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1 Introduction

Barrier options, one of the most widely traded exotic options in the financial markets, are path-
dependent derivatives with a payoff at maturity that depend not only on the terminal price but
also on whether or not a specified asset price arrives a certain boundary. Common examples
are the knock-in and knock-out call and put options which are popular in corporate finance and
widely used by institutional investors because of the cheapness. For example, barrier options can
be applied for purpose of hedging, traders may use these options to obtain insurance protection
when the price of the underlying asset is above or below a certain level.

It is well-known that the financial system presents periodic changes under the influence
of external factors, therefore the option pricing models should consider cyclical behavior in
financial markets, and the regime switching models can effectively describe various randomly
changing economical factors, since different regimes can be identified by macroeconomic factors
like rate of return and price volatility of derivatives. Based on Hamilton’s seminal work, the
problem of option pricing in regime switching models has been an important topic in economic
analysis and financial time series, see references [9, 11, 12, 21] for detailed discussions. Model
parameters in regime switching models are assumed to depend on a continuous time and finite-
state Markov chain, the states of the chain represent different states of an economy, which is a
major advantage compared with other models[25].

On account of prevalence of regime switching models, increasing research efforts have been
devoted to barrier option pricing. Chan et al. considered a continuous-time financial model
with a money market account and a share, and presented an explicit analytic solution in infinite
series form for the price of European-style barrier option in two-state regime[2]. Fall et al.
discussed the analytical solution of the Black-Scholes equation and the analytical solution of
the generalized Black-Scholes equation both described by the Caputo generalized fractional
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derivative[7]. Masi et al. used a partial differential equation (PDE) approach to price an
European call option for a two-regime process in continuous time[19]. Eloe et al. studied a double
barrier option when the underlying asset price followed a regime switching exponential mean-
reverting process via the combination of analysis of a deterministic boundary value problem with
probabilistic approach, and proved the existence of the smooth solution of the boundary value
system[6]. Elliott et al. considered the valuation of both European-style and American-style
barrier options in a regime switching model. Both the probabilistic and PDE approaches were
used to price the barrier options, and a semi-analytical solution was derived[5]. Kudryavtsev et
al. suggested two fast and accurate methods, the fast Wiener-Hopf method and the iterative
Wiener-Hopf method, for pricing barrier options for a wide class of Lévy processes[17]. Hieber
showed that, in the case of two or three-state regimes or in the case of a zero drift term, the
matrix Wiener-Hopf factorization could be derived analytically[14], however, the factorization
usually had to be computed numerically in the case of more than three-state regimes, one can
also refer to [16, 17]. Hieber used two-state matrix Wiener-Hopf factorization to price exotic
options, such as digital option, lookback option and down-and-out barrier option[15]. The
lattice method and trinomial tree method were also used to price options in regime switching
model[10, 26].

For holders of barrier options, the closer the initial price is to the barrier, the greater the
likelihood of option failure, so more rebates are needed as compensation to hedge the losses of
option failure. Therefore, it is of great importance in introducing rebates in option pricing to
reduce the risk. Le et al. presented an innovative decomposition approach to price American
up-and-out put options with a time-dependent rebates by using the continuous Fourier sine
transform approach[18]. Park et al. derived an analytic formula for the American knock-
out option with rebates by using Laplace-Carson transform method[22]. However, the specific
forms of the rebates were not provided in [18, 22], in this paper, we define specific rebate
functions to achieve high-risk and high rebates. In addition, the calculation of barrier options
with rebates is quite complicated, especially there is no analytical solution in many cases. We
decompose barrier options into a combination of several European options, and obtain closed-
form expressions, specifically, it makes the calculation simpler. Furthermore, motivated by
the work of Hieber[15], we construct the integral representations of barrier options pricing in
regime switching models with specific rebates in the Black-Scholes framework, and investigate
the first-passage time density functions by using the inverse Fourier transform and the matrix
Wiener-Hopf factorization techniques. As applications, we focus our attention on two-state
regime model in numerical illustration, several comparison to available numerical algorithms
and classical Black-Scholes models are achieved.

The remainder of the paper is organized as follows. The dynamic models with Markovian
regime switching are described in Section 2. The integral representations of the rebates, the
pricing formulas of single-barrier and double-barrier options and the first-passage time den-
sity functions in two-state regime are constructed in Section 3. The numerical examples are
presented in Section 4. Finally, the conclusion of the present work is given in Section 5.

