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Abstract We study the following quasilinear Schrödinger equation

−∆u+ V (x)u−∆(u2)u = K(x)g(u), x ∈ R3,

where the nonlinearity g(u) is asymptotically cubic at infinity, the potential V (x) may vanish at infinity. Under

appropriate assumptions on K(x), we establish the existence of a nontrivial solution by using the mountain pass

theorem.
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1 Introduction

In this paper, we are concerned with the existence results for the following quasilinear Schrödinger
equation

−∆u+ V (x)u−∆(u2)u = K(x)g(u), x ∈ RN , (1.1)

where N = 3, the potential V (x) vanishes at infinity, K(x) is continuous and the nonlinearity
g(t) behaves like t3 at infinity.

Problem (1.1) has been studied widely. As far as we know, it was firstly considered in [17],
where the existence of a positive ground state solution was obtained via minimization methods.
In [13], by using a constrained minimization argument, a positive ground state solution has been
proved for problem (1.1) with K(x)g(u) = λ|u|q−1u, 4 ≤ q+1 < 2 · 2∗, where 2∗ = 2N/(N − 2)
is the Sobolev critical exponent. In [12], the quasilinear equation was reduced to a semilinear
one by utilizing a change in variables, and an Orlicz space framework was used to prove the
existence of a positive solutions via the mountain pass theorem. The same method was also
used in [3], but the usual Sobolev space H1(RN ) framework was used as the working space.
Taking into account the behavior of the potential V (x), we find several works concerning on
problem (1.1). Regarding asymptotically periodic, we cite the paper of Silva and Vieira[19], Xue
and Tang[21, 22]. In [19], when the nonlinearity is critical, they obtain a non-trivial solution by
using the mountain pass theorem. In [21, 22], the authors use a Nehari-type constraint to
get a ground state solution under subcritical or critical growth. With a finite potential well,
we mention the results in [2, 6, 10]. Cassani and Wang[2] studied blow-up phenomena and
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asymptotic profiles for problem (1.1). Dong and Mao[6] dealt with the more general quasilinear
Schrödinger equation by using a perturbation method which was developed in [14]. They
established a new convergence theorem and introduced a weighted space together with Moser’s
iteration to recover the compactness. Then, they proved the existence of a sequence of solutions
with negative energy values which converges to 0. In [10], the authors considered the general
Berestycki-Lions type assumptions on the nonlinearity by using Jeanjean′s monotonicity trick.

All the aforementioned articles concerned with the case that the nonlinearity is super-
cubic or sub-cubic. We are interested in the case that g(t) is asymptotically cubic at infinity.
This type of nonlinearity was studied by Liu et. al.[7–9, 12, 15, 16]. The first one is reference
[12], which states, among other results, the existence of positive solutions for the autonomous
nonlinearity K(x)g(t) = t3 under different kind of hypothesis on the potential V (x). Fang and
Szulkin[7] consider K(x)g(t) = q(x)t3 and obtained the existence of infinite solutions under
some symmetry conditions on the potential V (x). The case of coercive potential were discussed
in [9, 16], an Orlicz space framework was used to prove the existence of a nontrivial solution via
the mountain pass theorem. We finally mention a paper of Maia et. al.[15] where they consider
the case that the potential V (x) changes sign by employing the mountain pass theorem to obtain
the existence of a non-trivial solution. There are few papers which deal with vanishing potential
except [1, 4], the nonlinearities in this two articles are quasi-critical and critical respectively.
Up to our knowledge, there are no results concerning with the asymptotically cubic framework
under the vanishing potential for problem (1.1). Inspired by [9, 11, 16], we discuss this kind of
problem (1.1).

Throughout the paper we shall assume that V (x), K(x) and g(s) satisfy the following
conditions:

(V ) V (x) ∈ C(R3,R), and there exist a > 0, A > 0, 0 < α < 2 such that

a

1 + |x|α
≤ V (x) ≤ A.

(K) K(x) is a positive continuous function and

lim
|x|→+∞

V (x)

K(x)
= +∞.

