 0 0 0

 , V̂ =


dI 0 0 0

−γ1 dv 0 0

−γ2 −η dc 0

0 0 −δ dp

 .

By using the method of the next generation matrix (see [9, 31]), we can derive the expression
of the basic reproduction number of Model (1.2) is

R0 = ρ(F̂V̂−1) =
E0βδ(γ1η + γ2dv)

dIdvdcdp
=

K

2r

[
(r − dN ) +

√
(r − dN )2 +

4sr

K

]βδ(γ1η + γ2dv)

dIdvdcdp
,

where ρ(F̂V̂−1) is the spectral radius of the matrix F̂V̂−1. Here, R0 denotes the number of
normal vascular endothelial cells injured by an injured vascular endothelial cell in its life span.

Suppose (EN , EI , V, C, P ) is any vascular injury equilibrium (positive equilibrium) of Model
(1.2). From the last 3 equations of Model (1.2), we have

EI =
dv
γ1

V, C =
γ1η + γ2dv

dvdc
EI =

γ1η + γ2dv
γ1dc

V, P =
δ

dp
C =

δ(γ1η + γ2dv)

γ1dcdp
V. (2.5)

Then, from the second equation of Model (1.2), we have

EN =
dIEI

βP
=

dIdvdcdp
δβ(γ1η + γ2dv)

. (2.6)

Note that R0 = E0

EN
, then we have

s− dNEN + rEN

(
1− EN

K

)
= − r

K
(EN + E1)(EN − E0)

= − rEN

KR0
(E0 + E1R0)(1−R0) := Λ,

where

E1 = −K

2r

[
(r − dN )−

√
(r − dN )2 +

4sr

K

]
> 0.

For convenience, we define the function

∆(x) = Λ2
1(x) + 4α∗x

[ r

K
(E0 + E1x)(x− 1)

]
,

Λ1(x) = (α∗ − α)x− r

K
(E0 + E1x)(x− 1),

where

α∗ =
δβ(γ1η + γ2dv)

dcdpγ1
.
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From (2.5), (2.6) and the first equation of Model (1.2), we have

Λ

EN
+

αV

1 + V
− βP =

Λ

EN
+

αV

1 + V
− α∗V = 0, (2.7)

which leads to

F (V ) := α∗R0V
2 + Λ1(R0)V − r

K
(E0 + E1R0)(R0 − 1) = 0. (2.8)

We consider the existence of positive roots of F (V ) = 0 in two cases.
Case (i). Assume that α ≤ α∗.
When R0 > 1, it is clear that F (V ) = 0 has a unique positive root

V =
−Λ1(R0) +

√
∆(R0)

2α∗R0
:= V ∗

1 > 0.

Note that if R0 ≤ 1, then Λ1(R0) ≥ 0; thus, F (V ) = 0 has no positive roots.
Case (ii). Assume that α > α∗.
When R0 ≥ 1, it is clear that F (V ) = 0 has a unique positive root V = V ∗

1 .
Note that

E0E1 =
sK

r
, E0 − E1 =

K

r
(r − dN ),

then the function Λ1(x) can be rewritten as

Λ1(x) = − r

K
E1x

2 −
[ r

K
(E0 − E1)− α∗ + α

]
x+

r

K
E0

= − s

E0
x2 − (r − dN − α∗ + α)x+

r

K
E0.

Clearly, Λ1(x) = 0 has a unique positive root

x =
E0

2s

[
− (r − dN − α∗ + α) +

√
(r − dN − α∗ + α)2 +

4sr

K

]
:= w+.

Note that Λ1(0) =
r
KE0 > 0, Λ1(1) = α∗ − α < 0. Thus, we have

0 < w+ < 1.

If 0 < R0 ≤ w+, then Λ1(R0) ≥ 0; thus, F (V ) = 0 has no positive roots.
If w+ < R0 < 1, then Λ1(R0) < 0. We rewrite the function ∆(x) as follows:

∆(x) =
[ s

E0
x2 + (r − dN − α∗ + α)x− r

K
E0

]2
+ 4α∗x

[ s

E0
x2 + (r − dN )x− rE0

K

]
:= A1x

4 +A2x
3 +A3x

2 +A4x+A5,

where

A1 =
s2

E2
0

> 0, A2 = 2
s

E0
(r − dN + α∗ + α),

A3 = (r − dN − α∗ + α)2 − 2
sr

K
+ 4α∗(r − dN ),

A4 = −2
r

K
E0(r − dN + α∗ + α), A5 =

r2

K2
E2

0 > 0.
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Note that

∆(0) =
r2

K2
E2

0 > 0, ∆(1) = Λ2(1) = (α− α∗)2 > 0,

∆(w+) = 4α∗w+
[ r

K
(E0 + E1w

+)(w+ − 1)
]
< 0.

Thus, ∆(x) = 0 has at least two unequal positive roots on (0, 1).
If A2 ≥ 0, then A4 ≤ 0, by using Descartes’ rule of signs, we have ∆(x) = 0 has at most

two positive roots on (0, 1). Thus, ∆(x) = 0 has one and only two unequal positive roots on
(0, 1). Similarly, when A2 < 0, we can also prove that ∆(x) = 0 has one and only two unequal
positive roots on (0, 1).

In summary, there exits a constant ω ∈ (w+, 1) such that ∆(ω) = 0, ∆(R0) < 0 for
w+ < R0 < ω and ∆(R0) > 0 for ω < R0 < 1. Thus, when w+ < R0 < ω, F (V ) = 0 has no
positive roots; when R0 = ω, F (V ) = 0 has a unique positive root

V =
−Λ1(R0)

2α∗R0
= V ∗

1 ;

when ω < R0 < 1, F (V ) = 0 has two positive roots V = V ∗
1 > 0, V = V ∗

2 > 0, where

V ∗
2 =

−Λ1(R0)−
√

∆(R0)

2α∗R0
> 0.

Then, we have the following results.

Theorem 2.3. The following statements are valid.
(i) Model (1.2) always has a vascular injury-free equilibrium Q0 = (E0, 0, 0, 0, 0).

(ii) If α ≤ α∗ = δβ(γ1η+γ2dv)
dcdpγ1

and R0 > 1 (Model (1.2) undergoes a forward bifurcation, see Fig-

ure 2.1 (a)), then Model (1.2) has a unique vascular injury equilibrium Q∗
1 = (E∗

N1
, E∗

I1
, V ∗

1 , C
∗
1 ,

P ∗
1 ), where

E∗
N1

=
dIdvdcdp

δβ(γ1η + γ2dv)
, E∗

I1 =
dv
γ1

V ∗
1 , C∗

1 =
γ1η + γ2dv

γ1dc
V ∗
1 , P ∗

1 =
δ(γ1η + γ2dv)

γ1dcdp
V ∗
1 . (2.9)

(iii) If α > α∗ = δβ(γ1η+γ2dv)
dcdpγ1

, there are the following three subcases (Model (1.2) undergoes a

backward bifurcation, see Figure 2.1 (b)).
(iii)1 If R0 ≥ 1, then Model (1.2) has a unique vascular injury equilibrium Q∗

1 = (E∗
N1

, E∗
I1
,

V ∗
1 , C

∗
1 , P

∗
1 ).

(iii)2 If ω < R0 < 1, then Model (1.2) has two vascular injury equilibria Q∗
1 = (E∗

N1
, E∗

I1
,

V ∗
1 , C

∗
1 , P

∗
1 ) and Q∗

2 = (E∗
N2

, E∗
I2
, V ∗

2 , C
∗
2 , P

∗
2 ), where

E∗
N2

=
dIdvdcdp

δβ(γ1η + γ2dv)
, E∗

I2 =
dv
γ1

V ∗
2 , C∗

2 =
γ1η + γ2dv

γ1dc
V ∗
2 , P ∗

2 =
δ(γ1η + γ2dv)

γ1dcdp
V ∗
2 . (2.10)

(iii)3 If R0 = ω, then Model (1.2) has a unique vascular injury equilibrium Q∗
ω = (E∗

N1
, E∗

I1
,

V ∗
1 , C

∗
1 , P

∗
1 ).

(iv) Model (1.2) has no vascular injury equilibria if α ≤ α∗, R0 ≤ 1 or α > α∗, R0 < ω.

Note that R0 is independent of α, and that both α∗ and ω are independent of dI . Thus,
in the case of forward bifurcation or backward bifurcation, we can change the size of R0 by
changing dI . We fix some parameters s = 1, dN = 1, r = 1, K = 2, β = 0.25, γ1 = 1, dv = 2,
γ2 = 1, η = 1, dc = 1, δ = 1, dp = 1. Then, we can obtain the following forward and backward
bifurcation graphs (see Figure 2.1).
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(a) Forward bifurcation (α ≤ α∗) (b) Borward bifurcation (α > α∗)

Figure 2.1. (a) Here α = 0.6 < α∗ = 0.75. (b) Here α = 2 > α∗ = 0.75 and ω ≈ 0.8098.

Remark 2.4. Let f(x) =
√

4sr
K + x2 + x (x ∈ R). Note that f ′(x) = x√

4sr
K +x2

+ 1 > 0 for

x ∈ R, which implies that f(x) is strictly monotonically increasing with respect to x on R.
Thus, we have M1 ≥ E0 > m1.

3 Stability of the vascular injury-free equilibrium

In this section, we will study the local and global stability of the vascular injury-free equilibrium
Q0.

Suppose Q = (EN , EI , V , C, P ) is an arbitrary equilibrium of Model (1.2). Then, the
characteristic equation of Model (1.2) at Q is∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ+ dN − r +
2r

K
EN − αV

1 + V
+ βP 0 − αEN

(1 + V )2
0 βEN

−βP λ+ dI 0 0 −βEN

0 −γ1 λ+ dv 0 0

0 −γ2 −η λ+ dc 0

0 0 0 −δ λ+ dp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.1)

3.1 Local Stability of the Vascular Injury-free Equilibrium

For the local stability of the vascular injury-free equilibrium, we obtain the following theorem.

Theorem 3.1. The vascular injury-free equilibrium Q0 is locally asymptotically stable if R0 <
1, is unstable if R0 > 1.

Proof. By (3.1), the characteristic equation of Model (1.2) at Q0 can be expressed as

(
λ+ dN − r +

2r

K
E0

)
(λ4 + b1λ

3 + b2λ
2 + b3λ+ b4) = 0, (3.2)

where

b1 =dI + dv + dc + dp > 0,

b2 =dI(dv + dc + dp) + dvdc + dvdp + dcdp > 0,

b3 =dI(dvdc + dvdp + dcdp) + dvdcdp − βδγ2E0

=dI(dvdc + dvdp) + dvdcdp + dIdcdp(1−R0) +
βδγ1ηE0

dv
,
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b4 =dIdvdcdp − βδE0(γ1η + γ2dv) = dIdvdcdp(1−R0).

Obviously, (3.2) always has a negative real root

λ = −
(
dN − r +

2r

K
E0

)
= −

√
(r − dN )2 +

4sr

K
< 0.

When R0 < 1, we have b2 > 0, b3 > 0,

b1b2 − b3 > d2I(dv + dc + dp) + dI(dv + dc + dp)
2 := Z > 0,

(b1b2 − b3)b3 − b21b4 > Z(dIdcdp + dvdcdp)(1−R0)− b21b4

=[dI(dI + dv + dc + dp)(dc + dp)]dIdcdp(1−R0) > 0.

