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Abstract The alternating direction method of multipliers (ADMM) is one of the most successful and pow-

erful methods for separable minimization optimization. Based on the idea of symmetric ADMM in two-block

optimization, we add an updating formula for the Lagrange multiplier without restricting its position for multi-

block one. Then, combining with the Bregman distance, in this work, a Bregman-style partially symmetric

ADMM is presented for nonconvex multi-block optimization with linear constraints, and the Lagrange multi-

plier is updated twice with different relaxation factors in the iteration scheme. Under the suitable conditions,

the global convergence, strong convergence and convergence rate of the presented method are analyzed and

obtained. Finally, some preliminary numerical results are reported to support the correctness of the theoretical

assertions, and these show that the presented method is numerically effective.
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1 Introduction

In this paper, we consider the multi-block nonconvex optimization problem in the following
form:

min
m∑
i=1

fi(xi) + g(y),

s.t.
m∑
i=1

Aixi + By = b, (1.1)

where the function fi : Rni → R∪{+∞} is proper and lower semi-continuous but not necessarily
smooth, g : Rp → R is a continuously differentiable function, Ai ∈ Rt×ni , B ∈ Rt×p and
b ∈ Rt. All functions can be nonconvex. Let x[h:l] denote (xh, xh+1, · · · , xl)

⊤ for given positive

integers h and l (l ≥ h). Then x[1:m] = (x1, · · · , xm)⊤ ∈ Rn with n =
m∑
i=1

ni. Denote A =

(A1, · · · , Am) ∈ Rt×n. Then Ax[1:m] =
m∑
i=1

Aixi ∈ Rt. With these notations, the problem (1.1)
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can be written as

min
m∑
i=1

fi(xi) + g(y),

s.t. Ax[1:m] + By = b. (1.2)

Let β(> 0) be a penalty parameter and

Lβ(x[1:m], y, λ) =

m∑
i=1

fi(xi) + g(y) − ⟨λ,Ax[1:m] + By − b⟩ +
β

2
∥Ax[1:m] + By − b∥2 (1.3)

is the augmented Lagrangian function (ALF) of (1.2) with the Lagrangian multiplier (dual
variable) λ ∈ Rt, and the ALF has the following property:

Lβ(x[1:m], y, λ− θ(Ax[1:m] + By − b)) = Lβ(x[1:m], y, λ) + θ∥Ax[1:m] + By − b∥2, (1.4)

where θ ∈ R and (x[1:m], y, λ)⊤ ∈ Rn+p+t. Even though the problem (1.2) has a simple form, its
efficient solution is often very challenging in practice due to the nonconvexness and nonsmooth-
ness of objective functions and the curse of high dimensionality arising from many real-world
applications, such as signal and image processing[29, 30], machine learning[22, 33], etc. Thus, the
development of efficient structure-utilizing algorithms for (1.2), which can overcome the diffi-
culties caused by the aforementioned characteristics, becomes increasingly important recently.
Given λk, the augmented Lagrangian method (ALM)[13, 20] for solving (1) updates the primal
and the dual variables via

(xk+1
[1:m], y

k+1) ∈ arg min
x, y

{Lβ(x[1:m], y, λ
k)}, (1.5)

λk+1 = λk − β(Axk+1
[1:m] + Byk+1 − b). (1.6)

In general, the ALM specified in (1.5) is sufficiently efficient for solving (1.2) with one-block.
However, for the cases of m ≥ 1, the ALM could lose its efficiency due to the joint minimization
for all xi’s or/and y’s in (1.5), where the variables are mixed-all-together in the quadratic
term of Lβ . This difficulty does not disappear even if all fi’s and y’s are sufficiently simple.
Therefore, an important motivating question is that whether one can improve the performance
of the ALM by fully exploiting the valuable structures hidden in fi’s and g’s. In fact, a series
of ALM-based splitting methods have received considerable attention in recent years, and this
paper contributes further in this line.

Restricted to the special case of m = 1, the alternating direction method of multipliers
(ADMM)[7, 15], which decomposes the subproblem (1.5) into two easier ones by minimizing one
variable and fixing the other, followed by an immediate update of the dual variable after each
sweep of alternating minimization, is perhaps the most popular and influential approach for
solving (1.2) with m = 1. Due to the remarkable performance of ADMM in various disciplines
of scientific computing, it is natural to extend ADMM to the multi-block model (1.2) with
m ≥ 2. The directly extended ADMM appears as

xk+1
1 ∈ arg min

x1

{Lβ(x1,x
k
[2:m], y

k, λk)},

xk+1
2 ∈ arg min

x2

{Lβ(xk+1
1 , x2,x

k
[3:m], y

k, λk)},

...

xk+1
m ∈ arg min

xm

{Lβ(xk+1
[1:m−1], xm, yk, λk)},
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yk+1 ∈ arg min
y

{Lβ(xk+1
[1:m], y, λ

k)},

λk+1 = λk − β(Axk+1
[1:m] + Byk+1 − b).

However, the iteration above may not converge[5, 6]. Han and Yuan[10] first proved that when
all the separable objective functions are strongly convex and when the penalty parameter is less
than a certain threshold, the multi-block version directly generalized by the classical two-block
ADMM has global convergence. On the other hand, He, Tao and Yuan obtained multi-block
ADMM by modifying and extending the ADMM, such as the ADMM with Gaussian back
substitution[11, 12].

At present, most of the researches about splitting algorithm of multi-block optimization
focus on convex problem. There are few studies on ADMM or other splitting algorithms for
nonconvex multi-block optimization. Guo et al.[9] directly generalized the classical two-block
nonconvex ADMM to the three-block case (i.e., m = 2 and B = I), and analyzed the global
convergence of the algorithm when Ai is column full rank and the penalty parameter is limited
to a certain range. In addition, if the potential function satisfies the Kurdyka- Lojasiewicz (KL)
property, the strong convergence of the algorithm is also obtained. Similarly, for the same
three-block case with m = 2 and B = I, Zhang et al.[32] proposed a linearized ADMM in
combination with the proximal linearization technique and Ai no longer need column full rank
in the convergence analysis. Combining with the Bregman distance, Wang et al.[24] obtained
the convergence of Bregman ADMM (BADMM) in the nonconvex multi-block case for solving
(1.2) with b = 0. Meanwhile, it should be noted that the convergence results of these algorithms
in the nonconvex case often depend on the KL property. For more discussion on multi-block
ADMM in nonconvex case, see Refs. [17, 28, 31].

On the other hand, for the two-block optimization problem, a Lagrange multiplier update
intermediate step is added to become the symmetric ADMM, also called Peaceman-Rachford
splitting method (PRSM)[19]. In the convex case, Gabay[8] pointed out that PRSM converges
faster than ADMM in the case of convergence, and PRSM is less “robust” in the sense that it
converges under more restrictive conditions than ADMM. With regard to this, for the ADM-
M iterative framework of multi-block optimization problems, we also want to add a Lagrange
multiplier update intermediate term without restricting its position. In addition, similar to the
Bregman-style ADMM iterative pattern[14, 16, 23, 24, 26], the Bregman distance is added to the
subproblem. Based on the above analysis, the proposed iterative format of the Bregman-style
partially symmetric ADMM (in short, BPSADMM), for problem (1.2) with B = I, is as follows.

Step 0. According to the sparse and dense conditions of coefficient matrix Ai, then, the
j matrices with relatively complex and dense structures are denoted as A1, A2, · · · , Aj , and
other matrices with simple structure and good sparsity are denoted as Aj+1, · · · , Am. Choose
an initial point (x0

[1:m], y
0, λ0), the relaxation factors satisfy r + s > 0, the penalty parameter

β > 0, and set k := 0.

Step 1. Solve the x[1:j]−subproblems, and then update the Lagrange multiplier:

xk+1
1 ∈ arg min

x1

{Lβ(x1,x
k
[2:m], y

k, λk) + △ϕ1(x1, x
k
1)}, (1.7)

xk+1
2 ∈ arg min

x2

{Lβ(xk+1
1 , x2,x

k
[3:m], y

k, λk) + △ϕ2(x2, x
k
2)}, (1.8)

...

xk+1
j ∈ arg min

xj

{Lβ(xk+1
[1:j−1], xj ,x

k
[j+1:m], y

k, λk) + △ϕj (xj , x
k
j )}, (1.9)
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λk+ 1
2 = λk − rβ

( j∑
i=1

Aix
k+1
i +

m∑
i=j+1

Aix
k
i + yk − b

)
. (1.10)

Step 2. Solve the x[j+1:m]−subproblems:

xk+1
j+1 ∈ arg min

xj+1

{Lβ(xk+1
[1:j], xj+1,x

k
[j+2:m], y

k, λk+ 1
2 ) + △ϕj+1(xj+1, x

k
j+1)}, (1.11)

...

xk+1
m ∈ arg min

xm

{Lβ(xk+1
[1:m−1], xm, yk, λk+ 1

2 ) + △ϕm(xm, xk
m)}. (1.12)

Step 3. Solve the y−subproblem, and then update the Lagrange multiplier:

yk+1 ∈ arg min
y

{Lβ(xk+1
[1:m], y, λ

k+ 1
2 ) + △ϕ̂(y, yk)}, (1.13)

λk+1 = λk+ 1
2 − sβ

( m∑
i=1

Aix
k+1
i + yk+1 − b

)
. (1.14)

Step 4. If a termination criterion is met, stop; otherwise, replace k by k + 1 and turn to
Step 1.

In the iterative algorithm above, △ϕi (i = 1, · · · ,m) and △ϕ̂ are Bregman distance with

respect to convex differentiable functions ϕi (i = 1, · · · ,m) and ϕ̂, respectively. The BPSADMM
has the following three characteristics:

(i) The introduction of (r, s) makes the BPSADMM widely representative, including many
variants of ADMM-type and PRSM-type splitting methods.

(ii) Choosing an appropriate Bregman distance can simplify the subproblem of BPSADMM.
• For the xi-subproblem, a suitable Bregman distance is added to linearize the differentiable

terms (e.g., the quadratic penalty term). Further, the xi-subproblem can be simplified or its
explicit solution can be obtained. For example, if the Bregman distance generating function is
chosen to be

ϕ1 =
µ1

2
∥x1∥2 −

β

2

∥∥∥A1x1 +

m∑
q=2

Aqx
k
q + yk − b

∥∥∥2,
the x1−update can be simplified as min

x1

{f1(x1) + µ1

2 ∥x1 − bk1∥} with a certain known bk1 .

• For the y-subproblem, due to g(y) being a continuously differentiable function, an ap-
propriate Bregman distance choice is of particular interest since it simplifies the y-update to a
convex quadratic programming problem. Indeed, if ϕ̂ is chosen to be

Lg

2 ∥y∥2 − g(y), where Lg

is at least as large as the Lipschitz continuity modulus of ∇g(y), the y−subproblem becomes

min
y

{Lg

2
∥y − yk∥2 + ⟨∇g(yk) − λk+ 1

2 , y⟩ +
β

2
∥Axk+1

[1:m] + y − b∥2
}
.

