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Abstract We consider the following quasilinear Schrödinger equation involving p-Laplacian

−∆pu+ V (x)|u|p−2u−∆p(|u|2η)|u|2η−2u = λ
|u|q−2u

|x|µ
+

|u|2ηp∗(ν)−2u

|x|ν
in RN ,

where N > p > 1, η ≥ p
2(p−1)

, p < q < 2ηp∗(µ), p∗(s) =
p(N−s)
N−p

, and λ, µ, ν are parameters with λ > 0,

µ, ν ∈ [0, p). Via the Mountain Pass Theorem and the Concentration Compactness Principle, we establish the

existence of nontrivial ground state solutions for the above problem.

Keywords quasilinear Schrödinger equation; critical Hardy-Sobolev exponent; ground state solutions; singu-

larities

2000 MR Subject Classification 35J62; 35J60; 35J20

1 Introduction

We are concerned with the problem of existence of the ground state solutions satisfying the
quasilinear Schrödinger equation with p-Laplacian,

−∆pu+ V (x)|u|p−2u−∆p(|u|2η)|u|2η−2u = λ
|u|q−2u

|x|µ
+

|u|2ηp∗(ν)−2u

|x|ν
in RN , (1.1)

where N > p > 1, η ≥ p
2(p−1) , p < q < 2ηp∗(µ), p∗(s) = p(N−s)

N−p , and λ, µ, ν are parameters

with λ > 0, µ, ν ∈ [0, p). The p-Laplacian operator is written as ∆pu := ∇ ·
(
|∇u|p−2∇u

)
, with

|∇u|p−2 =
[(

∂u
∂x1

)2
+ · · ·+

(
∂u
∂xn

)2] p−2
2 . Furthermore, we always need the following assumptions

on the potential V (x):

(V ) V ∈ C(RN ,R) satisfies inf V (x) = V0 > 0, and for each M > 0, meas{x ∈ RN : V (x) ≤
M} < +∞, where V0 is a constant and meas denotes the Lebesgue measure in RN .

We also recall that the nontrivial solutions with the least energy to (1.1) are called the ground
state solutions of (1.1).

Our motivation of investigating (1.1) comes from the quasilinear Schrödinger equations
involving Laplacian:

i∂tϕ = −∆ϕ+W (x)ϕ− f̃(|ϕ|2)ϕ− κ∆h(|ϕ|2)h′(|ϕ|2)ϕ, (1.2)
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where ϕ : R×RN → C,W : RN → R is a given potential, κ is a real constant and f, h : R+ → R
are suitable functions. Such equations arise in various branches of mathematical physics. The
case h(s) = s was used for the time evolution of the condensate wave function of super-fluid film
equation in plasma physics [14, 16]. When h(s) = (1 + s)1/2, (1.2) models the self-channeling of
a high-power ultra short laser in matter, see [4, 8, 11, 22]. Meanwhile, (1.2) was also used in the
theory of Heisenberg ferromagnets and magnons [13] and in condensed matter theory [20]. For
further physical backgrounds and applications, we refer readers to [3, 6, 17, 21] and references
therein.

Let us consider the case h(s) = s and κ > 0 in (1.2). Once we substitute ϕ(t, x) =
exp (−iβt)u(x) into (1.2) with β ∈ R, we can obtain an equation of elliptic type which has the
following formal structure

−∆u+ V (x)u− κ(∆|u|2)u = f(u) in RN , (1.3)

where V (x) = W (x) − β is the potential function and f(u) = f̃(|u|2)u is the nonlinearity.
According to this substitution of ϕ(t, x), u is a solution of (1.3) if and only if ϕ is a standing
wave solution to (1.2).

Recently, there are many fruitful mathematical studies focusing on the existence of solutions
for (1.3) which is accompanied with different kinds of nonlinearities. In [21], Poppenberg et al.
studied (1.3) with f(u) = λ|u|q−2u and κ = 1, i.e.,

−∆u+ V (x)u− (∆|u|2)u = λ|u|q−2u. (1.4)

In particular, V (x) is a bounded potential and q > 2, λ > 0. They established the existence of
positive ground state solutions in one dimensional case via the constrained variational method.
By a change of variables in [18], Liu et al. transferred (1.4) to a semilinear equation and proved
the existence of positive solution with different settings on the potential V (x) in the Orlicz
space when 4 < q < 22∗ and λ > 0, where 2∗ = 2N

N−2 is the critical Sobolev exponent. do Ó et
al. in [12] considered the critical exponent case:

−∆u+ V (x)u− (∆|u|2)u = |u|22
∗−2u+ |u|q−2u, (1.5)

where 4 < q < 22∗, N ≥ 3. Applying a change of variables and the Mountain Pass Theorem,
they obtained the existence results for positive solutions with different classes of nonlinearities.
Liu et al. [15] extended the method in [12] and studied the general Schrödinger equations with
critical growth:

−
N∑

i,j=1

Dj(aij(u)Diu) +
1

2

N∑
i,j=1

Dsaij(u)DiuDju+ V (x)u = |u|22
∗−2u+ |u|q−2u, (1.6)

where 4 < q < 22∗, N ≥ 3. It is observed that (1.6) can be reduced into (1.5) with aij(u) =
(1+2u2)δij . The existence of positive solutions with bounded potential was established through
the Nehari method. In a recent article [28], through some classical variation techniques, the
authors improved the results of [12] with unbounded potential V (x), and they relaxed the
restriction on q. Moreover, in [25] we obtained the existence results with the nonlinearity f(u)
including some singularities, which extended the results of [28].

