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1 Introduction

In this paper, we consider the following nonlinear autonomous discrete system

x(k + 1) = Ax(k) +Bu(k) + f(x(k)), k ∈ Z+, (1.1)

where Z+ is the set of all positive integers, x(k) ∈ Rn is the state variable, u(k) ∈ Rp is the
control variable, A is an n× n constant matrix; B is an n× p constant matrix; f : Rn → Rn is
a continuous mapping in x. The nonautonomous form is as follows

x(k + 1) = A(k)x(k) +B(k)u(k) + f(k, x(k)), k ∈ Z+, (1.2)

where x(k) ∈ Rn is the state variable, u(k) ∈ Rp is the control variable, A(k) is an n×n matrix,
B(k) is an n× p matrix, f : R× Rn → Rn is a continuous mapping.

The idea of controllability was put forward by Kalman in the 1960s[6] where he established
a powerful fundamental principle. Similar problems for nonlinear systems became rapidly de-
veloped. For some classical liturate, see Chow[1], Hermann[4], Haynes & Hermes[3], Lobry[8],
Sussman & Jurdevic[10], Krener[7], Hermann[5].

The controllability of nonlinear discrete systems result from some practical problems, for
example, engineering, biology and economic fields, in which the state variable and the control
variable in time are discrete. Therefore, discrete control problems are important in applica-
tions. In recent years, there have been some results in studying the controllability for discrete
nonlinear systems. For instance, Tie Lin studied controllability, small-controllability and near-
controllability of nonlinear systems, see [12–14]. Zhao and Sun[15] used a geometric method
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based on the differential geometric analysis and Lie group theory to study discrete impulsive
nonlinear systems. In the usual study, the linear parts of nonlinear systems are required to be
non-degenerate, more precisely, in (1.1),

rank(B,AB, · · · , AN−1B) = n.

However, the rank of the control matrix is singular, i.e; its

rank(B,AB, · · · , AN−1B) < n,

how controllability takes place. So far this topic has been paid rare attention. Tan and Li[11]

studied the null controllability for nonlinear discrete control systems with degeneracy by using
Cayley-Hamilton theorem and Brouwer’s fixed point theorem.

The purpose of this paper is to establish sufficient conditions for the controllability of
nonlinear discrete systems. Compared with the existing studies, we study the controllability
of nonlinear discrete systems, in which linear parts might admit certain degeneracy. We give
sufficient conditions guaranteeing the controllability of nonlinear discrete systems via Fredholm
operators and coincidence degree theory. This is a new method for studying the controllability
of discrete systems. In our approach, the linear part of systems under consideration might
admit some degeneracy. We give some examples to verify our results. Those examples show
that although sometimes linear parts admit degeneracy, systems are still controllable under
certain prior estimate and transversality condition for nonlinear terms.

2 Fredholm Operator and Coincidence Degree Theorem

We begin with a brief summary of the Leray-Schauder degree of mapping theory. Let Φ :
X → X be a completely continuous mapping on a Banach space X. Let Ω be a bounded
open set in X with boundary ∂Ω. Then there exists an integer value function: Leray-Schauder
degree degLS(I − Φ,Ω, p), for any p /∈ (I − Φ)(∂Ω). It possesses the following regularity: if
degLS(I −Φ,Ω, p) ̸= 0, then the equation x−Φ(x) = p admits a solution in Ω. If X is a finite-
dimensional spaces, Leray-Schauder degree defines Brouwer degree. In this paper, degB(·, ·, ·)
denotes Brouwer degree. For a more complete treatment of the Leray-Schauder degree theory[9].

Next we introduce the main methods used in this paper: Fredholm operators and coincidence
degree theory[2].

Definition 2.1. Let X and Z be real normed vector spaces. A linear mapping L : domL ⊆
X → Z is called Fredholm if the following conditions hold:
(i) Ker L := L−1{0} has finite dimension;
(ii) ImL = L(domL) is closed and has finite codimension.

Definition 2.2. If L is a Fredholm operator, then index of L is the integer IndL = dimKer L−
codim ImL, where codim ImL = dim(Z/ImL).

