Acta Mathematicae Applicatae Sinica, English Series Vol. 39, No. 3 (2023) 638–646 https://doi.org/10.1007/s10255-023-1067-2 http://www.ApplMath.com.cn & www.SpringerLink.com

Acta Mathemacae Applicatae Sinica, English Series © The Editorial Office of AMAS & Springer-Verlag GmbH Germany 2023

On the Turán Density of Uniform Hypergraphs

An CHANG, Guo-rong GAO*†*

Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University, Fuzhou 350108, China (*†*E-mail: guoronggao@yeah.net)

Abstract Let *p*, *q* be two positive integers. The 3-graph $F(p,q)$ is obtained from the complete 3-graph K_p^3 by adding *q* new vertices and $p_2^{\left(q\right)}$ new edges of the form *vxy* for which $v \in V(K_p^3)$ and $\{x, y\}$ are new vertices. It frequently appears in many literatures on the Turán number or Turán density of hypergraphs. In this paper, we first construct a new class of *r*-graphs which can be regarded as a generalization of the 3-graph $F(p, q)$, and prove that these *r*-graphs have the same Turán density under some situations. Moreover, we investigate the Turán density of the $F(p,q)$ for small p,q and obtain some new bounds on their Turán densities.

Keywords Hypergraph; Turán density; Bound **2000 MR Subject Classification** 05C35; 05C65

1 Introduction

Let $[n]$ denote the set $\{1, 2, \dots, n\}$. An *r*-uniform hypergraph (or *r*-graph) *H* of order *n* is a family of r-element subsets of $[n]$. We denote the vertex set and the edge set of *H* by $V(H)$ and $E(H)$, respectively. Given an *r*-graph *F*, we say that an *r*-graph *H* is *F*-free if *H* does not contain *F* as a subgraph. The Turán number $\exp(n, F)$ is the maximum number of edges of an *F*-free *r*-graph on *n* vertices. Meanwhile the Turán density of F is defined as

$$
\pi(F) = \lim_{n \to \infty} \frac{ex_r(n, F)}{\binom{n}{r}}.
$$

A well-known fact is that the Turán density exists for any *r*-graph *F*, since that if we let $\tau(n) = \exp(n, F) / \binom{n}{r}$, then $\{\tau(n)\}$ is a bounded and monotonically non-increasing sequence (see [[8\]](#page-8-0) Section 2 for detail).

Determining Turán number or Turán density is perhaps the most fundamental open problem in the extremal hypergraph theory. In the case of 2-graphs, the Erdős-Stone-Simonovits Theorem [\[3](#page-8-1), [5\]](#page-8-2) answers that the Turán density of a 2-graph *F* is $\pi(F) = 1 - \frac{1}{\chi(F) - 1}$, where $\chi(F)$ denotes the chromatic number of *F*. However, for $r \geq 3$, only a few cases have been settled. In fact, the Turán density of the complete *r*-graph K_p^r is still unknown for any pair of $p > r \geq 3$.

In many previous literatures, a key tool used frequently in determining Turán density is socalled the 'blow up' of an *r*-graph. Given an *r*-graph F , the *t*-*blow-up* $F(t)$ is a transformation of *F* that replacing each vertex of *F* by *t* copies of itself and each edge by corresponding complet *r*-partite *r*-graph of these copies. The celebrated supersaturation result of Erdős and Simonovists [[4\]](#page-8-3) implies that $\pi(F(t)) = \pi(F)$.

An intuitive question is that, given an *r*-graph, apart from the 'blow-up', is there any other way to construct new classes of *r*-graphs which keep invariant Turán density? In this paper, our main purpose is to consider this problem and give such a new constructing method for *r*-graphs.

Manuscript received December 11, 2020. Accepted on July 7, 2021.

This paper is supported by the National Natural Science Foundation of China (No. 12171089).

*[†]*Corresponding author.