We now describe our approach of proving the main result. Recall that the nontrivial solu-
tions of (1.1) correspond to the nontrivial critical points of the following energy functional

I(u) =
1

p

∫
RN

(
1 + (2η)p−1|u|p(2η−1)

)
|∇u|pdx+

1

p

∫
RN

V (x)|u|pdx

−λ
q

∫
RN

|u|q

|x|µ
dx− 1

2ηp∗(ν)

∫
RN

|u|2ηp∗(ν)

|x|ν
dx.

(1.7)
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From a variational viewpoint, the major difficulties stem from two aspects: one is that the
energy functional (1.7) is not well defined in its domain X = {u ∈ W 1,p(RN ) : u2η ∈
W 1,p(RN ), |V |

1
pu ∈ Lp(RN )}; the other is the absence of the compactness of the embedding

X ↩→ L2ηp∗(ν)(RN , |x|−ν) for each fixed ν, with the critical-like exponent 2ηp∗(ν). Therefore,
our approach takes a different route. Namely, inspired by the work [9, 18] and [24], we first use
a change of variable v = f−1(u) to reformulate the quasilinear problem (1.1) to a semilinear
problem. We find that the corresponding functional (defined in (2.1)) is well-defined in a suit-
able subspace E (which we will define later) of the Sobolev spaceW 1,p and satisfy the geometric
structure of the Mountain Pass Theorem (see [1]). And it is equivalent to find the critical point
of the functional (2.1) instead of searching the critical points of energy functional (1.7). With
application of a version of the Mountain Pass Theorem (see Theorem 3.1, also see [23, 27])
without compactness condition, we obtain the existence of a Cerami sequence associated with
the minimax level c. Eventually, we get the existency of nontrivial critical point of (2.1) by
taking advantage of the Cerami sequence and some technical results from Lions (see [10, 27]).
In other words, it gives the existence of nontrivial solution to (1.1). Furthermore, we can also
show that the value of the functional (1.7) evaluated at this critical point is less than or equal
to the mountain pass minimax level which is attained. Now we may state our main result.

Theorem 1.1. Let N > p > 1, η ≥ p
2(p−1) . Suppose that the assumption (V) is satisfied. For

every fixed µ, ν ∈ [0, p), we have the following statements.
(I) If 2ηp∗(µ)− p

p−1 < q < 2ηp∗(µ), the problem (1.1) possesses a ground state solution for
any λ > 0.

(II) If p < q ≤ 2ηp∗(µ)− p
p−1 , there exists a positive constant λ∗, the problem (1.1) possesses

a ground state solution for λ > λ∗.

The outline of the paper is as follows. We give some preliminaries and a reformulation of
the problem (1.1) in Section 2. Section 3 is devoted to the existence result via the verification
of the Mountain Pass geometric structure. In Section 4 we prove Theorem 1.1.

Notation. In this paper, we will use the following notations frequently:

• C denotes the universal positive constant unless specified.

• C∞ denotes the space of the functions which are infinitely differentiable on RN .

• C∞
0 (RN ) denotes the space of the functions which are infinitely differentiable and com-

pactly supported in RN .

• Ls(RN , |x|−σ), 1 < s <∞, 0 ≤ σ < p, denotes the Lebesgue space with the norms

|u|ss =
∫
RN

|u|s

|x|σ
dx.

• D1,p(RN ) is the closure of C∞
0 (RN ) with respect to the norm ∥u∥pD =

∫
RN |∇u|pdx, where

D denotes the closure of C∞
0 .

• W 1,p(RN ) denotes the usual Sobolev spaces modeled in Lp(RN ) with the inner product

⟨u, v⟩W =

∫
RN

(
|∇u|p−2∇u∇v + |u|p−2uv

)
dx,

and the norm ∥u∥pW = ⟨u, u⟩W .
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2 Reformulation of the Problem and Preliminaries

In this section, as we mentioned before, we will use a change of variable to transfer the problem
(1.1) to a semilinear problem at first. This guarantees that we can find an appropriate function
space as our working station. Then we give some property on this function space.

Firstly, we define a new function space E as below

E =
{
u ∈W 1,p(RN ) :

∫
RN

V (x)|u|pdx <∞
}

endowed with the inner product

⟨u, v⟩ =
∫
RN

(
|∇u|p−2∇u∇v + V (x)|u|p−2uv

)
dx,

and the associated norm ∥u∥p = ⟨u, u⟩. By the assumption (V ), it is easy to see that both
W 1,p(RN ) and E are Banach spaces, and we have the continuous imbedding E ↩→ W 1,p(RN ).
Moreover, analogous to [7] (or [29]) and [25], we can obtain the continuity and compactness for
the embedding from E to Ls(RN , |x|−σ) with ease in the following lemma.

Lemma 2.1. Let 0 ≤ σ < p. The embedding E ↩→ Ls(RN , |x|−σ) is continuous for p ≤ s ≤
p∗(σ) and compact for p ≤ s < p∗(σ) provided V (x) satisfies the assumption (V).

Motivated by [9] and [18], we define a C∞ function f as below:

f(−t) = −f(t) on (−∞, 0], f ′(t) =
1(

1 + (2η)p−1|f(t)|p(2η−1)
)1/p on [0,+∞).

After a change of variable v = f−1(u), we can transfer the functional I(u) into the following

J(v) =
1

p

∫
RN

[
|∇v|p + V (x)|f(v)|p

]
dx− λ

q

∫
RN

|f(v)|q

|x|µ
dx

− 1

2ηp∗(ν)

∫
RN

|f(v)|2ηp∗(ν)

|x|ν
dx,

(2.1)

which is well defined on E. Via a standard argument, it is readily to see that J ∈ C1(E,R) and

⟨J ′(v), φ⟩ =

∫
RN

[
|∇v|p−2∇v∇φ+ V (x)|f(v)|p−2f(v)f ′(v)φ

−λ |f(v)|
q−2

|x|µ
f(v)f ′(v)φ− |f(v)|2ηp∗(ν)−2

|x|ν
f(v)f ′(v)φ

]
dx,

(2.2)

for all v, φ ∈ E. According to this reformulation, we observe that if v is a critical point of the
functional J , the function u = f(v) is then a solution to problem (1.1).