(iii) It can be seen from the multiplier λ correction system that the higher the density of
coefficient matrix Ai, the greater its influence on multiplier λ correction, theoretically, and vice
versa. For this reason, we try to determine the correction position of the multiplier update
intermediate step λk+ 1

2 according to the sparsity of the coefficient matrix Ai in the equality
constraint of problem (1.2), so as to further improve the computational performance of the
proposed algorithm.



358 P.J. LIU, J.B. JIAN, G.D. MA

1.1 Main Contribution

In this paper, we propose a BPSADMM for nonconvex multi-block optimization by combining
the Bregman distance. It should be noted that we do not limit the position of multiplier update
intermediate step λk+ 1

2 in the iterative algorithm. Moreover, the introduction of different
relaxation factors r and s gives the BPSADMM a wide range of characteristics. For the proposed
method, Lβ(·) might not be monotomically decreasing. Then, a modified version L̂β(·), defined

in (2.11) below, is monotonically decreasing with a right parameter. If {L̂β(·)} satisfies KL
property, we prove that the whole iteration sequence generated by the BPSADMM converges
to a critical point of the problem (1.2). In addition, the convergence rates of the merit function
and iteration sequence are obtained under  Lojasiewicz property.

1.2 Notation and Elementary Results

In this work, let Rn denote the n-dimensional vector space, and we use Rm×n to denote the set of
all m×n matrices. For a vector a ∈ Rn, the associated norm is denoted by ∥a∥. For two vectors
a and b of the same size, we denote their inner product by ⟨a, b⟩ = a⊤b. For a matrix A ∈ Rm×n,
let aij denote its (i, j)-th entry, and the largest (resp., smallest) eigenvalue of the symmetric
matrix A is denoted by λmax(A) (resp., λmin(A)). If A is a symmetric and positive semidefinite
matrix, the seminorm is defined by ∥x∥A = ⟨Ax, x⟩ for all x ∈ Rn. Moreover, we also use d(x,S)
to denote the distance from point x ∈ Rn to subset S ⊆ Rn, i.e., d(x,S) = infy∈S ∥y−x∥. When
S = ∅, we set d(x,S) = +∞ for all x ∈ Rn.

For function f : Rn → R ∪ {+∞}, the effective domain and epigraph of f are defined as
follows:

domf = {x ∈ Rn : f(x) < +∞}, epif = {(x, α) ∈ Rn × R : f(x) ≤ α},

and f is proper iff domf ̸= ∅ and f > −∞.

Definition 1.1[21]. The function f : Rn → R ∪ {+∞} is lower semicontinuous at x0 if
lim inf
x→x0

f(x) ≥ f(x0). If f is lower semicontinuous at any point x ∈ dom f , then it is called the

lower semicontinuous function.

Definition 1.2[21]. Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous function.

(i) The Fréchet subdifferential of f at x ∈ dom f , denoted by ∂̂f(x), is the set of vectors
x∗ ∈ Rn that satisfies

lim
y ̸=x

inf
y→x

f(y) − f(x) − ⟨x∗, y − x⟩
∥y − x∥

≥ 0,

and when x ̸∈domf , we set ∂̂f(x) = ∅.
(ii) The (limiting-)subdifferential of f at x ∈ dom f , written as ∂f(x), is

∂f(x) = {x∗ ∈ Rn : ∃ xk −→
f

x, x∗
k ∈ ∂̂f(xk),with x∗

k → x∗}.

Remark. From Definition 1.2, if f : Rn → R ∪ {+∞} is a proper lower semicontinuous
function, the following conclusions hold (see Ref. [21]).

(i) ∂̂f(x) ⊆ ∂f(x) for each x ∈ Rn, where the first set is closed convex while the second one
is only closed.

(ii) Let x∗
k ∈ ∂f(xk) and lim

k→∞
(xk, x

∗
k) = (x, x∗), then x∗ ∈ ∂f(x), i.e., ∂f(x) is closed.
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(iii) A necessary (but not sufficient) condition for x ∈ Rn to be a minimizer of f is 0 ∈ ∂f(x).
And a point that satisfies 0 ∈ ∂f(x) is called a critical point.

(iv) If g : Rn → R is a continuously differentiable function, then ∂(f+g)(x) = ∂f(x)+∇g(x)
for any x ∈domf .

For a convex differentiable function ϕ, the associated Bregman distance is defined as

△ϕ(x, y) = ϕ(x) − ϕ(y) − ⟨∇ϕ(y), x− y⟩.

If ϕ(x) = ∥x∥2, △ϕ(x, y) = ∥x−y∥2; if ϕ(x) = x⊤Ax, where A is a positive semidefinite matrix,
△ϕ(x, y) = (x− y)⊤A(x− y). Now we give some useful properties (see Lemma 1.1) about the
Bregman distance.

Lemma 1.1[25]. Let ϕ be a convex differentiable function and △ϕ(x, y) be the associated Breg-
man distance. Then,

(i) △ϕ(x, y) ≥ 0, △ϕ(x, x) = 0 for any x, y ∈ Rn;
(ii) △ϕ(x, y) is convex at x, but not necessarily at y;
(iii) If ϕ is σ−strongly convex, △ϕ(x, y) ≥ σ

2 ∥x− y∥2 for any x, y ∈ Rn.

Lemma 1.2[18]. Let h : Rn → R be a continuously differentiable function with gradient ∇h
being Lipschitz continuous with constant L > 0. Then for any x, y ∈ Rn, we have

|h(y) − h(x) − ⟨∇h(x), y − x⟩| ≤ L

2
∥y − x∥2.

Lemma 1.3. (x∗
[1:m], y

∗, λ∗) is a critical point of the ALF Lβ(·) defined in (1.3), i.e., 0 ∈
∂Lβ(x∗

[1:m], y
∗, λ∗), if and only if the following relations hold

A⊤
i λ

∗ ∈ ∂fi(x
∗
i ), i = 1, 2, · · · ,m, ∇g(y∗) = λ∗,

m∑
i=1

Aix
∗
i + y∗ − b = 0. (1.15)

The set of critical points of Lβ(·) is denoted by critLβ.

Next, we recall the  Lojasiewicz property and Kurdyka- Lojasiewicz (KL) property, which
play an important role in our convergence and convergence rate analysis.

Definition 1.3[1] ( Lojasiewicz property). Let f : Rn → R ∪ {+∞} be a proper lower semi-
continuous function. Let x∗ be a critical point of f , that is, 0 ∈ ∂f(x∗). The function f has
 Lojasiewicz property at x∗ if there exist cl > 0, θ ∈ [0, 1) and a neighborhood U of x∗ such that

|f(x) − f(x∗)|θ ≤ cl · d(0, ∂f(x)), ∀x ∈ U.

For notational simplicity, we use Ξη to denote the set of all concave functions φ : [0, η) →
[0,+∞) satisfying: (i) φ(0) = 0; (ii) φ is continuously differentiable on (0, η) and continuous at
0; (iii) φ′(t) > 0 for any t ∈ (0, η). Then, the KL property can be described as follows.

Definition 1.4[2] (KL property). Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous
function. For −∞ < η1 < η2 ≤ +∞, set [η1 < f < η2] = {x ∈ Rn : η1 < f(x) < η2}.
We say that function f has the Kurdyka- Lojasiewicz (KL) property at x∗ ∈ dom∂f := {x ∈
Rn : ∂f(x) ̸= ∅} if there exist η ∈ (0,+∞], a neighborhood U of x∗, and a continuous concave
function φ ∈ Ξη, such that, for all x ∈ U ∩ [f(x∗) < f < f(x∗) + η], the Kurdyka- Lojasiewicz
inequality holds:

φ′(f(x) − f(x∗))d(0, ∂f(x)) ≥ 1.
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If f satisfies the KL property at each point dom ∂f , then f is called a KL function. Moreover,
φ is called the associated KL property function.

Lemma 1.4[3] (Uniformized KL property). Let Ω ⊂ Rn be a compact set and f : Rn →
R∪ {+∞} be a proper lower semicontinuous function. Assume that f is constant f∗ on Ω and
satisfies the KL property at each point of Ω. Then, there exist ϵ > 0, η > 0, and φ ∈ Ξη such
that for all x ∈ {x ∈ R : d(x,Ω) < ϵ} ∩ [f∗ < f < f∗ + η], one has,

φ′(f(x) − f∗)d(0, ∂f(x)) ≥ 1.

1.3 Organization

The rest of the paper is organized as follows. In Sect. 2 and Sect. 3, we establish the convergence
and convergence rate results of the BPSADMM for problem (1.2) under the suitable assump-
tions, respectively. In Sect. 4, some preliminary numerical results are reported to support the
efficiency of the proposed algorithm. In Sect. 5, we draw some conclusions and perspectives.

2 Convergence Analysis

In this section, we discuss the convergence of BPSADMM, and the convergence analysis relies
on the following basic assumptions for the problem (1.2) and the BPSADMM iteration:

Assumption H. (i) The function fi(xi) : Rni → R∪{+∞} (i = 1, · · · ,m) is proper and lower
semi-continuous, and g(y) : Rp → R is continuously differentiable such that ∇g is Lipschitz
continuous with constant Lg > 0;

(ii) the relaxation factors r and s satisfy r + s > 0;
(iii) ϕi (i = 1, · · · ,m) is a σi−strongly convex continuously differentiable function, where

σi >
2(m + 2)β(1 − s)2λmax(A⊤

i Ai)

r + s
, i = 1, · · · , j, (2.1)

and

σi >
2[(m + 2)β(1 − s)2 + (m + 1 − j)β|rs|]λmax(A⊤

i Ai)

r + s
, i = j + 1, · · · ,m, (2.2)

as well as ∇ϕi (i = 1, · · · ,m) is Lϕi -Lipschitz continuous;

(iv) ϕ̂ is a σ̂−strongly convex continuously differentiable function, and ∇ϕ̂ is Lϕ̂-Lipschitz
continuous, where σ̂ satisfies

σ̂ >
2(m + 2)[(Lg + β|1 − s| + Lϕ̂)2 − L2

ϕ̂
]

(r + s)β
+

2(m + 1 − j)β|rs|
r + s

. (2.3)

For convenience, the following notations are used uniformly throughout the paper:

w = (x[1:m], y, λ), wk = (xk
[1:m], y

k, λk), w∗ = (x∗
[1:m], y

∗, λ∗);

ŵ = (x[1:m], y, λ, ŷ), ŵk = (xk
[1:m], y

k, λk, yk−1), ŵ∗ = (x∗
[1:m], y

∗, λ∗, y∗);

δi := δi(r, s, β) =
σi

2
− (m + 2)β(1 − s)2λmax(A⊤

i Ai)

r + s
, i = 1, · · · , j, (2.4)

δi := δi(r, s, β) =
σi

2
− [(m + 2)β(1 − s)2 + (m + 1 − j)β|rs|]λmax(A⊤

i Ai)

r + s
,

i = j + 1, · · · ,m, (2.5)



A Bregman-style Partially Symmetric ADMM for Nonconvex Multi-block Optimization 361

δ̂ := δ̂(r, s, β) =
σ̂

2
−

(m + 2)[(Lg + β|1 − s| + Lϕ̂)2 − L2
ϕ̂
]

(r + s)β
− (m + 1 − j)β|rs|

r + s
, (2.6)

δ := δ(r, s, β) = min{δ1, · · · , δm, δ̂}. (2.7)

In this work, we assume that the sequence {wk} is generated by the BPSADMM. Next, we
present the first-order optimality conditions for the subproblems in BPSADMM, which will be
used in our convergence analysis below.