The main method used in this paper is the link multigraph method which is developed by de Caen and Füredi in $[2]$ $[2]$. By this method, they give a surprisingly short proof of a conjecture proposed by S^{os[[13](#page-8-5)]} on the Turán density of the Fano plane, that is $\pi(\text{Fano}) = \frac{3}{4}$. After that, there are some results on Turán density building upon this method successfully. For example, Füredi, Pikhurko and Simonovits^{[[7\]](#page-8-6)} determined that $\pi(F(3, 2)) = \frac{4}{9}$, where $F(3, 2) =$ $(\{a, b, c, d\}, \{abc, ade, bde, cde\})$. Mubayi and Rödl^{[[10\]](#page-8-7)} determined that $\pi(F(3, 3)) = \frac{3}{4}$, where $F(3,3) = (\{a,b,c,x, y,z\}, \{abc,xya,xyb,xyc,xza,xzb,xzc, yza,yzb,yzc\}).$

The rest of this paper is organized as follows. In Section [2,](#page-1-0) we give some definitions and notations, and then prove several lemmas needed for proving main results. Our main results and their proofs are presented in Section 3 and 4 . Specially, some new bounds on the Turán density of $F(p,q)$ for small p,q will be presented in Section [4](#page-6-0).

2 Preliminaries

Throughout this section we let *H* be an *r*-graph and *G* be an $(r-1)$ -graph, where $r \geq 3$. An *r*-uniform *multi*-*hypergraph* is the *r*-graph which allows for multi-edges. For convenience, *|E*(*H*)*|* is sometimes referred to as *|H|*. Let *S* be a vertex set. We use *H − S* to denote the r-graph with vertex set $V(H)\backslash S$ and edge set $\{e : e \in E(H) \text{ and } e \subset V(H)\backslash S\}$, i.e, $H-S$ is the induced subgraph of *H* with vertex set $V(H)\S$.

Definition 2.1^{[[9\]](#page-8-8)}. For a vertex $x \in V(H)$, the link of x in H is an $(r − 1)$ -graph with vertex set $V(H)\setminus\{x\}$ and edge set $\{e\setminus\{x\} : x \in e \in E(H)\}$, denoted by $L_H(x)$. The degree of x in H *is* $d_H(x) = |L_H(x)|$ *. We omit the subscript if there is no confusion.*

Definition 2.2. For a vertex set $S \subseteq V(H)$, the link of S in H is an $(r-1)$ -uniform multihypergraph with vertex set $V(H)\ S$ and edge set $\{e\setminus\{x\} : e \in E(H) \text{ and } \{x\} = e \cap S\}$, denoted by $L_H(S)$. Let l be an edge of $L_H(S)$, we use $M(l)$ to denote the multiple number of l in $L_H(S)$.

For a set *P* and an integer *k*, we write $\binom{P}{k}$ for the family of *k*-element subsets of *P*. The 3-graph $F(p, q)$ is defined as follows.

Definition 2.3^{[[10\]](#page-8-7)}. Let p, q be two positive integers. Then $F(p,q)$ is the 3-graph with vertex set $P \cup Q$, where $P = [p]$ and $Q = [p + q] - [p]$, and edge set $\binom{P}{3} \cup \{xyz | x \in P, y, z \in Q\}$.

Now we give a transformation for *r*-graphs, which can be regarded as a generalization of 3-graph *F*(*p, q*).

Definition 2.4. *Given an* $(r-1)$ *-graph G and a set P. Let* $B(P, G)$ *be the r-graph with vertex set* $P \cup V(G)$ *and edge set* $\{e \cup \{x\} : e \in E(G), x \in P\}$ *.*

Definition 2.5. Let F be an *r*-graph and G be an $(r-1)$ -graph with $V(F) \cap V(G) = \emptyset$. For a *vertex set* $P \subset V(F)$ *, the r-graph* $F(P, G)$ *is constructed as follows:*

1. The vertex set of $F(P,G)$ is $V(F) \cup V(G)$.

2. The edge set of $F(P, G)$ is $E(F) \cup E(B(P, G))$, where the $B(P, G)$ is constructed as in *Definition [2.4](#page-1-1).*

Note that if $F = K_p^3$, $P = V(F)$ and $G = K_q^2$, then it's easy to see that $F(P, G) = F(p, q)$. So the *r*-graph $F(P, G)$ can be regarded as an generalization of the 3-graph $F(p, q)$.

For preparations before presenting our main results, we need the following lemmas.

Proposition 2.1. *Let F* and *H be r*-graphs. If $F \subseteq H$, then $\pi(F) \leq \pi(H)$.

 \Box

Lemma 2.2. Let r, n be positive integers. If $r \geq 2$ and n is sufficiently large, then

$$
n^{r-1} - (n-1)^{r-2} > (n-1)^{r-1}.
$$

Proof. By the Newton's Binomial Theorem, we obtain that

$$
n^{r-1} - (n-1)^{r-2} = (n-1+1)^{r-1} - (n-1)^{r-2}
$$

> $(n-1)^{r-1} + (n-1)^{r-2} - (n-1)^{r-2}$
\ge $(n-1)^{r-1}$.