2 The Dynamic Models with Regime Switching

In this section, we aim at the dynamic models with Markovian regime switching Black-Scholes
economy. We consider a continuous-time financial model with two primitive securities, for
simplicity, write B as a bond and S as a share, these securities can be traded continuously over
time in a finite interval [0, T ].

In order to describe the evolution of k-state (k ∈ N+) of the economy with regime switching,
let X = X(t)0≤t≤T be a continuous-time Markov chain on (Ω,F ,P) with finite k-state space
D , and assume that D = {e1, e2, · · · , ek}, ei ∈ Rk, i = 1, 2, · · · , k, is a canonical state space.
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Let A0 = (aij)k×k be generator matrix of the chain X, where aij ≥ 0 for i ̸= j, and
k∑

j=1

aij = 0

for i = 1, 2, · · · , k. The probability of transition of the chain X from state ei to state ej is
−aij/aii, i ̸= j. According to Ref. [3], it follows that

X(t) = X(0) +

∫ t

0

A0X(s) ds+M(t), (2.1)

where M(t) is a martingale.

Let r > 0 be a constant risk-free interest rate, the price process {B(t), t ∈ [0, T ]} of the
bond is given by

B(t) = ert, B(0) = 1.

For any t ∈ [0, T ], we define that

µt = µ(Xt) = ⟨µ, Xt⟩, σt = σ(Xt) = ⟨σ, Xt⟩, (2.2)

where µ = (µ1, µ2, · · · , µk)
′ and σ = (σ1, σ2, · · · , σk)′ satisfy µi > r, σi > 0, i = 1, 2, · · · , k.

⟨·, ·⟩ denotes the scalar product, and µi, σi represent the expected return rate and the volatility
of the share S when the economy is in the i-th state, respectively.

Suppose that the price St of underlying assets at time t under the real-world measure P
follows a Markov-modulated geometric Brownian motion, which satisfies

dSt = µtSt dt+ σtSt dWt, (2.3)

where Wt is the standard Brownian motion under P, and independent of Xt. Furthermore,
denote by Ft = σ{Ss, Xs; s ≤ t} the filtration. Let Q be the risk-neutral measure, then the
discounted stock price process e−rtSt is a martingale under Q. According to Ref. [5], Q is given
by the following Radon-Nikodym derivative

dQ
dP

∣∣∣
Ft

= exp
{∫ t

0

r − µs

σs
dWs −

1

2

∫ t

0

(r − µs

σs

)2

ds
}
. (2.4)

By Girsanov’s theorem, it follows that

WQ
t :=Wt +

∫ t

0

r − µs

σs
dt, (2.5)

where WQ
t is a standard Brownian motion under Q. Therefore, the stock price model under Q

can be written as

dSt = rSt dt+ σtSt dW
Q
t . (2.6)

Let st = lnSt, t ∈ [0, T ], then the characteristic function (one can refer to [14]) of sT
conditional on Ft under Q in a regime switching model (2.6) is given by

ψsT |Ft
(v) = eivst

⟨
exp

{(
A0 +Φ(v)

)
(T − t)

}
Xt,1

⟩
, (2.7)

where Φ(v) = diag
{
ivr − 1

2v
2σ2

1 , ivr − 1
2v

2σ2
2 , · · · , ivr − 1

2v
2σ2

k

}
, 1 = (1, 1, · · · , 1)′ is a k-

dimension column vector of ones.
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3 Barrier Option Pricing with Specific Rebates

Barrier option pricing was first investigated by Merton[20] and it has been an important topic
in economic market. In this section, we will investigate single-barrier and double-barrier knock-
out call options with a strike price K, maturity T , upper barrier U and lower barrier L, which
satisfy L < S0 < K < U . Let τ tU = inf{s ≥ t|Ss ≥ U} and τ tL = inf{s ≥ t|Ss ≤ L} be the first
hitting time for upper barrier U and lower barrier L, respectively. Denote τ tLU = τ tU ∧ τ tL =
inf{s ≥ t|Ss /∈ (L,U)}, and I{·} is indicator function. The payoff of such single-barrier option
is given by

g(ST ) =

{
(ST −K)