0 ∈∂fi(xk+1
i ) −A⊤

i λ
k + βA⊤

i

( i∑
q=1

Aqx
k+1
q +

m∑
q=i+1

Aqx
k
q + yk − b

)
+ ∇ϕi(x

k+1
i ) −∇ϕi(x

k
i ), i = 1, · · · , j, (2.8)

0 ∈∂fi(xk+1
i ) −A⊤

i λ
k+ 1

2 + βA⊤
i

( i∑
q=1

Aqx
k+1
q +

m∑
q=i+1

Aqx
k
q + yk − b

)
+ ∇ϕi(x

k+1
i ) −∇ϕi(x

k
i ), i = j + 1, · · · ,m, (2.9)

0 =∇g(yk+1) − λk+ 1
2 + β

( m∑
i=1

Aix
k+1
i + yk+1 − b

)
+ ∇ϕ̂(yk+1) −∇ϕ̂(yk). (2.10)

In addition, our convergence analysis is largely based on the following potential function:

L̂β(ŵ) = L̂β(x[1:m], y, λ, ŷ) = Lβ(x[1:m], y, λ) + δ0∥y − ŷ∥2, δ0 =
(m + 2)L2

ϕ̂

(r + s)β
, (2.11)

and assume that Lβ(w0) = L̂β(ŵ0) < +∞ holds.

Lemma 2.1. If Assumption H holds, then

L̂β(ŵk+1) − L̂β(ŵk) ≤ −δ(∥xk+1
[1:m] − xk

[1:m]∥
2 + ∥yk+1 − yk∥2), (2.12)

where δ is shown in (2.7). Moreover, the sequence {L̂β(ŵk)} decreases monotonically.

Proof. First, using the fact that xk+1
1 , · · · , xk+1

m , yk+1 are minimizers in (1.7)–(1.9) and (1.11)–
(1.13), respectively, we obtain

Lβ(xk+1
1 ,xk

[2:m], y
k, λk) − Lβ(wk) ≤ −△ϕ1(xk+1

1 , xk
1),

...

Lβ(xk+1
[1:j],x

k
[j+1:m], y

k, λk) − Lβ(xk+1
[1:j−1],x

k
[j:m], y

k, λk) ≤ −△ϕj (xk+1
j , xk

j ),

Lβ(xk+1
[1:j+1],x

k
[j+2:m], y

k, λk+ 1
2 ) − Lβ(xk+1

[1:j],x
k
[j+1:m], y

k, λk+ 1
2 ) ≤ −△ϕj+1(xk+1

j+1 , x
k
j+1),

...

Lβ(xk+1
[1:m], y

k, λk+ 1
2 ) − Lβ(xk+1

[1:m−1], x
k
m, yk, λk+ 1

2 ) ≤ −△ϕm(xk+1
m , xk

m),

Lβ(xk+1
[1:m], y

k+1, λk+ 1
2 ) − Lβ(xk+1

[1:m], y
k, λk+ 1

2 ) ≤ −△ϕ̂(yk+1, yk).

Again, summing up the inequalities above, and combining the the strong convexities of △ϕi (i =
1, · · · ,m) and △ϕ̂, we have

Lβ(xk+1
[1:m], y

k+1, λk+ 1
2 ) − Lβ(xk+1

[1:j],x
k
[j+1:m], y

k, λk+ 1
2 )
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+ Lβ(xk+1
[1:j],x

k
[j+1:m], y

k, λk) − Lβ(wk)

≤−
m∑
i=1

△ϕi(x
k+1
i , xk

i ) −△ϕ̂(yk+1, yk)

≤−
m∑
i=1

σi

2
∥xk+1

i − xk
i ∥2 −

σ̂

2
∥yk+1 − yk∥2. (2.13)

Second, from relations (1.4), (1.14) and (1.10), it follows that

Lβ(wk+1) = Lβ(xk+1
[1:m], y

k+1, λk+ 1
2 ) + sβ∥Axk+1

[1:m] + yk+1 − b∥2 (2.14)

and

Lβ(xk+1
[1:j],x

k
[j+1:m], y

k, λk+ 1
2 )

= Lβ(xk+1
[1:j],x

k
[j+1:m], y

k, λk) + rβ
∥∥∥ j∑

i=1

Aix
k+1
i +

m∑
i=j+1

Aix
k
i + yk − b

∥∥∥2. (2.15)

Third, summing up (2.13)–(2.15), we have

Lβ(wk+1) − Lβ(wk) ≤ −
m∑
i=1

σi

2
∥xk+1

i − xk
i ∥2 −

σ̂

2
∥yk+1 − yk∥2

+sβ∥Axk+1
[1:m] + yk+1 − b∥2

+rβ
∥∥∥ j∑

i=1

Aix
k+1
i +

m∑
i=j+1

Aix
k
i + yk − b

∥∥∥2. (2.16)

To proceed, from (1.10) and (1.14), one has

Axk+1
[1:m] + yk+1 − b

=
1

(r + s)β
(λk − λk+1) +

r

r + s

( m∑
i=j+1

Ai(x
k+1
i − xk

i ) + (yk+1 − yk)
)

(2.17)

and

j∑
i=1

Aix
k+1
i +

m∑
i=j+1

Aix
k
i + yk − b

= 1
(r+s)β (λk − λk+1) − s

r+s

( m∑
i=j+1

Ai(x
k+1
i − xk

i ) + (yk+1 − yk)
)
.

(2.18)

Moreover, from the relations above (2.17) and (2.18), we obtain

sβ∥Axk+1
[1:m] + yk+1 − b∥2 + rβ

∥∥∥ j∑
i=1

Aix
k+1
i +

m∑
i=j+1

Aix
k
i + yk − b

∥∥∥2
=

1

(r + s)β
∥λk − λk+1∥2 +

rsβ

r + s

∥∥∥ m∑
i=j+1

Ai(x
k+1
i − xk

i ) + (yk+1 − yk)
∥∥∥2

≤ 1

(r + s)β
∥λk − λk+1∥2

+
(m + 1 − j)β|rs|

r + s

( m∑
i=j+1

∥Ai(x
k+1
i − xk

i )∥2 + ∥yk+1 − yk∥2
)
. (2.19)
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On the other hand, recalling (1.14) and the optimality condition (2.10) of the y-subproblem,
we have

λk+1 = ∇g(yk+1) + β(1 − s)(Axk+1
[1:m] + yk+1 − b) + ∇ϕ̂(yk+1) −∇ϕ̂(yk), (2.20)

and using Assumption H (i) and (iv), then

∥λk+1 − λk∥ =
∥∥∥[∇g(yk+1) −∇g(yk)] + β(1 − s)

( m∑
i=1

Ai(x
k+1
i − xk

i ) + (yk+1 − yk)
)

+ [∇ϕ̂(yk+1) −∇ϕ̂(yk)] − [∇ϕ̂(yk) −∇ϕ̂(yk−1)]
∥∥∥

≤Lg∥yk+1 − yk∥ + β|1 − s|
( m∑

i=1

∥Ai(x
k+1
i − xk

i )∥ + ∥yk+1 − yk∥
)

+ Lϕ̂∥y
k+1 − yk∥ + Lϕ̂∥y

k − yk−1∥

≤(Lg + β|1 − s| + Lϕ̂)∥yk+1 − yk∥ + β|1 − s|
m∑
i=1

∥Ai(x
k+1
i − xk

i )∥

+ Lϕ̂∥y
k − yk−1∥. (2.21)

Furthermore, we have

∥λk+1 − λk∥2

m + 2
≤(Lg + β|1 − s| + Lϕ̂)2∥yk+1 − yk∥2 + L2

ϕ̂
∥yk − yk−1∥2

+ β2(1 − s)2
m∑
i=1

∥Ai(x
k+1
i − xk

i )∥2. (2.22)

Next, substituting (2.22) into (2.19), we get

sβ∥Axk+1
[1:m] + yk+1 − b∥2 + rβ∥

j∑
i=1

Aix
k+1
i +

m∑
i=j+1

Aix
k
i + yk − b∥2

≤ (m + 2)β(1 − s)2

r + s

j∑
i=1

∥Ai(x
k+1
i − xk

i )∥2

+
(m + 2)β(1 − s)2 + (m + 1 − j)β|rs|

r + s

m∑
i=j+1

∥Ai(x
k+1
i − xk

i )∥2

+
( (m + 2)(Lg + β|1 − s| + Lϕ̂)2

(r + s)β
+

(m + 1 − j)β|rs|
r + s

)
∥yk+1 − yk∥2

+
(m + 2)L2

ϕ̂

(r + s)β
∥yk − yk−1∥2, (2.23)

and taking into account (2.16), it follows that

Lβ(wk+1) − Lβ(wk)

≤−
m∑
i=1

σi

2
∥xk+1

i − xk
i ∥2 −

σ̂

2
∥yk+1 − yk∥2 +

(m + 2)β(1 − s)2

r + s

j∑
i=1

∥Ai(x
k+1
i − xk

i )∥2

+
(m + 2)β(1 − s)2 + (m + 1 − j)β|rs|

r + s

m∑
i=j+1

∥Ai(x
k+1
i − xk

i )∥2
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+
( (m + 2)(Lg + β|1 − s| + Lϕ̂)2

(r + s)β
+

(m + 1 − j)β|rs|
r + s

)
∥yk+1 − yk∥2

+
(m + 2)L2

ϕ̂

(r + s)β
∥yk − yk−1∥2, (2.24)

which implies

[
Lβ(wk+1) +

(m + 2)L2
ϕ̂

(r + s)β
∥yk+1 − yk∥2

]
−
[
Lβ(wk) +

(m + 2)L2
ϕ̂

(r + s)β
∥yk − yk−1∥2

]
≤−

j∑
i=1

(σi

2
− (m + 2)β(1 − s)2λmax(AT

i Ai)

r + s

)
∥xk+1

i − xk
i ∥2

−
m∑

i=j+1

(σi

2
− [(m + 2)β(1 − s)2 + (m + 1 − j)β|rs|]λmax(AT

i Ai)

r + s

)
∥xk+1

i − xk
i ∥2

−
( σ̂

2
−

(m + 2)[(Lg + β|1 − s| + Lϕ̂)2 − L2
ϕ̂
]

(r + s)β
− (m + 1 − j)β|rs|

r + s

)
∥yk+1 − yk∥2.

