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Abstract In this paper, we are concerned with a predator-prey model with Holling type II functional

response and Allee effect in predator. We first mathematically explore how the Allee effect affects the existence

and stability of the positive equilibrium for the system without diffusion. The explicit dependent condition of

the existence of the positive equilibrium on the strength of Allee effect is determined. It has been shown that

there exist two positive equilibria for some modulate strength of Allee effect. The influence of the strength

of the Allee effect on the stability of the coexistence equilibrium corresponding to high predator biomass is

completely investigated and the analytically critical values of Hopf bifurcations are theoretically determined.

We have shown that there exists stability switches induced by Allee effect. Finally, the diffusion-driven Turing

instability, which can not occur for the original system without Allee effect in predator, is explored, and it has

been shown that there exists diffusion-driven Turing instability for the case when predator spread slower than

prey because of the existence of Allee effect in predator.
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1 Introduction

The relationship between predator and prey is one of the most basic and universal relationships
among populations in nature. It is the primary ecosystem for maintaining ecological balance,
species reproduction, and biodiversity. The qualitative study of the dynamics of the predator-
prey system is also one of the base problems in the field of biological mathematics. The classic
Rosenzweig-Macarthur predator-prey model is described by the following equations

du

dt
= ru

(
1− u

K

)
− auv

1 + bu
,

dv

dt
=

acuv

1 + bu
− dv,

(1.1)

where u(t) and v(t) respectively represent the population density of the prey population and
predator population at time t; r is the intra-specific growth rate of the prey population; K
represents the maximum environmental capacity; a is the search efficiency of the predator
population; b is a positive constant, used to measure the ability of a predator to kill and eat
a prey; c is the efficiency of the consumed prey to be converted into predator births; d is the
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inherent mortality rate of the predator population. The globally asymptotical stability for the
boundary equilibria and the positive equilibrium, Hopf bifurcation and the uniqueness have
been investigated in [9, 11]. The stability, Hopf bifurcation and spatiotemporal patterns for the
diffusive version of system (1.1) have been considered in [12, 41].

In system (1.1), the prey species follows the logistic growth equation when the predator
species is absent. The logistic growth equation shows that the unit growth rate of the population
decreases with the increase of population. However, in the case of scarce resources, when the
population density is relatively small, the increase of the population density is conducive to
reciprocal capture, cooperative foraging, and reproduction. In this case, the unit growth rate
of the population increases with the increase of population density, which is called the Allee
effect in biology. There is evidence of Allee effects caused by at least six mechanisms: mate
limitation, cooperative defense, predator satiation, cooperative feeding, dispersal, and habitat
alteration[17]. And it has been shown that Allee effects are an important dynamic phenomenon
in many population evolution processes such as extinction and biological invasion[1, 5, 13, 14].
There has been recently increasing interest in investigating the potential influence of Allee
effects on the dynamics of the single population[8, 15, 20, 23] and the population systems arising
from the fields of biology, ecology and biomathematics[6, 10, 16, 21, 27, 29–31, 37, 39, 42–44].

For the predator-prey system, Allee effect is often encountered in the prey population and
has been widely investigated in the literatures (see, for instance, [2, 19, 21, 22, 24, 27–30, 32,
37, 40, 42, 44] and references therein). But in real life, the predator population is usually
much smaller than the prey population, so the predator population is more susceptible to
the Allee effect than the prey population[34]. The size-selective predation, mate-limitation,
positive feedbacks of top predators on nutrient cycling, foraging facilitation among predators
and strength of hunting cooperation among the predators are considered as the main biological
mechanisms for the Allee effect in the predator[3, 26, 33, 36, 43]. However, compared with the
Allee effect in the prey, there are few theoretical studies[4, 18, 28, 34–36, 38, 43, 45] on the influence
of the Allee effect of the predator on dynamics of the predator-prey system .

Zhou et al.[43] introduced the Allee effect of the predator into the Lotka-Volterra system
and have shown that the Allee effect may be a destabilizing force in predator-prey systems.
Bodine and Yus[4] proposed a modified version of the model presented by Zhou et al.[43] by
incorporating both an Allee effect and intraspecific competition into the predator and have
shown that there exist biologically reasonable parameter sets which produce a stable coexistence
equilibrium. In[18], Lai et al. replaced the exponential population growth on prey of the model
presented by Zhou et al.[43] by the Logistic growth and have shown that the weak Allee effect
can bring rich and complicated dynamics to the previous simple model. The local and global
stability of the positive equilibrium and Turing instability for the diffusive Holling-Tanner prey-
predator model with the Allee effect in predator have been investigated by Wang et al.[38]. The
rich bifurcation structure of predator-prey model induced by the Allee Effect in the growth of
generalist predator has been studied by by Sen et al.[28]. The influence of the Allee effect in the
predator on the dynamics of the predator-prey models with Holling type functional responses
has been investigated in [34–36]. The predator-prey model with Holling type-II functional
response and Allee effect for predator reproduction is described by the following system of
ordinary differential equations 

du

dt
= ru

(
1− u

K

)
− auv

1 + bu
,

dv

dt
=

acuv

1 + bu

( v

v + h

)
− dv,

(1.2)

where the term acu
1+bu

(
v

v+h

)
represents the average reproduction rate of per predator, v

v+h rep-
resents the Allee effect in the predator and the parameter h ≥ 0 is considered as the Allee effect
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strength. Existence and stability of the coexistence equilibria of (1.2) is numerically examined
in [34–36]. In [34, 36], it has been shown that if one of the coexistence equilibria is stable, it
will always be the one corresponding to high predator biomass by numerical method. In [35],
it has been shown that the one corresponding to low predator biomass is a saddle by graph-
ical approach. However, how the coexistence equilibria explicitly depends on the Allee effect
strength is still not clear and there is no completely theoretical results on the stability of the
positive equilibrium corresponding to high predator biomass. In this paper, we focus on these
unsolved problems for (1.2) and further consider the following diffusive version of (1.2)

∂u

∂t
= d1∆u+ ru

(
1− u

K

)
− auv

1 + bu
,

∂v

∂t
= d2∆v + v

( acu

1 + bu

( v

v + h

)
− d
)
,

(1.3)

where u(x, y, t) and v(x, y, t) represent the densities of prey and predator, respectively, at lo-
cation (x, y) ∈ R2 and time t, d1 > 0 and d2 > 0 are the diffusion coefficients of the prey and
predator, respectively. The random movement of two species is modeled by Laplacian operator

∆, where ∆ = ∂2

∂x2 + ∂2

∂y2 .
This paper is organized as follows. In Section 2, we mainly investigate how the existence

and stability of the positive equilibria of ordinary differential system depend on the Allee effect
strength and the existence of Hopf bifurcation induced by the Allee effect strength. Numerical
simulations illustrate and verify the obtained theoretical results. In Section 3, we study the
diffusion-driven Turing instability and determine the value of the Turing bifurcation value. And
spatial patterns induced by the diffusion are numerically investigated. Finally, we summarize
our results and givem some biological interpretations in Section 4.