(g1) g is a positive continuous function g(s) ≡ 0 for all s ≤ 0, and

lim
s→0+

g(s)

s
= 0.

(g2) There is l ∈ (0,+∞) such that

lim
s→+∞

g(s)

s3
= l.

(g3)
1
4g(s)s−G(s) ≥ 0, where G(s) =

∫ s

0
g(t)dt.

In order to state our main theorem we need to introduce the following weighted Sobolev
space

H =
{
u ∈ D1,2(R3) :

∫
R3

(
|∇u|2 + V (x)u2

)
dx < ∞

}
.

Then, H is a Hilbert space and H1(R3) ⊂ H [11]. The scalar product and norm in H are given
by

(u, v) =

∫
R3

(
∇u∇v + V (x)uv

)
dx, ∥u∥2 =

∫
R3

(
|∇u|2 + V (x)u2

)
dx.

We are able to state the main result of this paper as follows.
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Theorem 1.1. Suppose that (V ), (K) hold and the function g(s) satisfies (g1)− (g3). Let l > µ
with

µ = inf
{∫

R3

(
|∇u|2 + V (x)u2

)
dx : u ∈ H,

∫
R3

K(x)u2dx = 1
}
.

Then problem (1.1) possesses a nontrivial solution.

Remark 1.2. In [9, 16], the potential V (x) is coercive, so the embedding H1(R3) ↩→ Lp(R3)
is compact for 2 ≤ p < 2∗. This ensures that the bounded (C) sequence converges strongly
to a nontrivial solution of problem (1.1). In this paper we cannot use the compact embedding
theorem as in [9, 16]. Motivated by [11], we establish a compactness result, see Lemma 3.4
below, which ensures that the bounded (C) sequence converges to a nontrivial solution u ∈ H.

Remark 1.3. We reduce the restrictions on the nonlinearity. The conditions (g1) − (g3) are
much weaker than those in previous articles for the asymptotically linear problem.

Example 1.4. There are functions satisfying our conditions. Let g(s) = ls5

1+s2 for some l > 0.
By direct calculations, we have

G(s) =
l

2

[s4
2

− s2 + ln(1 + s2)
]
.

Define H(s) := 1
4g(s)s−G(s), then

H(0) = 0, H ′(s) =
ls5

2(1 + s2)2
≥ 0, for s ≥ 0.

Hence H(s) ≥ 0 for s ≥ 0. Hereafter, we see that the function g satisfies the conditions
(g1)− (g3). Let

V (x) =
1

ln ln(3 + |x|)
, K(x) =

1

ln(3 + |x|2)
,

then conditions (V ), (K) hold.

2 Some Preliminary Results

We observe that formally problem (1.1) is the Euler-Lagrange equation associated with the
energy functional

J(u) =
1

2

∫
R3

[
(1 + 2u2)|∇u|2

]
dx+

1

2

∫
R3

V (x)u2dx−
∫
R3

K(x)G(u)dx.

From the variational point of view, the first difficulty we have to deal with problem (1.1) is to
find an appropriate function space where the above functional is well defined. In the spirit of
the argument developed in [3]. We make a change of variables v := f−1(u), where f is defined
by

f ′(t) =
1

(1 + 2f2(t))1/2
, t ∈ [0,+∞),

f(t) = −f(−t), t ∈ (−∞, 0].

After the change of variables from J , we obtain the following functional:

I(v) =
1

2

∫
R3

|∇v|2dx+
1

2

∫
R3

V (x)f2(v)dx−
∫
R3

K(x)G(f(v))dx.
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Then I(v) = J(u) = J(f(v)) and I is well defined on H, I ∈ C1(H,R) under the hypotheses
(V), (K) and (g1)− (g3). Moreover, we observe that if v is a critical point of the functional I,
then the function u = f(v) is a solution of problem (1.1)[3].

Below we summarize the properties of f , which have been proved in [3] and [19].