Finally, we conclude this section recording some properties of f which will be required in
the subsequent of the paper.

Proposition 2.2. The function f(t) enjoys the following properties:
(f1) f is a uniquely defined, invertible C∞-function;
(f2) 0 < f ′(t) ≤ 1 for all t ∈ R;
(f3) |f(t)| ≤ |t| for all t ∈ R;
(f4) |f(t)| ≤ (2η)

1
2ηp |t|

1
2η for all t ∈ R;

(f5) There exists a positive constant C such that

|f(t)| ≥

{
C|t|, |t| ≤ 1,

C|t|
1
2η , |t| ≥ 1;
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(f6)
1
2ηf(t) ≤ f ′(t)t ≤ f(t) for all t ≥ 0;

(f7) |f(t)|2η−1|f ′(t)| ≤ (2η)
1−p
p for all t ∈ R.

The proof of properties (f1)−(f6) is similar to that in [24] and [26]. We can show that
property (f7) is also true through the property (f6) and a direct calculation. We leave the
proof for the interested readers.

3 Mountain Pass Geometric Structure

In this section, we will first state a version of the Mountain Pass Theorem (see Theorem 3.1)
which gives the framework of our proof to the main result. It is clear that the proof involves
a combination of various ingredients. We start with the verification of the geometric structure
of the Mountain Pass Theorem, and present some properties to the Cerami sequences of the
associated functional, that is, the boundedness of the Cerami sequences.

3.1 A version of the Mountain Pass Theorem

Let D be a real Banach space and I : D → R a functional of class C1. For a given b ∈ R, we
define Ib = {u ∈ D : I(u) ≤ b}. As we mentioned in the introduction, the functional I(u) in
(1.7) does not satisfy a compactness condition of Palais-Smale type. Therefore, we may apply
a version of Mountain Pass Theorem (see [23]). Recall that {vn} ⊂ D is a Cerami sequence of
I, denoted by (C)c-sequence, if I(vn) → c and (1 + ∥vn∥)I ′(vn) → 0 as n→ ∞, for any c ∈ R.
Now we recall the modified Mountain Pass Theorem in [23] for convenience.

Theorem 3.1. Let D be a real Banach space and I ∈ C1(D,R). Let S be a closed subset of
D which disconnects (archwise) D in distinct connected components D1 and D2. Moreover,
assume that I(0) = 0 and

(M1) 0 ∈ D1 and there exists α > 0 such that I
∣∣
S
≥ α > 0,

(M2) there is e ∈ D2 such that I(e) ≤ 0.
Then I possesses a (C)c-sequence with c ≥ α > 0 provided

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ =
{
γ ∈ C([0, 1], D)

∣∣γ(0) = 0, γ(1) ∈ I0
∩
D2

}
.

3.2 Verification of Mountain Pass Geometry

Define

S(ρ) =
{
v ∈ E :

∫
RN

[
|∇v|p + V (x)|f(v)|p

]
dx = ρp

}
.

The lemma below will show that the functional J(v) in (2.1) exhibits the Mountain Pass
geometric structure.

Lemma 3.2. Let µ, ν ∈ [0, p) be fixed. Suppose that (V ) and (f1) − (f7) are satisfied. Then
the functional J in (2.1) satisfies J(0) = 0, and conditions (M1) and (M2) of Theorem 3.1.

Proof. Firstly, we note that J(0) = 0. For any ρ ∈ R and the definition of S(ρ) given above, it
is clear that S(ρ) is a closed subset which disconnects the space E. From (f7), we have∫

RN

|∇(f2η(v))|pdx =(2η)p
∫
RN

|f(v)|p(2η−1)|f ′(v)|p|∇v|pdx
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≤2η

∫
RN

|∇v|pdx

≤2η

∫
RN

[
|∇v|p + V (x)|f(v)|p

]
dx. (3.1)

For any v ∈ S(ρ), by the Sobolev-Hardy inequality and (3.1), it then follows that∫
RN

|f(v)|2ηp∗(µ)

|x|µ
dx ≤ C

[ ∫
RN

∣∣∇(f2η(v))
∣∣pdx] p∗(µ)

p

≤ C
[ ∫

RN

(
|∇v|p + V (x)|f(v)|p

)
dx

] p∗(µ)
p

≤ Cρp
∗(µ) . (3.2)

Similarly, we also have ∫
RN

|f(v)|2ηp∗(ν)

|x|ν
dx ≤ Cρp

∗(ν). (3.3)

Furthermore, for any fixed µ ∈ [0, p) and ε > 0, there exists a constant C(ε) > 0 such that

|t|q

|x|µ
≤ ε

|t|p

|x|µ
+ C(ε)

|t|2ηp∗(µ)

|x|µ
,

with p < q < 2ηp∗(µ). Together with the inequality above, it follows from (f3), (3.2) and the
Sobolev-Hardy inequality that∫

RN

|f(v)|q

|x|µ
dx ≤ε

∫
RN

|f(v)|p

|x|µ
dx+ C(ε)

∫
RN

|f(v)|2ηp∗(µ)

|x|µ
dx

≤Cε
∫
RN

|∇v|pdx+ C · C(ε)ρp
∗(µ)

≤Cερp + C · C(ε)ρp
∗(µ). (3.4)

Thus, it follows from (3.2)–(3.4) that for sufficiently small enough ε > 0, we have

J(v) =
1

p

∫
RN

[
|∇v|p + V (x)|f(v)|p

]
dx− λ

q

∫
RN

|f(v)|q

|x|µ
dx− 1

2ηp∗(ν)

∫
RN

|f(v)|2ηp∗(ν)

|x|ν
dx

≥
[1
p
− λ

q
Cε

]
ρp − λ

q
C · C(ε)ρp

∗(µ) − 1

2ηp∗(ν)
Cρp

∗(ν)

≥ 1

2p
ρp − C · C(ε)ρp

∗(µ) − Cρp
∗(ν).