Here domL is the domain of definition for mapping L, Ker L := L−1{0} is a kenel space
of mapping L, ImL denotes the image of mapping L, dimKer L is the dimension of Ker L,
codim ImL = dim(Z/ImL) is the codimension of ImL.

Obviously, L is called a Fredholm operator of index zero if ImL is closed and dimKerL =
codim ImL < +∞.

For a Fredholm operator L : domL ⊆ X → Z, there exist continuous projectors P : X → X
and Q : Z → Z such that ImP = KerL, KerQ = ImL, thereby X = KerL ⊕ KerP and
Z = ImL⊕ ImQ.
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Let LP := L|domL∩KerP . Then LP : domL ∩ KerP → ImL is a bijection. The inverse
mapping is defined by KP := ImL → domL ∩ KerP and let KP,Q : Z → domL ∩ KerP ,
KP,Q = KP (I −Q).

If L is a Fredholm operator of index zero, then dimKerL = codim ImL. Hence there exists
an isomorphism J : ImQ → KerP , let us define HJ,P,Q : Z → domL by HJ,P,Q = JQ+KP,Q,
then HJ,P,Q is an algebraic isomorphism.

Definition 2.3. Let L : domL ⊆ X → Z be a Fredholm operator of index zero, E ⊆ X. A
continuous mapping N : E → Z is called L-compact if QN : E → Z and KP,QN : E → X
are all compact. N is called L-completely continuous in E if N is L-compact in each bounded
subset.

Let L : domL ⊆ X → Z be a Fredholm operator of index zero, Ω an open bounded subset
of X, and N : Ω → Z an L-completely continuous mapping. On domL∩Ω,HJ,P,Q(L−N ) =
I − P − JQN − KP,QN = I − T , where T := P + JQN + KP,QN . Since P is a finite
dimensional linear operator and N an L-completely continuous mapping, T : Ω → X is a
completely continuous mapping. Suppose that Lx ̸= N x,∀x ∈ domL ∩ ∂Ω holds. Since
HJ,P,Q : Z → domL is an algebraic isomorphism, we know that Tx ̸= x,∀x ∈ ∂Ω. Hence,
Leray-Schauder degree degLS(I − T,Ω, 0) is well-defined.

Definition 2.4. D[(L,N ), Ω] = degLS(I −T,Ω, 0) is called coincidence degree of operators L
and N in Ω.

The following properties are basic.
Homotopy invariance: If H : Ω × [0, 1] → Z is L-compact in Ω × [0, 1], and Lx ̸=

H(x, λ), ∀(x, λ) ∈ domL ∩ ∂Ω × [0, 1], then D[(L,H(·, λ)), Ω] is a constant for all λ ∈ [0, 1].
Normal property: If D[(L,N ), Ω] ̸= 0, then there exists at least one solution x ∈

domL ∩Ω such that Lx = N x.

3 Main Results

By nonlinear autonomous discrete control system (1.1), we have

x(1) = Ax(0) +Bu(0) + f(x(0)),

x(2) = Ax(1) +Bu(1) + f(x(1))

= A2x(0) +ABu(0) +Bu(1) +Af(x(0)) + f(x(1)),

...

x(k) = Ax(k − 1) +Bu(k − 1) + f(x(k − 1)) = · · ·

= Akx(0) +

k−1∑
i=0

Ak−1−iBu(i) +

k−1∑
i=0

Ak−1−if(x(i)),

i.e.,

x(N) = ANx(0) +
N−1∑
i=0

AN−1−iBu(i) +
N−1∑
i=0

AN−1−if(x(i)). (3.1)

Let S, T ⊂ Rn be two given sets.