Thus,

L̂β(ŵk+1) − L̂β(ŵk) ≤−
m∑
i=1

δi∥xk+1 − xk∥2 − δ̂∥yk+1 − yk∥2

≤− δ(∥xk+1
[1:m] − xk

[1:m]∥
2 + ∥yk+1 − yk∥2),

and relation (2.12) is immediately at hand.

Finally, from the definition of δ in (2.7), as well as the restrictions of strong convex co-
efficients σi (i = 1, · · · ,m) and σ̂ in (2.1)–(2.3) (see Assumption H (iii) and (iv)), then it is
easily known that δ > 0. Hence, the sequence {L̂β(ŵk)} is monotonically nonincreasing. This
completes the proof. �

Lemma 2.2. Suppose that the sequence {wk} is bounded. If Assumption H holds, then

lim
k→+∞

∥ŵk+1 − ŵk∥ = lim
k→+∞

(∥xk+1
[1:m] − xk

[1:m]∥ + ∥yk+1 − yk∥ + ∥λk+1 − λk∥) = 0. (2.25)

Proof. Since {wk} is bounded, we obtain that the {ŵk} is bounded, and thus a cluster point
exists. Suppose that ŵ∗ is a cluster point of {ŵk} and let {ŵkj} be a convergent subsequence
such that lim

kj→+∞
ŵkj = ŵ∗. In view of the fact that fi (i = 1, 2, · · · ,m) are lower semicontinuous

and g is continuous, the function L̂β(·) is lower semicontinuous, and hence

L̂β(ŵ∗) ≤ lim inf
kj→+∞

L̂β(ŵkj+1). (2.26)

Together with the fact that {L̂β(ŵk)} is nonincreasing, we know that {L̂β(ŵk)} is convergent

and L̂β(ŵk) ≥ L̂β(ŵ∗) for any k ≥ 0. Rearranging terms in relation (2.12) and summing up it
from k = 0 to k = l, it follows

δ
l∑

k=0

(∥xk+1
[1:m] − xk

[1:m]∥
2 + ∥yk+1 − yk∥2) ≤ L̂β(ŵ0) − L̂β(ŵl+1) ≤ L̂β(ŵ0) − L̂β(ŵ∗) < +∞.
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This, together with δ > 0, implies that

+∞∑
k=0

∥xk+1
[1:m] − xk

[1:m]∥
2 < +∞,

+∞∑
k=0

∥yk+1 − yk∥2 < +∞. (2.27)

Hence,

xk+1
[1:m] − xk

[1:m] → 0, yk+1 − yk → 0. (2.28)

Next, it follows from (2.21) and (2.27) that
+∞∑
k=0

∥λk+1 − λk∥2 < +∞. Therefore, we conclude

that

λk+1 − λk → 0. (2.29)

Further, from (2.28) and (2.29), we obtain (2.25), and this completes the proof. �

Theorem 2.3 (Global convergence). Let Ω denote the cluster point set of the sequence {wk},
and Ω̂ denote the cluster point set of the sequence {ŵk}. If Assumption H holds, and {wk} is
bounded, then

(i) Ω and Ω̂ are nonempty compact sets, and d(wk,Ω) → 0, d(ŵk, Ω̂) → 0, k → +∞;

(ii) Ω ⊆ critLβ ;

(iii) ŵ∗ ∈ Ω̂ if and only if ŷ∗ = y∗ and w∗ ∈ Ω;

(iv) the whole potential function sequence {L̂β(ŵk)} is convergent, and L̂β(ŵ∗) = lim
k→+∞

L̂β(ŵk)

= inf
k
L̂β(ŵk) for all ŵ∗ ∈ Ω̂. Moreover, L̂β(·) is finite and constant on Ω̂.

Proof. (i) By the definitions of Ω and Ω̂, they are trivial.

(ii) Let w∗ ∈ Ω, then there exists a subsequence {wkj} of {wk} converging to w∗. It
follows from (2.25) that lim

k→+∞
∥wk+1 −wk∥ = 0, and thus lim

j→+∞
wkj+1 = lim

j→+∞
wkj = w∗. Let

lim
j→+∞

λkj+
1
2 = λ∗∗. Letting k := kj and taking the limit j → +∞ in (1.10) and (1.14), we have

λ∗∗ = λ∗ − rβ
( m∑

i=1

Aix
∗
i + y∗ − b

)
, λ∗ = λ∗∗ − sβ

( m∑
i=1

Aix
∗
i + y∗ − b

)
.

This, together with r + s > 0, yields

m∑
i=1

Aix
∗
i + y∗ − b = 0, λ∗∗ = λ∗. (2.30)

Therefore, (x∗
[1:m], y

∗) is a feasible point of problem (1.1). Since x
kj+1
i (i = 1, 2, · · · , j) is a

minimizer in xi−subproblem, it holds that

fi(x
kj+1
i ) − ⟨λkj , Aix

kj+1
i ⟩ +

β

2

∥∥∥ i∑
q=1

Aqx
kj+1
q +

m∑
q=i+1

Aqx
kj
q − b

∥∥∥2 + △ϕi
(xkj+1, xkj )

≤fi(x
∗
i ) − ⟨λkj , Aix

∗
i ⟩ +

β

2

∥∥∥ i−1∑
q=1

Aqx
kj+1
q + Aix

∗
i +

m∑
q=i+1

Aqx
kj
q − b

∥∥∥2 + △ϕi(x
∗, xkj ).
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This, together with lim
j→+∞

wkj = lim
j→+∞

wkj+1 = w∗, implies lim sup
j→+∞

fi(x
kj+1
i ) ≤ fi(x

∗
i ) from

inequality above. Noticing that the lower semicontinuity of fi (i = 1, 2, · · · , j), one has, fi(x
∗
i ) ≤

lim inf
j→+∞

fi(x
kj+1
i ). Hence,

lim
j→+∞

fi(x
kj+1
i ) = fi(x

∗
i ), i = 1, 2, · · · , j. (2.31)

Similarly, we also get

lim
j→+∞

fi(x
kj+1
i ) = fi(x

∗
i ), i = j + 1, 2, · · · ,m. (2.32)

On the other hand, it follows from lim
j→+∞

∥xkj+1
i − x

kj

i ∥ = 0 and Assumption H (iii), that

lim
j→+∞

∥∇ϕi(x
kj+1
i )−∇ϕi(x

kj

i )∥ = 0 for i = 1, 2, · · · ,m. Similarly, lim
j→+∞

∥∇ϕ̂(ykj+1)−∇ϕ̂(ykj )∥

= 0. Thus, letting k := kj and taking the limit j → +∞ in (2.8)–(2.10), and invoking the
closeness of ∂fi (i = 1, 2, · · · ,m), the continuity of ∇g, as well as (2.30), we have

A⊤
i λ

∗ ∈ ∂fi(x
∗
i ), i = 1, 2, · · · ,m, ∇g(y∗) = λ∗,

m∑
i=1

Aix
∗
i + y∗ − b = 0.

That is w∗ ∈ critLβ , and this proves statement (ii).
(iii) From Lemma 2.2 and the definitions of wk and ŵk, we get statement (iii).
(iv) Let ŵ∗ ∈ Ω̂. Then there exists at least one subsequence {ŵkj} of {ŵk} converging to

ŵ∗. And from (1.3), (2.31) and (2.32), we have lim
j→+∞

L̂β(ŵkj+1) = L̂β(ŵ∗). This, together

with the monotonity of {L̂β(ŵk)}, further shows that the whole potential function sequence

{L̂β(ŵk)} is convergent. Thus, since L̂β(ŵk) ≤ L̂β(ŵ0) < +∞, the relations +∞ > L̂β(ŵ0) ≥
lim

k→+∞
L̂β(ŵk) = inf

k
L̂β(ŵk) = L̂β(ŵ∗) hold. Then, L̂β(ŵ∗) ≡ lim

k→+∞
L̂β(ŵk) < +∞ for all

ŵ∗ ∈ Ω̂. �

Theorem 2.4 (Strong convergence). Suppose that {wk} is bounded. If Assumption H holds,

and L̂β(ŵ) is a KL function, then
+∞∑
k=0

∥wk+1 − wk∥ < +∞. Furthermore, {wk} converges to a

critical point of Lβ(·).

Proof. From Theorem 2.3 (iv), we have lim
k→+∞

L̂β(ŵk) = L̂β(ŵ∗) for all ŵ∗ ∈ Ω̂. In the

following, we consider two cases.

Case I. Suppose that L̂β(ŵk0) = L̂β(ŵ∗) for some integer k0. Associated with Lemma 2.1, for
any k > k0, we have

δ(∥xk+1
[1:m] − xk

[1:m]∥
2 + ∥yk+1 − yk∥2) ≤ L̂β(ŵk) − L̂β(ŵk+1) ≤ L̂β(ŵk0) − L̂β(ŵ∗) = 0.

Thus, xk+1
[1:m] = xk

[1:m] and yk+1 = yk for any k > k0. Together with (2.21), for any k > k0 + 1,

one has, wk+1 = wk and the assertion holds.

Case II. Now, we consider the case where L̂β(ŵk) > L̂β(ŵ∗) for all k ≥ 0. In this case, we

will divide the proof into three steps: (1) we first apply the uniformized KL property to L̂β(ŵ);

(2) we bound the distance from 0 to ∂L̂β(ŵk); (3) we show that the sequence {wk} is a Cauchy
sequence and hence is convergent. The complete proof is presented as follows.
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Step 1. In view of the fact that lim
k→+∞

d(ŵk, Ω̂) = 0, it follows that for ϵ > 0, there exists

k1 > 0, such that for any k > k1, d(ŵk, Ω̂) < ϵ. And since lim
k→+∞

L̂β(ŵk) = L̂β(ŵ∗), then for

η > 0, there exists k2 > 0, such that for any k > k2, L̂β(ŵk) < L̂β(ŵ∗) + η. Thus, when

k > k̃ = max{k1, k2}, we have for ϵ, η > 0, d(ŵk, Ω̂) < ϵ, L̂β(ŵ∗) < L̂β(ŵk) < L̂β(ŵ∗) + η.