Taking a suitable positive ρ0 with
1
2pρ

p
0−C ·C(ε)ρp

∗(µ)
0 −C ·ρp

∗(ν)
0 > 0, we denote this expression

by α and it is clear that α > 0 by the choice of ρ0 and ε. We then conclude that J(v) ≥ α > 0
for all v ∈ S(ρ0). This shows that the condition (M1) is satisfied.

For the verification of condition (M2), it suffices to show that J(tψ) tends to −∞ as t goes
to +∞ for a given ψ ∈ E ∩L2ηp∗(ν)(RN ) with 0 < ψ ≤ 1. Indeed, from (f6) of Proposition 2.2,

it implies that f(t)
t is decreasing for t > 0. This in turn yields that

f(tψ(x))

tψ(x)
≥ f(t)

t
for t ≥ tψ(x) > 0,
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i.e.

f(tψ(x)) ≥ f(t)ψ(x). (3.5)

Therefore, from (f3) and (f5) of Proposition 2.2 and (3.5), we obtain for t ≥ 1,

J(tψ) ≤ 1

p

∫
RN

[
|∇(tψ)|p + V (x)|f(tψ)|p

]
dx− 1

2ηp∗(ν)

∫
RN

|f(tψ)|2ηp∗(ν)

|x|ν
dx

≤ tp

p

∫
RN

[
|∇ψ|p + V (x)|ψ|p

]
dx− 1

2ηp∗(ν)

∫
RN

|f(t)ψ|2ηp∗(ν)

|x|ν
dx

≤ tp

p

∫
RN

[
|∇ψ|p + V (x)|ψ|p

]
dx− Ctp

∗(ν)

∫
RN

|ψ|2ηp∗(ν)

|x|ν
dx

→ −∞, as t→ +∞,

since p∗(ν) > p for ν ∈ [0, p). We thus verify condition (M2), and finish our proof.

3.3 Cerami Sequences

In this part we begin by showing the boundedness of the (C)c-sequence associated to the
functional J in (2.1).

Lemma 3.3. Every (C)c-sequence in E corresponding to J is bounded in W 1,p(RN ).

Proof. Let {vn} ⊂ E be any (C)c-sequence of J at level c, that is,

J(vn) → c and (1 + ∥vn∥)J ′(vn) → 0 as n→ ∞.

Choose φn = f(vn)
f ′(vn)

. By the definition of f ′ and the fact vn ∈ E, it is easy to see that φn ∈ E.

It then follows from (f3) and (f4) that ∥φn∥ ≤ 2η∥vn∥ and ⟨J ′(vn), φn⟩ → 0 as n→ ∞.
Now we define two functions ψ(t, x),Ψ(t, x) ∈ R with

ψ(t, x) = λ
|t|q−2t

|x|µ
+

|t|2ηp∗(ν)−2t

|x|ν
, Ψ(t, x) =

∫ t

0

ψ(s, x)ds.

Considering σ = max{µ, ν}, we find a constant τ ∈ (2ηp, 2ηp∗(ν)) such that

lim
t→0

|x|σ[tψ(t, x)− τΨ(t, x)]

tp
= 0,

and

lim
|t|→+∞

|x|σ[tψ(t, x)− τΨ(t, x)]

tτ
= +∞ uniformly for x ∈ RN .

Therefore, for any x ∈ RN , there exists r > 0 such that

tψ(t, x)− τΨ(t, x) ≥ 0, for any |t| > r. (3.6)

Furthermore, by the fact η ≥ p
2(p−1) >

1
2 , we have τ > 2ηp > p. It then follows that, for any

ε > 0, there exists a positive constant C(ε) such that

|tψ(t, x)− τΨ(t, x)| ≤ ε
|t|p

|x|σ
+ C(ε)

|t|2ηp∗(ν)

|x|σ
, for any t ∈ R and x ∈ RN . (3.7)
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Therefore, we may obtain from (3.6) that

c+ o(1) = J(vn)−
1

τ
⟨J ′(vn), φn⟩

=
1

p

∫
RN

|∇vn|pdx− 1

τ

∫
RN

[
1 +

(2η)p−1(2η − 1)|f(vn)|p(2η−1)

1 + (2η)p−1|f(vn)|p(2η−1)

]
|∇vn|pdx

+
(1
p
− 1

τ

)∫
RN

V (x)|f(vn)|pdx+

∫
RN

[1
τ
ψ(f(vn), x)f(vn)−Ψ(f(vn), x)

]
dx

≥
(1
p
− 2η

τ

)∫
RN

|∇vn|pdx+
(1
p
− 1

τ

)∫
RN

V (x)|f(vn)|pdx

+

∫
Bf

[1
τ
ψ(f(vn), x)f(vn)−Ψ(f(vn), x)

]
dx, (3.8)

where Bf =
{
x ∈ RN : |f(vn)| ≤ r

}
. In order to conclude the proof, we need to estimate some

terms of the above inequality. We can find that, from (3.7), there is a constant M > V0 such
that ∣∣∣1

τ
tψ(t, x)−Ψ(t, x)

∣∣∣ ≤( 1

2p
− 1

2τ

)
M

|t|p

|x|σ
, for any |t| ≤ r, x ∈ RN , (3.9)

where V0 is given in (V).
Denote BV := {x ∈ RN : V (x) ≤ M}. Applying the estimate (3.9) together with the

condition (V ), we get( 1

2p
− 1

2τ

)∫
RN

V (x)|f(vn)|pdx+

∫
Bf

[1
τ
ψ(f(vn), x)f(vn)−Ψ(f(vn), x)