Definition 3.1. System (1.1) is said to be controllable with respect to (S, T ) if for any ξ ∈
S, η ∈ T there exist a positive integer N and a control sequence u(0), u(1), · · · , u(N − 1) such
that the solution sequence x(0), x(1), · · · , x(N) of (1.1) starting at x(0) = ξ satisfies x(N) = η.
If S = T = Rn, then (1.1) is said to be completely controllable.
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Put (3.1) into the vector form

(B,AB, · · · , AN−1B)


u(N − 1)

u(N − 2)
...

u(0)

 = x(N)−ANx(0)−
N−1∑
i=0

AN−1−if(x(i)), (3.2)

where N is a positive integer. Then

M := (B,AB, · · · , AN−1B)

is an n×m matrix with m = Np,

v := (u(N − 1), u(N − 2), · · · , u(0))T

is an m dimensional vector,

F (v, x(0), x(N)) := x(N)−ANx(0)−
N−1∑
i=0

AN−1−if(x(i))

is continuous in (v, x). Thus (3.2) can be written as

Mv = F (v, x(0), x(N)),

equivalently

M̃v := MTMv = MTF (v, x(0), x(N)) := F̃ (v, x(0), x(N)). (3.3)

Obviously, if for any given x(0) and x(N) there exists a vector v satisfying (3.3), system (1.1)
is controllable. We turn the controllability problem of system (1.1) into a solvability problem
of (3.3). So we use Fredholm operators and coincidence degree to get the existence of solutions
of (3.3).

Theorem 3.2. Suppose that f is continuous and there exists a bounded open non-empty subset
Ω of Rm such that the following conditions hold:
(i) for any λ ∈ (0, 1), and x(0) = ξ ∈ S, x(N) = η ∈ T , equation

M̃v = λF̃ (v, x(0), x(N)) (3.4)

has no solution v on ∂Ω;
(ii) for all v ∈ Ker M̃ ∩ ∂Ω, QF̃ (v, x(0), x(N)) ̸= 0;
(iii) degB(QF̃ |Ker M̃ ,Ker M̃ ∩Ω, 0) ̸= 0.
Then (3.3) has at least one solution, and nonlinear autonomous discrete control system (1.1)
is controllable with respect to (S, T ), where mapping Q : Rm → Rm is a continuous projector
satisfying KerQ = Im M̃ .

Remark 3.3. When M := (B,AB, · · · , AN−1B) is singular, if the nonlinear term f satisfies
prior estimate condition (ii) and transversality condition (iii) of Theorem 3.1, then discrete
control system (1.1) is controllability.

Proof of Theorem 3.1. Let X = Rm be endowed with the norms ∥v∥ =
( m∑
i=1

v2i
)1/2

Let

L : X → X, Lv = M̃v. Then dimKerL = n− rank(M̃) and dim ImL = rank(M̃). Obviously,
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dimKerL = codim ImL < +∞. In addition, because L is linear, ImL is closed. Thus L is a
Fredholm operator of index zero. Let

N : Ω ⊆ X → X, N v = F̃ (v, x(0), x(N)).

Define H(v, λ) by

H(v, λ) = λN v + (1− λ)QN v, λ ∈ [0, 1], v ∈ Ω.

Since the operators under consideration are all finitely dimensional, they are L-completely.
Consider the auxiliary equation

Lv = H(v, λ). (3.5)

Case I. λ = 1. (3.5) is equivalent to Lv = N v. We can assume that there exists no solution
on ∂Ω, otherwise Theorem 3.1 holds.

Case II. λ = 0. (3.5) is equivalent to Lv = QN v. If there exists v ∈ ∂Ω such that (3.5)
holds, then Lv = 0 and QN v = 0, which contradicts condition (ii) of Theorem 3.1. Hence, for
λ = 0 (3.5) has no solution on ∂Ω.

Case III. λ ∈ (0, 1). If there exist v0 ∈ ∂Ω and λ0 ∈ (0, 1) such that (3.5) holds, then

Lv0 = H(v0, λ0) = λ0N v0 + (1− λ0)QN v0 = λ0(I −Q)N v0 +QN v0.

It is equivalent to

Lv0 = λ0(I −Q)N v0, QN v0 = 0,

i.e. Lv0 = λ0N v0, which contradicts condition (i) of Theorem 3.1. Hence, for all (v, λ) ∈
∂Ω × [0, 1], (3.5) has no solution, i.e. for all (v, λ) ∈ ∂Ω × [0, 1], Lv ̸= H(v, λ). Consequent-
ly, coincidence degree D[(L,H(·, λ)), Ω] is well-defined. And it follows from the homotopy
invariance of coincidence degree that

D[(L,H(·, λ)), Ω] = D[(L,H(·, 1)), Ω] = D[(L,H(·, 0)), Ω].