Lemma 2.3. For any constant $c > 0$, $0 < \varepsilon < a < a + \varepsilon < 1$ and positive integer *r*, there exist n_0 and $c_0 = \binom{n_0}{r} - (a + \varepsilon) \binom{n_0}{r} - cn_0^{r-1}$, such that $f(n) = (a + \varepsilon) \binom{n}{r} + cn^{r-1} + c_0$ satisfies: *1.* $f(n_0) = \binom{n_0}{r}$.

2. For $n > n_0$, $f(n) < \binom{n}{r}$.

Proof. The first part of the lemma is obvious. Next we prove the second part.

For any positive number *x*, we let

$$
\binom{x}{r} = \frac{x(x-1)\cdots(x-r+1)}{r!}
$$

and

$$
g(x) = {x \choose r} - (a+\varepsilon){x \choose r} - cx^{r-1}.
$$

Then the derivative of $g(x)$ with respect to x is

g

$$
g'(x) = \frac{(1 - a - \varepsilon)}{(r - 1)!} x^{r - 1} + O(x^{r - 2}).
$$

It is easy to see that when *x* is large enough, we have $g'(x) > 0$. That is, there exists an x_0 such that $g'(x) > 0$ when $x > x_0$. It means $g(x)$ is an increasing function on interval $(x_0, +\infty)$. Set $n_0 > x_0$ and $c_0 = {n_0 \choose r} - (a + \varepsilon){n_0 \choose r} - cn_0^{\overline{r}-1}$. Then if $n > n_0$, we have $g(n) > g(n_0)$. Thus,

$$
\binom{n}{r} - f(n) = g(n) - c_0 > g(n_0) - c_0 = 0.
$$

It implies $f(n) < \binom{n}{r}$ when $n > n_0$.

Lemma 2.4. *Given positive integers* $p \leq k < n$ *. Let* A_1, A_2, \cdots, A_p *be the subsets of* [*n*]*. If* $|A_i|$ ≥ $(1 - \frac{1}{k})n$ *for any* $1 \leq i \leq p$ *, then* $|$ ∩ 1*≤i≤p* $A_i \geq (1 - \frac{p}{k})n$.

Proof. By induction on p . For $p = 2$, by the inclusion-exclusion principle we obtain that

$$
|A_1 \cap A_2| \ge |A_1| + |A_2| - n
$$

= $\left(1 - \frac{1}{k}\right)n + \left(1 - \frac{1}{k}\right)n - n = \left(1 - \frac{2}{k}\right)n.$

Suppose the lemma holds for $p-1$. Then

$$
\left| \bigcap_{1 \le i \le p} A_i \right| = \left| \left(\bigcap_{1 \le i \le p-1} A_i \right) \cap A_p \right| \ge \left| \bigcap_{1 \le i \le p-1} A_i \right| + |A_p| - n
$$

$$
\ge \left(1 - \frac{p-1}{k} \right) n + \left(1 - \frac{1}{k} \right) n - n = \left(1 - \frac{p}{k} \right) n,
$$

where the first inequality follows from the inclusion-exclusion principle and the second inequality follows from the induction hypothesis. This completes the proof.

On the Turán Density of Uniform Hypergraphs 641

3 Properties on Turán Density $F(P, G)$

Now we start to present our main theorem.

Theorem 3.1. *Given positive integers* $r \geq 3, p \geq 1$ *. Let G be an* $(r-1)$ *-graph and F be an r*-*graph.* Let $P \subseteq V(F)$, and $|P| = p$.

1. If $\pi(F) \geq \frac{p-1+\pi(G)}{p}$, *then* $\pi(F(P,G)) = \pi(F)$; 2. If $\pi(F) < \frac{p-1+\pi(G)}{p}$, then $\pi(F(P,G)) \leq \frac{p-1+\pi(G)}{p}$.