Lemma 2.1. The function f satisfies the following properties:
(1) f is uniquely defined, C∞ and invertible;
(2) |f ′(t)| ≤ 1 for all t ∈ R;
(3) |f(t)| ≤ |t| for all t ∈ R;
(4) f(t)

t → 1 as t → 0;

(5) f(t)√
t
→ 21/4 as t → ∞;

(6) f(t)
2 ≤ tf ′(t) ≤ f(t) for all t > 0;

(7) |f(t)| ≤ 21/4|t|1/2 for all t ∈ R;
(8) f2(t)− f(t)f ′(t)t ≥ 0 for all t ∈ R;
(9) there exists a positive constant C such that |f(t)| ≥ C|t| for |t| ≤ 1 and |f(t)| ≥ C|t|1/2

for |t| ≥ 1.

Lemma 2.2. Suppose that (g1) and (g2) hold, then for each ϵ > 0, there is Cϵ > 0, C∗ > 0
such that for all s ∈ R+,

g(s) ≤ ϵ|s|+ Cϵ|s|3, (2.1)

G(s) ≤ ϵ

2
|s|2 + C∗|s|6. (2.2)

Lemma 2.3 (Mountain pass theorem[20]). Let E be a real Banach space with its dual space E∗

and suppose that I ∈ C1(E,R) satisfies

max{I(0), I(e)} ≤ µ < η ≤ inf
∥u∥=ρ

I(u),

for some µ < η, ρ > 0 and e ∈ E with ∥e∥ > ρ. Let c ≥ η be characterized by c =
inf
γ∈Γ

maxt∈[0,1] I(γ(t)), where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of con-

tinuous paths joining 0 and e, then there exists a sequence {un} ⊂ E such that

I(un) → c ≥ η, (1 + ∥un∥)∥I ′(un)∥ → 0.

3 Proof of Theorem 1.1

Lemma 3.1. If the Conditions (V ), (K), (g1)− (g3) hold, then there exist ρ > 0, η > 0 such
that inf∥v∥=ρ I(v) > η.

Proof. Thanks to Lemma 2.1-(9), we can deduce that there is C1 > 0, such that

f2(t) ≥ C1(|t|2 − |t|6). (3.1)

It follows from (K) that there exists M > 0 such that

K(x) ≤ MV (x). (3.2)

By (3.1), (3.2), (2.2), Lemma 2.1-(3) and the Sobolev inequality, we have

I(v) =
1

2

∫
R3

|∇v|2dx+
1

2

∫
R3

V (x)f2(v)dx−
∫
R3

K(x)G(f(v))dx
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≥1

2

∫
R3

|∇v|2dx+
1

2

∫
R3

V (x)(C1|v|2 − C1|v|6)dx

−M

∫
R3

V (x)
( ϵ

2
|f(v)|2 + C∗|f(v)|6

)
dx

≥1

2

∫
R3

|∇v|2dx+
(C1

2
− Mϵ

2

)∫
R3

V (x)v2dx−
(C1

2
+MC∗

)∫
R3

V (x)v6dx

≥min
{1

2
,
C1

2
− Mϵ

2

}
∥v∥2 −

(C1

2
+MC∗

)
AS−3∥v∥6,

where A is the constant in condition (V ) and S is the optimal constant in the Sobolev em-
beddings. Let 0 < ϵ < C1

M , then we conclude that there is ρ > 0 small enough, such that
I(v) > 0 whenever ∥v∥ ≤ ρ, v ̸= 0. And there exists η > 0 such that for any ∥v∥ = ρ, one has
I(v) ≥ η > 0.

Lemma 3.2. Suppose (V ), (K), (g1)−(g3) are satisfied. Then there exists e ∈ H with ∥e∥ > ρ,
such that I(e) < 0, where ρ is given by Lemma 3.1.

Proof. By the definition of µ and l > µ, there is v ∈ H such that v ≥ 0,
∫
R3 K(x)v2dx = 1 and

µ ≤ ∥v∥2 < l. Then, by Lemma 2.1-(3)(5), (g2) and the Fatou lemma we deduce that

lim
t→∞

I(tv)

t2
≤1

2
∥v∥2 − lim

t→∞

∫
R3

K(x)
G(f(tv))

f4(tv)

f4(tv)

t2v2
v2dx

≤1

2
∥v∥2 − 1

2
l

∫
R3

K(x)v2dx =
1

2
(∥v∥2 − l) < 0,

and the lemma is proved by taking e = t0v with t0 > 0 large enough.