+
, St > L (or St < U), t ∈ [0, T ],

R(t), otherwise,

and the payoff of such double-barrier option is given by

g(ST ) =

{
(ST −K)

+
, L < St < U, t ∈ [0, T ],

R(t), otherwise,

where the R(t) is a time-varying rebates payment when the options are worthless. Then we
derive the price of single-barrier up-and-out call option with rebate as follows:

BSUC(t, St, Xt;T,K)

= EQ[e−r(T−t)(ST −K)+I{τt
U>T} + e−r(τt

U−t)R(T − t)I{τt
U≤T}

∣∣Ft

]
= EQ[e−r(T−t)(ST −K)+I{τt

U>T}
∣∣Ft

]
+ EQ[e−r(τt

U−t)R(T − t)I{τt
U≤T}

∣∣Ft

]
=: BSUC,1 +BSUC,2. (3.1)

Similarly, the price of single-barrier down-and-out call option with rebate is given by

BSDC(t, St, Xt;T,K)

= EQ[e−r(T−t)(ST −K)+I{τt
L>T} + e−r(τt

L−t)R(T − t)I{τt
L≤T}

∣∣Ft

]
= EQ[e−r(T−t)(ST −K)+I{τt

L>T}
∣∣Ft

]
+ EQ[e−r(τt

L−t)R(T − t)I{τt
L≤T}

∣∣Ft

]
=: BSDC,1 +BSDC,2. (3.2)

Finally, the price of double-barrier knock-out call option with rebate is as follows:

BDKC(t, St, Xt;T,K)

= EQ[e−r(T−t)(ST −K)+I{τt
LU>T} + e−r(τt

LU−t)R(T − t)I{τt
LU≤T}

∣∣Ft

]
= EQ[e−r(T−t)(ST −K)+I{τt

LU>T}
∣∣Ft

]
+ EQ[e−r(τt

LU−t)R(T − t)I{τt
LU≤T}

∣∣Ft

]
=: BDKC,1 +BDKC,2, (3.3)

where BSUC,2, BSDC,2, BDKC,2 are the corresponding rebates, and the R(x) is defined by

R(x) = rspSt(e
rx − 1). (3.4)

It is easy to show that R(x) is a monotonically increasing function of x and satisfies R(0) = 0.
According to [18, 22], there are two main reasons to define the rebate as (3.4): Firstly, in finance
practice, the purpose of providing rebates is to partly compensate for the loss of the option in
the event that the knock-out feature is activated before expiration, but not at expiration. The
earlier the knock-out feature is activated, the more loss the holder suffers, thereby the more
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amount of rebates should be paid to the holder. Secondly, for the coefficient rsp, we assume
that there are k kinds of independent risky assets whose required rates of return are µi, risks
are σi, i = 1, 2, · · · , k, respectively. Then one can construct a portfolio via the k risk assets.
Denote by µp, σp the required rate of return and risk of the portfolio, the Sharpe ratio of the
portfolio defined in [24] is as follows:

rsp =
µp − r

σp
, (3.5)

where µp =
k∑

j=1

ωjµj , σ
2
p =

k∑
j=1

ω2
jσ

2
j , and ωj ∈ [0, 1] is the proportion of the j-th risk asset in

the portfolio. Then we can obtain an alternative optimal rsp via minimizing the portfolio’s risk
σp in (3.5). It is significant to use the Sharp ratio, an important indicator of excess returns
of portfolio, to measure the excess returns relative to bond with initial value St and maturity
T − t in a switching economy.

Remark 3.1. One can also construct a portfolio by k kinds of correlative risky assets with the

required rates of return µi and risks σi, i = 1, 2, · · · , k. Then µp =
k∑

j=1

ωjµj and

σ2
p =

k∑
j=1

ω2
jσ

2
j + 2

∑
1≤i<j≤k

ωiωjCov(S
i, Sj),

where Cov(Si, Sj) denotes the covariance of i-th and j-th risky assets.

In what follows, we will price single-barrier and double-barrier options under model (2.6).
Before pricing call options, let us recall some serviceable results, such as the Fourier transform of
(2.6), and the first-passage time densities with respect to the matrix Wiener-Hopf factorization,
the following lemmas and proposition come from references [1, 14, 15], we omit the proofs here.