Proof. According to Proposition [2.1](#page-1-2), we have $\pi(F(P,G)) \geq \pi(F)$. Now we first prove that if $\pi(F) \geq \frac{p-1+\pi(G)}{n}$, then $\pi(F(P,G)) \leq \pi(F)$. *p*

Suppose that $\pi(F) \ge \frac{p-1+\pi(G)}{p}$. For any $0 < \varepsilon < 1-\pi(F)$, there exists $n_1 = n(\varepsilon)$ such that any positive integer $n \geq n_1$ satisfies

$$
ex_r(n,F) < (\pi(F) + \varepsilon) \binom{n}{r}.
$$

In additional, for any $p\varepsilon > 0$, there exists $n_2 = n(\varepsilon)$ such that any positive integer $n \geq n_2$ satisfies

$$
ex_{r-1}(n, G) < (\pi(G) + p\varepsilon) {n \choose r-1}.
$$

Let $|V(F)| = s$. By Lemma [2.3,](#page-2-0) we can find $n_0 > max\{n_1, n_2\} + s$ and $c_0 = \binom{n_0}{r} - (\pi(F) + \pi(F))$ $(\varepsilon)^{n_0}$ – $(s-1)n_0^{r-1}$ such that

$$
(\pi(F) + \varepsilon) \binom{n}{r} + (s-1)n^{r-1} + c_0 \le \binom{n}{r},
$$

where $n \ge n_0$. So we can assume that *H* is an *r*-graph with *n* vertices and $(\pi(F) + \varepsilon) {n \choose r} + (s 1) n^{r-1} + c_0$ edges.

Next we use induction on *n* to prove that *H* contains a copy of $F(P, G)$.

If $n = n_0$, then $|E(H)| = \binom{n_0}{r}$. It implies that *H* is a complete *r*-graph of order n_0 . So *H* contains a copy of $F(P, G)$.

Suppose the result holds for all *r*-graphs with $n-1$ vertices, where $n-1 \geq n_0$. Next we prove that the result holds for *r*-graph *H* with *n* vertices.

Since $n > n_0 > n_1$, we have $|E(H)| > ex_r(n, F)$. So $F \subseteq H$. Take a copy of *F* in *H* and let $P = \{v_1, v_2, \dots, v_p\} \subseteq V(F)$. For $1 \leq i \leq p$, let $L(v_i)$ denote the link of v_i in H and $L'(v_i) = L(v_i) - V(F).$

If for any v_i , we have

$$
|L'(v_i)| \ge \left(1 - \frac{1 - \pi(G) - p\varepsilon}{p}\right) \binom{n - s}{r - 1}.
$$

By Lemma [2.4,](#page-2-1) we deduce that

$$
\left|\bigcap_{1 \leq i \leq p} L'(v_i)\right| \geq \left(\pi(G) + p\varepsilon\right)\binom{n-s}{r-1}.
$$

Since $\bigcap L'(v_i)$ is an $(r-1)$ -graph with $n-s$ vertices and $n-s > n_0 - s > n_2$, we have 1*≤i≤p*

$$
G \subseteq \bigcap_{1 \leq i \leq p} L'(v_i).
$$

,

Thus, the subgraph of *H* induced by the vertex set $P \cup V(G)$ contains a copy of $F(P,G)$.

If there exists a $v_i \in P$ such that

$$
|L'(v_i)| < (1 - \frac{1 - \pi(G) - p\varepsilon}{p})\binom{n - s}{r - 1}
$$

Then we have

$$
d_H(v_i) \le \left(\frac{p-1+\pi(G)}{p} + \varepsilon\right) {n-s \choose r-1} + (s-1){n \choose r-2}
$$

$$
\le \left(\frac{p-1+\pi(G)}{p} + \varepsilon\right) {n-1 \choose r-1} + (s-1)n^{r-2}.
$$

Let $H' = H - v_i$. Then we have

$$
|E(H')| = |E(H)| - d_H(v_i)
$$

\n
$$
\geq (\pi(F) + \varepsilon) {n \choose r} + (s - 1)n^{r-1} + c_0 - \left(\frac{p-1 + \pi(G)}{p} + \varepsilon\right) {n-1 \choose r-1} - (s - 1)n^{r-2}
$$

\n
$$
\geq (\pi(F) + \varepsilon) {n-1 \choose r} + (s - 1)(n - 1)^{r-1} + c_0.
$$

The last inequality follows from Lemma [2.2](#page-2-2) and the assumption $\pi(F) \geq \frac{p-1+\pi(G)}{p}$. By induction hypothesis, we deduced that $F(P, G) \subseteq H' \subseteq H$. Therefore, for any $n \geq n_0$, we have

$$
ex_r(n, F(P, G)) < (\pi(F) + \varepsilon) {n \choose r} + (s - 1)n^{r-1} + c_0.
$$

It means for any $0 < \varepsilon < 1 - \pi(F)$, we have $\pi(F(P, G)) \leq \pi(F) + \varepsilon$. Thus we can obtain conclusion 1 by combining $\pi(F(P, G)) \geq \pi(F)$.