Then, it follows from the Routh-Hurwitz stability criterion that all roots of (3.2) have negative
real parts. Thus, Q0 is locally asymptotically stable if R0 < 1.

When R0 > 1, we have b4 < 0. Then, it is clear that (3.2) has at least one positive real
root. Thus, Q0 is unstable if R0 > 1.

3.2 Global Stability of the Vascular Injury-free Equilibrium

In this subsection, we consider the global stability of the vascular injury-free equilibrium Q0

by constructing some appropriate Lyapunov functions. From the local stability results of the
vascular injury-free equilibrium Q0, we only need to discuss the global stability of the vascular
injury-free equilibrium Q0 in two cases: (i) α ≤ α∗, R0 ≤ 1; (ii) α > α∗, R0 < ω(< 1).

For convenience of presentation, we define the following parameters

θ =
[dI +

r
K (E0 + E1)]

2

2 r
K dI(E0 + E1)

= 1 +
K2d2I + r2(E0 + E1)

2

2rK(E0 + E1)dI
,

a11 =
r

K
[θ(E0 + E1) +m1 + E1], â11 =

r

K

[
θE0 +

θE0E1

M1
+ E0 + E1

]
,

a12 =
1

2

[ r

K
(E0 + E1) + dI

]
, a13 =

1

2
α(θE0 +M1), a22 = dI ,

a23 =
1

2

(
αE0 +

dIdv
γ1

)
, â23 =

1

2

(
αM1 +

dIdv
γ1

)
, a33 =

dId
2
v

γ2
1

.

We define the condition

(H) a22a33 ≥ max
{
a223 +

a33
a11

a212, â223 +
a22
â11

a213

}
:= Π(α),

then we have the following result.

Theorem 3.2. If R0 ≤ 1 and condition (H) holds, then the vascular injury-free equilibrium
Q0 is globally asymptotically stable in Ω1.

Proof. We define the following Lyapunov function on Ω1,

L(t) = θE0L1(t) + L2(t) + L3(t),

where

L1(t) = EN (t)− E0 − E0 ln
EN (t)

E0
+ EI(t) +

dI
γ1η + γ2dv

(
ηV (t) + dvC(t) +

dvdc
δ

P (t)
)
,
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L2(t) =
1

2

(
EN (t)− E0 + EI(t)

)2
, L3(t) =

dIdv
2γ2

1

V 2(t).

It is clear that L(t) is continuous on Ω1 and positive definite with respect to Q0.
Note that

s− dNEN (t) + rEN (t)
(
1− EN (t)

K

)
= − r

K
(EN (t) + E1)(EN (t)− E0).

Calculating the derivatives of L1(t), L2(t) and L3(t) along the solution of Model (1.2), we have,
for t ≥ 0,

L̇1(t) =
(
1− E0

EN (t)

)
ĖN (t) + ĖI(t) +

dI
γ1η + γ2dv

(
ηV̇ (t) + dvĊ(t) +

dvdc
δ

Ṗ (t)
)

=− r

K

(
1 +

E1

EN (t)

)
(EN (t)− E0)

2 +
αV (t)

1 + V (t)
(EN (t)− E0) + βE0P (t)− dIEI(t)

+
dI

γ1η + γ2dv

[
(γ1η + γ2dv)EI(t)−

dvdcdp
δ

P (t)
]

=− r

K

(
1 +

E1

EN (t)

)
(EN (t)− E0)

2 +
α

1 + V (t)
(EN (t)− E0)V (t)

+ βE0P (t)
(
1− 1

R0

)
, (3.3)

L̇2(t) =(EN (t)− E0 + EI(t))
[
− r

K
(EN (t) + E1)(EN (t)− E0) +

αEN (t)V (t)

1 + V (t)
− dIEI(t)

]
=− r

K
(EN (t) + E1)(EN (t)− E0)

2 − dIE
2
I (t)

−
[ r

K
(EN (t) + E1) + dI

]
(EN (t)− E0)EI(t)

+
αEN (t)

1 + V (t)
(EN (t)− E0)V (t) +

αEN (t)

1 + V (t)
EI(t)V (t), (3.4)

L̇3(t) =
dIdv
γ1

EI(t)V (t)− dId
2
v

γ2
1

V 2(t). (3.5)

Note that, by (3.3) and the Lyapunov-LaSalle invariance principle (see [17]), it is not difficult to
prove that Q0 is globally asymptotically stable if α = 0 and R0 ≤ 1. In the following discussion,
we assume that α > 0.

Then, by (3.3), (3.4) and (3.5), we have, for t ≥ 0,

L̇(t) =− a11(t)(EN (t)− E0)
2 − a22E

2
I (t)− a33V

2(t) + θβE2
0P (t)

(
1− 1

R0

)
− 2a12(t)(EN (t)− E0)EI(t) + 2a13(t)(EN (t)− E0)V (t) + 2a23(t)EI(t)V (t), (3.6)

where

a11(t) =
r

K

[
θE0 +

θE0E1

EN (t)
+ EN (t) + E1

]
,

a12(t) =
1

2

[ r

K
(EN (t) + E1) + dI

]
,

a13(t) =
1

2

[ θE0α

1 + V (t)
+

αEN (t)

1 + V (t)

]
,

a23(t) =
1

2

[ αEN (t)

1 + V (t)
+

dIdv
γ1

]
.
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When EN (t) ≤ E0, we have

L̇(t) ≤− a11(EN (t)− E0)
2 − a22E

2
I (t)− a33V

2(t) + θβE2
0P (t)

(
1− 1

R0

)
− 2a12(EN (t)− E0)EI(t) + 2a23EI(t)V (t) + 2a13(t)(EN (t)− E0)V (t)

=− (E0 − EN (t), EI(t), V (t))J1(E0 − EN (t), EI(t), V (t))T

+ θβE2
0P (t)

(
1− 1

R0

)
+ 2a13(t)(EN (t)− E0)V (t), (3.7)

where

J1 =

 a11 −a12 0

−a12 a22 −a23

0 −a23 a33

 .

If condition (H) holds, then a11a22a33 − a11a
2
23 − a33a

2
12 ≥ 0, which implies that matrix J1 is

positive semi-definite. Thus, if R0 ≤ 1, then we have

L̇(t) ≤ 2a13(t)(EN (t)− E0)V (t) ≤ 0.

We claim that, if L̇(t) = 0, then V (t) = 0. If not, we have that, if L̇(t) = 0, then V (t) > 0
and EN (t) = E0. Note that, if condition (H) holds, then

√
a22a33 > a23. When V (t) > 0 and

EN (t) = E0, by (3.7), we have

L̇(t) ≤− a22E
2
I (t)− a33V

2(t) + 2a23EI(t)V (t)

≤−
(
1− a23√

a22a33

)
(a22E

2
I (t) + a33V

2(t))

<0.

Thus, the claim holds.
When EN (t) > E0, we have

L̇(t) ≤− â11(EN (t)− E0)
2 − a22E

2
I (t)− a33V

2(t) + θβE2
0P (t)

(
1− 1

R0

)
− 2a12(EN (t)− E0)EI(t) + 2a13(EN (t)− E0)V (t) + 2â23EI(t)V (t)

=− (EN (t)− E0, EI(t), V (t))J2(EN (t)− E0, EI(t), V (t))T

+ θβE2
0P (t)

(
1− 1

R0

)
− 2a12(EN (t)− E0)EI(t), (3.8)

where

J2 =

 â11 0 −a13

0 a22 −â23

−a13 −â23 a33

 .

If condition (H) holds, then â11a22a33 − â11â
2
23 − a22a

2
13 ≥ 0, which implies that matrix J2 is

positive semi-definite. Thus, if R0 ≤ 1, then we have

L̇(t) ≤ −2a12(EN (t)− E0)EI(t) ≤ 0.

When EI(t) > 0, it is clear that L̇(t) < 0. Note that, if condition (H) holds, then
√
â11a33 > a13.

When EI(t) = 0, then by (3.8), we have

L̇(t) ≤− â11(EN (t)− E0)
2 − a33V

2(t) + 2a13(t)(EN (t)− E0)V (t)
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≤−
(
1− a13√

â11a33

)
[â11(EN (t)− E0)

2 + a33V
2(t)]

<0.

In summary, if R0 ≤ 1 and condition (H) holds, then we have L̇(t) ≤ 0, and L̇(t) = 0 implies
that V (t) = 0. This shows that L(t) is a Lyapunov function on Ω1. Thus, Q0 is stable (see
[17]). Let M be the largest invariant set in Γ0, where

Γ0 =
{
(EN , EI , V, C, P ) ∈ Ω1 : L̇(t) = 0

}
⊂

{
(EN , EI , V, C, P ) ∈ Ω1 : V = 0

}
.

From Model (1.2) and the invariance of M , we can obtain M = {Q0}. Then, it follows from
the Lyapunov-LaSalle invariance principle (see [17]) that Q0 is globally attractive. Thus, Q0 is
globally asymptotically stable.

Remark 3.3. By Remark 2.4, it is clear that M1 is increasing with respect to α, and m1 is
decreasing with respect to α. Then, we state the following two facts:

(i) Note that R0, a22, a33, a12 and θ are independent of α; a11 and â11 are decreasing with
respect to α; a13, a23 and â23 are increasing with respect to α. Thus, Π(α) is increasing with
respect to α.

(ii) Note that a11 > r
K θ(E0 + E1) =

2a2
12

dI
, then we have

a22a33 −Π(0) =
d2Id

2
v

γ2
1

− d2Id
2
v

4γ2
1

− dId
2
v

γ2
1

a212
a11

>
d2Id

2
v

4γ2
1

> 0,

lim
α→+∞

Π(α) = +∞.

From (i) and (ii), for a fixed R0 ≤ 1, there exits a positive constant α̂(R0) > 0, such that
a22a33 = Π(α̂(R0)), a22a33 ≥ Π(α) for 0 ≤ α ≤ α̂(R0), a22a33 < Π(α) for α > α̂(R0).

From Theorem 3.2 and Remark 3.3, we have the following corollary.

Corollary 3.4. If R0 ≤ 1 and 0 ≤ α ≤ α̂(R0), then the vascular injury-free equilibrium Q0 is
globally asymptotically stable in Ω1.

Next, we will give another type of sufficient condition for the global stability of the vascular
injury-free equilibrium Q0. We define

ω∗ =
E0

M1
=

(r − dN ) +
√
(r − dN )2 + 4sr

K

r − dN + α+
√

(r − dN + α)2 + 4sr
K

≤ 1.

Then, we have the following result.

Theorem 3.5. If R0 < ω∗, then the vascular injury-free equilibrium Q0 is globally asymptoti-
cally stable in Ω1.

Proof. By Theorem 3.1, we know that Q0 is locally asymptotically stable if R0 < ω∗ ≤ 1. Thus,
we only need to prove that Q0 is globally attractive. We define the following Lyapunov function
on Ω1,

W (t) = EI(t) +
dI

γ1η + γ2dv

(
ηV (t) + dvC(t) +

dvdc
δ

P (t)
)
. (3.9)

Computing the derivative of W (t) along the solution of Model (1.2) gives

Ẇ (t) =βEN (t)P (t)− dIEI(t) +
dI

γ1η + γ2dv

[
(γ1η + γ2dv)EI(t)−

dvdcdp
δ

P (t)
]
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≤βM1P (t)− dIdvdcdp
δ(γ1η + γ2dv)

P (t)

=βE0

( 1

ω∗ − 1

R0

)
P (t) ≤ 0. (3.10)

It is easy to prove that the largest invariant set in Γ1 := {(EN , EI , V, C, P ) ∈ Ω1 : Ẇ = 0} is
the singleton {Q0}. It follows from the Lyapunov-LaSalle invariance principle (see [17]) that
Q0 is globally attractive.