2 Stability and Bifurcation Analysis for the Ordinary Differential Sys-
tem

To reduce the number of parameters of (1.3), we introduce the dimensionless variables

ũ =
u

K
, ṽ =

av

r
, t̃ = rt,

and the dimensionless parameters

d̃1 =
d1
r
, d̃2 =

d2
r
, α = bK, β =

acK

r
, γ =

ah

r
, η =

d

r
.

Then, dropping the tilde for simplification of notations, (1.3) becomes the following non-
dimensional form 

∂u

∂t
= d1∆u+ u(1− u)− uv

1 + αu
,

∂v

∂t
= d2∆v + v

( βu

1 + αu

( v

v + γ

)
− η
)
.

(2.1)

Here, γ measures the strength of the Allee effect in predator. When γ = 0, there is no Allee
effect in predator and (2.1) becomes the predator-prey system with Holling type II functional
response. It is obvious that the larger the value of γ is, the lower the per reproduction rate
of predator is. In this section, we analytically investigate how the strength γ > 0 of the Allee
effect in predator affects the existence and stability of the positive equilibrium.
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2.1 Existence and Stability of the Non-negative Equilibria

First, we consider the following model without diffusion terms
du

dt
= u(1− u)− uv

1 + αu
,

dv

dt
= v
( βu

1 + αu

( v

v + γ

)
− η
)
.

(2.2)

System (2.2) has a zero equilibrium E0 = (0, 0) and a boundary equilibrium E1 = (1, 0).
Assuming that E∗(u∗, v∗) is the positive equilibrium of (2.2), then v∗ = (1− u∗)(1 + αu∗) and
u∗ is the positive root(s) of the following quadratic equation, satisfying 0 < u∗ < 1,

(β − αη)u2 − (β − αη + η)u+ ηγ + η = 0. (2.3)

By a simple calculation, we have the following results on the existence of the positive
equilibrium of system (2.2).

Theorem 2.1. (I) For 0 < β ≤ (α + 1)η, system (2.2) has no positive equilibrium for any
γ ≥ 0.

(II) For β > (α+ 1)η, letting

Q =
(
β − (α+ 1)η

)2 − 4γη(β − αη) (2.4)

and

γ∗ =

(
β − (α+ 1)η

)2
4η(β − αη)

, (2.5)

we have

(i) when γ = 0, system (2.2) has one positive equilibrium E
(0)
∗
(
u
(0)
∗ ,
(
1−u

(0)
∗
)(
1+αu

(0)
∗
))

with u
(0)
∗ = η

β−αη ;

(ii) when 0 < γ < γ∗, system (2.2) has two positive equilibria E−
∗
(
u−
∗ , v

−
∗
)
and E+

∗
(
u+
∗ , v

+
∗
)
,

where v−∗ = (1− u−
∗ )(1 + αu−

∗ ), v+∗ = (1− u+
∗ )(1 + αu+

∗ ) and

u−
∗ =

β − αη + η −
√
Q

2(β − αη)
, u+

∗ =
β − αη + η +

√
Q

2(β − αη)
; (2.6)

(iii) when γ = γ∗, system (2.2) has one positive equilibrium E
(1)
∗
(
u
(1)
∗ , v

(1)
∗
)
with

u
(1)
∗ =

β − αη + η

2(β − αη)
, v

(1)
∗ =

(
1− u

(1)
∗
)(
1 + αu

(1)
∗
)
; (2.7)

(iv) when γ > γ∗, system (2.2) has no positive equilibrium.

Remark 2.2. In fact, it is easy to verify that when γ = 0 (i.e., without Allee effect in predator),

the equilibrium E−
∗
(
u−
∗ , v

−
∗
)
becomes E

(0)
∗
(
u
(0)
∗ ,
(
1 − u

(0)
∗
)(
1 + αu

(0)
∗
))
, and the equilibrium

E+
∗
(
u+
∗ , v

+
∗
)
becomes the boundary equilibrium E1(1, 0).
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Remark 2.3. From (2.6), it is easy to show that u−
∗ < u+

∗ for γ > 0. By (2.2), we also have

v∗ = γη(1+αu∗)
(β−αη)u∗−η . Thus, we have

dv∗
du∗

= − βγη(
(β − αη)u∗ − η

)2 < 0,

which, together with the fact that u−
∗ < u+

∗ for γ > 0, implies that v−∗ > v+∗ for γ > 0.

Assume that (u∗, v∗) is the equilibrium of system (2.2), then the corresponding characteristic
matrix is A = (aij)2×2, where

a11 = 1− 2u∗ −
v∗

1 + αu∗
+

αu∗v∗
(1 + αu∗)2

, a12 = − u∗

1 + αu∗
,

a21 =
βv2∗

(1 + αu∗)2(γ + v∗)
, a22 =

βu∗v∗
(1 + αu∗)(γ + v∗)

− η +
γβu∗v∗

(1 + αu∗)(γ + v∗)2
,

(2.8)

and the corresponding characteristic equation is

λ2 − Tr(A)λ+Det(A) = 0, (2.9)

where Tr(A) = a11 + a22, Det(A) = a11a22 − a12a21.

Theorem 2.4. The zero equilibrium E0(0, 0) of system (2.2) is a saddle for γ ≥ 0. For the
boundary equilibrium E1(1, 0) of system (2.2), when γ = 0, it is a stable node for β < (α+ 1)η
and a saddle for β > (α+ 1)η; when γ > 0, it is a stable node for any α, β, η > 0.

The proof of Theorem 2.4 is simple and we omit it.
If (u∗, v∗) is the positive equilibrium of the system (2.2), then (2.8) becomes

a11 = −u∗ +
αu∗v∗

(1 + αu∗)2
, a12 = − u∗

1 + αu∗
< 0,

a21 =
βv2∗

(1 + αu∗)2(γ + v∗)
> 0, a22 =

γβu∗v∗
(1 + αu∗)(γ + v∗)2

> 0.
(2.10)

When γ = 0, (2.1) becomes the well-konwn predator-prey system with Holling type II
functional response and here we introduce the following results by [9, 11].

Lemma 2.5. When γ = 0, the stability of the unique positive equilibrium E
(0)
∗
(
u
(0)
∗ , v

(0)
∗
)
under

the condition β > (α+ 1)η is shown as follows

(i) when 0 ≤ α ≤ 1, E
(0)
∗
(
u
(0)
∗ , v

(0)
∗
)
is always stable for β > (α+ 1)η;

(ii) when α > 1, E
(0)
∗
(
u
(0)
∗ , v

(0)
∗
)
is stable for (α + 1)η < β < α

α−1 (α + 1)η and unstable for
β > α

α−1 (α+ 1)η, and system (2.2) has an unique limit cycle for β > α
α−1 (α+ 1)η.