From Theorem 2.3, we know that L̂β(·) is constant on Ω̂, and Ω̂ is a nonempty compact set.
Thus, by uniformized KL property in Lemma 1.4, we obtain

φ′(L̂β(ŵk) − L̂β(ŵ∗))d(0, ∂L̂β(ŵk)) ≥ 1, for all k > k̃. (2.33)

Step 2. We first consider the subdifferential ∂L̂β(ŵk). From the definition of L̂β(ŵ) in
(2.11), and from the partial subdifferential with respect to xi (i = 1, · · · , j), we have

∂xiL̂β(ŵk+1) =∂fi(x
k+1
i ) −A⊤

i λ
k+1 + βA⊤

i

( m∑
q=1

Aqx
k+1
q + yk+1 − b

)
=A⊤

i (λk − λk+1) + βA⊤
i

( m∑
q=i+1

Aq(xk+1
q − xk

q ) + (yk+1 − yk)
)

− [∇ϕi(x
k+1
i ) −∇ϕi(x

k
i )], i = 1, · · · , j, (2.34)

where the second equality follows from the optimality condition (2.8). Similarly,

∂xi
L̂β(ŵk+1) =∂fi(x

k+1
i ) −A⊤

i λ
k+1 + βA⊤

i

( m∑
q=1

Aqx
k+1
q + yk+1 − b

)
=A⊤

i (λk+ 1
2 − λk+1) − [∇ϕi(x

k+1
i ) −∇ϕi(x

k
i )]

+ βA⊤
i

( m∑
q=i+1

Aq(xk+1
q − xk

q ) + (yk+1 − yk)
)

=sβA⊤
i

( m∑
q=1

Aqx
k+1
q + yk+1 − b

)
− [∇ϕi(x

k+1
i ) −∇ϕi(x

k
i )]

+ βA⊤
i

( m∑
q=i+1

Aq(xk+1
q − xk

q ) + (yk+1 − yk)
)

=
s

r + s
A⊤

i (λk − λk+1) − [∇ϕi(x
k+1
i ) −∇ϕi(x

k
i )]

+
rsβ

r + s
A⊤

i

( m∑
q=j+1

Aq(xk+1
q − xk

q ) + (yk+1 − yk)
)

+ βA⊤
i

( m∑
q=i+1

Aq(xk+1
q − xk

q ) + (yk+1 − yk)
)
, i = j + 1, · · · ,m, (2.35)

where the second equality follows from the optimality condition (2.9), the third equality follows
from (1.14), and the last equality follows from (2.17). Moreover, it follows from the definition
of L̂β(ŵ), (1.14), (2.10) as well as (2.17), that

∂yL̂β(ŵk+1) =∇g(yk+1) − λk+1 + β
( m∑

q=1

Aqx
k+1
q + yk+1 − b

)
+ 2δ0(yk+1 − yk)

(1.14),(2.10)
= sβ

( m∑
i=1

Aix
k+1
i + yk+1 − b

)
− [∇ϕ̂(yk+1) −∇ϕ̂(yk)] + 2δ0(yk+1 − yk)
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(2.17)
=

s

r + s
(λk − λk+1) +

rsβ

r + s

( m∑
q=j+1

Aq(xk+1
q − xk

q ) + (yk+1 − yk)
)

− [∇ϕ̂(yk+1) −∇ϕ̂(yk)] + 2δ0(yk+1 − yk). (2.36)

Additionally, we also get

∂λL̂β(ŵk+1) = −
( m∑

q=1

Aqx
k+1
q + yk+1 − b

)
(2.17)

=
1

(r + s)β
(λk+1 − λk) − r

r + s

( m∑
q=j+1

Aq(xk+1
q − xk

q ) + (yk+1 − yk)
)

(2.37)

and

∂ŷL̂β(ŵk+1) = −2δ0(yk+1 − yk). (2.38)

Thus, from the relations (2.34)–(2.38), and the Lipschitz continuity of ∇ϕi (i = 1, 2, · · · ,m)

and ∇ϕ̂, there exists ζ1 > 0 such that

d(0, ∂L̂β(ŵk+1)) ≤ ζ1(∥xk+1
[1:m] − xk

[1:m]∥ + ∥yk+1 − yk∥ + ∥λk+1 − λk∥).

Again, it follows from (2.21), there exists ζ2 > 0 such that

∥λk+1 − λk∥ ≤ ζ2(∥xk+1
[1:m] − xk

[1:m]∥ + ∥yk+1 − yk∥ + ∥yk − yk−1∥).

Then, by the two inequalities above, we have

d(0, ∂Lβ(wk+1)) ≤ζ1(1 + ζ2)(∥xk+1
[1:m] − xk

[1:m]∥ + ∥yk+1 − yk∥) + ζ2∥yk − yk−1∥

≤ζ(∥xk+1
[1:m] − xk

[1:m]∥ + ∥yk+1 − yk∥ + ∥yk − yk−1∥).

with ζ := max{ζ1(1 + ζ2), ζ2}. This further implies that

d(0, ∂L̂β(ŵk)) ≤ ζ(∥xk
[1:m] − xk−1

[1:m]∥ + ∥yk − yk−1∥ + ∥yk−1 − yk−2∥). (2.39)

Step 3. We now prove the convergence of the sequence by (2.33) and (2.39). For simplicity,
define △p,q = φ(L̂β(ŵp) − L̂β(ŵ∗)) − φ(L̂β(ŵq) − L̂β(ŵ∗)). Then, we obtain, for all k > k̃,

ζ(∥xk
[1:m] − xk−1

[1:m]∥ + ∥yk − yk−1∥ + ∥yk−1 − yk−2∥) · △k,k+1

(2.39)

≥ d(0, ∂L̂β(ŵk)) · △k,k+1

≥d(0, ∂L̂β(ŵk)) · φ′(L̂β(ŵk) − L̂β(ŵ∗))(L̂β(ŵk) − L̂β(ŵk+1))

(2.33)

≥ L̂β(ŵk) − L̂β(ŵk+1)

(2.12)

≥ δ(∥xk+1
[1:m] − xk

[1:m]∥
2 + ∥yk+1 − yk∥2)

≥δ

2
(∥xk+1

[1:m] − xk
[1:m]∥ + ∥yk+1 − yk∥)2, (2.40)

where the second inequality follows from the concavity of φ, and the last inequality follows from
(a + b)2 ≤ 2(a2 + b2).
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Dividing both sides of (2.40) by δ/2, and taking the square root, we have

(∥xk
[1:m] − xk−1

[1:m]∥ + ∥yk − yk−1∥ + ∥yk−1 − yk−2∥)
1
2

√
2ζ

δ
△k,k+1

≥∥xk+1
[1:m] − xk

[1:m]∥ + ∥yk+1 − yk∥.

Thus,

4(∥xk+1
[1:m] − xk

[1:m]∥ + ∥yk+1 − yk∥)

≤2(∥xk
[1:m] − xk−1

[1:m]∥ + ∥yk − yk−1∥ + ∥yk−1 − yk−2∥)
1
2

√
8ζ

δ
△k,k+1.

Using the inequality 2ab ≤ a2 + b2 to get the upper bound for the right-hand side of the
inequality above, we get

4(∥xk+1
[1:m] − xk

[1:m]∥ + ∥yk+1 − yk∥)

≤∥xk
[1:m] − xk−1

[1:m]∥ + ∥yk − yk−1∥ + ∥yk−1 − yk−2∥ +
8ζ

δ
△k,k+1 . (2.41)

Summing up (2.41) for i = k(≥ k̃ + 1), · · · , q, we have

3

q∑
i=k

∥xi+1
[1:m] − xi

[1:m]∥ + 2

q∑
i=k

∥yi+1 − yi∥

≤2∥yk − yk−1∥ − 2∥yq+1 − yq∥ + ∥xk
[1:m] − xk−1

[1:m]∥ − ∥xq+1
[1:m] − xq

[1:m]∥

+ ∥yk−1 − yk−2∥ − ∥yq − yq−1∥ +
8ζ

δ
△k,q+1 .

This, along with φ(L̂β(ŵq+1) − L̂β(ŵ∗)) > 0, further implies

3

q∑
i=k

∥xi+1
[1:m] − xi

[1:m]∥ + 2

q∑
i=k

∥yi+1 − yi∥

≤2∥yk − yk−1∥ + ∥xk
[1:m] − xk−1

[1:m]∥ + ∥yk−1 − yk−2∥ +
8ζ

δ
(φ(L̂β(ŵk) − L̂β(ŵ∗))).

Thus, it follows that

3
+∞∑
i=k

∥xi+1
[1:m] − xi

[1:m]∥ + 2
+∞∑
i=k

∥yi+1 − yi∥

≤2∥yk − yk−1∥ + ∥xk
[1:m] − xk−1

[1:m]∥ + ∥yk−1 − yk−2∥ +
8ζ

δ
(φ(L̂β(ŵk) − L̂β(ŵ∗))). (2.42)

Considering k = k̃ + 1 in the relation above, one has

3
+∞∑

i=k̃+1

∥xi+1
[1:m] − xi

[1:m]∥ + 2
+∞∑

i=k̃+1

∥yi+1 − yi∥

≤ 2∥yk̃+1 − yk̃∥ + ∥xk̃+1
[1:m] − xk̃

[1:m]∥ + ∥yk̃ − yk̃−1∥ + 8ζ
δ (φ(L̂β(ŵk̃+1) − L̂β(ŵ∗))).

From Lemma 2.2, this immediately shows that

3
+∞∑

k=k̃+1

∥xk+1
[1:m] − xk

[1:m]∥ + 2
+∞∑

k=k̃+1

∥yk+1 − yk∥ < +∞.
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Thus

+∞∑
k=0

∥xk+1
[1:m] − xk

[1:m]∥ < +∞,

+∞∑
k=0

∥yk+1 − yk∥ < +∞.

Combining this with (2.21), we further obtain
+∞∑
k=0

∥λk+1−λk∥ < +∞. Meanwhile, noticing that

∥wk+1 − wk∥ =(∥xk+1
[1:m] − xk

[1:m]∥
2 + ∥yk+1 − yk∥2 + ∥λk+1 − λk∥2)

1
2

≤∥xk+1
[1:m] − xk

[1:m]∥ + ∥yk+1 − yk∥ + ∥λk+1 − λk∥,

therefore,

+∞∑
k=0

∥wk+1 − wk∥ < +∞, (2.43)

and {wk} is a Cauchy sequence. Indeed, with q > p > l, we obtain

∥wq − wp∥ =
∥∥∥ q−1∑

k=p

(wk+1 − wk)
∥∥∥ ≤

q−1∑
k=p

∥wk+1 − wk∥.