Lemma 3.2. Consider the regime switching model defined in (2.6). Under Q, the price of an
European call option at time t with strike K and maturity T is written as

C(t, St, Xt;T,K) =
e−r(T−t)

π

∫ ∞

0

e−(α+iv) lnK
[ ψsT |Ft

(v − i(1 + α))

α2 + α− v2 − i(1 + 2α)v

]
dv, (3.6)

where α ∈ [1, 2] is an arbitrary constant and ψsT |Ft
(·) is the conditional characteristic function

of sT given by (2.7).

Lemma 3.3. Consider the regime switching model defined in (2.6) with initial distribution on
the states X0 ∈ Rk. For two constant barriers L = el < S0 = es0 < U = eu, it holds that, for
τ ∈ (0,∞), one-sided first-passage time densities can be expressed respectively by

fL(τ,X0) =
1

π

∫ ∞

0

e−ivτ
[
X ′

0 exp{A−(s0 − l)}1
]
dv, (3.7)

and

fU (τ,X0) =
1

π

∫ ∞

0

e−ivτ
[
X ′

0 exp{A+(u− s0)}1
]
dv. (3.8)

For v > 0, the matrices A± are the matrix Wiener-Hopf factorizations of (S,X) defined via
Ξ(−A+) = Ξ(A−) = 0, where

Ξ(A) =
1

2
Σ2A2 +VA+A0 − vEk, (3.9)

Σ = diag{σ1, σ2, · · · , σk}, V = diag
{
r − 1

2σ
2
1 , r − 1

2σ
2
2 , · · · , r − 1

2σ
2
k

}
, Ek is identity matrix.
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Lemma 3.4. Consider the regime switching model defined in (2.6) with initial distribution on
the states X0 ∈ Rk. For two constant barriers L = el < U = eu, it holds that, for τ ∈ (0,∞),
two-sided first-passage time density can be expressed by

fLU (τ,X0) =
1

π

∫ ∞

0

e−ivτ
[
X ′

0

(
Ψ+(s0) + Ψ−(s0)

)
1
]
dv, (3.10)

where
Ψ+(x) =

(
exp{A+(U − x)} − exp{A−(x− l)}Y+

)
(Ek −Y−Y+)

−1, (3.11)

Ψ−(x) =
(
exp{A−(x− L)} − exp{A+(u− x)}Y−

)
(Ek −Y+Y−)

−1, (3.12)

and Y± = exp{A±(u− l)}.

Proposition 3.5. Consider the regime switching model defined in (2.6). For a constant barriers
L = el < S0. Under Q, the price of a digital option with payoff I{τt

L≤T} and maturity T , at
time t are defined by

D(t, T,Xt) = EQ[e−r(T−t)I{τt
L≤T}

∣∣Ft

]
,

then

D(t, T,Xt) =
e−r(T−t)

π

∫ T

t

∫ ∞

0

e−ivτ
[
X ′

t exp{A−(st − l)}1
]
dv dτ. (3.13)

In the sequel, we give the integral formulas of single-barrier up/down-and-out and double-
barrier knock-out option prices in a regime switching model with specific rebates.

Theorem 3.6. Consider the regime switching model defined in (2.6). Under Q, the price of
a up-and-out barrier option at time t with upper barrier U = eu, strike K, and maturity T , is
given by

BSUC(t, St, Xt;T,K)

=C(t, St, Xt;T,K)

− 1

π

k∑
j=1

∫ T

t

∫ ∞

0

e−r(τ−t)−ivτC(0, U, ej ;T − τ,K)
[
X ′

t exp{A+(u− st)}ej
]
dv dτ

+
1

π
rspSt(e

r(T−t) − 1)

∫ T

t

∫ ∞

0

e−r(τ−t)−ivτ
[
X ′

t exp{A+(u− st)}1
]
dv dτ, (3.14)

where C(t, St, Xt;T,K) is the price at time t of a standard European call option with strike K,
maturity T , ej is the j-th unit vector, and A+ is the matrix Wiener-Hopf factorization defined
in Lemma 3.3.

Proof. According to [15], we denote the first-passage time densities conditional on Xτt
U

= ej
by fU (τ,Xt, ej), where ej is the j-th unit vector. Firstly, we have for BSUC,1,

BSUC,1 = EQ[e−r(T−t)(ST −K)+
∣∣Ft

]
− EQ[e−r(T−t)(ST −K)+I{τt

U≤T}
∣∣Ft

]
=: I1 − I2.