In the following, we investigate the influence of γ
(
0 < γ ≤ γ∗

)
on the stability of the positive

equilibrium under the assumption that the positive equilibrium E
(0)
∗
(
u
(0)
∗ , v

(0)
∗
)
is stable for

γ = 0. Thus, in what follows, we always assume the following condition

(C0) 0 < α ≤ 1, β > (α+ 1)η or α > 1, (α+ 1)η < β <
α

α− 1
(α+ 1)η

holds. When 0 < γ ≤ γ∗, from (2.10), we have

Det(A) =
βu∗(1− u∗)

(γ + v∗)2
G(γ, u∗),
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where

G(γ, u∗) = γ(1− 2u∗) + (1− u∗)
2. (2.11)

Since 0 < u∗ < 1, the sign of Det(A) is the same to the sign of G(γ, u∗). So let’s investigate
the sign of G(γ, u∗).

When β > (α+ 1)η, it follows from (2.6), (2.7) and (2.11) that for u∗ = u+
∗ ,

G(γ, u+
∗ ) = −η +

√
Q

β − αη
γ +

(
β − (α+ 1)η −

√
Q
)2

4(β − αη)2

=
1

4(β − αη)2

(
4γ(β − αη)(−η −

√
Q) +

(
β − (α+ 1)η −

√
Q
)2)

=
1

4(β − αη)2

(
Q− 4γ

√
Q(β − αη)− 2

√
Q
(
β − (α+ 1)η

)
+Q

)
=

√
Q

2(β − αη)2
(
− 2γ(β − αη)− β + (α+ 1)η +

√
Q
)

<

√
Q

2(β − αη)2
(
− 2γ(β − αη)− β + (α+ 1)η + β − (α+ 1)η

)
< 0, (2.12)

where we have used that
√
Q =

√(
β − (α+ 1)η

)2 − 4γη(β − αη) < β − (α + 1)η. It follows

from (2.12) that (2.9) has one positive root and one negative root. Thus, E+
∗
(
u+
∗ , v

+
∗
)
is a

saddle. This result has also been proved in[35] by graphical approach.

For u∗ = u−
∗ and u∗ = u

(1)
∗ , using the similar way, we have

G(γ, u∗)

 > 0, u∗ = u−
∗ ,

= 0, u∗ = u
(1)
∗ .

(2.13)

To determine the stability of the positive equilibrium E−
∗
(
u−
∗ , v

−
∗
)
of system (2.2), we still

need to determine the sign of Tr(A). For E−
∗
(
u−
∗ , v

−
∗
)
, it follows from (2.10) that

Tr(A) = −u−
∗ +

αu−
∗ v

−
∗(

1 + αu−
∗
)2 +

γβu−
∗ v

−
∗(

1 + αu−
∗
)(
γ + v−∗

)2
=

u−
∗

1 + αu−
∗

(
α− 1− 2αu−

∗
)
+

u−
∗

1 + αu−
∗

(
1− v−∗

v−∗ + γ

) βv−∗
v−∗ + γ

=
u−
∗

1 + αu−
∗

(
α− 1− 2αu−

∗
)
+

u−
∗

1 + αu−
∗

βu−
∗ −

(
1 + αu−

∗
)
η

βu−
∗

(
1 + αu−

∗
)
η

u−
∗

=
1

βu−
∗
(
1 + αu−

∗
)(β(u−

∗
)2(

α− 1− 2αu−
∗
)
+ η
(
1 + αu−

∗
)((

β − αη
)
u−
∗ − η

))
=

1

βu−
∗
(
1 + αu−

∗
)(− 2αβ

(
u−
∗
)3

+
(
(α− 1)β + (β − αη)αη

)(
u−
∗
)2

+ (β − 2αη)ηu−
∗ − η2

)
. (2.14)

For fixed the value of α, β and η, u−
∗ can be considered as a function of γ, and then let

H = H(γ) = −2αβ
(
u−
∗
)3

+
(
(α− 1)β + (β − αη)αη

)(
u−
∗
)2

+ (β − 2αη)ηu−
∗ − η2. (2.15)

The sign of Tr(A) is the same to the sign of H. So let’s investigate the sign of H.
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Under the condition
(
C0

)
, we have H(0) < 0. From (2.15), we have

H ′(γ) =
(
− 6αβ

(
u−
∗
)2

+ 2
(
(α− 1)β + (β − αη)αη

)
u−
∗ + (β − 2αη)η

)du−
∗

dγ
.

From (2.6), we have

du−
∗

dγ
= − 1

2(β − αη)

1

2
√
Q

(
− 4η(β − αη)

)
=

η√
Q

> 0, (2.16)

which implies that the sign of H ′(γ) is determined by that of H1, where

H1 = H1(γ) = −6αβ
(
u−
∗
)2

+ 2
(
(α− 1)β + (β − αη)αη

)
u−
∗ + (β − 2αη)η. (2.17)

In what follows, we investigate the sign of H1 according to two cases: β ≥ 2αη, β < 2αη.

Case I. For β ≥ 2αη, let

h1(z) = −6αβz2 + 2
(
(α− 1)β + (β − αη)αη

)
z + (β − 2αη)η. (2.18)

Then it is easy to verify that h1(z) = 0 has a unique positive root

z∗1 ,
2
(
(α− 1)β + (β − αη)αη

)
+

√
Q̃

12αβ
, (2.19)

where

Q̃ = 4
(
(α− 1)β + (β − αη)αη

)2
+ 24αβη(β − 2αη) > 0, (2.20)

and we can obtain h1(z) > 0 for 0 < z < z∗1 and h1(z) < 0 for z > z∗1 .
By h1(z) = 0, it is easy to conclude that 0 < z∗1 < 1 provided that h1(1) < 0 and z∗1 ≥ 1

provided that h1(1) ≥ 0, where

h1(1) = (η − 2)(2α+ 1)β − 2αη2(α+ 1). (2.21)

From (2.19) and let u−
∗ = z∗1 , we can calculate

γc =

(
β − (α+ 1)η

)2 − (β − αη + η − 2(β − αη)z∗1
)2

4η(β − αη)
, (2.22)

which, together with (2.5), implies that γc ≤ γ∗ and γc = γ∗ if and only if z∗1 = β−αη+η
2(β−αη) .

From (2.16), u−
∗ is an increasing function of γ. Therefore, we can conclude that H1(γ) > 0

for γ < γc, and H1(γ) < 0 for γ > γc, and H1(γ) = 0 for γ = γc. So, H(γ) has a maximum at
γ = γc.

Theorem 2.6. Assumed that η > 0, either 0 < α ≤ 1 and β > (α + 1)η, or 1 < α < 3 and
2αη ≤ β < α

α−1 (α + 1)η are hold. γ∗, γc and H(γ) are defined by (2.5), (2.22) and (2.15),
respectively. Then for fixed α > 0, we have the following results on the stability of the positive
equilibrium E−

∗
(
u−
∗ , v

−
∗
)
.