Remark 3.6. Theorem 3.2 and Theorem 3.5 can be applied to both forward bifurcation and
backward bifurcation cases (see Figure 6.1 in Section 6). By Remark 2.4, it is easy to see that,
if α > α∗ (the case of backward bifurcation), then ω∗ < w+ < ω < 1.

4 Permanence

To obtain the main results of this section, we need the following preparations.
In this section, we assume that R0 > 1. Note that R0 = E0

E∗
N1

> 1, then we have

E0 =
K

2r

[
(r − dN ) +

√
(r − dN )2 +

4sr

K

]
> E∗

N1
. (4.1)

By Remark 2.4, we can see that there exists some constant ϑ ∈ (0, 1) such that

B :=
K

2r

[
r − dN − ϑβP ∗

1 +

√
(r − dN − ϑβP ∗

1 )
2 +

4sr

K

]
> E∗

N1
.

Clearly, the equation

s− dNx+ rx
(
1− x

K

)
− ϑβP ∗

1 x = 0

has two roots x = B and x = −B̂, where

B̂ = −K

2r

[
r − dN − ϑβP ∗

1 −
√

(r − dN − ϑβP ∗
1 )

2 +
4sr

K

]
> 0.

For any θi > 0 (i = 1, 2, 3) and n1 > 1, we define

B1 = E∗
N1

+ θ1(B − E∗
N1

) ∈ (E∗
N1

, B), B2 = E∗
N1

+ θ2(B1 − E∗
N1

) ∈ (E∗
N1

, B1),

B3 = E∗
N1

+ θ3(B2 − E∗
N1

) ∈ (E∗
N1

, B2), m1(n1) = m1

(
1− 1

n1

)
< m1 < E∗

N1
.

Clearly, B > B1 > B2 > B3 > E∗
N1

> m1 > m1(n1). Then, we have the following result.

Theorem 4.1. If R0 > 1, then Model (1.2) is permanent in X := {(EN , EI , V, C, P ) ∈ R5
+ :

P > 0}, and the solution Φ(t) of Model (1.2) with any initial value Φ(0) ∈ X satisfies

lim inf
t→+∞

EI(t) ≥
βm1

dI
ϑP ∗

1 e
−dp(T1+T2+T3+T4) := m2,

lim inf
t→+∞

V (t) ≥ βγ1m1

dIdv
ϑP ∗

1 e
−dp(T1+T2+T3+T4) := m3,

lim inf
t→+∞

C(t) ≥ β(γ1η + γ2dv)m1

dIdvdc
ϑP ∗

1 e
−dp(T1+T2+T3+T4) := m4,

lim inf
t→+∞

P (t) ≥ ϑP ∗
1 e

−dp(T1+T2+T3+T4) := m5,

(4.2)
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where

T1 =
K

r(B + B̂)
ln

( 1

ρ1

)
, ρ1 =

(B −B1)(B̂ +m1(n1))

(B −m1(n1))(B̂ +B1)
∈ (0, 1),

T2 =
1

dI
ln
( 1

ρ2

)
, ρ2 = 1− B2

B1
∈ (0, 1),

T3 =
1

dv
ln

( 1

ρ3

)
, ρ3 = 1− B3

B2
∈ (0, 1),

T4 =
1

dc
ln
( 1

ρ4

)
, ρ4 = 1−

(γ2dv + ηγ1)E
∗
N1

γ2dvB2 + ηγ1B3
∈ (0, 1).

Proof. It is easy to prove that, for t > 0, the solution Φ(t) of Model (1.2) with any initial value
Φ(0) ∈ X is positive and X is positively invariant with respect to Model (1.2). By Theorem
2.1 and Lemma 2.2, we only need to prove that (4.2) holds.

From Lemma 2.2, we can see that there exits a t̃ > 0 such that EN (t) > m1(n1) for t ≥ t̃.
To prove lim inf

t→+∞
P (t) ≥ m5, we first give two important claims.

Claim (i) lim inf
t→+∞

EN (t) ≤ E∗
N1

.

If not, there exits a Ẽ∗
N1

> E∗
N1

such that lim inf
t→+∞

EN (t) = Ẽ∗
N1

. Let ϵ0 = 1
2 (Ẽ

∗
N1

−E∗
N1

) > 0,

then there exits a T (ϵ0) > 0 such that, for t > T (ϵ0),

EN (t) > Ẽ∗
N1

− ϵ0 =
1

2
(Ẽ∗

N1
+ E∗

N1
) = E∗

N1
+ ϵ0.

From (3.9) and (3.10), we have, for t ≥ T (ϵ0),

Ẇ (t) =βEN (t)P (t)− dIdvdcdp
δ(γ1η + γ2dv)

P (t)

≥β(E∗
N1

+ ϵ0)P (t)− dIdvdcdp
δ(γ1η + γ2dv)

P (t)

=βϵ0P (t) ≥ 0,

which shows that W (t) is monotonically increasing on [T (ϵ0),+∞). From Theorem 2.1, we can
see that W (t) is bounded. Thus, there exits a constant

W ∗ ≥ dIdvdc
(γ1η + γ2dv)δ

P (T (ϵ0)) > 0

such that lim
t→+∞

W (t) = W ∗. Moreover, from Theorem 2.1, it is not difficult to prove that Ẇ (t)

is uniformly continuous on [T (ϵ0),+∞). Accordingly, it follows from Barbalat’s lemma[5] that
lim

t→+∞
Ẇ (t) = 0, which leads to lim

t→+∞
P (t) = 0. Further, from Model (1.2), it is easy to obtain

that lim
t→+∞

EI(t) = lim
t→+∞

V (t) = lim
t→+∞

C(t) = 0. Thus, lim
t→+∞

W (t) = 0, which contradicts

lim
t→+∞

W (t) = W ∗ > 0. This proves the claim.

Claim (ii) For any t0 ≥ t̃, it is impossible to satisfy P (t) ≤ ϑP ∗ for all t > t0.
If not, then there exits a t0 ≥ t̃ such that P (t) ≤ ϑP ∗ for t > t0. From the first equation of

Model (1.2), we have, for t > t0,

ĖN (t) ≥s− dNEN (t) + rEN (t)
(
1− EN (t)

K

)
− βϑP ∗EN (t)

=− r

K
(EN (t) + B̂)(EN (t)−B), (4.3)
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which implies that lim inf
t→+∞

EN (t) ≥ B > E∗
N1

. This contradicts Claim (i). Thus, Claim (ii)

holds.
By Claim (ii), there are two cases to be considered.
From Claim (ii), we only need to consider the following two cases: (i) P (t) ≥ ϑP ∗ for all

sufficiently large t; (ii) P (t) oscillates about ϑP ∗ for all sufficiently large t.
Clearly, we only need to consider case (ii). Let t1, t2 > t̃ be sufficiently large such that

P (t1) = P (t2) = ϑP ∗, P (t) < ϑP ∗ for t1 < t < t2.
If t2 − t1 ≤ T1 + T2 + T3 + T4 := Π̂1, then from the last equation of Model (1.2), we have

Ṗ (t) ≥ −dpP (t). Thus, we have, for t1 ≤ t ≤ t2,

P (t) ≥ P (t1)e
−dp(t−t1) ≥ ϑP ∗e−dp(t2−t1) ≥ ϑP ∗e−dpΠ̂1 = m5.

If t2 − t1 > Π̂1, then it is easy to obtain that P (t) ≥ m5 for t1 ≤ t ≤ t1 + Π̂1. Then, we
will prove that P (t) ≥ m5 for t1 + Π̂1 < t ≤ t2. In fact, if not, there exists a T5 ≥ 0 such that
P (t) ≥ m5 for t1 ≤ t ≤ t∗, P (t∗) = m5 and Ṗ (t∗) ≤ 0, where t∗ = t1 + Π̂1 + T5. Similarly, by
(4.3), we have, for t1 ≤ t ≤ t2,

ĖN (t) ≥ − r

K
(EN (t) + B̂)(EN (t)−B),

which implies that, for t1 ≤ t ≤ t2,

EN (t) ≥
B + B̂

(EN (t1)−B

EN (t1)+B̂

)
e−

r
K (B+B̂)(t−t1)

1−
(EN (t1)−B

EN (t1)+B̂

)
e−

r
K (B+B̂)(t−t1)

≥
B − B̂

(B−m1(n1)

m1(n1)+B̂

)
e−

r
K (B+B̂)(t−t1)

1 +
(B−m1(n1)

m1(n1)+B̂

)
e−

r
K (B+B̂)(t−t1)

. (4.4)

From (4.4), we have, for t1 + T1 ≤ t ≤ t2,

EN (t) ≥
B − B̂

(B−m1(n1)

m1(n1)+B̂

)
e−

r
K (B+B̂)T1

1 +
(B−m1(n1)

m1(n1)+B̂

)
e−

r
K (B+B̂)T1

= B1. (4.5)

From (4.5) and the second equation of Model (1.2), we have, for t1 + T1 ≤ t ≤ t∗,

ĖI(t) ≥ βB1m5 − dIEI(t),

which implies that, for t1 + T1 ≤ t ≤ t∗,

EI(t) ≥
βB1m5

dI
+
[
EI(t1 + T1)−

βB1m5

dI

]
e−dI(t−t1−T1)

≥βB1m5

dI

[
1− e−dI(t−t1−T1)

]
. (4.6)

From (4.6), we have, for t1 + T1 + T2 ≤ t ≤ t∗,

EI(t) ≥
βB1m5

dI

[
1− e−dIT2

]
=

βB2m5

dI
. (4.7)

From (4.7) and the third equation of Model (1.2), we have, for t1 + T1 + T2 ≤ t ≤ t∗,

V̇ (t) ≥ γ1βB2m5

dI
− dvV (t),



Global Dynamics of a Kawasaki Disease Vascular Endothelial Cell Injury Model 17

which implies that, for t1 + T1 + T2 ≤ t ≤ t∗,

V (t) ≥γ1βB2m5

dIdv
+
[
V (t1 + T1 + T2)−

γ1βB2m5

dIdv

]
e−dv(t−t1−T1−T2)

≥γ1βB2m5

dIdv

[
1− e−dv(t−t1−T1−T2)

]
. (4.8)

From (4.8), we have, for t1 + T1 + T2 + T3 ≤ t ≤ t∗,

V (t) ≥ γ1βB2m5

dIdv

[
1− e−dvT3

]
=

γ1βB3m5

dIdv
. (4.9)

Further, from the fourth equation of Model (1.2), (4.7) and (4.9), we have, for t1+T1+T2+T3 ≤
t ≤ t∗,

Ċ(t) ≥γ2
βB2m5

dI
+ η

γ1βB3m5

dIdv
− dcC(t),

which implies that, for t1 + T1 + T2 + T3 ≤ t ≤ t∗,

C(t) ≥B23 + [C(t1 + T1 + T2 + T3)−B23]e
−dc(t−t1−T1−T2−T3)

>B23

[
1− e−dc(t−t1−T1−T2−T3)

]
, (4.10)

where

B23 =
( γ2B2

dIdcB3
+

ηγ1
dIdvdc

)
βB3m5.