Since (2.43) implies that
+∞∑

k=l+1

∥wk+1 − wk∥ → 0 as l → +∞, it follows that {wk} is a Cauchy

sequence and hence is a convergent one. From Theorem 2.3, we know that {wk} converges to
a critical point of Lβ(·). This completes the proof. �

Nextly, we give some sufficient conditions to guarantee the sequence {wk} is bounded.

Lemma 2.5. Assumption H and the following conditions (i)-(iii) are true. Then, the sequence
{wk} is bounded.

(i) fi (i = 1, 2, · · · ,m) are coercive, respectively, i.e., lim inf
∥xi∥→+∞

fi(xi) = +∞;

(ii) The relaxation factors r and s satisfy (2m + 3)s− r ≥ m + 2 and s > 1
2 ;

(iii) ḡ(y) := g(y) − 1
(2s−1)β ∥∇g(y)∥2 has a lower bound and it is coercive, i.e.,

inf
y
ḡ(y) > −∞, lim inf

∥y∥→+∞
ḡ(y) = +∞.

Proof. It follows from L̂β(ŵk) is monotonically decreasing that L̂β(ŵk) ≤ L̂β(ŵ0) = Lβ(w0) <
+∞. Combining this with (2.11), (2.20) and the condition (ii), we have

Lβ(wk) + δ0∥yk − yk−1∥2

=
m∑
i=1

fi(x
k
i ) + g(yk) − ⟨λk,

m∑
i=1

Aix
k
i + yk − b⟩ +

β

2

∥∥∥ m∑
i=1

Aix
k
i + yk − b

∥∥∥2 + δ0∥yk − yk−1∥2

(2.20)
=

m∑
i=1

fi(x
k
i ) + g(yk) − ⟨∇g(yk) + ∇ϕ̂(yk) −∇ϕ̂(yk−1),

m∑
i=1

Aix
k
i + yk − b⟩

+
(2s− 1)β

2

∥∥∥ m∑
i=1

Aix
k
i + yk − b

∥∥∥2 + δ0∥yk − yk−1∥2

=
m∑
i=1

fi(x
k
i ) + g(yk) − 1

2(2s− 1)β
∥∇g(yk) + ∇ϕ̂(yk) −∇ϕ̂(yk−1)∥2 + δ0∥yk − yk−1∥2
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+
(2s− 1)β

2

∥∥∥ m∑
i=1

Aix
k
i + yk − b− 1

(2s− 1)β
[∇g(yk) + ∇ϕ̂(yk) −∇ϕ̂(yk−1)]

∥∥∥2
≥

m∑
i=1

fi(x
k
i ) + g(yk) − 1

(2s− 1)β
∥∇g(yk)∥2

− 1

(2s− 1)β
∥∇ϕ̂(yk) −∇ϕ̂(yk−1)∥2 + δ0∥yk − yk−1∥2

+
(2s− 1)β

2

∥∥∥ m∑
i=1

Aix
k
i + yk − b− 1

(2s− 1)β
[∇g(yk) + ∇ϕ̂(yk) −∇ϕ̂(yk−1)]

∥∥∥2
≥

m∑
i=1

fi(x
k
i ) + g(yk) − 1

(2s− 1)β
∥∇g(yk)∥2 −

L2
ϕ̂

(2s− 1)β
∥yk − yk−1∥2 + δ0∥yk − yk−1∥2

+
(2s− 1)β

2

∥∥∥ m∑
i=1

Aix
k
i + yk − b− 1

(2s− 1)β
[∇g(yk) + ∇ϕ̂(yk) −∇ϕ̂(yk−1)]

∥∥∥2
=

m∑
i=1

fi(x
k
i ) + ḡ(yk) +

(
δ0 −

L2
ϕ̂

(2s− 1)β

)
∥yk − yk−1∥2

+
(2s− 1)β

2

∥∥∥ m∑
i=1

Aix
k
i + yk − b− 1

(2s− 1)β
[∇g(yk) + ∇ϕ̂(yk) −∇ϕ̂(yk−1)]

∥∥∥2
≥

m∑
i=1

fi(x
k
i ) + ḡ(yk)

+
(2s− 1)β

2

∥∥∥ m∑
i=1

Aix
k
i + yk − b− 1

(2s− 1)β
[∇g(yk) + ∇ϕ̂(yk) −∇ϕ̂(yk−1)]

∥∥∥2
=:Q(xk

1 , · · · , xk
m, yk, yk−1).

where the final inequality follows from δ0−(L2
ϕ̂
)/[(2s−1)β] ≥ 0 since δ0 = [(m+2)L2

ϕ̂
]/[(r+s)β],

(2m + 3)s − r ≥ m + 2 and s > 1
2 . Noticing that the lower semicontinuity functions fi are

coercive, one has, inf
xi

fi(xi) > −∞ (i = 1, , · · · ,m). Hence,

 Q(xk
1 , · · · , xk

m, yk, yk−1) ≤ L̂β(ŵ0) = Lβ(w0) < +∞,

inf
xi

fi(xi) > −∞, i = 1, · · · ,m, inf
y
ḡ(y) > −∞, s >

1

2
,

which implies {xk
i } (i = 1, · · · ,m), {yk} and {

m∑
i=1

Aix
k
i + yk − b− 1

(2s−1)β [∇g(yk) + ∇ϕ̂(yk) −

∇ϕ̂(yk−1)]} are bounded, further, {∇g(yk) + ∇ϕ̂(yk) −∇ϕ̂(yk−1)} is bounded. Together with
(2.20), it holds that {λk} is also bounded. Then, {wk} is bounded, and this completes the
proof. �

3 Convergence Rate

Theorem 3.1 (Convergence rate of L̂β(ŵk)). Suppose that Assumption H holds, and the se-

quence {wk} is bounded. Let L̂β(ŵ) satisfies the  Lojasiewicz property at ŵ∗. Define Γk =

L̂β(ŵk) − L̂β(ŵ∗) with L̂β(ŵ∗) = lim
k→+∞

L̂β(ŵk). There exist θ ∈ [0, 1) and α > 0, such that,
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for any ǩ ≥ 2,

αΓ2θ
k ≤ Γk−2 − Γk, ∀ k ≥ ǩ. (3.1)

In addition, the following claims are true:
(i) if θ = 0, then Γk → 0 in a finite number of iterations;
(ii) if θ ∈ (0, 1

2 ], there exists τ ∈ [0, 1) such that Γk = O(τk) for all k ≥ ǩ;

(iii) if θ ∈ ( 1
2 , 1), then Γk = O(k1/(1−2θ)) for all k ≥ ǩ.

Proof. From (2.39), we have, for any k ≥ 2,

1

3ζ2
∥εk∥2 ≤ ∥xk

[1:m] − xk−1
[1:m]∥

2 + ∥yk − yk−1∥2 + ∥yk−1 − yk−2∥2, (3.2)

where εk ∈ ∂L̂β(ŵk). By (2.12), there exists k0 ≥ 2 such that

∥xk
[1:m] − xk−1

[1:m]∥
2 + ∥yk − yk−1∥2 + ∥yk−1 − yk−2∥2 ≤ 1

δ
(Γk−2 − Γk), ∀ k ≥ k0. (3.3)

Together with (3.2), we have

1

3ζ2
∥εk∥2 ≤ 1

δ
(Γk−2 − Γk). (3.4)

Since L̂β(ŵ) satisfies the  Lojasiewicz property at ŵ∗, ŵk → ŵ∗, L̂β(ŵk) is monotonically

decreasing and L̂β(ŵk) → L̂β(ŵ∗) as k → +∞, then there exist ǩ ≥ k0, ϵ > 0, θ ∈ [0, 1) and

cl > 0 such that d(ŵk, ŵ∗) < ϵ and |L̂β(ŵk) − L̂β(ŵ∗)|θ ≤ cl · d(0, ∂L̂β(ŵk)) for any k ≥ ǩ. It
follows that

Γ2θ
k ≤ c2l ∥εk∥2 with εk ∈ ∂L̂β(ŵk), ∀ k ≥ ǩ.

Combining this with (3.4), one further yields

δ

3c2l ζ
2

Γ2θ
k ≤ Γk−2 − Γk.

Denote α = δ
3c2l ζ

2 , we get (3.1).

(i) Case θ = 0. We assume that Γk > 0 for any k ≥ ǩ. From (3.1), we have 0 <
α ≤ Γk−2 − Γk, which actually contradicts the fact that the right hand side converges to 0 as
k → +∞. Hence, there exists k̃ ≥ ǩ such that Γk = 0 for any k ≥ k̃.

(ii) Case θ ∈ (0, 1
2 ]. Then 2θ − 1 < 0. Let k ≥ ǩ + 1 be fixed. Since {Γi}i≥ǩ is a

monotonically decreasing sequence, we have Γi ≤ Γǩ for i = ǩ + 1, ǩ + 2, · · · , k. This, together
with (3.1), yields

αΓ2θ−1
ǩ

Γk ≤ αΓ2θ−1
k Γk ≤ Γk−2 − Γk, i.e., Γk ≤ 1

1 + αΓ2θ−1
ǩ

Γk−2.

We rearrange this to obtain two situations:

• If k − ǩ is odd, then

Γk ≤ Γk−2

1 + αΓ2θ−1
ǩ

≤ Γk−4

(1 + αΓ2θ−1
ǩ

)2
≤ · · · ≤

Γǩ−1

(1 + αΓ2θ−1
ǩ

)
k−ǩ+1

2

;
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• If k −K is even, then

Γk ≤ Γk−2

1 + αe2θ−1
ǩ

≤ Γk−4

(1 + αΓ2θ−1
ǩ

)2
≤ · · · ≤ Γǩ

(1 + αΓ2θ−1
ǩ

)
k−ǩ
2

.

Let τ :=
(

1

1+αΓ2θ−1

ǩ

)1/2 ∈ (0, 1). Then

Γk ≤ max{Γj : 0 ≤ j ≤ ǩ}
τ ǩ−k

=
max{Γj : 0 ≤ j ≤ ǩ}

τ ǩ
τk = O(τk), ∀ k ≥ ǩ.

(iii) Case θ ∈ ( 1
2 , 1). Then ν := 1 − 2θ < 0. From (3.1), we get

α ≤ (Γk−2 − Γk)Γ−2θ
k , ∀ k ≥ ǩ. (3.5)

Define h(t) = t−2θ for t ∈ [0,+∞). Clearly, h is monotonically decreasing as h′(t) = −2θt−(1+2θ)

< 0. This further gives h(Γk−2) ≤ h(Γk) for any k ≥ ǩ as Γk is monotonically decreasing, and
so h(Γk−2) ≤ h(t), t ∈ [Γk,Γk−2]. We consider two situations as follows.