(I) For (η − 2)(2α+ 1)β − 2αη2(α+ 1) ≥ 0,

(i) when H(γ∗) ≤ 0, the positive equilibrium E−
∗
(
u−
∗ , v

−
∗
)
of (2.2) is always asymptoti-

cally stable for any 0 < γ < γ∗;
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(ii) when H(γ∗) > 0, there exists a γ∗
H ∈ (0, γ∗), such that the positive equilibrium

E−
∗
(
u−
∗ , v

−
∗
)
of (2.2) is asymptotically stable for any 0 < γ < γ∗

H and unstable for

γ∗
H < γ < γ∗, and system (2.2) undergoes Hopf bifurcation near E−

∗
(
u−
∗ , v

−
∗
)
at

γ = γ∗
H ;

(II) for (η − 2)(2α+ 1)β − 2αη2(α+ 1) < 0,

(i) when H(γc) < 0, the positive equilibrium E−
∗
(
u−
∗ , v

−
∗
)
of (2.2) is always asymptoti-

cally stable for any 0 < γ < γ∗;

(ii) when H(γc) > 0 and H(γ∗) ≥ 0, there exists a γ∗
H ∈ (0, γ∗), such that the posi-

tive equilibrium E−
∗
(
u−
∗ , v

−
∗
)
of (2.2) is asymptotically stable for any 0 < γ < γ∗

H

and unstable for γ∗
H < γ < γ∗, and system (2.2) undergoes Hopf bifurcation near

E−
∗
(
u−
∗ , v

−
∗
)
at γ = γ∗

H ;

(iii) when H(γc) > 0 and H(γ∗) < 0, there exists γ
(j)
H ∈ (0, γ∗), j = 1, 2, such that the

positive equilibrium E−
∗
(
u−
∗ , v

−
∗
)
of (2.2) is asymptotically stable for either 0 < γ <

γ
(1)
H or γ

(2)
H < γ < γ∗, and unstable for γ

(1)
H < γ < γ

(2)
H , and system (2.2) undergoes

Hopf bifurcation near E−
∗
(
u−
∗ , v

−
∗
)
at γ = γ

(j)
H , j = 1, 2.

Proof. As can be seen from the above analysis, when the hypothesis is true, and (η − 2)(2α+
1)β − 2αη2(α + 1) ≥ 0. From (2.21) and (2.18), we can obtain that z∗1 ≥ 1 and h1(z) > 0 for
any 0 < z < 1, which, together with (2.17), we have H1(γ) > 0 for any 0 < γ < γ∗.

Thus, it follows from (2.15)-(2.17) that H(γ) is a strictly increasing function of γ(0 < γ <
γ∗). And because of H(0) < 0, it is easy to obtain that when H(γ∗) ≤ 0, H(γ) < 0 for
any 0 < γ < γ∗, by (2.14), Tr(A) < 0 and the positive equilibrium E−

∗
(
u−
∗ , v

−
∗
)
of (2.2) is

always asymptotically stable for any 0 < γ < γ∗. While for H(γ∗) > 0, there must exist a
γ∗
H ∈ (0, γ∗), such that the positive equilibrium E−

∗
(
u−
∗ , v

−
∗
)
of (2.2) is asymptotically stable

for any 0 < γ < γ∗
H and unstable for γ∗

H < γ < γ∗.
Next, in order to confirm the existence of the Hopf bifurcation, we need to check the

transversal condition. Taking the derivation of both sides of (2.9) with respect to γ, and when
γ = γ∗

H , we have(dRe(λ)

dγ

)
γ=γ∗

H

=
1

2

(dTr(A)

dγ

)
γ=γ∗

H

=
H1

2βu−
∗
(
1 + αu−

∗
) du−

∗
dγ

,

by the analysis above, we have H1 > 0 for γ = γ∗
H . Then it is easy to see that(dTr(A)

dγ

)
γ=γ∗

H

> 0.

Therefore, the transversal condition of the Hopf bifurcation is satisfied. And we can obtain
that system (2.2) undergoes Hopf bifurcation near E−

∗
(
u−
∗ , v

−
∗
)
at γ = γ∗

H .
Using the similar way as above, if (η − 2)(2α+ 1)β − 2αη2(α+ 1) < 0, we can obtain that

0 < z∗1 < 1, and h1(z) > 0 for any 0 < z < z∗1 and h1(z) < 0 for any 0 < z < 1. This, together
with (2.22) and (2.15)–(2.17), implies that H(γ) has a maximum at 0 < γ = γc < γ∗. Thus, it
is easy to verify that the conclusion of (II) holds.

In this way, the proof of the theorem is complete.

Remark 2.7. The conclusion in Theorem 2.6 (II)(iii) has also shown that the Allee effect of
the predator can induce the stability switches for the positive equilibrium E−

∗
(
u−
∗ , v

−
∗
)
, i.e., the

stability of the positive equilibrium E−
∗
(
u−
∗ , v

−
∗
)
can change from stability to instability and

back to stability with the increasing of strength of the Allee effect of the predator.



Stability and Turing Patterns of a Predator-prey Model with Allee Effect in Predator 683

Case II. For β < 2αη, we only need to consider the situation α > 1 of the condition C0 under
the the case for β < 2αη. From (2.18), we find that the axis of symmetry of h(z) must be on
the right and the number of positive roots of h1(z) = 0 needs further discussion for the sign of
Q̃. It follows from (2.20) that

Q̃ = 4
(
(α− 1)β + (β − αη)αη

)2
+ 24αβη(β − 2αη)

=
(
4(α− 1)(α− 1 + 8αη) + 4αη(αη + 6)

)
β2 − 8α2η2

(
α+ 5 + αη

)
β + 4α4η4,

and the discriminant of Q̃ is(
8α2η2

(
α+ 5 + αη

))2 − 16α4η4
(
4(α− 1)(α− 1 + 8αη) + 4αη(αη + 6)

)
=384α4η4(2α+ αη + 4) , Q̂ > 0.

Thus, Q̃ = 0 always have two positive roots β1 and β2, where

β1,2 =
α2η2(α+ 5 + αη)∓ α2η2

√
12α+ 6αη + 24

(α− 1 + αη)2 + 6αη
. (2.23)

It is easy to conclude that Q̃ > 0 for either 0 < β < β1 or β > β2, and Q̃ ≤ 0 for β1 ≤ β ≤ β2.
Then it is easy to verify that h1(z) = 0 has two positive roots

z∗1,2 =
2
(
(α− 1)β + (β − αη)αη

)
±
√

Q̃

12αβ
(2.24)

for Q̃ > 0. And we can obtain that h1(z) < 0 for either 0 < z < z∗2 or z > z∗1 , and h1(z) > 0
for z∗2 < z < z∗1 .