Note that I1 = C(t, St, Xt;T,K). For I2, we can obtain

I2 =EQ
[ k∑
j=1

[
EQ(e−r(T−t)(ST −K)+

∣∣Sτt
U
= U,Xτt

U
= ej

)]
I{Xτt

U
=ej}

]

=
k∑

j=1

EQ[e−r(τt
U−t)C(0, U, ej ;T − τ tU ,K)I{τt

U≤T}
]
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=

k∑
j=1

∫ T

t

e−r(τ−t)C(0, U, ej ;T − τ,K)fU (τ,Xt, ej) dτ. (3.15)

Then, as for BSUC,2, observe that

BSUC,2 =EQ[rspSte
−r(τt

U−t)(er(T−t) − 1)I{τt
U≤T}

∣∣Ft

]
=rspSt

(
er(T−t) − 1

) ∫ T

t

e−r(τ−t)fU (τ,Xt) dτ. (3.16)

According to (3.7), it can be concluded that

BSUC,2 =
1

π
rspSt(e

r(T−t) − 1)

∫ T

t

∫ ∞

0

e−r(τ−t)−ivτ
[
X ′

t exp{A+(u− st)}1
]
dv dτ. (3.17)

Combining (3.15), (3.17) and Lemma 3.3, we obtain (3.14).

Theorem 3.7. Consider the regime switching model defined in (2.6). Under Q, the price of a
down-and-out barrier option at time t with lower barrier L = el, strike K, and maturity T , is
given by

BSDC(t, St, Xt;T,K)

=C(t, St, Xt;T,K)

− 1

π

k∑
j=1

∫ T

t

∫ ∞

0

e−r(τ−t)−ivτC(0, L, ej ;T − τ,K)
[
X ′

t exp{A−(st − l)}ej
]
dv dτ

+
1

π
rspSt(e

r(T−t) − 1)

∫ T

t

∫ ∞

0

e−r(τ−t)−ivτ
[
X ′

t exp{A−(st − l)}1
]
dv dτ, (3.18)

where C(t, St, Xt;T,K) is the price at time t of a standard European call option with strike K,
maturity T , ej is the j-th unit vector, and A− is the matrix Wiener-Hopf factorization defined
in Lemma 3.3.

Proof. The proof is analogous to that of Theorem 3.6, observe that

BSDC,1 =EQ[e−r(T−t)(ST −K)+
∣∣Ft

]
− EQ[e−r(T−t)(ST −K)+I{τt

L≤T}
∣∣Ft

]
=C(t, St, Xt;T,K)− EQ[e−r(T−t)(ST −K)+I{τt

L≤T}
∣∣Ft

]
=: I1 − I3.

For I3, it follows that

I3 =EQ[e−r(T−t)(ST −K)+I{τt
L≤T}

∣∣Ft

]
=EQ

[ k∑
j=1

[
EQ(e−r(T−t)(ST −K)+

∣∣Sτt
L
= L,Xτt

L
= ej

)]
I{Xτt

L
=ej}

]

=
k∑

j=1

EQ[e−r(τt
L−t)C(0, L, ej ;T − τ tL,K)I{τt

L≤T}
]

=

k∑
j=1

∫ T

t

e−r(τ−t)C(0, L, ej ;T − τ,K)fL(τ,Xt, ej) dτ. (3.19)

As for BSDC,2, on account of (3.8), it can be concluded that

BSDC,2 =EQ[rspSte
−r(τt

L−t)(er(T−t) − 1)I{τt
L≤T}

∣∣Ft

]
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=rspSt(e
r(T−t) − 1)

∫ T

t

e−r(τ−t)fL(τ,Xt) dτ

=
1

π
rspSt(e

r(T−t) − 1)

∫ T

t

∫ ∞

0

e−r(τ−t)−ivτ
[
X ′

t exp{A−(st − l)}1
]
dv dτ. (3.20)

Combining (3.19), (3.20) and Lemma 3.3, the proof of (3.18) is completed.