]
dx

≥
( 1

2p
− 1

2τ

)∫
Bf∩{x∈RN :|x|>1}

V (x)|f(vn)|pdx−
( 1

2p
− 1

2τ

)
M

∫
Bf

|f(vn)|p

|x|σ
dx

=
( 1

2p
− 1

2τ

)∫
Bf∩{x∈RN :|x|>1}

V (x)|f(vn)|pdx

−
( 1

2p
− 1

2τ

)
M

∫
Bf∩{x∈RN :|x|>1}

|f(vn)|p

|x|σ
dx

−
( 1

2p
− 1

2τ

)
M

∫
Bf∩{x∈RN :|x|≤1}

|f(vn)|p

|x|σ
dx

≥
( 1

2p
− 1

2τ

)∫
Bf∩{x∈RN :|x|>1}

(
V (x)−M

)
|f(vn)|pdx

−
( 1

2p
− 1

2τ

)
M

∫
Bf∩{x∈RN :|x|≤1}

|f(vn)|p

|x|σ
dx

≥
( 1

2p
− 1

2τ

)∫
BV ∩Bf∩{x∈RN :|x|>1}

(
V0 −M

)
rpdx

−
( 1

2p
− 1

2τ

)
M

∫
Bf∩{x∈RN :|x|≤1}

rp

|x|σ
dx

≥
( 1

2p
− 1

2τ

)(
V0 −M

)
rpmeas

(
BV ∩Bf ∩ {x ∈ RN : |x| > 1}

)
−

( 1

2p
− 1

2τ

)
Mrp

∫
{x∈RN :|x|≤1}

1

|x|σ
dx

≥
( 1

2p
− 1

2τ

)(
V0 −M

)
rpmeas (BV )−

( 1

2p
− 1

2τ

)
Mrp

∫ 1

0

ρN−σ−1dρ
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≥
( 1

2p
− 1

2τ

)(
V0 −M

)
rpmeas (BV )−

( 1

2p
− 1

2τ

)
Mrp ,

which implies that(1
p
− 2η

τ

)∫
RN

|∇vn|pdx+
( 1

2p
− 1

2τ

)∫
RN

V (x)|f(vn)|pdx

≤
( 1

2p
− 1

2τ

)
rp
[(
M − V0

)
meas(BV ) +M

]
+ c+ o(1). (3.10)

Since meas(BV ) is finite according to the assumption (V ), it follows that we have∫
RN

[
|∇vn|p + V (x)|f(vn)|p

]
dx ≤ C.

Consequently, by (f5) and Sobolev inequality, we have∫
RN

|vn|pdx =

∫
{|vn|≤1}

|vn|pdx+

∫
{|vn|>1}

|vn|pdx ≤ C

∫
RN

V (x)|f(vn)|pdx+

∫
RN

|vn|p
∗
dx

≤C
∫
RN

V (x)|f(vn)|pdx+ C
[ ∫

RN

|∇vn|pdx
] p∗

p

< +∞,

where p∗ = Np
N−p is the critical Sobolev exponent. Hence {vn} is bounded in W 1,p(RN ), which

implies the desired result.

The other important property of the (C)c-sequence is nonvanishing. It is a crucial tool to
show that the critical point of (2.1) is nonzero.

Proposition 3.4. Let N > p > 1, η ≥ p
2(p−1) and µ, ν ∈ [0, p) be fixed. Suppose {vn} ⊂ E be

a (C)c-sequence of J with

c <
p− ν

2ηp(N − ν)
S

N−ν
p−ν
ν . (3.11)

Then there exist positive constants R and ξ, and a sequence {yn} ⊂ RN , such that

lim sup
n→∞

∫
BR(yn)

|vn|pdx ≥ ξ.

Proof. Suppose that the conclusion is not true. It then follows from Lemma 1.21 in [27] that
vn → 0 in Ls(RN ) for all p < s < p∗. By Hölder’s inequality, Hardy’s inequality and Lemma 3.3,
we have ∫

RN

|vn|q

|x|µ
dx ≤

(∫
RN

|vn|p

|x|p
dx

)µ
p
(∫

RN

|vn|
p(q−µ)
p−µ dx

) p−µ
p

≤C
(∫

RN

|vn|
p(q−µ)
p−µ dx

) p−µ
p

.

By the fact p < q < p∗(µ) and 0 ≤ µ < p, it yields that p < p(q−µ)
p−µ < p∗. Then we can obtain

vn → 0 in L
p(q−µ)
p−µ (RN ), which implies that

vn → 0 in Lq(RN , |x|−µ), for p < q < p∗(µ).
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By (f3), (f4) and the interpolation inequality, this in turn implies that

f(vn) → 0 in Lq(RN , |x|−µ), for p < q < 2ηp∗(µ). (3.12)

Thanks to Lemma 3.3, we may assume that, passing to a subsequence of {vn} ⊂ E (still denoted
by{vn}),∫

RN

(
1 +

(2η)p−1(2η − 1)|f(vn)|p(2η−1)

1 + (2η)p−1|f(vn)|p(2η−1)

)
|∇vn|pdx+

∫
RN

V (x)|f(vn)|pdx→ b,

and ∫
RN

|f(vn)|2ηp
∗(ν)

|x|ν
dx→ d.