• Assume that h(Γk) < 2h(Γk−2) for any k ≥ ǩ. This, together with (3.5), gets

α < 2(Γk−2 − Γk)h(Γk−2) =2h(Γk−2)

∫ Γk−2

Γk

1dt ≤ 2

∫ Γk−2

Γk

h(t)dt

=2

∫ Γk−2

Γk

t−2θdt =
2

1 − 2θ
(Γ1−2θ

k−2 − Γ1−2θ
k ),

which implies that

0 <
α(2θ − 1)

2
< Γ1−2θ

k − Γ1−2θ
k−2 .

Denote µ̂ = α(2θ−1)
2 > 0, one has

0 < µ̂ < Γν
k − Γν

k−2, ∀ k ≥ ǩ. (3.6)

• Assume that h(Γk) ≥ 2h(Γk−2). Then Γ−2θ
k ≥ 2Γ−2θ

k−2. This is equivalent to 1
2Γ2θ

k−2 ≥ Γ2θ
k ,

which by raising both sides to the power 1
2θ and letting q = (1/2)

1
2θ leads to qΓk−2 ≥ Γk. Since

qνΓν
k−2 ≤ Γν

k, we have (qν − 1)Γν
k−2 ≤ Γν

k − Γν
k−2. In view of qν − 1 > 0 and Γp → 0+ as

p → +∞, there exists µ̄ such that (qν − 1)Γν
k−2 > µ̄ for any k ≥ ǩ. Thus, we obtain

0 < µ̄ ≤ Γν
k − Γν

k−2, ∀ k ≥ ǩ. (3.7)

In both situations above, we get

0 < min{µ̂, µ̄} =: µ ≤ Γν
i − Γν

i−2, ∀ i ≥ ǩ,

where µ̂ and µ̄ are defined as in (3.6) and (3.7), respectively. Summing up inequality above for
i = ǩ + 1, · · · , k + 1(≥ ǩ + 1), we get

k+1∑
i=ǩ+1

(Γν
i − Γν

i−2) = (Γν
k+1 + Γν

k) − (Γν
ǩ

+ Γν
ǩ−1

) ≥ µ(k − ǩ + 1).
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This, together with Γk−1 ≥ Γk (for any k) and ν < 0, further gives

µ

2
(k − ǩ + 1) ≤ Γν

k+1 − Γν
ǩ−1

≤ Γν
k+1, ∀ k ≥ ǩ.

Then,

Γk+1 ≤
[µ

2
(k − ǩ + 1)

]1/ν
=

[µ
2

(k − ǩ + 1)
]1/(1−2θ)

= O((k + 1)1/(1−2θ)).

So, the claim (iii) is proved. �

Lemma 3.2. Suppose that the Assumption H holds, L̂β(ŵ) is a KL function, and w∗ is the
unique limit point of {wk}. Then, there exists ǩ ≥ 2 such that

∥wk − w∗∥ = O(max{φ(Γk),
√

Γk−2}), ∀ k ≥ ǩ, (3.8)

where Γk = L̂β(ŵk) − L̂β(ŵ∗) with L̂β(ŵ∗) = lim
k→+∞

L̂β(ŵk), φ ∈ Ξη with η > 0.

Proof. Let k0 ≥ 1, such that {Γk}k≥k0 is a monotonically decreasing sequence, and from (3.3),
there exists ǩ ≥ k0 + 1 such that, for any k ≥ ǩ,

∥xk
[1:m] − xk−1

[1:m]∥ + ∥yk − yk−1∥ + ∥yk−1 − yk−2∥ ≤
√

3

δ
(Γk−2 − Γk) ≤

√
3

δ
Γk−2. (3.9)

On the other hand, for q ≥ k, one has

q∑
i=k

∥xi+1
[1:m] − xi

[1:m]∥ ≥
q∑

i=k

(∥xi
[1:m] − x∗

[1:m]∥ − ∥xi+1
[1:m] − x∗

[1:m]∥)

=∥xk
[1:m] − x∗

[1:m]∥ − ∥xq+1
[1:m] − x∗

[1:m]∥.

Letting q → +∞ in the relation above, we give

+∞∑
i=k

∥xi+1
[1:m] − xi

[1:m]∥ ≥ ∥xk
[1:m] − x∗

[1:m]∥ − lim
q→+∞

∥xq+1
[1:m] − x∗

[1:m]∥ = ∥xk
[1:m] − x∗

[1:m]∥. (3.10)

Similarly,

+∞∑
i=k

∥yi+1 − yi∥ ≥ ∥yk − y∗∥. (3.11)

To proceed, from (2.42), (3.10) and (3.11), we have

∥xk
[1:m] − x∗

[1:m]∥ + ∥yk − y∗∥ ≤
(
∥yk − yk−1∥ +

1

2
∥xk

[1:m] − xk−1
[1:m]∥ +

1

2
∥yk−1 − yk−2∥

)
+

4ζ

δ
φ(L̂β(ŵk) − L̂β(ŵ∗)).

Together with (3.9) and the definition of Γk, one has

∥xk
[1:m] − x∗

[1:m]∥ + ∥yk − y∗∥ ≤ 4ζ
δ φ(Γk) +

√
3
δΓk−2 = O(max{φ(Γk),

√
Γk−2}). (3.12)
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Additionally, by relations (1.15) and (2.20), we get

∥λk − λ∗∥ =
∥∥∥∇g(yk) −∇g(y∗) + β(1 − s)

( m∑
i=1

Ai(x
k
i − x∗

i ) + (yk − y∗)
)

+ [∇ϕ̂(yk) −∇ϕ̂(y∗)] − [∇ϕ̂(yk−1) −∇ϕ̂(y∗)]
∥∥∥,

which implies,

∥λk − λ∗∥ =O(∥xk
[1:m] − x∗

[1:m]∥) + O(∥yk − y∗∥) + O(∥yk−1 − y∗∥)

=O(max{φ(Γk),
√

Γk−2}).

Together with (3.12), we obtain

∥wk − w∗∥ = O(max{φ(Γk),
√

Γk−2}), ∀ k ≥ ǩ,

and relation (3.8) holds true. �
Theorem 3.3 (Convergence rate of sequence). Suppose that the Assumption H holds, and w∗

is the unique limit point of {wk}. If L̂β(ŵ) satisfies the K L property at ŵ∗, and the associated
function

φ(t) = t1−θ : [0, η) → [0,+∞) with θ ∈ [0, 1),

then there exists ǩ ≥ 2 such that the following results hold:
(i) if θ = 0, then wk converges to w∗ in a finite number of iterations;
(ii) if θ ∈ (0, 1

2 ], there exists τ̂ ∈ [0, 1) such that ∥wk − w∗∥ = O(τ̂k) for all k ≥ ǩ;

(iii) if θ ∈ ( 1
2 , 1), then ∥wk − w∗∥ = O(k

1−θ
1−2θ ) for all k ≥ ǩ.

Proof. Since L̂β(ŵk) converges to L̂β(ŵ∗), lim
k→+∞

ŵk → ŵ∗, and L̂β(ŵ) satisfies the K L

property at ŵ∗, we conclude that there exist ϵ > 0, η > 0, φ ∈ Ξη and ǩ ≥ 2 such that for any

k ≥ ǩ, d(ŵ, ŵ∗) < ϵ, L̂β(ŵ∗) < L̂β(ŵk) < L̂β(ŵ∗) + η, and the K L property

φ′(Γk) · d(0, ∂L̂β(ŵk)) ≥ 1 (3.13)

holds. Now, let θ ∈ [0, 1) and φ(t) = t1−θ, then φ′(t) = (1 − θ)t−θ. This together with (3.13),
further yields Γθ

k ≤ d(0, ∂L̂β(ŵk)), ∀ k ≥ ǩ. This implies that L̂β(ŵ) satisfies the  Lojasiewicz
property at ŵ∗ for all k ≥ ǩ with cl = 1.

On the other hand, the associated function φ(t) = t1−θ : [0, η) → [0,+∞) with θ ∈ [0, 1),
then φ′(t) > 0. Together with Lemma 3.2 and {Γk} is a deceasing sequence, where Γk =
L̂β(ŵk) − L̂β(ŵ∗) with L̂β(ŵ∗) = lim

k→+∞
L̂β(ŵk), the relation (3.8) leads to

∥wk − w∗∥ = O(max{φ(Γk−2),
√

Γk−2}), ∀ k ≥ ǩ.

Then, together with the definition of φ, we have

∥wk − w∗∥ = O(max{Γ1−θ
k−2,

√
Γk−2}), ∀ k ≥ ǩ. (3.14)

Based on the relation (3.14) and the fact that L̂β(ŵ) satisfies the  Lojasiewicz property at
ŵ∗ for all k ≥ ǩ, and with the help of the relevant conclusions of Theorem 3.1, the proof is
further completed.

(i) If θ = 0, then Γk → 0 in a finite numbers of iterations. Then, from (3.14), wk converges
to w∗ in a finite numbers of iterations.

(ii) If θ ∈ (0, 1
2 ], then by (3.14), we further give max{Γ1−θ

k−2,
√

Γk−2} =
√

Γk−2. Let

τ̂ := τ
1
2 . By Theorem 3.1 (ii) for any k ≥ ǩ it holds ∥wk − w∗∥ = O(τ̂k).

(iii) If θ ∈ ( 1
2 , 1), then for any k ≥ ǩ, from (3.14) and Theorem 3.1 (iii), we get ∥wk−w∗∥ =

O(k
1−θ
1−2θ ) holds. �
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4 Numerical Experiments

In this section, we conduct numerical experiments to show the performances of BPSADMM.
All experiments are run in MATLAB R2014b on a 64-bit Dell laptop with Intel(R) Xeon(R)
E-2186M CPU (2.90 GHz), 128.00 GB RAM and Windows 10 operating system.

4.1 Implementation Details

Testing model. We consider the following three-block robust principal component analysis
(PCA) nonconvex optimization model[4, 24] from the application of matrix decomposition,

min
L,S,T

∥L∥~ + γ∥S∥1/21/2 +
ω

2
∥T −M∥2F , s.t. L + S = T, (4.1)

where M ∈ Rp×n is the given observation matrix, L, S, T ∈ Rp×n are decision making matrices

(variable), low-rank term ∥L∥~ :=
min(p,n)∑

i=1

|σi(L)|1/2 with σi(L) is the singular value of the

low-rank matrix L, sparse term ∥S∥1/21/2 :=
p∑

i=1

n∑
j=1

|Sij |1/2, γ is a trade-off parameter between

∥L∥~ and ∥S∥1/21/2, ω is a penalty parameter related to the noise level, and ∥ · ∥F denotes the

Frobenius norm of matrix, i.e., ∥A∥F = ∥(aij)∥F =

√
p∑

i=1

n∑
j=1

|aij |2.