Next, using the similar method as Case I, we need to investigate the value between z∗1,2 and
1 in the following two cases.
(i) When h1(1) > 0, it is easy to obtain that 0 < z∗2 < 1 < z∗1 .
(ii) When h1(1) ≤ 0, we need to judge the sign of z̄− 1, where z̄ is the the axis of symmetry of

h1(z) and z̄ = (α−1)β+(β−αη)αη
6αβ . It is obvious that 0 < z∗2 < z∗1 < 1 for z̄ < 1 and 1 ≤ z∗2 < z∗1

for z̄ ≥ 1.
From (2.24), let u−

∗ = z∗1 and u−
∗ = z∗2 , respectively, we can calculate

γc =

(
β − (α+ 1)η

)2 − (β − αη + η − 2(β − αη)z∗1
)2

4η(β − αη)

and

γ2c =

(
β − (α+ 1)η

)2 − (β − αη + η − 2(β − αη)z∗2
)2

4η(β − αη)
. (2.25)

Therefore, When h1(1) > 0, we have H1 < 0 for 0 < γ < γ2c and H1 > 0 for γ2c < γ < γ∗,
so H(γ) has a minimum at γ = γ2c for 0 < γ < γ∗. When h1(1) ≤ 0 and z̄ ≥ 1, we can conclude
that H1 < 0 for 0 < γ < γ∗.

When h1(1) ≤ 0 and z̄ < 1, we can conclude that H1 > 0 for γ2c < γ < γc and H1 < 0 for
either 0 < γ < γ2c or γc < γ < γ∗. So H(γ) has a minimum at γ = γ2c and a maximum at
γ = γc for 0 < γ < γ∗.

Theorem 2.8. Assumed that η > 0, either 1 < α < 3 and (α + 1)η < β < 2αη, or α ≥ 3 and
(α+1)η < β < α

α−1 (α+1)η are hold. γ∗, γc, H(γ) and β1,2 are defined by (2.5), (2.22), (2.15)
and (2.23), respectively. Then for fixed α, we have the following results on the stability of the
positive equilibrium E−

∗
(
u−
∗ , v

−
∗
)
.
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(I) When β1 ≤ β ≤ β2, the positive equilibrium E−
∗
(
u−
∗ , v

−
∗
)
of (2.2) is always asymptotically

stable for any 0 < γ < γ∗;

(II) when 0 < β < β1 or β > β2,

(i) and (η− 2)(2α+1)β− 2αη2(α+1) > 0, we have the same results as in Theorem 2.6
(I);

(ii) (η−2)(2α+1)β−2αη2(α+1) ≤ 0, and z̄ ≥ 1, the positive equilibrium E−
∗
(
u−
∗ , v

−
∗
)
of

(2.2) is always asymptotically stable for any 0 < γ < γ∗, where z̄ = (α−1)β+(β−αη)αη
6αβ ;

(iii) (η − 2)(2α + 1)β − 2αη2(α + 1) ≤ 0, and z̄ < 1, we have the same results as in
Theorem 2.6 (II).

Proof. When β1 ≤ β ≤ β2, it follows from (2.18) and (2.23) that we have Q̃ ≤ 0 and h1(z) < 0
for any 0 < z < 1. By (2.17) we have H1(γ) < 0 for any 0 < γ < γ∗, and in combination with
the condition H(0) < 0, we can obtain that H(γ) < 0 for any 0 < γ < γ∗. Then the positive
equilibrium E−

∗
(
u−
∗ , v

−
∗
)
of (2.2) is always asymptotically stable for any 0 < γ < γ∗.

When 0 < β < β1 or β > β2, it follows from (2.18) and (2.23) that we have Q̃ > 0. Thus,
h1(z) has two positive roots z∗1,2 and h1(z) > 0 for z∗2 < z < z∗1 , and h(z) < 0 for either
0 < z < z∗2 or z > z∗1 . Then using the same way as the proof of Theorem 2.6.

(i) when (η − 2)(2α + 1)β − 2αη2(α + 1) > 0, we have 0 < z∗2 < 1 < z∗1 , it follows from
(2.15)–(2.18) that H(γ) has a minimum at γ = γ2c for 0 < γ < γ∗.

Since H(0) < 0, we need to judge the sign of H(γ∗). It is easy to find that we can obtain
the same conclusion as Theorem 2.6 (I).

(ii) When (η−2)(2α+1)β−2αη2(α+1) ≤ 0 and z̄ ≥ 1, it is easy to obtain that h1(z) < 0 for
any 0 < z < 1. It follows from (2.15)–(2.18) that H(γ) is strictly decreasing for any 0 < γ < γ∗.
And in combination with the condition H(0) < 0, the positive equilibrium E−

∗
(
u−
∗ , v

−
∗
)
of (2.2)

is always asymptotically stable for any 0 < γ < γ∗.

(iii) When (η− 2)(2α+1)β− 2αη2(α+1) ≤ 0 and z̄ < 1, it is easy to obtain that h1(z) < 0
for either 0 < z < z∗2 or z∗1 < z < 1, and h1(z) > 0 for z∗2 < z < z∗1 . Then from (2.15)–(2.18),
H(γ) has a minimum at γ = γ2c and a maximum at γ = γc for 0 < γ < γ∗. Thus, we can use
the same way as the proof of Theorem 2.6 (II) to obtain the conclusion of this Theorem.

2.2 Numerical Simulations for the Stability and Periodic Solutions

Now, we numerically show the theoretical results in the rest of this subsection. For α = 0.5,
define the curves fj , j = 1, 2, 3, 4 in the η − β plane by

f1 : β = 1.5η, f2 : (η − 2)(2α+ 1)β − 2αη2(α+ 1) = 0,

f3 : H(γc) = 0, f4 : H(γ∗) = 0.

These four curves fj , j = 1, 2, 3, 4 are plotted in Figure 2.1. Denote the regions in Figure 2.1
by Rj , j = 0, 1, 2.

When (η, β) lies in the region R0, the positive equilibrium E−
∗ is always asymptotically

stable for any 0 < γ < γ∗. When (η, β) lies in the region R1, there exists a Hopf bifurcation
value γ∗

H , such that the positive equilibrium E−
∗ is asymptotically stable for 0 < γ < γ∗

H and
unstable for γ∗

H < γ < γ∗.

For numerical simulations, taking (η, β) = (2.5, 7) as marked by P1 ∈ R1 in Figure 2.1, we
have (η − 2)(2α + 1)β − 2αη2(α + 1) ≈ −2.375 < 0. It follows from (2.5) that γ∗ ≈ 0.1876,
from (2.19), we have z∗1 ≈ 0.9283, and then by (2.22), we have γc ≈ 0.0814. Furthermore, from
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(2.15), we have H(γc) ≈ 1.7714 > 0 and H(γ∗) ≈ 1.1340 > 0. Therefore, the condition II(ii)
of Theorem 2.6 is satisfied for α = 0.5, β = 7, η = 2.5. From H(γ) = 0, we have

γ∗
H ≈ 0.1286.

It follows from Theorem 2.6 that for α = 0.5, β = 7, η = 2.5, E−
∗ is asymptotically stable

for 0 < γ < γ∗
H ≈ 0.1286, as shown in Figure 2.2 (a) for γ = 0.1, and unstable for γ∗

H < γ < γ∗.
The black and red points in Figure 2.2 (a) are the positive equilibria E−

∗ (0.5266, 0.5980) and
E+

∗ (0.9082, 0.1336), respectively.