On the other hand, we know that

Sν

(∫
RN

|f(vn)|2ηp
∗(ν)

|x|ν
dx

) p
p∗(ν) ≤

∫
RN

|∇(f2η(vn))|pdx

=

∫
RN

(2η)p|f(vn)|p(2η−1)

1 + (2η)p−1|f(vn)|p(2η−1)
|∇vn|pdx

≤
∫
RN

(
1 +

(2η)p−1(2η − 1)|f(vn)|p(2η−1)

1 + (2η)p−1|f(vn)|p(2η−1)

)
|∇vn|pdx

+

∫
RN

V (x)|f(vn)|pdx, (3.13)

that is,

Sν

(∫
RN

|f(vn)|2ηp
∗(ν)

|x|ν
dx

) p
p∗(ν) ≤

∫
RN

(
1 +

(2η)p−1(2η − 1)|f(vn)|p(2η−1)

1 + (2η)p−1|f(vn)|p(2η−1)

)
|∇vn|pdx

+

∫
RN

V (x)|f(vn)|pdx. (3.14)

Taking limit n→ ∞ to the both sides of the inquality (3.14), we obtain Sνd
p

p∗(ν) ≤ b. Moreover,

in view of (3.12), it follows that 0 = lim
n→∞

⟨J ′(vn), wn⟩ = b − d, where wn = f(vn)
f ′(vn)

. Therefore,

b = d ≥ S
N−ν
p−ν
ν .

On the other hand, by (3.12) again, we get that

c = lim
n→∞

J(vn)

= lim
n→∞

[1
p

∫
RN

(
|∇vn|p + V (x)|f(vn)|p

)
dx− 1

2ηp∗(ν)

∫
RN

|f(vn)|2ηp
∗(ν)

|x|ν
dx

]
≥ lim

n→∞

[ 1

2ηp

∫
RN

(
1 +

(2η)p−1(2η − 1)|f(vn)|p(2η−1)

1 + (2η)p−1|f(vn)|p(2η−1)

)
|∇vn|pdx+

1

2ηp

∫
RN

V (x)|f(vn)|pdx

− 1

2ηp∗(ν)

∫
RN

|f(vn)|2ηp
∗(ν)

|x|ν
dx

]
=

( 1

2ηp
− 1

2ηp∗(ν)

)
d ≥ p− ν

2ηp(N − ν)
S

N−ν
p−ν
ν ,

that is,

c ≥ p− ν

2ηp(N − ν)
S

N−ν
p−ν
ν ,

contradicting to (3.11). Hence we finish the proof.
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3.4 Estimate for the Minimax Level

In this part we verify the condition (3.11) to guarantee the employment of the modified Moun-
tain Pass Theorem (see Theorem 3.1). To show this, we use some appropriate test functions.
With some auxiliary properties of these chosen functions, we then prove the main result of this
part.

For given ϵ > 0, we consider the function wϵ : RN → R defined by

wϵ(x) =
Cν,ϵ

(ϵ+ |x|
p−ν
p−1 )

N−p
p−ν

,

where

Cν,ϵ = [(N − ν)(N − p)p−1(p− 1)p−1ϵ]
N−p

p(p−ν) .

It is well known that the minimization problem

Sν = inf
{∫

RN

|∇v|pdx : v ∈ D1,p(RN ),

∫
RN

|v|p∗(ν)

|x|ν
dx = 1

}
(3.15)

can be achieved by wϵ defined above. And the infimum Sν actually is the best constant of the
Sobloev embedding D1,p ↩→ Lp∗(ν)(RN , |x|−ν) for 1 < p < +∞, 0 ≤ ν < p. Moreover, define

a new setting on wϵ(x), that is, let w̄ϵ = w
1
2η
ϵ . We observe that w̄2η

ϵ satisfies the following
equation

−∆pw =
wp∗(ν)−1

|x|ν
,

it is also a minimizer of the minimization problem (3.15). Now let 0 < R < 1. We consider a
smooth cut-off function φ ∈ C∞

0 (RN , [0, 1]) such that φ(x) = 1 for |x| ≤ R, 0 < φ(x) < 1 for
R < |x| < 2R, and φ(x) = 0 for |x| ≥ 2R, and define

uϵ = φw̄ϵ. (3.16)

By a similar argument as the one in [2, 5] with η ≥ p
2(p−1) , we have the following lemma. Since

the process is standard, we omit the proof here.

Lemma 3.5. Let N > p > 1, η ≥ p
2(p−1) , and uϵ as defined in (3.16). Then, we have:∫

RN

|∇(u2ηϵ )|pdx = S
N−ν
p−ν
ν +O

(
ϵ

N−p
p−ν

)
,

∫
RN

|uϵ|2ηp
∗(ν)

|x|ν
dx = S

N−ν
p−ν
ν +O

(
ϵ

N−ν
p−ν

)
, (3.17)∫

RN

|∇uϵ|pdx ≤ O
(
ϵ

N−p
2η(p−ν) | ln ϵ|

)
,

∫
RN

|uϵ|pdx ≤ O
(
ϵ

N−p
2η(p−ν) | ln ϵ|

)
, (3.18)

and∫
RN

|uϵ|q

|x|µ
dx = O

(
ϵ

[2η(N−µ)p−(N−p)q](p−1)
2ηp(p−ν)

)
, for

2η(N − µ)(p− 1)

N − p
< q <

2ηp(N − µ)

N − p
.

(3.19)

Furthermore, we define the Mountain Pass level c of J by

c = inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)), (3.20)
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where Γ = {γ ∈ C([0, 1], E)
∣∣ γ(0) = 0, γ(1) ̸= 0, J(γ(1)) < 0}. It is easy to see that c > 0 by

Lemma 3.2. As we have done in [25], it follows that

c = inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)) ≤ sup
t≥0

J(f−1(tuϵ)) = sup
t≥0

I(tuϵ).

Hence we have the following Lemma which provides a delicate estimate on the Mountain
Pass level c of the functional J .