From (4.10), we have, for t1 + T1 + T2 + T3 + T4 ≤ t ≤ t∗,

C(t) > B23

[
1− e−dcT4

]
=

(γ2dv + ηγ1
dIdvdc

)
βE∗

N1
m5.

Finally, from the last equation of Model (1.2), we have

Ṗ (t∗) = δC(t∗)− dpP (t∗) > δ
(γ2dv + ηγ1

dIdvdc

)
βE∗

N1
m5 − dpm5 = 0,

which is a contradiction to Ṗ (t∗) ≤ 0. Thus, P (t) ≥ m5 for t1 ≤ t ≤ t2. Since the interval
t1 ≤ t ≤ t2 is arbitrary chosen, we have that P (t) ≥ m5 holds for all sufficiently large t. Thus,
we have lim inf

t→+∞
P (t) ≥ m5.

Moreover, from Model (1.2) and Lemma 2.2, we have

lim inf
t→+∞

EI(t) ≥
βm1m5

dI
= m2, lim inf

t→+∞
V (t) ≥ γ1m2

dv
= m3, lim inf

t→+∞
P (t) ≥ γ2m2 + ηm3

dc
= m4.

Remark 4.2. In Theorem 4.1, it is easy to see that ρ1 is monotonically increasing with respect
to n1 > 1 and T1 is monotonically decreasing with respect to n1 > 1. Note that n1 > 1 is
chosen arbitrarily. Let

T̃1 = lim
n1→+∞

T1 =
K

r(B + B̂)
ln
( 1

ρ̃1

)
, ρ̃1 =

(B −B1)(B̂ +m1)

(B −m1)(B̂ +B1)
∈ (0, 1).
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By Theorem 4.1, we can obtain the following better estimations:

lim inf
t→+∞

EI(t) ≥
βm1

dI
ϑP ∗

1 e
−dp(T̃1+T2+T3+T4) := m̃2,

lim inf
t→+∞

V (t) ≥ βγ1m1

dIdv
ϑP ∗

1 e
−dp(T̃1+T2+T3+T4) := m̃3,

lim inf
t→+∞

C(t) ≥ β(γ1η + γ2dv)m1

dIdvdc
ϑP ∗

1 e
−dp(T̃1+T2+T3+T4) := m̃4,

lim inf
t→+∞

P (t) ≥ ϑP ∗
1 e

−dp(T̃1+T2+T3+T4) := m̃5.

(4.11)

Theorem 4.1 shows that if the basic reproduction number R0 > 1, then the vascular injury
and inflammation in the KD lesion area will persist, and KD is uncontrollable.

5 Stability of the Vascular Injury Equilibria and Hopf Bifurcation

5.1 Local Stability of the Vascular Injury Equilibria and Hopf Bifurcation

Without loss of generality, we assume that Q = (EN , EI , V , C, P ) is an arbitrary vascular injury
equilibrium of Model (1.2). Using the first equation of Model (1.2) and (2.5), we have

dN − r +
2r

K
EN − αV

1 + V
+ βP =

s

EN

+
r

K
EN , βP = α∗V . (5.1)

Then, the characteristic equation (3.1) of Model (1.2) at Q can be rewritten as∣∣∣∣∣∣∣∣∣∣∣∣

λ+Ψ1 0 −Ψ2(V ) 0 Ψ3

−α∗V λ+ dI 0 0 −Ψ3

0 −γ1 λ+ dv 0 0

0 −γ2 −η λ+ dc 0

0 0 0 −δ λ+ dp

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (5.2)

where

Ψ1 =
s

EN

+
r

K
EN , Ψ2(V ) =

αEN

(1 + V )2
, Ψ3 = βEN , EN =

dIdvdcdp
δβ(γ1η + γ2dv)

.

We define

p(V ) = Ψ1dIdv −Ψ2(V )γ1α
∗V = dIdv

(
Ψ1 −

αV

(1 + V )2

)
,

q = dIdcdp −Ψ3δγ2 = dIdcdp
γ1η

γ1η + γ2dv
> 0.

By (5.2), direct calculations lead to

Ξ(λ) := λ5 +D1λ
4 +D2λ

3 +D3(V )λ2 +D4(V )λ+D5(V ) = 0, (5.3)

where

D1 = Ψ1 + dI + dv + dc + dp > 0,

D2 = Ψ1(dI + dv + dc + dp) + dI(dv + dc + dp) + dv(dc + dp) + dcdp > 0,
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D3(V ) = Ψ1(dIdc + dIdp + dvdc + dvdp + dcdp) + dIdv(dc + dp) + dvdcdp + p(V ) + q,

D4(V ) = Ψ1dvdcdp + (dc + dp)p(V ) + Ψ1q +Ψ3δγ2α
∗V ,

D5(V ) = α∗V [Ψ3δ(ηγ1 + γ2dv)−Ψ2(V )γ1dcdp] =
dIdvdcdpV

(1 + V )2
(α∗(1 + V )2 − α).

In fact, through numerical simulations, we find that the sign of p(V ) is indefinite. Moreover,
D3(V ) and D4(V ) are negative within a certain range of parameters. In order to determine the
sign of D5(V ), we give the following lemma.

Lemma 5.1. The following statements are valid.
(i) Assume that 0 ≤ α ≤ α∗ (the case of forward bifurcation). Then α∗(1 + V ∗

1 )
2 − α > 0 if

R0 > 1.
(ii) Assume that α > α∗ (the case of backward bifurcation). Then α∗(1 + V ∗

1 )
2 − α > 0 if

R0 > ω, α∗(1 + V ∗
2 )

2 − α < 0 if ω < R0 < 1, α∗(1 + V ∗
1 )

2 − α = 0 if R0 = ω.

Proof. If α ≤ α∗, R0 > 1, or α > α∗, R0 > ω, then the vascular injury equilibrium Q∗
1 exits

(V ∗
1 > 0). Applying Vedda’s theorem to the equation (2.8), we have

(V ∗
1 )

2 >
− r

K (E0 + E1R0)(R0 − 1)

α∗R0
:= χ1,

2V ∗
1 >

−(α∗ − α)R0 +
r
K (E0 + E1R0)(R0 − 1)

α∗R0
:= χ2.

Thus,

α∗(1 + V ∗
1 )

2 − α = α∗[(V ∗
1 )

2 + 2V ∗
1 + 1]− α > α∗(χ1 + χ2) + α∗ − α = 0.

Similarly, we can prove that (V ∗
2 )

2 < χ1, 2V
∗
2 < χ2 and α∗(1 + V ∗

2 )
2 − α < 0 if α > α∗ and

ω < R0 < 1; (V ∗
1 )

2 = χ1, 2V
∗
1 = χ2 and α∗(1 + V ∗

1 )
2 − α = 0 if α > α∗ and R0 = ω.

Let us first consider the stability of Q∗
2. By Lemma 5.1, we have D5(V

∗
2 ) < 0. Then, it

is easy to see that the characteristic equation (5.3) at Q∗
2 has at least one positive real root.

Thus, Q∗
2 is unstable if it exists.

In the following, we consider the stability of Q∗
1. By Lemma 5.1, we have D5(V

∗
1 ) > 0.

Thus, λ = 0 is not a root of the characteristic equation (5.3). In addition, the calculation gives
∆1 := D1 > 0,

∆2(V
∗
1 ) :=D1D2 −D3(V

∗
1 )

=(Ψ1 + dI)D2 + (Ψ1 + dI)(d
2
v + d2c + d2p + dvdc + dvdp + dcdp)

+ dv(d
2
c + d2p + dvdc + dvdp + 2dcdp) + dcdp(dc + dp) + Ψ3δγ2 +Ψ2(V

∗
1 )γ1α

∗V ∗
1

>0.

We define the following condition

(H1)


D3(V

∗
1 ) > 0, D4(V

∗
1 ) > 0,

∆3(V
∗
1 ) := D3(V

∗
1 )[D1D2 −D3(V

∗
1 )]−D1[D1D4(V

∗
1 )−D5(V

∗
1 )] > 0,

∆4(V
∗
1 ) := [D1D2 −D3(V

∗
1 )][D3(V

∗
1 )D4(V

∗
1 )−D2D5(V

∗
1 )]

− [D1D4(V
∗
1 )−D5(V

∗
1 )]

2 > 0.

If condition (H1) holds, we have ∆5(V
∗
1 ) := D5(V

∗
1 )∆4(V

∗
1 ) > 0. Then, it follows from the

Routh-Hurwitz stability criterion that Q∗
1 is locally asymptotically stable.
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If ∆4(V
∗
1 ) ̸= 0, it is not difficult to obtain that the characteristic equation (5.3) at Q∗

1 has
no pure imaginary roots. Thus, if ∆4(V

∗
1 ) ̸= 0 and condition (H1) does not hold, then the

characteristic equation (5.3) has at least one root with a positive real part; thus Q∗
1 is unstable.

Let V ∗
1 (α) = V ∗

1 and λ(α) = ξ1(α) + iξ2(α) be the characteristic root of the characteris-
tic equation (5.3). If ∆4(V

∗
1 (α)) = 0, then the characteristic equation (5.3) has a pair pure

imaginary roots ±ϖ(α)i, where

ϖ(α) =

√
D1D4(V ∗

1 (α))−D5(V ∗
1 (α))

D1D2 −D3(V ∗
1 (α))

> 0.

From (5.3), we have

Θ(ϖ(α))

:=sign
{d(Re λ(α))

dα

}
λ(α)=ϖ(α)i

= sign
{d(ξ1(α))

dα

}
λ(α)=ϖ(α)i

=sign
{
Re

[
−

dD3(V
∗
1 (α))

dα λ2(α) +
dD4(V

∗
1 (α))

dα λ(α) +
dD5(V

∗
1 (α))

dα

5λ4(α) + 4D1λ3(α) + 3D2λ2(α) + 2D3(V ∗
1 (α))λ(α) +D4(V ∗

1 (α))

]}
λ(α)=ϖ(α)i

=sign
{[dD3(V

∗
1 (α))

dα
ϖ2(α)− dD5(V

∗
1 (α))

dα

][
5ϖ4(α)− 3D2ϖ

2(α) +D4(V
∗
1 (α))

]
+

dD4(V
∗
1 (α))

dα
[4D1ϖ

2(α)− 2D3(V
∗
1 (α))]ϖ

2(α)
}
.

Note that

dD3(V
∗
1 (α))

dα
= −dIdvΘ1(α), Θ1(α) =

V ∗
1 (α)

(1 + V ∗
1 (α))

2
+

α(1− V ∗
1 (α))

(1 + V ∗
1 (α))

3

dV ∗
1 (α)

dα
,

dD4(V
∗
1 (α))

dα
= −dIdv(dc + dp)Θ1(α) + Ψ3δγ2α

∗ dV
∗
1 (α)

dα
,

dD5(V
∗
1 (α))

dα
= dIdvdcdp

[
α∗ dV

∗
1 (α)

dα
−Θ1(α)

]
.

By Theorem 2 in [35], we have that Model (1.2) has a Hopf bifurcation at Q∗
1 if ∆4(V

∗
1 (α)) = 0

and Θ(ϖ(α)) ̸= 0.
In summary, we have the following results.