α = 0.5

*P1

*
P2

R0

R1

R2

R2

f1

f2

f3

f4

0 1 2 3 4
η

0

2

4

6

8

10

β

Figure 2.1. Bifurcation diagram for the positive equilibrium E−
∗
(
u−
∗ , v−∗

)
of system (2.2)

in the η − β plane for α = 0.5.

For γ∗
H < γ < γ∗, E

−
∗ is unstable and the system undergoes Hopf bifurcation at γ = γ∗

H .
Taking γ = 0.125 < γ∗

H , the numerical simulation shows that there exists an unstable periodic
orbit which is inner stable (with the stable equilibrium E−

∗ ) and out unstable, as shown in
Figure 2.2 (b) with different initial values (0.5576, 0.77875) and (0.5576, 0.7775). The black
and red points in Figure 2.2 (b) are E−

∗ (0.5576, 0.7775) by black point and E+
∗ (0.8771, 0.1767).

This numerical simulation also implies that Hopf bifurcation at γ = γ∗
H is subcritical.
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Figure 2.2. The phase portrait of system (2.2) for (η, β) ∈ R1 for α = 0.5, η = 2.5 and
β = 7 with the increasing of γ. (a): γ = 0.1; (b): γ = 0.125.

When (η, β) lies in the region R2, there exists two Hopf bifurcation values γ
(1)
H and γ

(2)
H ,

such that the positive equilibrium E−
∗ is asymptotically stable for either 0 < γ < γ

(1)
H or

γ
(2)
H < γ < γ∗ and unstable for γ

(1)
H < γ < γ

(2)
H .



686 L. CHEN, F. YANG, Y.L. SONG

For numerical simulations, taking (η, β) = (0.3, 3) as marked by P2 ∈ R2 in Figure 2.1.
Similarly, we can calculate (η − 2)(2α + 1)β − 2αη2(α + 1) ≈ −10.3350 < 0, γ∗ ≈ 1.9013 and
γc ≈ 0.7442. Furthermore, from (2.15), we have H(γc) ≈ 0.0051 > 0 and H(γ∗) ≈ −0.4762 < 0.
Therefore, the condition II (iii) of Theorem 2.6 is satisfied for α = 0.5, β = 3, and η = 0.3.
From H(γ) = 0, we have

γ
(1)
H ≈ 0.4414, γ

(2)
H ≈ 1.001.

It follows from Theorem 2.6 that for α = 0.5, β = 3, and η = 0.3, E−
∗ is asymptotically

stable for either 0 < γ < γ
(1)
H or γ

(2)
H < γ < 1.9013, as shown in Figure 2.3 (a) for γ = 0.4 < γ

(1)
H

and in Figure 2.3 (d) for γ = 1.1 > γ
(2)
H .

For γ
(1)
H < γ < γ

(2)
H , E−

∗ is unstable and the system undergoes Hopf bifurcations at γ = γ
(1)
H

and γ = γ
(2)
H . For γ = 0.5 > γ

(1)
H and close to γ

(1)
H , Figure 2.3 (b) shows the existence

of the stable periodic orbit with different initial values (0.1686, 1.25) and (0.9367, 0.1). For

γ = 0.98 > γ
(2)
H and close to γ

(2)
H , Figure 2.3 (c) shows the existence of the stable periodic

orbit with different initial values (0.2412, 0.87) and (0.8640, 0.3). The numerical simulations in

Figs.2.3 (b) and 2.3 (c) also show that the Hopf bifurcations at γ = γ
(1)
H and γ = γ

(2)
H are both

supercritical.
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Figure 2.3. The phase portrait of system (2.2) for (η, β) ∈ R2 for α = 0.5, η = 0.3 and
β = 3 with the increasing of γ. (a): γ = 0.4; (b): γ = 0.5; (c): γ = 0.98; (d):
γ = 1.1.

Hopf bifurcations at γ = γ
(1)
H and γ = γ

(2)
H only show that there exist periodic orbits near

the neighborhood of bifurcation values, but we can not prove whether there exist periodic

orbits for any given γ ∈
(
γ
(1)
H , γ

(2)
H

)
or not. Taking a series of values of γ close to γ

(1)
H in order
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from small to large, Figure 2.4 (a) shows that the amplitude of periodic orbit increases as γ is
increased. Where gi(i = 1, 2, 3) represent the periodic orbits for different values of γi(i = 1, 2, 3),
respectively, and γ1 = 0.48, γ2 = 0.5, γ3 = 0.58.

Similarly, taking a series of values of γ close to γ
(2)
H in order from small to large, Figure

2.4 (b) shows that the amplitude of periodic orbit decreases as γ is increased. Where gi(i =
4, , 5, 6) represent the periodic orbits for different values of γi (i = 1, 2, 3), respectively, and
γ4 = 0.78, γ5 = 0.88, γ6 = 0.98.

Figure 2.4 also shows that the stable periodic orbit exists for values of γ far from the values

of Hopf bifurcations at γ = γ
(1)
H and γ = γ

(2)
H .
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Figure 2.4. The phase portrait of system (2.2) for (η, β) ∈ R2 with α = 0.5, η = 0.3 and
β = 3. (a): gi (i = 1, 2, 3) represent the periodic orbits of γ1 = 0.48, γ2 = 0.5
and γ3 = 0.58, respectively. (b): gi (i = 4, 5, 6) represent the periodic orbits of
γ4 = 0.78, γ5 = 0.88 and γ6 = 0.98, respectively.

3 Diffusion-driven Turing Instability and Spatial Patterns

3.1 Stability and Diffusion-driven Turing Instability

It is easy to verify that system (2.1) has the same constant equilibrium with (2.2). In this
subsection, we investigate system (2.1) under the assumption that the positive equilibrium
E−

∗
(
u−
∗ , v

−
∗
)
of system (2.2) is asymptotically stable, i.e., for E−

∗
(
u−
∗ , v

−
∗
)
, we always assume

that Tr(A) < 0, Det(A) > 0.
To study the stability of the positive equilibrium E−

∗
(
u−
∗ , v

−
∗
)
of system (2.1), we should

consider the roots of the characteristic equation of the linearized system of system (2.1). The
linearized system of system (2.1) at E−

∗
(
u−
∗ , v

−
∗
)
is: ∂u

∂t
∂v

∂t

 =

(
d1△ 0

0 d2△

)(
u

v

)
+A

(
u

v

)
. (3.1)

Assume that (
u

v

)
=

(
u−
∗

v−∗

)
+

(
a

b

)
exp

(
λt+ i(k · r)

)
(3.2)

is the solution of (3.1), where k = |k| is called the wave number and k = (kx, ky) is the
wave number vector, r represent the two-dimensional spatial vector and (a, b)T is the constant
undetermined column vector.
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Substituting (3.2) into (3.1), we have

(λI −Ak)

(
a

b

)
= 0

where I is a 2 × 2 unit matrix, Ak = A − diag(d1k
2, d2k

2) for k ≥ 0. Thus, the characteristic
equation of (3.1) is

λ2 − Tkλ+Dk = 0, (3.3)

where

Tk = Tr(A)− k2(d1 + d2), Dk = d1d2k
4 − (d1a22 + d2a11)k

2 +Det(A). (3.4)

Obviously, Tk < 0 for any k ≥ 0 and γ ≥ 0 when Tr (A) < 0. In particular, when γ = 0, it
follows from (2.10) that a22 = 0. And then by the basic assumption Tr(A) < 0 and Det(A) > 0
in this subsection that a11 < 0 and

Dk = d1d2k
4 − (d1a22 + d2a11)k

2 +Det(A) > 0.