Lemma 3.3. Suppose (V ), (K), (g1) − (g3) are satisfied. Then there exists {vn} ⊂ H such
that I(vn) → c, (1 + ∥vn∥)∥I ′(vn)∥ → 0 and {vn} is bounded in H.

Proof. It follows from Lemma 3.1, Lemma 3.2 and Lemma 2.3 that, there exists a sequence
{vn} ⊂ H such that I(vn) → c, (1 + ∥vn∥)∥I ′(vn)∥ → 0. We only need to prove that {vn} is
bounded.

First of all, we observe that if a sequence {vn} ⊂ H satisfies

γ(vn) :=

∫
R3

|∇vn|2dx+

∫
R3

V (x)f2(vn)dx ≤ C2,

for some constant C2 > 0, then the sequence {vn} is bounded in H. In fact, by Lemma 2.1-(9),
(V ) and the Sobolev inequality, we observe that∫

{x:|vn(x)|≤1}
V (x)v2ndx ≤ 1

C2

∫
{x:|vn(x)|≤1}

V (x)f2(vn)dx ≤ γ(vn)

C2
,

and ∫
{x:|vn(x)|>1}

V (x)v2ndx ≤ A

∫
{x:|vn(x)|>1}

v6ndx ≤ AS−3(γ(vn))
3.

Thus, ∫
R3

V (x)v2ndx ≤ γ(vn)

C2
+AS−3(γ(vn))

3,
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that is, ∫
R3

|∇vn|2dx+

∫
R3

V (x)v2ndx ≤
(
1 +

1

C2

)
γ(vn) +AS−3(γ(vn))

3.

Therefore, it remains to show that γ(vn) is bounded.
Let {vn} ⊂ H be an arbitrary Cerami sequence for I at level c > 0, that is I(vn) → c and

(1 + ∥vn∥)∥I ′(vn)∥ → 0, namely

1

2

∫
R3

|∇vn|2dx+
1

2

∫
R3

V (x)f2(vn)dx−
∫
R3

K(x)G(f(vn))dx = c+ on(1), (3.3)

and for any φ ∈ H,

⟨I ′(vn), φ⟩ =
∫
R3

∇vn · ∇φdx+

∫
R3

V (x)f(vn)f
′(vn)φdx

−
∫
R3

K(x)g(f(vn))f
′(vn)φdx = on(1).

Choosing

φ = φn =
√

1 + 2f2(vn)f(vn) =
f(vn)

f ′(vn)
,

from Lemma 2.1-(6), we get ∥φn∥2 ≤ 2∥vn∥2 and

|∇φn| =
(
1 +

2f2(vn)

1 + 2f2(vn)

)
|∇vn| ≤ 2|∇vn|.

Thus there exists a constant C3 > 0 such that ∥φn∥ ≤ C3∥vn∥. Recalling that {vn} ⊂ H is a
(C) sequence, we get

⟨I ′(vn), φn⟩ =
∫
R3

(
1 +

2f2(vn)

1 + 2f2(vn)

)
|∇vn|2dx+

∫
R3

V (x)f2(vn)dx

−
∫
R3

K(x)g(f(vn))f(vn)dx = on(1). (3.4)

By computing (3.3)− 1
4 (3.4), one gets

c+ on(1) =
1

4

∫
R3

1

1 + 2f2(vn)
|∇vn|2dx+

1

4

∫
R3

V (x)f2(vn)dx

+

∫
R3

K(x)
(1
4
g(f(vn))f(vn)−G(f(vn))

)
dx.