Theorem 5.2. The following statements are valid.
(i) If α > α∗ and ω < R0 < 1 (i.e., Q∗

2 exists), then the vascular injury equilibrium Q∗
2 is

unstable.
(ii) Assume that 0 ≤ α ≤ α∗, R0 > 1, or α > α∗, R0 > ω (i.e., Q∗

1 exists). The vascular injury
equilibrium Q∗

1 is locally asymptotically stable if condition (H1 ) holds, is unstable if ∆4(V
∗
1 ) ̸= 0

and condition (H1 ) does not hold. Moreover, Model (1.2) has a Hopf bifurcation at the vascular
injury equilibrium Q∗

1 if ∆4(V
∗
1 (α)) = 0 and Θ(ϖ(α)) ̸= 0.

Note that condition (H1) is complex. It is necessary to give convenient verification sufficient
conditions for the local asymptotic stability of the vascular injury equilibrium Q∗

1. We define

Υ∗(V ∗
1 (α)) = Υ∗

1 −
αV ∗

1 (α)

1 + V ∗
1 (α)

, Υ∗
1 = dN − r +

2r

K
E∗

N1
.

Theorem 5.3. Assume that 0 ≤ α ≤ α∗, R0 > 1, or α > α∗, R0 > ω (i.e. Q∗
1 exists). Then,

the following statements are valid.
(i) If Υ∗

1 ≥ 0 and α = 0, then the vascular injury equilibrium Q∗
1 is locally asymptotically stable.

(ii) If Υ∗(V ∗
1 (α)) ≥ min{dI , dc, dp}, then the vascular injury equilibrium Q∗

1 is locally asymp-
totically stable.
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Proof. The characteristic equation (5.2) at Q∗
1 can be rewritten in the following form:

(λ+Ψ1)(λ+ dI)(λ+ dv)(λ+ dc)(λ+ dp)

=(λ+Ψ1 − α∗V ∗)βδE∗
N1

[γ1η + γ2(λ+ dv)] + α∗V ∗
1 Ψ2(V

∗
1 )γ1(λ+ dc)(λ+ dp),

the above equation is equivalent to

1 =
λ+Ψ1 − α∗V ∗

1

λ+Ψ1
βδE∗

N1

[ γ1η

(λ+ dI)(λ+ dv)(λ+ dc)(λ+ dp)
+

γ2
(λ+ dI)(λ+ dc)(λ+ dp)

]
+

α∗V ∗
1 Ψ2(V

∗
1 )γ1

(λ+Ψ1)(λ+ dI)(λ+ dv)
. (5.4)

Note that (5.4) has no zero roots. Suppose (5.4) has a root λ = x + iy, where x ≥ 0 and
x2 + y2 > 0.

(i) Assume that Υ∗
1 ≥ 0 and α = 0. Clearly, Ψ2(V

∗
1 ) = 0. By (5.1), we have Ψ1 =

βP ∗
1 +Υ∗

1 ≥ α∗V ∗
1 , which leads to |λ+Ψ1 − α∗V ∗

1 | < |λ+Ψ1|. Then, from (5.4), we have

1 ≤|λ+Ψ1 − α∗V ∗
1 |

|λ+Ψ1|
βδE∗

N1

[ γ1η

|λ+ dI ||λ+ dv||λ+ dc||λ+ dp|
+

γ2
|λ+ dI ||λ+ dc||λ+ dp|

]
≤|λ+Ψ1 − α∗V ∗

1 |
|λ+Ψ1|

βδE∗
N1

[ γ1η

dIdvdcdp
+

γ2
dIdcdp

]
=
|λ+Ψ1 − α∗V ∗

1 |
|λ+Ψ1|

< 1.

This is a contradiction. Thus, the conclusion (i) of Theorem 5.3 is valid.

(ii) Assume that Υ∗(V ∗
1 (α)) ≥ min{dI , dc, dp}. By (5.1), we have

Ψ1 − α∗V ∗
1 = Ψ1 − βP ∗

1 = Υ∗(V ∗
1 (α)) ≥ min{dI , dc, dp}.

Then, it is easy to prove that

|λ+Ψ1 − α∗V ∗
1 |

|λ+ dI ||λ+ dv||λ+ dc|
≤ Ψ1 − α∗V ∗

1

dIdvdc
. (5.5)

Note that
α∗Ψ2(V

∗
1 )γ1

dIdv
=

α∗γ1
dIdv

αE∗
N1

(1 + V ∗
1 )

2
=

α

(1 + V ∗
1 )

2
,

then from (5.4), (5.5) and Lemma 5.1, we have

1 ≤
βδE∗

N1

|λ+Ψ1|

( γ1η|λ+Ψ1 − α∗V ∗
1 |

|λ+ dI ||λ+ dv||λ+ dc||λ+ dp|
+

γ2|λ+Ψ1 − α∗V ∗
1 |

|λ+ dI ||λ+ dc||λ+ dp|

)
+

α∗V ∗
1 Ψ2(V

∗
1 )γ1

|λ+Ψ1||λ+ dI ||λ+ dv|

≤
βδE∗

N1

Ψ1

[γ1η(Ψ1 − α∗V ∗
1 )

dIdvdcdp
+

γ2(Ψ1 − α∗V ∗
1 )

dIdcdp

]
+

α∗V ∗
1 Ψ2(V

∗
1 )γ1

Ψ1dIdv

=1− α∗V ∗
1

Ψ1
+

α∗V ∗
1 Ψ2(V

∗
1 )γ1

Ψ1dIdv
= 1− V ∗

1

Ψ1

(
α∗ − α

(1 + V ∗
1 )

2

)
< 1. (5.6)

This is a contradiction. Thus, the conclusion (ii) of Theorem 5.3 is valid.
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In the following, we consider the existence of the Hopf bifurcation at Q∗
1 by choosing α as

the bifurcation parameter. In the analysis of Theorem 2.3, we first fix the parameters α and α∗;
let R0 be the parameter of variation to discuss the existence of Q∗

1. For a given R0, in order to
obtain the existence of Q∗

1 with respect to the variation of α, we need to give a result different
from Theorem 2.3.

In the following, we first fix all the parameters in R0. Note that the parameters in α∗ are
part of R0, and α∗, R0, E0 and E1 are independent of α. We consider the following three cases.

Case (i). Assume that R0 > 1.
It is not difficult to see that, for any α ≥ 0, we have that the equation (2.8) (F (V ) = 0)

has a unique positive root V = V ∗
1 = V ∗

1 (α) > 0. Then, Model (1.2) has the vascular injury
equilibrium Q∗

1.
Case (ii). Assume that R0 = 1.
In this case, if α > α∗, then F (V ) = 0 has a unique positive root V = V ∗

1 (α) = α−α∗

α∗ .
Clearly, F (V ) = 0 has no positive roots if 0 ≤ α ≤ α∗. Thus, if α > α∗, Model (1.2) has the
vascular injury equilibrium Q∗

1.
Case (iii). Assume that R0 < 1.
If

α ≤ α∗ +
r
K (E0 + E1R0)(1−R0)

R0
:= α̌∗,

then Λ1(R0) ≥ 0, it is clear that F (V ) = 0 has no positive roots. Thus, we assume α > α̌∗ in
the following discussion. We need to consider the sign of ∆(R0) as α changes. We rewrite the
∆(R0) expression as follows

∆(R0) =R2
0α

2 − 2
[
R0α

∗ +
r

K
(E0 + E1R0)(1−R0)

]
R0α

+
[ r

K
(E0 + E1R0)(1−R0)− α∗R0

]2
.

We define

α∗∗ =
α∗R0 +

r
K (E0 + E1R0)(1−R0) + 2

√
α∗R0

r
K (E0 + E1R0)(1−R0)

R0
> α̌∗.

Clearly, ∆(R0) < 0 if α̌∗ < α < α∗∗, ∆(R0) = 0 if α = α∗∗, ∆(R0) > 0 if α > α∗∗. Thus,
F (V ) = 0 has no positive roots if α̌∗ < α < α∗∗, F (V ) = 0 has a unique positive root
V = V ∗

1 (α) > 0 if α = α∗∗, F (V ) = 0 has two positive roots V = V ∗
1 (α) > 0 and V = V ∗

2 > 0 if
α > α∗∗. Then, we have that, if α > α∗∗, Model (1.2) has the vascular injury equilibrium Q∗

1.

Lemma 5.4. The following statements are valid.
(i) Assume that R0 > 1. For any α ≥ 0, then V ∗

1 (α) > 0 and Model (1.2) has the vascular
injury equilibrium Q∗

1.
(ii) Assume that R0 = 1. For any α > α∗, then V ∗

1 (α) > 0 and Model (1.2) has the vascular
injury equilibrium Q∗

1.
(iii) Assume that R0 < 1. For any α > α∗∗ (> α∗), then V ∗

1 (α) > 0 and Model (1.2) has the
vascular injury equilibrium Q∗

1.

From (2.7) and Lemma 5.4, we can easily have the following lemma.

Lemma 5.5. The following statements are valid.
(i) Assume that R0 > 1. For any α ≥ 0, one has α∗ > α

1+V ∗
1 (α) .

(ii) Assume that R0 = 1. For any α > α∗, one has α∗ = α
1+V ∗

1 (α) .

(iii) Assume that R0 < 1. For any α > α∗∗ (> α∗), one has α∗ < α
1+V ∗

1 (α) .
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Lemma 5.6. If R0 > 1, α ≥ 0, or R0 = 1, α > α∗, or R0 < 1, α > α∗∗, then the following
statements are valid.
(i) V ∗

1 (α) > 0 is monotonically increasing with respect to α, and satisfies

lim
α→+∞

V ∗
1 (α) = +∞, lim

α→+∞

α

V ∗
1 (α)

= lim
α→+∞

α

1 + V ∗
1 (α)

= α∗. (5.7)

(ii)

lim
α→+∞

∆4(V
∗
1 (α)) = −∞. (5.8)

Proof. If the conditions of Lemma 5.6 are satisfied, then Q∗
1 exists.

(i) From the first equation of Model (1.2) and (5.1), we have

s

E∗
N1

− dN + r
(
1−

E∗
N1

K

)
=βP ∗

1 − αV ∗
1

1 + V ∗
1

= α∗V ∗
1 (α)−

αV ∗
1 (α)

1 + V ∗
1 (α)

.

Note that E∗
N1

is independent of α, we have

0 =
dV ∗

1 (α)

dα

(
α∗ − α

(1 + V ∗
1 (α))

2

)
− V ∗

1 (α)

1 + V ∗
1 (α)

.

Then, similar to the proof of Lemma 5.1, we have

dV ∗
1 (α)

dα
=

(1 + V ∗
1 (α))V

∗
1 (α)

α∗(1 + V ∗
1 (α))

2 − α
> 0.

Thus, V ∗
1 (α) is monotonically increasing with respect to α. By the expression V ∗

1 (α), it is easy
to obtain that (5.7) holds.

(ii) By (5.7), we have

lim
α→+∞

p(V ∗
1 (α)) = dIdv(Ψ1 − α∗),

lim
α→+∞

D3(V
∗
1 (α)) = D∗

3 ,

lim
α→+∞

D1D2 −D3(V
∗
1 (α)) = D1D2 −D∗

3 > 0,

lim
α→+∞

D4(V
∗
1 (α))

α
= Ψ3δγ2 > 0,

lim
α→+∞

D1D4(V
∗
1 (α))−D5(V

∗
1 (α))

α
= D1Ψ3δγ2 − dIdvdcdp,

(5.9)

where

D∗
3 = Ψ1(dIdc + dIdp + dvdc + dvdp + dcdp) + dIdv(dc + dp +Ψ1 − α∗) + dvdcdp + q.