Theorem 3.8. Consider the regime switching model defined in (2.6). Under Q, the price of a
knock-out double-barriers option at time t with upper barrier U = eu and lower barrier L = el,
strike K, and maturity T , is given by

BDKC(t, St, Xt;T,K)

=C(t, St, Xt;T,K)

− 1

π

k∑
j=1

∫ T

t

∫ ∞

0

e−r(τ−t)−ivτC(0, L, ej ;T − τ,K)
[
X ′

t

(
Ψ+(st) + Ψ−(st)

)
ej
]
dv dτ

− 1

π

k∑
j=1

∫ T

t

∫ ∞

0

e−r(τ−t)−ivτC(0, U, ej ;T − τ,K)
[
X ′

t

(
Ψ+(st) + Ψ−(st)

)
ej
]
dv dτ

+
1

π
rspSt

(
er(T−t) − 1

) ∫ T

t

∫ ∞

0

e−r(τ−t)−ivτ
[
X ′

t

(
Ψ+(st) + Ψ−(st)

)
1
]
dv dτ, (3.21)

where C(t, St, Xt;T,K) is the price at time t of a standard European call option with strike K,
maturity T , ej is the j-th unit vector, and Ψ+, Ψ− are defined in Lemma 3.4.

Proof. We first consider BDKC,1, along a similar procedure as that in (3.15), (3.19), it turns
out that

BDKC,1 =EQ[e−r(T−t)(ST −K)+
∣∣Ft

]
− EQ[e−r(T−t)(ST −K)+I{τt

LU≤T}
∣∣Ft

]
=C(t, St, Xt;T,K)− EQ[e−r(T−t)(ST −K)+I{τt

LU≤T}
∣∣Ft

]
=: I1 − I4.

As for I4, we have

I4 =EQ
[ k∑
j=1

[
EQ(e−r(T−t)(ST −K)+

∣∣Sτt
LU

= U,Xτt
LU

= ej
)]
I{Xτt

LU
=ej}

]

+ EQ
[ k∑
j=1

[
EQ(e−r(T−t)(ST −K)+

∣∣Sτt
LU

= L,Xτt
LU

= ej
)]
I{Xτt

LU
=ej}

]
=: Π1 +Π2.

For Π1, it turns out that

Π1 =

k∑
j=1

EQ[e−r(τt
LU−t)C(0, U, ej ;T − τ tLU ,K)I{τt

LU≤T}
]

=
k∑

j=1

∫ T

t

e−r(τ−t)C(0, U, ej ;T − τ,K)fLU (τ,Xt, ej) dτ. (3.22)

Similarly, we have for Π2,

Π2 =
k∑

j=1

EQ[e−r(τt
LU−t)C(0, L, ej ;T − τ tLU ,K)I{τt

LU≤T}
]
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=

k∑
j=1

∫ T

t

e−r(τ−t)C(0, L, ej ;T − τ,K)fLU (τ,Xt, ej) dτ. (3.23)

Therefore, we obtain the integral formulations of BDKC,1.

Next, we turn to BDKC,2, it follows that

BDKC,2 =EQ[rspSte
−r(τt

LU−t)(er(T−t) − 1)I{τt
LU≤T}

∣∣Ft

]
=rspSt(e

r(T−t) − 1)

∫ T

t

e−r(τ−t)fLU (τ,Xt) dτ

=
1

π
rspSt(e

r(T−t) − 1)

∫ T

t

∫ ∞

0

e−r(τ−t)−ivτ
[
X ′

t(Ψ
+(st) + Ψ−(st))1

]
dv dτ. (3.24)

Combining (3.22)–(3.24) and Lemma 3.3, we complete the proof of (3.21).

Therefore, we accomplish the integral representations of barrier options price in regime
switching models with specific rebates. According to the theoretical results as shown above,
it is obvious that the matrix Wiener-Hopf factorizations play an important role in the pricing
formulas. In the following, we will give an example to illustrate how to derive the first-passage
time density functions via matrix Wiener-Hopf factorization and Fourier transform in two-state
regime. In this case, the solutions of the matrix Wiener-Hopf factorizations depend on the roots
of the following equation:[1

2
σ2
1β

2 + µ1β + a11 − v
][1

2
σ2
2β

2 + µ2β + a22 − v
]
− a11a22 = 0. (3.25)