Lemma 3.6. Let N > p > 1, η ≥ p
2(p−1) and µ, ν ∈ [0, p) be fixed. Then,

(i) if 2ηp∗(µ)− p
p−1 < q < 2ηp∗(µ), (3.11) is satisfied for any λ > 0;

(ii) if p < q ≤ 2ηp∗(µ)− p
p−1 , there exists a positive constant λ∗ such that (3.11) holds for

λ > λ∗.

Proof. (i) Firstly, there exists tϵ > 0 such that I(tϵuϵ) = max
t≥0

I(tuϵ) by I(0) = 0 and lim
t→∞

I(tuϵ) =

−∞. We then have the following claim.

Claim. There exist positive constants t1 and t2 such that tϵ ∈ [t1, t2] for ϵ ∈ (0, ϵ0).
Indeed, by (3.17)–(3.19), there is a sufficiently small ϵ2 > 0 such that

I(tuϵ) ≤
tp

p

∫
RN

[
|∇uϵ|p + V (x)|uϵ|p

]
dx+

t2ηp

2ηp

∫
RN

|∇(u2ηϵ )|pdx− t2ηp
∗(ν)

2ηp∗(ν)

∫
RN

|uϵ|2ηp
∗(ν)

|x|ν
dx

≤ tp

p
+
t2ηp

p
S

N−ν
p−ν
ν − t2ηp

∗(ν)

2ηp · p∗(ν)
S

N−ν
p−ν
ν , (3.21)

for any ϵ ∈ (0, ϵ2). Consequently, we have

t
2ηp∗(ν)
ϵ

2ηp∗(ν)
S

N−ν
p−ν
ν ≤ tpϵ + t2ηpϵ S

N−ν
p−ν
ν ,

which implies that there exists a constant t2 > 0 such that tϵ ≤ t2 for any ϵ ∈ (0, ϵ2).
We now establish the lower bound for tϵ. By the fact that η ≥ p

2(p−1) and µ ∈ [0, p), we

have 2η(N−µ)(p−1)
N−p ≤ 2ηp∗(µ) − p

p−1 < q < 2ηp∗(µ). Then it follows from (3.17)–(3.19) that

there exists ϵ1 ∈ (0, ϵ2) such that

I(tuϵ) ≥
t2ηp

2ηp

∫
RN

|∇(u2ηϵ )|pdx− λ
tq

q

∫
RN

|uϵ|q

|x|µ
dx− t2ηp

∗(ν)

2ηp∗(ν)

∫
RN

|uϵ|2ηp
∗(ν)

|x|ν
dx

≥ 1

4ηp
S

N−ν
p−ν
ν t2ηp − λCϵ

[2η(N−µ)p−(N−p)q](p−1)
2ηp(p−ν) tq − 1

ηp∗(ν)
S

N−ν
p−ν
ν t2ηp

∗(ν),

for all ϵ ∈ (0, ϵ1).
Set

χ = max
0≤t≤1

[ 1

4ηp
t2ηp − 1

ηp∗(ν)
t2ηp

∗(ν)
]
S

N−ν
p−ν
ν .

With this setting, it is easy to check that χ > 0. Moreover, thanks to the positivity of the frac-

tion [2η(N−µ)p−(N−p)q](p−1)
2ηp(p−ν) , we can find a small ϵ0 with ϵ0 < ϵ1 such that λCϵ

[2η(N−µ)p−(N−p)q](p−1)
2ηp(p−ν)

≤ χ
2 for all ϵ ∈ (0, ϵ0). Hence, we obtain

I(tϵuϵ) ≥ max
0≤t≤1

{ 1

4ηp
S

N−ν
p−ν
ν t2ηp − λCϵ

[2η(N−µ)p−(N−p)q](p−1)
2ηp(p−ν) tq − 1

ηp∗(ν)
S

N−ν
p−ν
ν t2ηp

∗(ν)
}
≥ χ

2
.
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Combining the above inequality with (3.21), we deduce that

χ

2
≤ tp

p
+
t2ηp

p
S

N−ν
p−ν
ν − t2ηp

∗(ν)

2ηp · p∗(ν)
S

N−ν
p−ν
ν ,

which gives a positive lower bound t1 for tϵ when ϵ ∈ (0, ϵ0). Hence we prove our claim.

We now proceed with proving part (i). From (3.17)–(3.19), we get that

I(tϵuϵ) ≤
t2ηpϵ

2ηp

∫
RN

|∇(u2ηϵ )|pdx− t
2ηp∗(ν)
ϵ

2ηp∗(ν)

∫
RN

|uϵ|2ηp
∗(ν)

|x|ν
dx

− λ

q
tq1

∫
RN

|uϵ|q

|x|µ
dx+

tp2
p

∫
RN

[
|∇uϵ|p + V (x)|uϵ|p

]
dx

≤
( t2ηpϵ

2ηp
− t

2ηp∗(ν)
ϵ

2ηp∗(ν)

)
S

N−ν
p−ν
ν +O

(
ϵ

N−p
2η(p−ν) | ln ϵ|

)
− Cϵ

[2η(N−µ)p−(N−p)q](p−1)
2ηp(p−ν)

≤ p− ν

2ηp(N − ν)
S

N−ν
p−ν
ν +O

(
ϵ

N−p
2η(p−ν) | ln ϵ|

)
− Cϵ

[2η(N−µ)p−(N−p)q](p−1)
2ηp(p−ν)

<
p− ν

2ηp(N − ν)
S

N−ν
p−ν
ν ,

for ϵ ∈ (0, ϵ0) sufficiently small and [2η(N−µ)p−(N−p)q](p−1)
2ηp(p−ν) < N−p

2η(p−ν) if 2ηp∗(µ) − p
p−1 < q.

Therefore we are able to find a small enough ϵ̄ > 0 such that

sup
t≥0

J(f−1(tuϵ̄)) = sup
t≥0

I(tuϵ̄) = I(tϵ̄uϵ̄) <
p− ν

2ηp(N − ν)
S

N−ν
p−ν
ν .