As for conclusion 2, one can proceed to prove it in a similar way. That is, we can use induction to get an *r*-graph *H* of order *n* with $\left(\frac{p-1+\pi(G)}{p}+\varepsilon\right)\binom{n}{r}+(s-1)n^{r-1}+c_0$ edges which contains a copy of $F(P, G)$. It immediately follows that

$$
\pi(F(P,G)) \le \frac{p-1+\pi(G)}{p}.
$$

The proof is completed. \Box

Theorem [3.1](#page-3-1) implies that as long as the condition $\pi(F) \geq \frac{p-1+\pi(G)}{p}$ holds, one can always use the construction method in Definition [2.5](#page-1-3) repeatedly to get a new *r*-graph which keeps invariant Turán density. Furthermore, if $F \subseteq F' \subseteq F(P, G)$, then $\pi(F') = \pi(F)$.

We here remark that the conditions in Theorem [3.1](#page-3-1) is sufficient but not necessary. Let us illustrate it with an example to be presented in the following Theorem [3.3.](#page-5-0) We denote by Fano the Fano plane with vertex set $\{x, y, z, x', y', z', a\}$ and edge set $\{xyz', xy'z, x'yz, axx'\}$ $\frac{dy}{y'}$, $\frac{az'}{x'}$, $\frac{x'}{y'}$. The *F ano'* is a 3-graph obtained from *F ano* by adding three new vertices 1,2,3 and eleven new edges 12*x,* 12*y,* 12*z,* 12*a,* 13*x,* 13*y,* 13*z,* 13*a,* 23*x,* 23*y,* 23*z*.

Next we prove the Turán densities of *Fano'* and *Fano* are equal. To prove it, we first give a lemma. A multigraph is a graph allowing for multi-edges.

Lemma 3.2. *Let t be a positive integer. Let G be a multigraph on n vertices such that every 3* vertices span at most $3t + 1$ edges. Then *G* has at most $t\binom{n}{2} + (t+1)n$ edges.

Proof. We use induction on *n*. The cases for $n = 2$, 3 are obvious. If *G* has no edge of multiple number at least $t + 1$, then $|E(G)| \le t{n \choose 2}$. Thus, we may assume the multiple numbers of *xy* is at least $t + 1$. It leads to that for every vertex $v \in V(G) \setminus \{x, y\}$, there are at most 2t edges connecting to $\{x, y\}$. Let $G' = G - \{x, y\}$. Then

$$
|E(G)| \le |E(G')| + 2t(n-2) + 3t + 1
$$

\n
$$
\le t{n-2 \choose 2} + (t+1)(n-2) + 2t(n-2) + 3t + 1
$$

\n
$$
\le t{n \choose 2} + (t+1)n,
$$

where the second inequality is according to the induction hypothesis. \Box

We remark that Lemma [3.2](#page-4-0) is a special case in $[6]$ $[6]$ $[6]$, here we only give a simple proof for this special case.

Theorem 3.3. $\pi(Fano') = \frac{3}{4}$.

Proof. For any constant $0 < \varepsilon < \frac{1}{4}$, $c_0 > 0$, let *H* be a 3-graph of order *n* with $(\frac{3}{4} + \varepsilon)(\frac{n}{3})$ + $7n^2 + c_0$ edges.

The Turán density of *F ano* is $\frac{3}{4}$ which is given by de Cean and Furedi^{[\[2](#page-8-4)]}. Thus one can make sure that there exists n_1 , such that $Fano \subseteq H$ when $n > n_1$.

By Lemma [2.3,](#page-2-0) we can find $n_0 > n_1$ and $c_0 = (\frac{1}{4} - \varepsilon)(\frac{n_0}{3}) - 7n_0^2$ such that $(\frac{3}{4} + \varepsilon)(\frac{n_0}{3}) +$ $7n^2 + c_0 \leq {n \choose 3}$, where $n \geq n_0$. So the 3-graph *H* which has *n* vertices and $(\frac{3}{4} + \varepsilon)(\frac{n}{3}) + 7n^2 + c_0$ edges is reasonable.

We use induction on *n* to prove $Fano' \subseteq H$. If $n = n_0$, then *H* is a complete 3-graph. It implies $Fano' \subseteq H$. Suppose the result holds for all 3-graphs *H* with the number of vertices lying in the interval (n_0, n) . Now what we need to prove is that the result holds for 3-graph *H* of order *n*.