Equation (3.25) has four real roots, which satisfy −∞ < β1,v < β2,v < 0 < β3,v < β4,v <∞,
one can refer to [8, 15] for more details. Let X0 = (1, 0)′, then applying Fourier transform and
Lemma 3.3, we can obtain

fL(τ,d0) =
1

π

∫ ∞

0

e−ivτ

β1,v − β2,v

[β1,v − β1,vβ2,v − 2v
σ2
1

β1,v + β2,v +
2µ1

σ2
1

eβ2,v(s0−l)

−
β2,v − β1,vβ2,v − 2v

σ2
1

β1,v + β2,v +
2µ1

σ2
1

eβ1,v(s0−l)
]
dv, (3.26)

and

fU (τ,d0) =
1

π

∫ ∞

0

e−ivτ

β3,v − β4,v

[β3,v − β3,vβ4,v − 2v
σ2
1

β3,v + β4,v +
2µ1

σ2
1

e−β4,v(u−s0)

−
β4,v − β3,vβ4,v − 2v

σ2
1

β3,v + β4,v +
2µ1

σ2
1

e−β3,v(u−s0)
]
dv. (3.27)

For fLU (τ,d0), its closed-form expression is extremely complicated, therefore, it is omitted
here. Nevertheless, for given specific parameters, it is easy for numerical calculation. In the
case of k(≥ 3) regimes, the matrix Wiener-Hopf factorizations could be derived via eigenvalue
algorithm, one can refer to [23] for details.
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4 Numerical Analysis

In this section, we provide some results of numerical simulation of the integral representa-
tions for single/double-barrier call option pricing. We compare our option prices and CPU
time-consuming in Markovian regime switching economy with rebates (MRR) to Black-Scholes
approximation (see, e.g., [4]), and to Brownian bridge algorithm (see, e.g., [13]). Also, we
present numerical results for single and two-state regimes in a standard (constant-volatility)
Black-Scholes model.

We first present two available numerical algorithms applied in literature as follows.
(1) Black-Scholes approximation (BSA). Denote by τi(t, T ) the occupation time of the

chain X in state ei in the time interval [t, T ], where τi(t, T ) =
∫ T

t
⟨Xs, ei⟩ ds. Let T (t, T ) :=

(τ1(t, T ), τ2(t, T ), · · · , τn(t, T ))′, then the characteristic function ϕt(u, Xt) := EQ [
ei⟨T (t,T ),u⟩

∣∣Ft

]
of T (t, T ) is ϕt(u, Xt) =

⟨
exp {[A0 + idiag(u)](T − t)}Xt,1

⟩
, where u = (u1, u2, · · · , uk)′ ∈

Rk. The average variance σ2
rw = EQ[ k∑

j=1

τj(t, T )σ
2
j |Ft

]
. A natural approximation of the barrier

option price is setting the volatility in the Black-Scholes price formula to σrw.
(2) Brownian bridge algorithm (BBA). An efficient and unbiased algorithm, which

combines Monte-Carlo simulation and analytical derivation. The algorithm requires to simulate
the price process at state changes of Markov chain.

Next, we put L = 80, U = 160,K = 120, r = 0.05, T = 1, X0 = (1, 0)′, and[
µ1

µ2

]
=

[
0.06

0.08

]
,

[
σ1

σ2

]
=

[
0.20

0.25

]
, A0 =

[
−1 1

1 −1

]
.

By minimizing the portfolio’s risk σp in (3.5), we get ω1 = 0.6098, ω2 = 0.3902, and we
further obtain µp = 0.0678, σp = 0.1562, rsp = 0.1140. Setting α = 1.5 in Lemma 3.2. Then,
the numerical results are presented in Tables 1–6 and Figure 1, respectively.

First, Tables 1–3 compare the option pricing and average CPU times of MRR, BSA and BBA
models. On the one hand, the results show that all three methods can obtain more accurate
pricing when initial price S0 is away from the barrier value. However, BSA model leads to
significant deviation when S0 approaches the barrier value. On the other hand, BSA model
takes the least time in computation, while BBA model takes the most time. Subsequently,
MRR method has advantages in both accuracy and computation time.