Thanks to (K) and (g3), we get

1

4

∫
R3

1

1 + 2f2(vn)
|∇vn|2dx+

1

4

∫
R3

V (x)f2(vn)dx ≤ c+ on(1). (3.5)

Denote wn = f(vn), then |∇vn|2 = (1 + 2w2
n)|∇wn|2. We can rewrite (3.3), (3.5) as follows.

1

2

∫
R3

(1 + 2w2
n)|∇wn|2dx+

1

2

∫
R3

V (x)w2
ndx−

∫
R3

K(x)G(wn)dx = c+ on(1), (3.6)

and

1

4

∫
R3

|∇wn|2dx+
1

4

∫
R3

V (x)w2
ndx ≤ c+ on(1). (3.7)
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From (3.7), we can see that {wn} is bounded in H. Therefore ∥wn∥6 is bounded by the Sobolev
inequality. It follows from (2.2), (3.2) and (V ) that∫

R3

K(x)G(wn)dx ≤M

∫
R3

V (x)
( ϵ

2
|wn|2 + C∗|wn|6

)
dx

≤1

2
Mϵ

∫
R3

V (x)|wn|2dx+MC∗A

∫
R3

|wn|6dx.

We can deduce that there is a constant C4 > 0, such that∫
R3

K(x)G(wn)dx ≤ C4.

By the above inequality and (3.6), one has

1

2

∫
R3

(1 + 2w2
n)|∇wn|2dx+

1

2

∫
R3

V (x)w2
ndx ≤ C4 + c+ on(1),

namely

1

2

∫
R3

|∇vn|2dx+
1

2

∫
R3

V (x)f2(vn)dx ≤ C4 + c+ on(1).

This completes the proof.

Lemma 3.4. Let (V ), (K) (g1) − (g3) hold. Then for any ϵ > 0, there exist R(ϵ) > 0 and
n(ϵ) > 0 such that ∫

{x:|x|≥R}
|∇vn|2dx+

∫
{x:|x|≥R}

V (x)v2ndx ≤ ϵ,

for all R ≥ R(ϵ) and n ≥ n(ϵ), where the sequence {vn} is a (C) sequence of the functional I.

Proof. Thanks to (K), for any η > 0, there exists R0 > 0 such that for all |x| ≥ R0,

K(x) < ηV (x). (3.8)

Define

C1(R0, α, a) := sup
{1 + (2R)α

aR2
: R ≥ R0

}
=

1 + (2R0)
α

aR2
0

,

and

C2(R0, α, a) := sup
{1 + (2R)α

aRα
: R ≥ R0

}
=

1 + (2R0)
α

aRα
0

,

where α and a are given by (V ). Then, by the above two inequalities and (V ), for all R ≥ R0,
we have

1/R2 ≤ C1(R0, α, a)V (x), for all |x| ≤ 2R, (3.9)

and

1/Rα ≤ C2(R0, α, a)V (x), for all |x| ≤ 2R. (3.10)
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Let ξR : R3 → [0, 1] be a smooth function such that

ξR(x) =

{
0, 0 ≤ |x| ≤ R,

1, |x| ≥ 2R.

Moreover there is a constant C0 > 0 independent of R such that

|∇ξR(x)| ≤
C0

R
, for all x ∈ R3.

Then by the Young inequality and (3.9), for all n ∈ N and R ≥ R0, one has∫
R3

|∇(vnξR)|2dx =

∫
R3

(
ξ2R|∇vn|2 + v2n|∇ξR|2 + 2ξRvn∇ξR∇vn

)
dx

≤
∫
R3

(
ξ2R|∇vn|2 + v2n|∇ξR|2

)
dx+

∫
R3

(
(ξR∇vn)

2 + (vn∇ξR)
2
)
dx

≤2

∫
R3

|∇vn|2dx+
2C2

0

R2

∫
{x:R≤|x|≤2R}

|vn|2dx

≤[2 + 2C2
0C1(R0, α, a)]∥vn∥2. (3.11)

This implies that for all n ∈ N and R ≥ R0, we have

∥vnξR∥ ≤ [3 + 2C2
0C1(R0, α, a)]

1/2∥vn∥. (3.12)