We rewrite ∆4(V
∗
1 (α)) as follows:

∆4(V
∗
1 (α)) =− [D1D2 −D3(V

∗
1 (α))]

2D4(V
∗
1 (α))

+D2[D1D2 −D3(V
∗
1 (α))][D1D4(V

∗
1 (α))−D5(V

∗
1 (α))]

− [D1D4(V
∗
1 (α))−D5(V

∗
1 (α))]

2.

By (5.9), we can obtain
lim

α→+∞

∆4(V
∗
1 (α))

α2
= −(D1Ψ3δγ2 − dIdvdcdp)

2 < 0, if D1Ψ3δγ2 ̸= dIdvdcdp,

lim
α→+∞

∆4(V
∗
1 (α))

α
= −(D1D2 −D∗

3)
2Ψ3δγ2 < 0, if D1Ψ3δγ2 = dIdvdcdp.

Thus, we have lim
α→+∞

∆4(V
∗
1 (α)) = −∞.
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Remark 5.7. Assume that R0 = 1. Note that lim
α→(α∗)+

V ∗
1 (α) = 0, then we have

lim
α→(α∗)+

D5(V
∗
1 (α)) = 0,

lim
α→(α∗)+

[D1D2 −D3(V
∗
1 (α))] > Ψ1(dI + dv + dc + dp)(Ψ1 + dI + dv + dc + dp) := ∆31,

lim
α→(α∗)+

D3(V
∗
1 (α)) > Ψ1(dIdv + dcdp) + dIdv(dc + dp) + dvdcdp + q := ∆32.

Further, we have

lim
α→(α∗)+

∆3(V
∗
1 (α)) = lim

α→(α∗)+
[(D1D2 −D3(V

∗
1 (α)))D3(V

∗
1 (α))−D2

1D4(V
∗
1 (α))]

>∆31∆32 −D2
1[dvdcdp + dIdv(dc + dp) + q]Ψ1

=Ψ2
1(Ψ1 + dI + dv + dc + dp)[(dI + dv)dIdv + dcdp(dc + dp) + Ψ3δγ2]

:=∆̂3 > 0,

lim
α→(α∗)+

∆4(V
∗
1 (α)) = lim

α→(α∗)+
[(D1D2 −D3(V

∗
1 (α)))D3(V

∗
1 (α))−D2

1D4(V
∗
1 (α))]D4(V

∗
1 (α))

>∆̂3[dvdcdp + q]Ψ1 > 0.

Then, it follows from Lemma 5.6 thatD4(V
∗
1 (α)) = 0 has at least one positive root on (α∗,+∞).

Through the above discussions and Remark 5.7, we can get the following results.

Theorem 5.8. The following statements are valid.
(i) Assume that R0 > 1. There exists some α1 ≥ 0 such that, if α > α1, then the vascular
injury equilibrium Q∗

1 is unstable. If ∆4(V
∗
1 (0)) > 0, then there exists some h1 > 0 such that

∆4(V
∗
1 (h1)) = 0, and Model (1.2) has a Hopf bifurcation at the vascular injury equilibrium Q∗

1

when ∆4(V
∗
1 (h1)) = 0 and Θ(ϖ(h1)) ̸= 0.

(ii) Assume that R0 = 1. There exists some α2 > α∗ such that, if α > α2, then the vascular
injury equilibrium Q∗

1 is unstable. There exists some h2 > α∗ such that ∆4(V
∗
1 (h2)) = 0, and

Model (1.2) has a Hopf bifurcation at the vascular injury equilibrium Q∗
1 when ∆4(V

∗
1 (h2)) = 0

and Θ(ϖ(h2)) ̸= 0.
(iii) Assume that R0 < 1. There exists some α3 > α∗∗ such that, if α > α3, then the vascular
injury equilibrium Q∗

1 is unstable. If ∆4(V
∗
1 (α

∗∗)) > 0, then there exists some h3 > 0 such that
∆4(V

∗
1 (h3)) = 0, and Model (1.2) has a Hopf bifurcation at the vascular injury equilibrium Q∗

1

when ∆4(V
∗
1 (h3)) = 0 and Θ(ϖ(h3)) ̸= 0.

Remark 5.9. (i) Assume that R0 > 1 and α = 0. It is not difficult to see that D3(V
∗
1 (0)) > 0

and D4(V
∗
1 (0)) > 0. By the proof in Theorem 5.3, we can obtain that if Υ∗

1 ≥ 0, then all
roots of the characteristic equation (5.3) at Q∗

1 have negative real parts. Thus, ∆3(V
∗
1 (0)) > 0,

∆4(V
∗
1 (0)) > 0 and ∆5(V

∗
1 (0)) > 0. It then follows from Lemma 5.6 that D4(V

∗
1 (α)) = 0 has

at least one positive root on (0,+∞).
(ii) Similarly, if R0 < 1 and Υ∗(V ∗

1 (α
∗∗)) > 0, then D4(V

∗
1 (α)) = 0 has at least one positive

root on (α∗∗,+∞).

By Remark 5.9 and Theorems 5.3 and 5.8, we have the following corollary.

Corollary 5.10. The following statements are valid.
(i) If R0 > 1 and Υ∗

1 ≥ 0, then there exists some ĥ1 > 0 such that ∆4(V
∗
1 (ĥ1)) = 0, and Model

(1.2) has a Hopf bifurcation at the vascular injury equilibrium Q∗
1 when ∆4(V

∗
1 (ĥ1)) = 0 and

Θ(ϖ(ĥ1)) ̸= 0.

(ii) If R0 < 1 and Υ∗(V ∗
1 (α

∗∗)) > 0, then there exists some ĥ3 > 0 such that ∆4(V
∗
1 (ĥ3)) = 0,

and Model (1.2) has a Hopf bifurcation at the vascular injury equilibrium Q∗
1 when ∆4(V

∗
1 (ĥ3)) =

0 and Θ(ϖ(ĥ3)) ̸= 0.
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5.2 Global Stability of the Vascular Injury Equilibrium

In this subsection, we will consider the global stability of the vascular injury equilibrium Q∗
1 by

constructing some appropriate Lyapunov functions. We define the following set

Ω+
1 :=

{
(EN , EI , V, C, P ) ∈ Ω1 : EI > 0, V > 0, C > 0, P > 0

}
.

First let us define some parameters

Υ = dN − r +
r

K
E∗

N1
− αV ∗

1

1 + V ∗
1

, θ∗ =

(
Υ+ dI +

r
KM1

)2
2dI

(
r
KM1 +Υ

) ,

b11 = θ∗M1
r

K
+Υ+max

{
2

√
r

K
Υθ∗M1,

Υθ∗M1

E∗
N1

+
r

K
m1

}
,

b̂11 = θ∗M1
r

K
+Υ+max

{
2

√
r

K
Υθ∗M1, Υθ∗ +

r

K
E∗

N1

}
,

b12 =
1

2

(
Υ+ dI +

r

K
E∗

N1

)
, b̂12 =

1

2

(
Υ+ dI +

r

K
M1

)
,

b13 =
α(θ∗M1 + E∗

N1
)

2(1 + V ∗
1 )

, b̂13 =
αM1(θ

∗ + 1)

2(1 + V ∗
1 )

2
,

b22 = dI , b23 =
1

2

( αE∗
N1

1 + V ∗
1

+
dIdv
γ1

)
, b̂23 =

1

2

( αM1

(1 + V ∗
1 )

2
+

dIdv
γ1

)
,

b̃23 =
1

2

( αE∗
N1

(1 + V ∗
1 )

2
+

dIdv
γ1

)
, b23 =

1

2

( αM1

1 + V ∗
1

+
dIdv
γ1

)
, b33 =

dId
2
v

γ2
1

.

We define some real symmetric matrices as follows

P1 =

 b11 0 −b13

0 b22 −b23

−b13 −b23 b33

 , P2 =

 b̂11 0 −b̂13

0 b22 −b̂23

−b̂13 −b̂23 b33

 ,

P3 =

 b11 −b12 −b13

−b12 b22 0

−b13 0 b33

 , P4 =

 b11 −b12 0

−b12 b22 −b̃23

0 −b̃23 b33

 ,

P5 =

 b̂11 −b̂12 0

−b̂12 b22 −b23

0 −b23 b33

 , P6 =

 b̂11 −b̂12 −b̂13

−b̂12 b22 0

−b̂13 0 b33

 .

Theorem 5.11. If R0 > 1, Υ > 0 and the matrices Pi (i = 1, 2, · · · , 6) are semi-positive
definite, then the vascular injury equilibrium Q∗

1 is globally asymptotically stable in Ω+
1 .

Proof. It is not difficult to prove that Ω+
1 is positively invariant and attractive with respect to

Model (1.2). Let g(x) = x − 1 − lnx (x > 0). We define the following Lyapunov function on
Ω+

1 ,

U(t) = θ∗M1U1(t) + U2(t) + U3(t),

where

U1(t) =E∗
N1

g
(EN (t)

E∗
N1

)
+ E∗

I1g
(EI(t)

E∗
I1

)
+

dIηV
∗
1

γ1η + γ2dv
g
(V (t)

V ∗
1

)
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+
dIdvC

∗
1

γ1η + γ2dv
g
(C(t)

C∗
1

)
+

dIdvdcP
∗
1

δ(γ1η + γ2dv)
g
(P (t)

P ∗
1

)
,

U2(t) =
1

2
[(EN (t)− E∗

N1
) + (EI(t)− E∗

I1)]
2,

U3(t) =
dIdv
2γ2

1

(V (t)− V ∗
1 )

2.

It is clear that U(t) is continuous on Ω+
1 and positive definite with respect to Q∗

1 and satisfies

condition (ii) of Theorem 1.2 in [34] on ∂Ω+
1 = Ω+

1 \ Ω+
1 .