Table 1. The value of BSUC,1(0, S0, X0;T,K)

Option prices
CPU time(s)

S0 = 85 S0 = 90 S0 = 100 S0 = 110 S0 = 115

MRR 0.7942 1.2792 2.5869 4.1671 4.8778 4.11

BSA 0.7743 1.2408 2.4989 3.8504 4.3851 0.05

BBA 0.7933 1.2776 2.5835 4.1612 4.8702 14.94

Table 2. The value of BSDC,1(0, S0, X0;T,K)

Option prices
CPU time(s)

S0 = 85 S0 = 90 S0 = 100 S0 = 110 S0 = 115

MRR 0.8347 1.7384 4.3424 8.4124 10.9796 6.34

BSA 0.7512 1.6115 4.1470 8.1600 10.7600 0.05

BBA 0.8335 1.7362 4.3359 8.3998 10.9664 16.15
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Table 3. The value of BDKC,1(0, S0, X0;T,K)

Option prices
CPU time(s)

S0 = 85 S0 = 90 S0 = 100 S0 = 110 S0 = 115

MRR 0.5751 1.1863 2.5630 3.9526 4.4816 10.12

BSA 0.5187 1.1212 2.4759 3.8498 4.3875 0.07

BBA 0.5738 1.1848 2.5621 3.9481 4.4769 30.81

Next, Figure 1 compares the rebates related to different initial price S0 and different matu-
rity T . Figure 1(a) shows that the rebates for single and double barrier options increase as T
increases. However, Figure 1(b) shows the price of the rebate for up-and-out options increases
with the increase of S0, the price of the rebate for down-and-out options decreases with the
increase of S0, and decreases first and then increases with the increase of S0 for knock-out
options, that is, two segments are high, and the middle is low with increase of S0. This can
be understood as the closer the initial price is to the barrier value, the greater the likelihood
of option expiration, and the holder will also face greater risk. This requires more rebates
as compensation to hedge the loss of option expiration, which has important theoretical and
practical significance for option pricing in the real financial market.
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Figure 1. The dynamic trend of rebates

Finally, Tables 4–6 present the barrier option pricing for single and two-state regime models.
For up-and-out option, Table 4 shows there are significant deviations in the pricing of Black-
Scholes models with regime 1 and regime 2 when the initial price approaches and moves away
from the barrier value, respectively. However, the pricing of the regime switching model with
two-state is more robust and accurate. For down-and-out option, Table 5 shows the pricing of
the regime switching model with two state and single state with regime 2 is relatively accurate.
When the initial price approaches the lower barrier value, the pricing deviation of the two models
is small, and as the initial price increases, the deviation gradually increases. For knock-out
double-barriers option, Table 6 shows the pricing of the regime switching model with two-state
is accurate.
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Table 4. The value of BSDC,1(0, S0, X0;T,K)

Regime switching model
Black-Scholes model

Regime 1 Regime 2

S0 = 85 0.8347 0.4949 0.9905

S0 = 90 1.7384 1.1154 2.0707

S0 = 100 4.3424 3.2407 4.9602

S0 = 110 8.4124 7.0045 9.1783

S0 = 115 10.9796 9.5586 11.8192

Table 5. The value of BSUC,1(0, S0, X0;T,K)

Regime switching model
Black-Scholes model

Regime 1 Regime 2

S0 = 85 0.7942 0.5345 0.9458

S0 = 90 1.2792 0.9697 1.3915

S0 = 100 2.5869 2.3768 2.4472

S0 = 110 4.1671 4.2224 3.4162

S0 = 115 4.8778 5.0815 3.7442

Table 6. The value of BDKC,1(0, S0, X0;T,K)

Regime switching model
Black-Scholes model

Regime 1 Regime 2

S0 = 85 0.5751 0.4198 0.5034

S0 = 90 1.1863 0.9254 1.1576

S0 = 100 2.5630 2.3736 2.3831

S0 = 110 3.9526 4.2303 3.3974

S0 = 115 4.4816 5.0933 3.7316

5 Conclusion

In this paper, we derive numerically convenient Fourier integral formulas of pricing single and
double barrier knock-out call options in Markovian regime switching Black-Scholes models with
specific rebates. The integral representations of the rebates and the option prices, which are
based on the results of the matrix Wiener-Hopf factorization for the first-passage time densities,
turn out to be easy to implement. Numerical results demonstrate the computational accuracy
and effects on pricing barrier options in regime switching models with rebates.
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