By 0 < α < 2, for any ϵ > 0, there exists R(ϵ) ≥ R0 such that

Rα−2 ≤ 4ϵ2

C2
0C2(R0, α, a)

, for all R ≥ R(ϵ). (3.13)

Since {vn} is a (C) sequence, ∥I ′(vn)∥H−1∥vn∥ → 0 as n → ∞. Hence for any ϵ > 0, there is
n(ϵ) > 0 such that

∥I ′(vn)∥H−1∥vn∥ ≤ ϵ

[3 + 2C2
0C1(R0, α, a)]1/2

, for all n ≥ n(ϵ). (3.14)

Combining (3.14) with (3.12), we have

|⟨I ′(vn), vnξR⟩| ≤ ∥I ′(vn)∥H−1∥vnξR∥ ≤ ϵ, for all n ≥ n(ϵ), R ≥ R0. (3.15)

For R ≥ R(ϵ), using (3.10) and (3.13), one has

C2
0C2(R0, α, a)

R2
≤ 4ϵ2

Rα
≤ 4ϵ2C2(R0, α, a)V (x), for all |x| ≤ 2R,

that is,

C2
0

R2
≤ 4ϵ2V (x), for all |x| ≤ 2R.

Therefore, for all n ∈ N and R ≥ R(ϵ), we have∫
R3

| vn∇vn∇ξR | dx ≤ϵ

∫
R3

|∇vn|2dx+
1

4ϵ

∫
{x:|x|≤2R}

C2
0

R2
|vn|2dx

≤ϵ

∫
R3

|∇vn|2dx+ ϵ

∫
{x:|x|≤2R}

V (x)|vn|2dx
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≤ϵ∥vn∥2. (3.16)

It follows from (2.1), (3.8) and Lemma 2.1-(3)(7)(8) that, for all n ∈ N and R ≥ R(ϵ),∫
R3

| K(x)g(f(vn))f
′(vn)vnξR | dx ≤η

∫
R3

V (x)(ϵ|f(vn)|+ Cϵ|f(vn)|3)f ′(vn)vnξRdx

≤(ηϵ+ 2Cϵη)

∫
R3

V (x)v2nξRdx. (3.17)

Combining (3.16), (3.17) with Lemma 2.1-(6), for all n ∈ N and R ≥ R(ϵ) ≥ R0, we have

|⟨I ′(vn), vnξR⟩| ≥⟨I ′(vn), vnξR⟩

=

∫
R3

ξR|∇vn|2dx+

∫
R3

V (x)f(vn)f
′(vn)vnξRdx

+

∫
R3

vn∇vn∇ξRdx−
∫
R3

K(x)g(f(vn))f
′(vn)vnξRdx

≥
∫
R3

ξR|∇vn|2dx− ϵ∥vn∥2 +
1

2

∫
R3

V (x)f2(vn)ξRdx

− (ηϵ+ 2Cϵη)

∫
R3

V (x)v2nξRdx.

Since {vn} is bounded by Lemma 3.3, we can get the boundedness of
∫
R3 V (x)f2(vn)ξRdx and∫

R3 V (x)v2nξRdx. Let η small enough, one gets

1

2

∫
R3

V (x)f2(vn)ξRdx− (ηϵ+ 2Cϵη)

∫
R3

V (x)v2nξRdx > 0.

Hence combining the above inequality with (3.15), there are C5 > 0, C6 > 0 such that∫
R3

|∇vn|2ξRdx ≤ C5ϵ, (3.18)

and

1

2

∫
R3

V (x)f2(vn)ξRdx− (ηϵ+ 2Cϵη)

∫
R3

V (x)v2nξRdx ≤ C6ϵ.