We rewrite the first equation of Model (1.2) as follows

ĖN (t) =− (dN − r)(EN (t)− E∗
N1

) +
r

K
[(E∗

N1
)2 − (EN (t))2]

+
αEN (t)V (t)

1 + V (t)
−

αE∗
N1

V ∗
1

1 + V ∗
1

+ βE∗
N1

P ∗
1 − βEN (t)P (t)

=−
[
dN − r +

r

K
(E∗

N1
+ EN (t))− αV ∗

1

1 + V ∗
1

]
(EN (t)− E∗

N1
)

+
αEN (t)(V (t)− V ∗

1 )

(1 + V (t))(1 + V ∗
1 )

+ βE∗
N1

P ∗
1 − βEN (t)P (t)

=−
[
Υ+

r

K
EN (t)

]
(EN (t)− E∗

N1
) +

αEN (t)(V (t)− V ∗
1 )

(1 + V (t))(1 + V ∗
1 )

+ βE∗
N1

P ∗
1 − βEN (t)P (t). (5.10)

From (2.5) and (2.6), we have

βE∗
N1

P ∗
1 = dIE

∗
I1 , βE∗

N1
=

dIdvdcdp
δ(γ1η + γ2dv)

,

V ∗
1 =

γ1
dv

E∗
I1 , C∗

1 =
(γ1η + γ2dv

γ1dc

)γ1
dv

E∗
I1 . (5.11)

From (5.10) and (5.11), we have, for t ≥ 0,

U̇1(t) =
(
1−

E∗
N1

EN (t)

)
ĖN (t) +

(
1−

E∗
I1

EI(t)

)
ĖI(t) +

dIη

γ1η + γ2dv

(
1− V ∗

1

V (t)

)
V̇ (t)

+
dIdv

γ1η + γ2dv

(
1− C∗

1

C(t)

)
Ċ(t) +

dIdvdc
δ(γ1η + γ2dv)

(
1− P ∗

1

P (t)

)
Ṗ (t)

=−
[ Υ

EN (t)
+

r

K

]
(EN (t)− E∗

N1
)2 +

α(EN (t)− E∗
N1

)(V (t)− V ∗
1 )

(1 + V (t))(1 + V ∗
1 )

+ βE∗
N1

P ∗
1 + βE∗

N1
P (t)− βE∗

N1
P ∗
1

E∗
N1

EN (t)
+ dIE

∗
I1 − βEN (t)P (t)

E∗
I1

EI(t)

+
ηdIdv

γ1η + γ2dv
V ∗
1 −

dIηγ1E
∗
I1

γ1η + γ2dv

EI(t)V
∗
1

E∗
I1
V (t)

+
dIdvdc

γ1η + γ2dv
C∗

1

−
dIdvγ2E

∗
I1

γ1η + γ2dv

EI(t)C
∗
1

E∗
I1
C(t)

− dIdvηV
∗
1

γ1η + γ2dv

V (t)C∗
1

V ∗
1 C(t)

+
dIdvdcdp

δ(γ1η + γ2dv)
P ∗
1

− dIdvdcdp
δ(γ1η + γ2dv)

P (t)− dIdvdcC
∗
1

γ1η + γ2dv

C(t)P ∗
1

C∗
1P (t)

=−
( Υ

EN (t)
+

r

K

)
(EN (t)− E∗

N1
)2
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+
α(EN (t)− E∗

N1
)(V (t)− V ∗

1 )

(1 + V (t))(1 + V ∗
1 )

+ Φ1(t) + Φ2(t), (5.12)

where

Φ1(t) =
γ1η

γ1η + γ2dv
dIE

∗
I1

(
5−

E∗
N1

EN (t)
−

E∗
I1
EN (t)P (t)

EI(t)E∗
N1

P ∗
1

− EI(t)V
∗
1

E∗
I1
V (t)

− V (t)C∗
1

V ∗
1 C(t)

− C(t)P ∗
1

C∗
1P (t)

)
,

Φ2(t) =
γ2dv

γ1η + γ2dv
dIE

∗
I1

(
4−

E∗
N1

EN (t)
−

E∗
I1
EN (t)P (t)

EI(t)E∗
N1

P ∗
1

− EI(t)C
∗
1

E∗
I1
C(t)

− C(t)P ∗
1

C∗
1P (t)

)
,

U̇2(t) = [(EN (t)− E∗
N1

) + (EI(t)− E∗
I1)](ĖN (t) + ĖI(t))

=[(EN (t)− E∗
N1

) + (EI(t)− E∗
I1)]

×
{
−

[
Υ+

r

K
EN (t)

]
(EN (t)− E∗

N1
) +

αEN (t)(V (t)− V ∗
1 )

(1 + V (t))(1 + V ∗
1 )

− dI(EI(t)− E∗
I1)

}
=−

(
Υ+

r

K
EN (t)

)
(EN (t)− E∗

N1
)2 − dI(EI(t)− E∗

I1)
2

−
(
Υ+ dI +

r

K
EN (t)

)
(EN (t)− E∗

N1
)(EI(t)− E∗

I1)

+
αEN (t)

(1 + V (t))(1 + V ∗
1 )

[(EN (t)− E∗
N1

)(V (t)− V ∗
1 ) + (EI(t)− E∗

I1)(V (t)− V ∗
1 )], (5.13)

U̇3(t) =
dIdv
γ2
1

(V (t)− V ∗
1 )[γ1(EI(t)− E∗

I1)− dv(V (t)− V ∗
1 )]

=− dId
2
v

γ2
1

(V (t)− V ∗
1 )

2 +
dIdv
γ1

(EI(t)− E∗
I1)(V (t)− V ∗

1 ). (5.14)

From (5.12)–(5.14), we have, for t ≥ 0,

U̇(t) =− b11(t)(EN (t)− E∗
N1

)2 − b22(EI(t)− E∗
I1)

2 − b33(V (t)− V ∗
1 )

2

− 2b12(t)(EN (t)− E∗
N1

)(EI(t)− E∗
I1) + 2b13(t)(EN (t)− E∗

N1
)(V (t)− V ∗

1 )

+ 2b23(t)(EI(t)− E∗
I1)(V (t)− V ∗

1 ) + θ∗M1(Φ1(t) + Φ2(t)), (5.15)

where

b11(t) =
rθ∗M1

K
+Υ+

θ∗M1Υ

EN (t)
+

r

K
EN (t), b12(t) =

1

2

(
Υ+ dI +

r

K
EN (t)

)
,

b13(t) =
α[θ∗M1 + EN (t)]

2(1 + V (t))(1 + V ∗
1 )

, b23(t) =
1

2

[ αEN (t)

(1 + V (t))(1 + V ∗
1 )

+
dIdv
γ1

]
.

For convenience, we define J = (|EN (t)− E∗
N1

|, |EI(t)− E∗
I1
|, |V (t)− V ∗

1 |). By considering
the signs of crossing terms in (5.15), the following 8 cases need to be discussed.

Case (I). When EN (t) ≤ E∗
N1

, EI(t) ≤ E∗
I1
, V (t) ≤ V ∗

1 , then b11(t) ≥ b11, b13(t) ≤ b13,
b23(t) ≤ b23; thus we have

U̇(t) ≤− JP1J
T − 2b12(t)(EN (t)− E∗

N1
)(EI(t)− E∗

I1) + θ∗M1(Φ1(t) + Φ2(t))

≤− JP1J
T + θ∗M1(Φ1(t) + Φ2(t)).

Case (II). When EN (t) ≤ E∗
N1

, EI(t) ≤ E∗
I1
, V (t) ≥ V ∗

1 , then b11(t) ≥ b11; thus we have

U̇(t) ≤− b11(EN (t)− E∗
N1

)2 − b22(EI(t)− E∗
I1)

2 − b33(V (t)− V ∗
1 )

2 + θ∗M1(Φ1(t) + Φ2(t)).

Case (III). When EN (t) ≥ E∗
N1

, EI(t) ≥ E∗
I1
, V (t) ≤ V ∗

1 , then b11(t) ≥ b̂11; thus we have

U̇(t) ≤− b̂11(EN (t)− E∗
N1

)2 − b22(EI(t)− E∗
I1)

2 − b33(V (t)− V ∗
1 )

2 + θ∗M1(Φ1(t) + Φ2(t)).
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Case (IV). When EN (t) ≥ E∗
N1

, EI(t) ≥ E∗
I1
, V (t) ≥ V ∗

1 , then b11(t) ≥ b̂11, b13(t) ≤ b̂13,

b23(t) ≤ b̂23; thus we have

U̇(t) ≤− JP2J
T − b12(t)(EN (t)− E∗

N1
)(EI(t)− E∗

I1) + θ∗M1(Φ1(t) + Φ2(t))

≤− JP2J
T + θ∗M1(Φ1(t) + Φ2(t)).

Case (V). When EN (t) ≤ E∗
N1

, EI(t) ≥ E∗
I1
, V (t) ≤ V ∗

1 , then b11(t) ≥ b11, b12(t) ≤ b12,
b13(t) ≤ b13; thus we have

U̇(t) ≤− JP3J
T + 2b23(t)(EI(t)− E∗

I1)(V (t)− V ∗
1 ) + θ∗M1(Φ1(t) + Φ2(t))

≤− JP3J
T + θ∗M1(Φ1(t) + Φ2(t)).

Case (VI). When EN (t) ≤ E∗
N1

, EI(t) ≥ E∗
I1
, V (t) ≥ V ∗

1 , then b11(t) ≥ b11, b12(t) ≤ b12,

b23(t) ≥ b̃23; thus we have

U̇(t) ≤− JP4J
T + 2b13(t)(EN (t)− E∗

N1
)(V (t)− V ∗

1 ) + θ∗M1(Φ1(t) + Φ2(t))

≤− JP4J
T + θ∗M1(Φ1(t) + Φ2(t)).

Case (VII). When EN (t) ≥ E∗
N1

, EI(t) ≤ E∗
I1
, V (t) ≤ V ∗

1 , then b11(t) ≥ b̂11, b12(t) ≤ b̂12,

b23(t) ≤ b23; thus we have

U̇(t) ≤− JP5J
T + 2b13(t)(EN (t)− E∗

N1
)(V (t)− V ∗

1 ) + θ∗M1(Φ1(t) + Φ2(t))

≤− JP5J
T + θ∗M1(Φ1(t) + Φ2(t)).

Case (VIII). When EN (t) ≥ E∗
N1

, EI(t) ≤ E∗
I1
, V (t) ≥ V ∗

1 , then b11(t) ≥ b̂11, b12(t) ≤ b̂12,

b13(t) ≤ b̂13; thus we have

U̇(t) ≤− JP6J
T + 2b23(t)(EI(t)− E∗

I1)(V (t)− V ∗
1 ) + θ∗M1(Φ1(t) + Φ2(t))

≤− JP6J
T + θ∗M1(Φ1(t) + Φ2(t)).

Since the arithmetic mean is greater than or equal to the geometric mean, we have Φ1(t) ≤ 0
and Φ2(t) ≤ 0. In summary, if the matrixs Pi (i = 1, 2, · · · , 6) are semi-positive definite, then
we have, for t ≥ 0,

U̇(t) ≤ θ∗M1(Φ1(t) + Φ2(t)) ≤ 0.

This shows that U(t) is a Lyapunov function on Ω+
1 . Thus, Q∗

1 is stable (see [17]). Note that
U̇(t) = 0 implies that

EN (t) = E∗
N1

,
E∗

I1
P (t)

EI(t)P ∗
1

= 1,
EI(t)V

∗
1

E∗
I1
V (t)

= 1,
V (t)C∗

1

V ∗
1 C(t)

= 1,
C(t)P ∗

1

C∗
1P (t)

= 1. (5.16)

Let M∗ be the largest invariant set in Γ2 := {(EN , EI , V, C, P ) ∈ Ω+
1 : U < ∞, U̇ = 0}.

From Model (1.2) and the invariance of M∗, we can obtain M∗ = {Q∗
1}. Then, it follows

from Theorem 1.2 in [34] that Q∗
1 is globally attractive. Thus, Q∗

1 is globally asymptotically
stable.

We define the following matrix:

P7(α) =

 b̃11 −b̂12 −b̃13

−b̂12 b22 −b23

−b̃13 −b23 b33

 ,
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where

b̃11 = θ∗M1
r

K
+Υ+max

{
2

√
r

K
Υθ∗M1,Υθ∗ +

r

K
m1

}
, b̃13 =

αM1(θ
∗ + 1)

2(1 + V ∗
1 )

.

Remark 5.12. Assume that R0 > 1 and Υ1 := dN − r+ r
KE∗

N1
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θ∗ > 0.