Therefore, under the basic assumption Tr(A) < 0 and Det(A) > 0 in this subsection, when
γ = 0, the positive equilibrium of E−

∗
(
u−
∗ , u

−
∗
)
is always asymptotically stable for any d1, d2 ≥ 0.

That is to say that there is no diffusion-driven Turing instability for system (2.1) without Allee
effect (γ = 0).

In the following, we investigate whether diffusion-driven Turing instability for system (2.1)
with 0 < γ < γ∗ can occur or not. For this purpose, we need to judge the sign of Dk. Firstly,
when 0 < d1 ≤ d2, we have

−(d1a22 + d2a11) ≥ −(d2a11 + d2a22) = −d2(a11 + a22) > 0,

which implies tht Dk > 0 for any k ≥ 0. So, the diffusion of system (2.1) does not influence the
stability of the positive equilibrium of E−

∗
(
u−
∗ , u

−
∗
)
when 0 < d1 ≤ d2.

In what follows, we always assume that d1 > d2. It is well-known that Turing instability
occurs only when the following two conditions

(C1) d1a22 + d2a11 > 0

and

(C2) 4d1d2Det(A)− (d1a22 + d2a11)
2 < 0

are satisfied. When (C1) and (C2) hold, there exist at least one positive number k such that
Dk < 0, which implies that E−

∗
(
u−
∗ , u

−
∗
)
is unstable. This instability is induced by the diffusion

and also called diffusion-driven Turing instability.
In the following, we choose d1 as a parameter to investigate the stability and diffusion-driven

Turing instability and we have the following results.

Theorem 3.1. For the positive equilibrium E−
∗ (u−

∗ , v
−
∗ ), assume that α, η > 0, β > (α+1)η, 0 <

γ < γ∗, Tr(A) < 0, and Det(A) > 0. Define

d∗1T =
−2d2

(
a11a22 − 2Det(A)

)
+
√
Q1

2a222
, (3.5)

where

Q1 = −16d22a11a22Det(A) + 16d22
(
Det(A)

)2
.
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(i) When 0 < d1 < d∗1T , the positive equilibrium E−
∗
(
u−
∗ , v

−
∗
)
of (2.1) is asymptotically stable.

(ii) When d1 > d∗1T , the positive equilibrium E−
∗
(
u−
∗ , v

−
∗
)
of (2.1) is unstable, and system

(2.1) undergoes Turing bifurcation at d1 = d
(2)
1T .

Proof. Firstly, we notice that for the case without diffusion, the positive equilibrium E−
∗ is

stable under the assumption. Keep in mind that Tk < 0 for any k ≥ 0 when Tr (A) < 0 in what
follows.

By (2.10), a22 > 0 for 0 < γ < γ∗. This, together with Tr (A) = a11 + a22 < 0, implies that
a11 < 0. It is easy to verify that the condition (C1) holds when d1 > −a11

a22
d2 , d∗1, where

d∗1 , −a11
a22

d2 > 0.

By the expression of (C2), it is easy to see that (C2) is equivalent to the following condition

g(d1) = a222d
2
1 + 2d2

(
a11a22 − 2Det(A)

)
d1 + d22a

2
11 > 0. (3.6)

Since a11a22 < 0, we have

Q1 = 4d22
(
a11a22 − 2Det(A)

)2 − 4a222d
2
2a

2
11 = −16d22a11a22Det(A) + 16d22

(
Det(A)

)2
> 0,

which implies that the quadratic equations g(d1) = 0 has two positive roots d
(1)
1T and d

(2)
1T with

0 < d
(1)
1T =

−2d2
(
a11a22 − 2Det(A)

)
−

√
Q1

2a222
< d

(2)
1T =

−2d2
(
a11a22 − 2Det(A)

)
+
√
Q1

2a222
, (3.7)

and g(d1) < 0 for d
(1)
1T < d1 < d

(2)
1T , g(d1) > 0 for 0 < d1 < d

(1)
1T or d1 > d

(2)
1T . When d1 = d∗1, we

have

g(d∗1) = a222
a211
a222

d22 − 2d2
a11d2
a22

(
a11a22 − 2Det(A)

)
+ a211d

2
2 =

4d22a11Det(A)

a22
< 0.

So, we have the following inequality

0 < d
(1)
1T < d∗1 < d

(2)
1T .

In addition, it is easy to verify that when 0 ≤ d1 ≤ d∗1, d1a22 + d2a11 ≤ 0, which, together

with Det(A) > 0 and (3.4), implies that Dk > 0 for any k > 0. When d∗1 < d1 < d
(2)
1T ,

g(d1) < 0, which, together with (3.4), also implies that Dk > 0 for any k > 0. Therefore, for

any 0 ≤ d1 < d
(2)
1T , Dk > 0 for any k > 0.

When d1 > d
(2)
1T , the conditions (C1) and (C2) holds and there exists k1, k2 > 0 such that

Dk < 0 for k1 < k < k2. Letting d∗1T = d
(2)
1T for the simpleness of notations, we complete the

proof of Theorem 3.1.

Remark 3.2. By (3.7) and Tr (A) < 0, Det(A) > 0, a22 > 0, we have

d
(2)
1T − d2 =

−2d2
(
a11a22 − 2Det(A)

)
+

√
Q1 − 2d2a

2
22

2a222

=
−2d2a22(a11 + a22) + 4d2Det(A) +

√
Q1

2a222
> 0,

which implies that d∗1T = d
(2)
1T > d2.
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Remark 3.3. At the Turing bifurcation value d1 = d∗1T . The critical wave number kT can be
determined by

kT = 4

√
Det(A)

d1d2
,

at which DkT
= 0.

Remark 3.4. As pointed out by Murray[25], there are two different interactions in the biological
sense that lead to essentially different reactions: predators spread faster than prey, and vice
versa. In this paper, when the Allee effect exists in predator, Turing instability occurs for
the situation in which the prey spreads faster than the predator. The similar result has been
observed for the predator-prey model with hunting coorperation by Capone et al.[7].