Take a copy of *Fano* in *H* whose vertices are labelled as mentioned above. Let $L({x, y, z, a})$ be the link of $\{x, y, z, a\}$ in *H*. Let $L'(\{x, y, z, a\}) = L(\{x, y, z, a\}) - V(Fano)$.

If there exist three vertices in $L'(\lbrace x, y, z, a \rbrace)$ span eleven edges, then the subgraph induced by these three vertices and $V(Fano)$ contains a copy of $Fano'$, it implies $Fano' \subseteq H$.

Hence, every three vertices in $L'(\lbrace x, y, z, a \rbrace)$ span at most ten edges. By Lemma [3.2,](#page-4-0) we deduce that $L'(\lbrace x, y, z, a \rbrace)$ has at most $3{n-7 \choose 2} + 4(n-7)$ edges. Thus there is a vertex, say $v \in \{x, y, z, a\}$, such that

$$
d_H(v) \le \frac{3}{4} {n-7 \choose 2} + (n-7) + 6(n-7) + 15 < \frac{3}{4} {n-1 \choose 2} + 7n.
$$

Let $H' = H - v$, we have

$$
|E(H')| = |E(H)| - d_H(v)
$$

> $\left(\frac{3}{4} + \varepsilon\right) {n \choose 3} + 7n^2 + c_0 - \frac{3}{4} {n-1 \choose 2} - 7n$
> ${3 \choose 4} + \varepsilon {n-1 \choose 3} + 7(n-1)^2 + c_0.$

Thus, by the induction hypothesis, we have $Fano' \subseteq H' \subseteq H$. It means for any $\varepsilon > 0$, we have

$$
\pi(Fano') \le \lim_{n \to \infty} \frac{\left(\frac{3}{4} + \varepsilon\right)\left(\frac{n}{3}\right) + 7n^2 + c_0}{\binom{n}{3}} = \frac{3}{4} + \varepsilon.
$$

On the other hand, by Proposition [2.1,](#page-1-2) we have $\pi(Fano') \geq \pi(Fano) = \frac{3}{4}$. It follows that $\pi(Fano') = \frac{3}{4}$. This completes the proof.

4 More on Turán Density of $F(p,q)$ for Small p,q

The Erdős-Stone-Simonovits Theorem [[3,](#page-8-1) [5](#page-8-2)] tells us that $\pi(K_q^2) = 1 - \frac{1}{q-1}$ and Sidorenko [\[12](#page-8-10)] prove that $\pi(K_p^3) \ge 1 - \frac{4}{(p-1)^2}$. As if $F = K_p^3$, $P = V(F)$ and $G = K_q^2$, then $F(P, G) = F(p, q)$. So apply Theorem [3.1](#page-3-1), we have

Corollary 4.1. Given integers $p \ge 3$ and $q \ge 2$. If $q \le \lfloor \frac{p+2}{4} \rfloor$, then $\pi(F(p,q)) = \pi(K_p^3)$. *Proof.* By Theorem [3.1,](#page-3-1) we have $\pi(F(p,q)) = \pi(K_p^3)$ when

$$
\pi(K_p^3) \ge \frac{p-1 + \pi(K_q^2)}{p}.
$$

Since $\pi(K_q^2) = 1 - \frac{1}{q-1}$ and $\pi(K_p^3) \ge 1 - \frac{4}{(p-1)^2}$, we still have $\pi(F(p,q)) = \pi(K_p^3)$ if

$$
1 - \frac{4}{(p-1)^2} \ge \frac{p-1 + (1 - \frac{1}{q-1})}{p}.
$$

It's equivalent to

$$
q\leq \frac{p}{4}+\frac{1}{2}+\frac{1}{4p}.
$$

Since *q* is an integer and $p \geq 3$, we deduce that $q \leq \lfloor \frac{p+2}{4} \rfloor$.

Consequently, by Corollary [4.1](#page-6-1), we have $\pi(F(p,3)) = \pi(K_p^3)$ for $p \ge 10$. So a natural question is that what's the relationship between $\pi(F(p,3))$ and $\pi(K_p^3)$ for $3 \leq p \leq 9$? It is proved by Mubayi and Rödl [\[10](#page-8-7)] that $\pi(F(3,3)) = \frac{3}{4}$. So we have $0 = \pi(K_3^3) < \pi(F(3,3)) = \frac{3}{4}$. For $p = 4$, we can present the following bounds for $\pi(F(4, 3))$.