Furthermore, we conclude by (3.21) that J(f−1(tuϵ̄)) = I(tuϵ̄) → −∞ as t → +∞, which
indicates that there exists a t̄ > 0 such that J(f−1(t̄uϵ̄)) < 0. Taking γ̄(t) = f−1(tt̄uϵ̄), we have

γ̄ ∈ Γ and c ≤ max
t∈[0,1]

J(γ̄(t)) < p−ν
2ηp(N−ν)S

N−ν
p−ν
ν for any λ > 0 as required.

(ii) We first rewrite I as Iλ. Define u0 ∈ C∞
0 (RN ) with u0 ̸= 0 and tλ > 0 such that

Iλ(tλu0) = sup
t≥0

Iλ(tu0). We then claim that tλ → 0 as λ → +∞. We will prove this claim

by contradiction. Suppose that there exists a constant t0 > 0 and a sequence {λn} such that
tλn ≥ t0 as λn → +∞ for all n. Without loss of generality, we may assume that λn ≥ 1 for all
n. Let tn = tλn and I1 = Iλ|λ=1. Then 0 ≤ Iλn(tnu0) ≤ I1(tnu0) for any n, which implies that
tn is bounded from above. On the other hand, we also have

Iλn(tnu0) ≤
t2ηpn

2ηp

∫
RN

|∇(u2η0 )|pdx+
tpn
p

∫
RN

[
|∇u0|p + V (x)|u0|p

]
dx− λn

tqn
q

∫
RN

|u0|q

|x|µ
dx

≤ C − λn
tq0
q

∫
RN

|u0|q

|x|µ
dx

→ −∞, (3.22)

as n→ ∞, and this contradicts the nonnegativity of Iλn(tnu0). Hence our claim holds.

Since tλ → 0 as λ→ +∞, and

Iλ(tλu0) ≤
t2ηpλ

2ηp

∫
RN

|∇(u2η0 )|pdx+
tpλ
p

∫
RN

[
|∇u0|p + V (x)|u0|p

]
dx,
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we can obtain that Iλ(tλu0) converges to zero as λ tends to infinity. As a consequence, there

exists λ∗ > 0 such that sup
t≥0

Iλ(tu0) <
p−ν

2ηp(N−ν)S
N−ν
p−ν
ν for any λ > λ∗, which implies that

c < p−ν
2ηp(N−ν)S

N−ν
p−ν
ν for all λ > λ∗. Therefore, the proof of part (ii) of Lemma 3.6 is complete.

4 Proof of the Main Result

In this section, we will apply Theorem 3.1 to prove the existence of the critical point of J . After
establishing the existency, we then show that the critical point is nonzero.

Proof of Theorem 1.1. Let c be the Mountain Pass level given in (3.20). We infer by Lemma 3.2
and Theorem 3.1 that J has a (C)c sequence {vn} ⊂ E. By Lemma 3.3, we may assume that
vn ⇀ v in W 1,p(RN ) and f(vn) ⇀ f(v) in E. We claim that J ′(v) = 0, that is, we only need
to show that ⟨J ′(v), φ⟩ = 0 for all φ ∈ C∞

0 (RN ).
Indeed, we note that

⟨J ′(vn), φ⟩ − ⟨J ′(v), φ⟩

=

∫
RN

[
|∇vn|p−2∇vn − |∇v|p−2∇v

]
∇φ

+

∫
RN

V (x)
[
|f(vn)|p−2f(vn)f

′(vn)− |f(v)|p−2f(v)f ′(v)
]
φdx

− λ

∫
RN

[ |f(vn)|q−2

|x|µ
f(vn)f

′(vn)−
|f(v)|q−2

|x|µ
f(v)f ′(v)

]
φdx

−
∫
RN

[ |f(vn)|2ηp∗(ν)−2

|x|ν
f(vn)f

′(vn)−
|f(v)|2ηp∗(ν)−2

|x|ν
f(v)f ′(v)

]
φdx.

From the assumption (V ) and Lemma 2.1, for any 0 ≤ σ < p, the embedding E ↩→
Lr(RN , |x|−σ) is continuous for p ≤ r ≤ p∗(σ), and it is compact for p ≤ r < p∗(σ) as well.
Consequently,

f(vn) → f(v) in Ls(RN , |x|−µ), for p ≤ s < 2ηp∗(µ),

f(vn)⇀ f(v) weakly in L2ηp∗(ν)(RN , |x|−ν),

for µ, ν ∈ [0, p). Hence, we have ⟨J ′(vn), φ⟩ → ⟨J ′(v), φ⟩ = 0 for any φ ∈ C∞
0 (RN ). Since

J ′(vn) → 0, we conclude that J ′(v) = 0, that is, v is a weak solution of the Euler-Lagrange
equation of J .

Our final task is to show that the critical point is nonzero, i.e. v ̸= 0. We conclude from
Lemma 3.6 that for any µ, ν ∈ [0, p), (3.11) holds when either of the following statement holds:
(I) 2ηp∗(µ) − p

p−1 < q < 2ηp∗(µ) and each λ > 0; (II) p < q ≤ 2ηp∗(µ) − p
p−1 and each

λ > λ∗ for some positive constant λ∗. Moreover, we infer by Proposition 3.4 that there exists
a constant ξ > 0 such that ∫

RN

|v|pdx = lim
n→∞

∫
RN

|vn|pdx ≥ ξ > 0,

which tells us that v is a nontrivial solution of the Euler-Lagrange equation of J . Hence u = f(v)
is a nontrivial solution of problem (1.1).

Finally, set e = inf{J(v) : v ∈ E, v ̸= 0, J ′(v) = 0}, one readily sees that e is attained by
the lower semi-continuity. The proof of Theorem 1.1 is completed.
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