3.2 Numerical Investigation of Spatial Patterns

We numerically show the theoretical results of Theorem 3.1 in this section. If we choose α =
0.5, β = 4, η = 1, then the positive equilibrium E−

∗
(
u−
∗ , v

−
∗
)
exists for 0 < γ < 0.4464. Taking

d2 = 0.1, we can obtain the graph of the d1 about γ as shown in Figure 3.1, where LT : d1 = d∗1T
and the shaded area represents the stable region of the positive equilibrium E−

∗
(
u−
∗ , v

−
∗
)
. So,

the Turing instability will occur when d1 > d∗1T and 0 < γ < 0.4464.

Figure 3.1. Let α = 0.5; η = 1; d2 = 0.1, and β = 4, the expression of LT is d1 = d∗1T .

In Figure 3.1, we take a series of numerical simulations in the Turing domain for fixed
α = 0.5, β = 4, η = 1, d2 = 0.1. Let γ = 0.175 and by calculation we have d∗1T ≈ 5.7147.
The different types of spatial patterns are observed with the various values of the diffusion
coefficient d1 of the prey. And here we show the pattern formation about the prey species u in
the following simulations.

Firstly, letting d1 = 6, Figure 3.2 (a)—(f) show the evolution process of the spatial patterns
of the u population, we can find that the spot pattern form as Figure 3.2 (f).

Then, letting d1 = 7.5, Figure 3.3 (a)–(f) show the evolution process of the spatial patterns
of the u population, we can find that the spot-strip pattern form as Figure 3.3 (f). And the
number of spot pattern is more than the strip pattern.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2. Snapshots of contour pictures of the time evolution of the prey population with
α = 0.5, β = 4, η = 1, d2 = 0.1, γ = 0.175, d1 = 6. (a) t = 0; (b) t = 100000; (c)
t = 3050000; (d) t = 3650000; (e) t = 4650000; (f) t = 5000000.

(a) (b) (c)

(d) (e) (f)

Figure 3.3. Snapshots of contour pictures of the time evolution of the prey population with
α = 0.5, β = 4, η = 1, d2 = 0.1, γ = 0.175, d1 = 7.5. (a)t = 0; (b)t = 550000;
(c)t = 950000; (d)t = 2550000; (e)t = 4350000; (f)t = 5000000.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4. Snapshots of contour pictures of the time evolution of the prey population with
α = 0.5, β = 4, η = 1, d2 = 0.1, γ = 0.175, d1 = 8. (a) t = 0; (b) t = 600000;
(c) t = 1200000; (d) t = 1800000; (e) t = 2400000; (f) t = 5000000.

Finally, increasing d1 to d1 = 9 and close to Turing bifurcation value, we can find that the
spot pattern forms as Figure 3.5 (f).

(a) (b) (c)

(d) (e) (f)

Figure 3.5. Snapshots of contour pictures of the time evolution of the prey population with
α = 0.5, β = 4, η = 1, d2 = 0.1, γ = 0.175, d1 = 9. (a) t = 0; (b) t = 550000;
(c) t = 950000; (d) t = 2550000; (e) t = 4350000; (f) t = 5000000.

In this case, from the figures above, in the plane of γ− d1, for fixed γ = 0.175, the different
pattern formations up to the value of the diffusion coefficient of the prey. In other words, as the
value of d1 moves away from Turing bifurcation, we find three patters: spot pattern, spot-stripe



Stability and Turing Patterns of a Predator-prey Model with Allee Effect in Predator 693

pattern, and stripe pattern. In particular, if the value is close to Turing bifurcation, the form
of the pattern is spot pattern.

4 Conclusion and Discussion

In this paper, we study a kind of predator-predator model with Holling type II functional
response and Allee effect in predator. Firstly, this paper theoretically analyzes the existence
and stability of the non-negative equilibrium of the system. We mainly explore the influence of
the strength (measured by γ) of the Allee effect of the predator on the existence and stability
of the coexistence equilibrium (also called positive equilibrium).

For the existence of the coexistence equilibrium, in terms of the relationship of other pa-
rameters of the system, the influence of the Allee effect can be divided into two cases: (i) there
is no coexistence equilibrium for any γ ≥ 0; (ii) there exists a critical value γ∗ of the strength
of the Allee effect such that the system has two coexistence equilibria for 0 < γ < γ∗ and no
coexistence equilibrium for γ > γ∗. This critical value γ∗ can be explicitly determined. Notice
that the boundary equilibrium (1, 0) (predator extinction equilibrium) is always stable and the
per growth rate of predator decreases with the increasing of the strength of the Allee effect.
Therefore, the larger Allee effect can lead to the smaller per capital reproduction rate of preda-
tor, and when the per reproduction rate is smaller than death rate, the per capital growth rate
of the predator will be negative, eventually leading to the extinction of the predator. Thus, for
the ecological balance, keeping the moderate Allee effect is necessary. In addition, the Allee
effect leads to the appearance of two coexistence equilibria although one is always unstable,
which is useful for biological diversity.

For the stability of the two coexistence equilibria, it has been shown that the one corre-
sponding to low predator biomass is always a saddle, and the stability of the other one depends
on the strength of the Allee effect and other parameters of the system. In this paper, we focus
on how the strength of the Allee effect affects the stability of the coexistence equilibrium cor-
responding to high predator biomass. Our theoretical results show that there are three kinds
of possible cases about the stability: (i) the strength of the Allee effect does not affect the
stability of this coexistence equilibrium; (ii) there exists a unique Hopf bifurcation value γ∗

H

such that this coexistence equilibrium is asymptotically stable for 0 ≤ γ < γ∗
H and unstable for

γ∗
H < γ < γ∗; (iii) there exists two Hopf bifurcation values γ

(1)
H andγ

(2)
H such that the stability

switches induced by Allee effect occur, i.e., this coexistence equilibrium is asymptotically stable

for 0 ≤ γ < γ
(1)
H or γ

(2)
H < γ < γ∗, and unstable for γ

(1)
H < γ < γ

(2)
H . Destabilizing force

of Allee effect in predator-prey systems has been known[4, 18, 34–36, 43]. Here the existence of
the stability switches induced by Allee effect has also shown the stabilizing force for relatively
large strength of Allee effect. The numerical simulations also shown the existence of the stable
periodic orbit bifurcating from these Hopf bifurcations. It is also shown that there exist two
kinds of bistabilities: one is the coexistence of stable coexistence equilibrium and stable preda-
tor extinction equilibrium and the other is the coexistence of stable periodic orbit and stable
predator extinction equilibrium.

Finally, we investigate the diffusion on the influence of diffusion on the stability of the
coexistence equilibrium. When there is no Allee effect, there is no diffusion-driven Turing
instability for the original predator-prey system. However, when the Allee effect is introduced
into the reproduction rate of the predator, there exists diffusion-driven Turing instability for
the case when predator spread slower than prey. The Turing bifurcation value is also explicitly
determined taking the diffusion coefficient of the prey as the parameter. Numerical simulations
has been shown that with the increasing of the diffusion coefficient of the prey, there are three
kinds of different patterns: spot pattern, spot-stripe pattern, and stripe pattern.
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