Theorem 4.2. $\frac{3}{4} \leq \pi(F(4,3)) \leq \frac{4}{5}$.

Proof. By Proposition [2.1,](#page-1-2) we have $\pi(F(4,3)) \ge \pi(F(3,3)) = \frac{3}{4}$, which settles the case of the lower bound.

As for the case of the upper bound, we prove it by showing that a 3-graph of order *n* with $\frac{4}{5}$ $\binom{n}{3}$ + 5*n*² + *c*₀ edges contains a copy of *F*(4,3), where *c*₀ is constant. Suppose that *H* is the 3-graph of order *n* with $\frac{4}{5} {n \choose 3} + 5n^2 + c_0$ edges.

It has been proven by Baber [\[1](#page-8-11)] that $\pi(K_5^3) \leq 0.76954$. Thus, there exists n_1 such that $K_5^3 \subseteq H$ for $n > n_1$.

By Lemma [2.3](#page-2-0), we can find $n_0 > n_1$ and we set $c_0 = \frac{1}{5} {n_0 \choose 3} - 5n_0^2$, such that $\frac{4}{5} {n_0 \choose 3} + 5n^2 + c_0 \le$ $\binom{n}{3}$, where $n \ge n_0$. So a 3-graph *H* which has *n* vertices and $\frac{4}{5}\binom{n}{3} + 5n^2 + c_0$ edges is reasonable.

We use induction on *n* to prove $F(4,3) \subseteq H$. If $n = n_0$, then *H* is a complete 3-graph. It implies $F(4,3) ⊆ H$. Suppose the result holds for all 3-graphs *H* with the number of vertices lying in the interval (n_0, n) . What we need to prove is that the result holds for 3-graph *H* of order *n*.

Take a copy of K_5^3 in *H*. Let $L(V(K_5^3))$ be the link of $V(K_5^3)$ in *H*.

If there exist three vertices in $L(V(K_5^3))$ span fourteen edges, then one can check that the subgraph induced by these three vertices and $V(K_5^3)$ contains a copy of $F(4,3)$, it implies $F(4,3) \subseteq H$.

If every three vertices in $L(V(K_5^3))$ span at most thirteen edges. By Lemma [3.2,](#page-4-0) we deduce that $L(V(K_5^3))$ has at most $4\binom{n-5}{2} + 5(n-5)$ edges. Thus there is a vertex, say $v \in V(K_5^3)$, such that

$$
d_H(v) \le \frac{4}{5} {n-5 \choose 2} + (n-5) + 4(n-5) + 6 < \frac{4}{5} {n-1 \choose 2} + 5n.
$$

 \Box

Let $H' = H - v$, we have

$$
|E(H')| = |E(H)| - d_H(v)
$$

> $\frac{4}{5} {n \choose 3} + 5n^2 + c_0 - \frac{4}{5} {n-1 \choose 2} - 5n$
> $\frac{4}{5} {n-1 \choose 3} + 5(n-1)^2 + c_0.$

Thus, by the induction hypothesis, we have $F(4,3) \subseteq H' \subseteq H$. So we have

$$
ex_3(n, F(4,3)) < \frac{4}{5}\binom{n}{3} + 5n^2 + c_0.
$$

It means

$$
\pi(F(4,3)) \le \lim_{n \to \infty} \frac{\frac{4}{5} {n \choose 3} + 5n^2 + c_0}{ {n \choose 3}} = \frac{4}{5}.
$$

This completes the proof of the theorem.

It has been proven by Razborov [[11\]](#page-8-12) that $\pi(K_4^3) \leq 0.5616$. So when $p = 4$, we have $\pi(K_4^3) \leq 0.561 < \frac{3}{4} \leq \pi(F(4,3))$. Here we propose the following problem.

Problem 4.3. *Does* $\pi(F(4,3)) = \frac{3}{4}$?

In the case for $p = 5$, we also give the following bounds on $\pi(F(5,3))$.

Theorem 4.4. $0.8176 \leq \pi(F(5,3)) \leq 0.9$ *.*

Proof. For the lower bound, we construct an $F(5,3)$ -free 3-graph $H(n, a, b)$, where *n* is the number of vertices of *H* and $0 < a < 1, 0 < b < 1$.