This shows that the matrix P7(0) is positive definite. Clearly, Π1(α) is continuous with respect
to α ∈ [0, α∗

0). Thus, there exits some α∗
1 ∈ (0, α∗

0) such that Π1(α) ≥ 0 if 0 ≤ α ≤ α∗
1. Then,

there exists α∗
2 ∈ [α∗

1, α
∗
0) such that, the matrices Pi (i = 1, 2, · · · , 6) are semi-positive definite

if 0 ≤ α ≤ α∗
2.

By Theorem 5.11 and Remark 5.12, we have the following corollary.

Corollary 5.13. Assume R0 > 1 and Υ1 > 0. If 0 ≤ α ≤ α∗
2, then the vascular injury

equilibrium Q∗
1 is globally asymptotically stable in Ω+

1 .

6 Numerical Simulations

In this section, we give some numerical simulations to illustrate our theoretical results. We fix
s = 1, dN = 1, r = 1, K = 2, β = 0.25, γ1 = 1, dv = 2, γ2 = 1, η = 1, dc = 1, δ = 1, dp = 1
and change the values of α and dI . Clearly, α

∗ = 0.75.
Note that ω, ω∗, a22, a33 and Π(α) can be viewed as 2-element functions with respect to R0

and α. Then, with the help of Maple mathematical software, the curves of the implicit functions
of R0 = ω, R0 = ω∗, a22a33 = Π(α) are drawn (see Figure 6.1). The lower left part of the red
solid line indicates the region where condition (H) holds; the lower left part of the solid blue
line indicates the region where R0 < ω∗. By Theorem 3.2, the vascular injury-free equilibrium
Q0 is globally asymptotically stable if (α,R0) falls on regions I, III and V; by Theorem 3.5, the
vascular injury-free equilibrium Q0 is globally asymptotically stable if (α,R0) falls on regions
I, II, V and VI.

If we further choose α = 2 > α∗ (the case of backward bifurcation) and dI = 0.65,
then by calculation, we have R0 ≈ 0.815892 > ω ≈ 0.809835. It has from Theorem 2.3
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that, Model (1.2) has a vascular injury-free equilibrium Q0 ≈ (1.414214, 0, 0, 0, 0) and two
vascular injury equilibria Q∗

1 ≈ (1.733333, 1.586897, 0.793449, 2.380346, 2.380348) and Q∗
2 ≈

(1.733333, 0.973787, 0.486893, 1.46068, 1.46068). Note that ω < R0 < 1, it has from Theo-
rems 3.1 and 5.2 that the vascular injury-free equilibrium Q0 is locally asymptotically sta-
ble and the vascular injury equilibrium Q∗

2 is unstable. In addition, the calculation gives
Υ∗(V ∗

1 (α)) ≈ 0.848503 > min{dI , dc, dp} = 0.65. Then, it has from Theorem 5.3 that the
vascular injury equilibrium Q∗

1 is locally asymptotically stable. Thus, Model (1.2) has bistable
equilibria under this set of parameters (see Figure 6.2).

Figure 6.1. The global asymptotic stability regions of Q0 in the α-R0 plane. The lower
left part of the red solid line indicates the region where condition (H) holds;
the lower left part of the blue solid line indicates the region where R0 < ω∗.
The curves R0 = 1, R0 = ω (α > α∗), R0 = ω∗, a22a33 = Π(α) and α = α∗

dividing the first quadrant region into 8 parts. By Theorems 3.2 and 3.5, if
(α,R0) falls in the regions I, II, III, V, VI, then Q0 is globally asymptotically
stable.
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Figure 6.2. The phase trajectories of Model (1.2) with the different initial values. Here
α > α∗ (the case of backward bifurcation), ω < R0 < 1, Model (1.2) has three
equilibria; Q0 and Q∗

1 are locally asymptotically stable, Q∗
2 is unstable.

In the following, we verify the existence of the Hopf bifurcation using α as the bifurcation
parameter.
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If we further choose dI = 0.3, then R0 ≈ 1.767767 > 1. By Lemma 5.5, we have that, for
any α ≥ 0,

p(V ∗
1 (α)) = dIdv

(
Ψ1 −

αV ∗
1 (α)

(1 + V ∗
1 (α))

2

)
> dIdv(Ψ1 − α∗) = 0.54 > 0.

Thus, Dj(V
∗
1 (α)) > 0 (j = 3, 4) for any α ≥ 0. By means of numerical calculations, we find that

there exists ς1 ≈ 9.078353 such that ∆4(V
∗
1 (ς1)) = 0, ∆3(V

∗
1 (α)) > 0 and ∆4(V

∗
1 (α)) > 0 for

0 ≤ α < ς1, ∆4(V
∗
1 (α)) < 0 for α > ς1. Thus, when 0 ≤ α < ς1, the vascular injury equilibrium

Q∗
1 is locally asymptotically stable (see Figure 6.3 (a)); when α = ς1, Model (1.2) has a Hopf

bifurcation (Θ(ϖ(ς1)) = sign{6.101209} = 1 ̸= 0); when α > ς1, the vascular injury equilibrium
Q∗

1 is unstable (see Figure 6.3 (b)).
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(a) α = 8 < ς1 ≈ 9.078353
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(b) α = 10 > ς1 ≈ 9.078353

Figure 6.3. The phase trajectory of Model (1.2) with the initial value (0.6, 16, 9, 8, 31).
(a) Here R0 ≈ 1.767767 > 1, α = 8 < ς1, Q∗

1 ≈ (0.8, 21.8079, 10.9039, 32.7118,
32.711814) is locally asymptotically stable. (b) Here R0 ≈ 1.767767 > 1,
α = 10 > ς1, Q∗

1 ≈ (0.8, 27.1006, 13.5503, 40.6509, 40.6509) is unstable.
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(a) α = 5 < ς2 ≈ 6.578443
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(b) α = 6.6 > ς2 ≈ 6.578443

Figure 6.4. The phase trajectory of Model (1.2) with the initial value (0.6, 10, 9, 16, 18).
(a) Here R0 = 1, α = 5 < ς2, Q∗

1 ≈ (1.41421, 11.3333, 5.66667, 17, 17) is
locally asymptotically stable. (b) Here R0 = 1, α = 6.6 > ς2, Q∗

1 ≈
(1.41421, 15.6, 7.8, 23.4, 23.4) is unstable.

If we further choose dI = 3
√
2/8, then R0 = 1. By Lemma 5.5, we have that, for any

α > α∗ = 0.75, p(V ∗
1 (α)) > dIdv(Ψ1 − α∗) ≈ 0.704505 > 0. Thus, Dj(V

∗
1 (α)) > 0 (j = 3, 4) for
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any α > 0.75. By means of numerical calculations, we find that there exists ς2 ≈ 6.578444 such
that ∆4(V

∗
1 (ς2)) = 0, ∆3(V

∗
1 (α)) > 0 and ∆4(V

∗
1 (α)) > 0 for 0.75 < α < ς2, ∆4(V

∗
1 (α)) < 0 for

α > ς2. Thus, when 0.75 < α < ς2, the vascular injury equilibrium Q∗
1 is locally asymptotically

stable (see Figure 6.4 (a)); when α = ς2, Model (1.2) has a Hopf bifurcation (Θ(ϖ(ς2)) =
sign{11.087761} = 1 ̸= 0); when α > ς2, the vascular injury equilibrium Q∗

1 is unstable (see
Figure 6.4 (b)).

If we further choose dI = 0.8, then R0 ≈ 0.662913 < 1 and α∗∗ ≈ 2.687226. By means
of numerical calculations, we find that, for any α > α∗∗, Dj(V

∗
1 (α)) > 0 (j = 3, 4); there

exists ς3 ≈ 7.104526 such that ∆4(V
∗
1 (α)) = 0, ∆3(V

∗
1 (α)) > 0 and ∆4(V

∗
1 (α)) > 0 for α∗∗ <

α < ς3, ∆4(V
∗
1 (α)) < 0 for α > ς3. Thus, when α∗∗ < α < ς3, then the vascular injury

equilibrium Q∗
1 is locally asymptotically stable (see Figure 6.5 (a)); when α = ς3, Model (1.2)

has a Hopf bifurcation (Θ(ϖ(ς3)) = sign{22.299169} = 1 ≠ 0); when α > ς3, the vascular injury
equilibrium Q∗

1 is unstable (see Figure 6.5 (b)).
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(a) α = 6 < ς2 ≈ 7.104526
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(b) α = 7.5 > ς2 ≈ 7.104526

Figure 6.5. The phase trajectory of Model (1.2) with the initial value (1.3, 9, 9, 8, 18).
(a) Here R0 ≈ 0.66291 < 1, α = 6 < ς3, Q∗

1 ≈ (2.13333,
12.1429, 6.07147, 18.2144, 18.214415) is locally asymptotically stable. (b)
Here R0 ≈ 0.662913 < 1, α = 7.5 > ς3, Q∗

1 ≈ (2.13333, 16.2088,
8.10441, 24.3132, 24.3132) is unstable.

7 Conclusions

In this paper, we propose and study a class of 5-dimensional ordinary differential equation
model describing the vascular endothelial cell injury in the lesion area of KD. We establish
a very important parameter α∗; when α ≤ α∗, Model (1.2) has a forward bifurcation, when
α > α∗, Model (1.2) has a backward bifurcation. The presence of backward bifurcation means
that controlling the basic reproduction number R0 < 1 is no longer sufficient to heal injury in
the lesion area of KD.

By analysing the corresponding characteristic equation, our results show that if the basic re-
production number R0 < 1, then the vascular injury-free equilibrium Q0 is locally asymptotical-
ly stable. Further, by constructing suitable Lyapunov functions and combining the Lyapunov-
LaSalle invariance principle, we obtain two types of sufficient conditions for the global asymp-
totic stability of the vascular injury-free equilibrium Q0. This provides two theoretical control
strategies for controlling vascular injury in the lesion area of KD.

By analyzing in detail the properties of any positive solution of Model (1.2), we obtain
the permanence of Model (1.2). Our results show that Model (1.2) is permanent if the basic
reproduction number R0 > 1, and some explicit expressions of ultimate lower bounds for
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the components of any positive solution of Model (1.2) are given. The permanence result
shows that the vascular injury and inflammation in the KD lesion area will persist, and KD is
uncontrollable.

Subsequently, we also study the local and global asymptotic stability of the vascular injury
equilibria and the existence of Hopf bifurcation induced by the parameter α. We obtain some
sufficient conditions for the local asymptotic stability of the vascular injury equilibrium Q∗

1 and
find that α can lead to the Hopf bifurcation within a certain range of parameters. In addition,
our results show that the vascular injury equilibrium Q∗

2 is always unstable if it exists, and the
vascular injury equilibrium Q∗

1 is also unstable if it exists and α is sufficiently large. Finally,
we give some sufficient conditions for the global asymptotic stability of the vascular injury
equilibrium Q∗

1 by constructing suitable Lyapunov functions and combining the Lyapunov-
LaSalle invariance principle. Our theoretical results also suggest that the control of vascular
injury in the lesion area of KD is not only correlated with the basic reproduction number R0,
but also with the growth rate (α) of normal vascular endothelial cells promoted by the vascular
endothelial growth factor. Therefore, in order to control the injury in the lesion area of KD,
it is necessary to try to control certain parameters such that the basic reproduction number
R0 < 1, and furthermore it is necessary to reduce the parameter α less than α∗∗.
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