The model (4.1) is a three-block case of the problem (1.2) discussed in this work. ∥ · ∥2
norm and inner product operator in vector space Rn are extended to Frobenius norm and

⟨A,B⟩ =
p∑

i=1

n∑
j=1

aijbij in matrix space Rp×n, respectively, and the ALF of model (4.1) is given

by

Lβ(L, S, T, λ) = ∥L∥~ + γ∥S∥1/21/2 +
ω

2
∥T −M∥2F − ⟨λ,L + S − T ⟩ +

β

2
∥L + S − T ||2F .

Applying BPSADMM to solve model (4.1), and according to different positions of multiplier

λk+ 1
2 , the following two iterative schemes are obtained.

BPSADMM-I:

Lk+1 = arg min
L

{
Lβ(L, Sk, T k, λk) +

ν1
2
∥L− Lk∥2F

}
,

λk+ 1
2 = λk − rβ(Lk+1 + Sk − T k),

Sk+1 = arg min
S

{
Lβ(Lk+1, S, T k, λk+ 1

2 ) +
ν2
2
∥S − Sk∥2F

}
,

T k+1 = arg min
T

{
Lβ(Lk+1, Sk+1, T, λk+ 1

2 ) +
ν3
2
∥T − T k∥2F

}
,

λk+1 = λk+ 1
2 − sβ(Lk+1 + Sk+1 − T k+1).

(4.2)

BPSADMM-II:

Lk+1 = arg min
L

{
Lβ(L, Sk, T k, λk) +

ν1
2
∥L− Lk∥2F

}
Sk+1 = arg min

S

{
Lβ(Lk+1, S, T k, λk) +

ν2
2
∥S − Sk∥2F

}
,

λk+ 1
2 = λk − rβ(Lk+1 + Sk+1 − T k),

T k+1 = arg min
T

{
Lβ(Lk+1, Sk+1, T, λk+ 1

2 ) +
ν3
2
∥T − T k∥2F

}
,

λk+1 = λk+ 1
2 − sβ(Lk+1 + Sk+1 − T k+1).

(4.3)
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Referring to [27], and noticing that the smooth quadratic characteristic of T -subproblem in
(4.2)/(4.3), the iterations above can be further reduced to

BPSADMM-I:



Lk+1 = arg min
L

{
∥L∥~ − ⟨λk, L⟩ +

β

2
∥L + Sk − T k∥2F +

ν1
2
∥L− Lk∥2F

}
= H

(β (
T k − Sk

)
+ λk + ν1L

k

β + ν1
,

1

β + ν1

)
,

λk+ 1
2 = λk − rβ(Lk+1 + Sk − T k),

Sk+1 = arg min
S

{
γ∥S∥1/21/2 − ⟨λk+ 1

2 , S⟩ +
β

2
∥Lk+1 + S − T k∥2F +

ν2
2
∥S − Sk∥2F

}
= H

(β (
T k − Lk+1

)
+ λk+ 1

2 + ν2S
k

β + ν2
,

γ

β + ν2

)
,

T k+1 = arg min
T

{ω

2
∥T −M∥2F + ⟨λk+ 1

2 , T ⟩ +
β

2
∥Lk+1 + Sk+1 − T∥2F + ν3

2 ∥T − T k∥2F
}

=
β
(
Lk+1 + Sk+1

)
+ ωM − λk+ 1

2 + ν3T
k

ω + β + ν3
,

λk+1 = λk+ 1
2 − sβ(Lk+1 + Sk+1 − T k+1),

(4.4)

and BPSADMM-II:



Lk+1 = arg min
L

{
∥L∥~ − ⟨λk, L⟩ +

β

2
∥L + Sk − T k∥2F +

ν1
2
∥L− Lk∥2F

}
= H

(β (
T k − Sk

)
+ λk + ν1L

k

β + ν1
,

1

β + ν1

)
,

Sk+1 = arg min
S

{
γ∥S∥1/21/2 − ⟨λk, S⟩ +

β

2
∥Lk+1 + S − T k∥2F +

ν2
2
∥S − Sk∥2F

}
= H

(β (
T k − Lk+1

)
+ λk + ν2S

k

β + ν2
,

γ

β + ν2

)
,

λk+ 1
2 = λk − rβ(Lk+1 + Sk+1 − T k),

T k+1 = arg min
T

{ω

2
∥T −M∥2F + ⟨λk+ 1

2 , T ⟩ +
β

2
∥Lk+1 + Sk+1 − T∥2F +

ν3
2
∥T − T k∥2F

}
=

β
(
Lk+1 + Sk+1

)
+ ωM − λk+ 1

2 + ν3T
k

ω + β + ν3
,

λk+1 = λk+ 1
2 − sβ(Lk+1 + Sk+1 − T k+1),

(4.5)

where H(·, 1
β+ν ) is the half shrinkage operator[27].

On the other hand, for comparison, applying BADMM[24] to model (4.1) yields that



Lk+1 = arg min
L

{
Lβ(L, Sk, T k, λk) +

ρ

2
∥L− Lk∥2F

}
,

Sk+1 = arg min
S

{
Lβ(Lk+1, S, T k, λk) +

ρ

2
∥S − Sk∥2F

}
,

T k+1 = arg min
T

{
Lβ(Lk+1, Sk+1, T, λk) +

ρ

2
∥T − T k∥2F

}
,

λk+1 = λk − β(Lk+1 + Sk+1 − T k+1).

Similar to the processing technique of (4.2)/(4.3), the BADMM iteration above can be further
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simplified as 

Lk+1 = H
(β (

T k − Sk
)

+ λk + ρLk

β + ρ
,

1

β + ρ

)
,

Sk+1 = H
(β (

T k − Lk+1
)

+ λk + ρSk

β + ρ
,

γ

β + ρ

)
,

T k+1 =
β
(
Lk+1 + Sk+1

)
+ ωM − λk + ρT k

ω + β + ρ
,

λk+1 = λk − β(Lk+1 + Sk+1 − T k+1).

(4.6)

Parameters setting. In our experiments, taking the observation matrix M = L∗ + S∗ + N ,
where L∗ and S∗ are the original low-rank matrix and sparse matrix that we want to recover
by the model (4.1), respectively, and N is a Gaussian noise matrix. In addition, “rank” denotes
the rank of the low-rank matrix L, and “spr” represents the sparsity ratio of the sparse matrix
S. The MATLAB codes that generate matrix M are shown below.

• L = randn(p, rank) ∗ randn(rank, n);
• S = zeros(p, n); q = randperm(p∗n); K = round(spr ∗ p ∗ n); S(q(1 : K)) = randn(K, 1);
• ϱ = 0.01; N = randn(p, n) ∗ ϱ;
• T = L + S; M = T + N.

Specifically, we set p = n = 100, 300 and 500, and for each dimension, four decomposition
models are tested respectively, namely,

(rank, spr) = (25, 0.05), (25, 0.1), (30, 0.05), (30, 0.1).

Moreover, we set γ = 0.1√
p , ω = 2, β = 5.5. The parameters of BPSADMM-I and BPSADMM-

II are chosen as r = s = 1, ν1 = 0.3 and ν2 = ν3 = 15. For BADMM (4.6), the parameters
are the same as[24], that is ρ = 0.3. The matrices L, S, T are initialized by zero matrices. We
terminate the iteration when the number of iterations Itr > 300 is satisfied.

4.2 Numerical Results

Table 1. Comparison the performance of BPSADMM-I, BPSADMM-II and BADMM

Data BPSADMM-I BPSADMM-II BADMM

Problem size (rank, spr) Tcpu(s) RelErr Tcpu(s) RelErr Tcpu(s) RelErr

p = n = 100 (25, 0.05) 1.38 1.304370e-02 1.39 2.211021e-02 1.45 4.868507e-02

(25, 0.1) 1.35 3.514360e-02 1.37 4.047266e-02 1.47 5.815192e-02

(30, 0.05) 1.36 1.745922e-02 1.40 2.622026e-02 1.46 5.481113e-02

(30, 0.1) 1.36 3.631817e-02 1.38 4.310971e-02 1.46 6.391727e-02

p = n = 300 (25, 0.05) 11.36 1.713243e-02 12.22 2.058489e-02 13.49 3.390832e-02

(25, 0.1) 11.22 4.396118e-02 12.13 4.421682e-02 13.03 3.732762e-02

(30, 0.05) 11.37 1.785201e-02 12.20 2.142713e-02 13.13 3.713961e-02

(30, 0.1) 11.27 4.170349e-02 12.19 4.206969e-02 12.98 4.028103e-02

p = n = 500 (25, 0.05) 31.15 2.573066e-02 32.81 2.742151e-02 35.11 3.420691e-02

(25, 0.1) 31.45 5.110801e-02 32.94 5.018707e-02 34.51 4.101933e-02

(30, 0.05) 31.23 2.371600e-02 33.44 2.567142e-02 35.70 3.696487e-02

(30, 0.1) 31.09 4.658065e-02 33.36 4.619092e-02 34.89 4.284460e-02

In this subsection, we present some simulation results for the robust PCA model (4.1). To
describe the quality of recovery, we use the relative error as a performance measure, i.e.,

RelErr :=
∥(L̂, Ŝ, T̂ ) − (L∗, S∗, T ∗)∥F

∥(L∗, S∗, T ∗)∥F + 1
,
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where L̂, Ŝ and T̂ be a numerical solution of model (4.1).
In the numerical experiment, we use BPSADMM-I (4.4), BPSADMM-II (4.5) and BADMM

(4.6) to test the model (4.1), respectively. The main numerical results are reported in Table
1, and denote the computing time (seconds) of CPU as “Tcpu(s)”. As can be seen from Table
1, for the “Tcpu(s)”, BPSADMM-I and BPSADMM-II are significantly better than BADMM.
In terms of relative error, the BPSADMM-I and BPSADMM-II are not inferior to BADMM.
In addition, BPSADMM-I is superior to BPSADMM-II. Thus, from the numerical test results
and analysis, it can be seen that the numerical effect of BPSADMM is better than BADMM
for the given test problems.

5 Concluding Remarks

In this paper, combining the idea of symmetric ADMM (in two-block optimization) and the
Bregman distance, we proposed a Bregman-style partially symmetric ADMM (BPSADMM).
Under some suitable assumptions, it has shown that any limit point of the iteration sequence
generated by BPSADMM is a critical point of the problem (1.2). Based on the potential
function satisfies the KL property, we also proved that the iteration sequence generated by
BPSADMM is strongly convergent. Moreover, we analyzed the convergence rate results of both
the potential function and iteration sequences under  Lojasiewicz property.

In the following research, we will attempt to establish a more representative method by
adding a multiplier update formula after each subproblem. In addition, we also want to combine
inertial technology to accelerate the iteration and make it get better numerical results.

Acknowledgments. The authors wish to thank the Editor-in-Chief and the two anonymous
referees for their very professional reviews and quite useful suggestions, which greatly helped
us to improve the original version of this paper.
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