Furthermore ∫
R3

V (x)f2(vn)ξRdx ≤ C7ϵ, (3.19)

for some constant C7. By the Sobolev inequality and (3.18), we can deduce∫
R3

v6nξRdx ≤ C8ϵ. (3.20)

It follows from (3.1), (V ), (3.19) and (3.20) that

C1

∫
R3

V (x)v2nξRdx ≤C1

∫
R3

V (x)v6nξRdx+

∫
R3

V (x)f2(vn)ξRdx

≤C1A

∫
R3

v6nξRdx+ C7ϵ ≤ (C1AC8 + C7)ϵ. (3.21)

Thanks to (3.18) and (3.21), we can get the conclusion.
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Proof of Theorem 1.1. By Lemma 3.3, the (C) sequence {vn} ⊂ H is bounded. We may assume
that, up to a subsequence, vn ⇀ v in H for some v ∈ H. In order to prove our theorem, it is
now sufficient to show that ∥vn∥ → ∥v∥ as n → ∞. Since {vn} is a (C) sequence, we have

⟨I ′(vn), vn⟩ =
∫
R3

|∇vn|2dx+

∫
R3

V (x)v2ndx−
∫
R3

V (x)v2ndx

+

∫
R3

V (x)f(vn)f
′(vn)vndx−

∫
R3

K(x)g(f(vn))f
′(vn)vndx = on(1),

and

⟨I ′(vn), v⟩ =
∫
R3

∇vn∇vdx+

∫
R3

V (x)vnvdx−
∫
R3

V (x)vnvdx

+

∫
R3

V (x)f(vn)f
′(vn)vdx−

∫
R3

K(x)g(f(vn))f
′(vn)vdx = on(1).

So to show ∥vn∥ → ∥v∥ is equivalent to proving the following three equalities.∫
R3

V (x)vn(vn − v)dx = on(1), (3.22)∫
R3

V (x)f(vn)f
′(vn)(vn − v)dx = on(1), (3.23)∫

R3

K(x)g(f(vn))f
′(vn)(vn − v)dx = on(1). (3.24)

(i) The proof of (3.22). For any ϵ > 0, by the Hölder inequality, Lemma 3.3 and Lemma
3.4, for n large enough, one has∫

{x:|x|≥R(ϵ)}
V (x)vn(vn − v)dx

≤
(∫

{x:|x|≥R(ϵ)}
V (x)v2ndx

) 1
2
(∫

{x:|x|≥R(ϵ)}
V (x)(vn − v)2dx

) 1
2 ≤ C9ϵ.

This and the compactness of the embedding H ↩→ L2
loc(R3) imply (3.22).

(ii) The proof of (3.23). It follows from Lemma 2.1-(2)(3) that∫
R3

V (x)f(vn)f
′(vn)(vn − v)dx ≤

∫
R3

V (x)vn(vn − v)dx.

Hence (3.23) can be deduced by (3.22) easily.
(iii) The proof of (3.24). Thanks to (3.2), (2.1) and Lemma 2.1-(2)(3)(7), one has∫

{x:|x|≥R(ϵ)}
K(x)g(f(vn))f

′(vn)(vn − v)dx

≤
∫
{x:|x|≥R(ϵ)}

MV (x)[ϵ|f(vn)|+ Cϵ|f(vn)|3](vn − v)dx

≤Mϵ

∫
{x:|x|≥R(ϵ)}

V (x)vn(vn − v)dx+ 23/4CϵM

∫
{x:|x|≥R(ϵ)}

V (x)v3/2n (vn − v)dx

≤Mϵ
(∫

{x:|x|≥R(ϵ)}
V (x)v2ndx

)1/2(∫
{x:|x|≥R(ϵ)}

V (x)(vn − v)2dx
)1/2

+ 23/4CϵM
(∫

{x:|x|≥R(ϵ)}
V (x)v3ndx

)1/2(∫
{x:|x|≥R(ϵ)}

V (x)(vn − v)2dx
)1/2

.
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Since {vn} ⊂ H is bounded, we can get the boundedness of
∫
R3 V (x)v3ndx from the Sobolev

inequality and the interpolation inequality. Thereafter,∫
{x:|x|≥R(ϵ)}

K(x)g(f(vn))f
′(vn)(vn − v)dx ≤ ϵ.

This and the compactness of the embedding H ↩→ L2
loc(R3) imply (3.24). �
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