The vertex set of $H(n, a, b)$ is partitioned into two vertex sets A and B, where $|A| = an$, and meanwhile *A* is divided into two sets A_1 and A_2 with $|A_1| = abn$ and $|A_2| = a(1 - b)n$, respectively. The edges of $H(n, a, b)$ are

- all *uvw*, where $\{u, v, w\} \cap A \neq \emptyset$ and $\{u, v, w\} \cap B \neq \emptyset$;
- and all *xyz*, where $|\{x, y, z\} \cap A_1| = 1$ and $|\{x, y, z\} \cap A_2| = 2$.

We assert that $H(n, a, b)$ is $F(5, 3)$ -free. Otherwise, suppose $H(n, a, b)$ contains an $F(5, 3)$. Then there is a $K_5^3 \subseteq H(n, a, b)$. It yields $|V(K_5^3) \cap A_1| = 1, |V(K_5^3) \cap A_2| = 2$ and $|V(K_5^3) \cap B| =$ 2. But now we can not find the other 3 vertices in $H(n, a, b)$ to make up an $F(5, 3)$. So $H(n, a, b)$ is $F(5,3)$ -free.

By counting the edge number of $H(n, a, b)$, we have

$$
|E(H(n, a, b))| = (1 - a)n\binom{an}{2} + an\binom{(1 - a)n}{2} + |abn|\binom{(1 - b)an}{2}.
$$

Set $a = \frac{9-3\sqrt{5}}{4}$ and $b = \frac{1}{3}$, we obtain

$$
|E(H(n, a, b))| \ge (0.8176 + o(1))\binom{n}{3}.
$$

Thus, we deduce that $\pi(F(5,3)) \geq 0.8176$.

As for the upper bound, by the conclusion 2 of Theorem [3.1,](#page-3-1) we obtain that

$$
\pi(F(5,3)) \le \frac{5-1 + \pi(K_3^2)}{5} = 0.9.
$$

This completes the proof. \Box

So for $p = 5$, we have $\pi(K_5^3) \leq 0.76954 < 0.8176 \leq \pi(F(5,3))$, where $\pi(K_5^3) \leq 0.76954$ is given by Baber^{[\[1](#page-8-11)]}.

For $6 \le p \le 9$, there is no result about the relationship between $\pi(F(p,3))$ and $\pi(K_p^3)$ so far. Here we also propose the following problem.

Problem 4.5. *If* $6 \le p \le 9$ *, then* $\pi(F(p,3)) = \pi(K_p^3)$?

Acknowledgments. We are grateful to the reviewers and the editors for improving our work.

Conflict of Interest

The authors declare no conflict of interest.

References

- [1] Baber, R. Some results in extremal combinatorics. PhD Thesis, University College, London, 2011
- [2] De Caen, D., Füredi, Z. The maximum size of 3-uniform hypergraphs not containing a Fano plane. *J. Combin. Theory Ser. B*, 78: 274–276 (2000)
- [3] Erd˝os, P., Simonovits, M. A limit theorem in graph theory. *Studia Sci. Math. Hung. Acad.*, 1: 51–57 (1966)
- [4] Erd˝os, P., Simonovits, M. Supersaturated graphs and hypergraphs. *Combinatorica*, 3: 181–192 (1983)
- [5] Erd˝os, P., Stone, A.H. On the structure of linear graphs. *Bull. Am. Math. Soc.*, 52: 1087–1091 (1946)
- [6] Füredi, Z., Kündgen, A. Turán problems for integer-weighted graphs. *J. Graph Theory*, 40: 195–225 (2002)
- [7] Füredi, Z., Pikhurko, O., Simonovits, M. On triple systems with independent neighborhoods. *Combin. Probab. Comput.*, 14: 795–813 (2003)
- [8] Keevash, P. Hypergraph Tur´an Problems. *Surveys in Combinatorics*, 451–456 (2011)
- [9] Mubayi, D. A hypergraph extension of Tur´an's theorem. *J. Combin. Theory, Ser. B*, 96: 122–134 (2006)
- [10] Mubayi, D., R¨odl, V. On the Tur´an number of triple systems. *J. Combin. Theory Ser. A*, 100: 136–152 (2002)
- [11] Razborov, A. On 3-Hypergraphs with Forbidden 4-Vertex Configurations. *Siam Journal on Discrete Mathematics*, 24: 946–963 (2010)
- [12] Sidorenko, A. Systems of sets that have the T-property. *Moscow University Mathematics Bulletin*, 36: 22–26 (1981)
- [13] Sós, V. Remarks on the connection of graph theory, finite geometry and block designs. Teorie Combina*torie*, Tomo II, Accad. Naz. Lincei, Rome, 223–233 (1976)