Thus we just need to prove D[(L,H(·, 0)), Ω] ̸= 0. Notice that H(v, 0) = QN v, and

HJ,P,Q(L−H(·, 0)) = (JQ+KP,Q)(L−QN ) = I − P − JQN ,

where J , P , KP,Q and HJ,P,Q are defined in the section of Fredholm Operator and Coincidence
Degree Theory. Consequently,

D[(L,H(·, 0)), Ω] = degLS(I − P − JQN , Ω, 0)

= degB((I − P − JQN )|KerL,KerL ∩Ω, 0)

= degB((−JQN )|KerL,KerL ∩Ω, 0)

= (−1)dimKerL degB(JQN )|KerL,KerL ∩Ω, 0)

= (−1)dimKerL degB(QN )|KerL,KerL ∩Ω, 0)

̸= 0.

It follows that D[(L,H(·, 1)), Ω] = D[(L,H(·, 0)), Ω] ̸= 0. By the normal property of coinci-
dence degree, the equation Lv = N v has at least one solution in domL ∩ Ω. So (3.3) has at
least one solution in Ω. Consequently, nonlinear autonomous discrete control system (1.1) is
controllable with respect (S, T ).

Applying Theorem 3.1 to the non-degenerate case: rank(B,AB, · · · , AN−1B) = n, we have:
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Theorem 3.4. Suppose that f is continuous and bounded in x, and M̃ nonsingular. Then
nonlinear autonomous discrete control system (1.1) is completely controllable.

Proof. First, we prove that the set

Ω1 = {v ∈ Rm : Lv = λN v, λ ∈ [0, 1]}

is bounded. Matrix M̃ is nonsingular, so the inverse matrix M̃−1 is given. For any v ∈ Ω1, we
have

M̃v = λF̃ (v, x(0), x(N)) = −λ
(
− x(N) +ANx(0) +

N−1∑
i=0

AN−1−if(x(i))
)
,

v = −λM̃−1
(
− x(N) +ANx(0) +

N−1∑
i=0

AN−1−if(x(i))
)
.

Thus, we have

∥v∥ ≤ |λ|∥M̃−1∥
(
∥ − x(N)∥+ ∥AN∥∥x(0)∥+

N−1∑
i=0

∥AN−1−i∥∥f(x(i))∥
)

≤ ∥M̃−1∥
(
∥x(N)∥+ ∥AN∥∥x(0)∥+

N−1∑
i=0

∥AN−1−i∥∥f(x(i))∥
)
.

f is bounded, since there exists a real number f0 such that ∥f∥ ≤ f0. For given x(0) and x(N),

∥v∥ ≤ ∥M̃−1∥
(
∥x(N)∥+ ∥AN∥∥x(0)∥+

N−1∑
i=0

∥AN−1−i∥f0
)
.

Hence, Ω1 is bounded. We define γ ∈ R and

γ = ∥M̃−1∥
(
∥x(N)∥+ ∥AN∥∥x(0)∥+

N−1∑
i=0

∥AN−1−i∥f0
)
.

From the proof of Theorem 3.1, L is a Fredholm operator of index zero and N is L-completely
continuous. Let Ω0 = {v ∈ Rm : ∥v∥ ≤ γ+1}. Then for any v ∈ domL∩∂Ω0 and any λ ∈ [0, 1],
Lv ̸= λN . Thus D[(L,N ), Ω1] = D[(L, 0), Ω1] = ±1. By the normal property of coincidence
degree, the equation Lv = N v has at least one solution. Consequently, nonlinear autonomous
discrete control system (1.1) is completely controllable.

For nonautonomous form, we use similar approach to nonlinear autonomous discrete sys-
tems.

By nonlinear nonautonomous discrete system (1.2), we have

x(h+ 1) =A(h)x(h) +B(h)u(h) + f(h, x(h)),

x(h+ 2) =A(h+ 1)x(h+ 1) +B(h+ 1)u(h+ 1) + f(h+ 1, x(h+ 1))

=Φ(h+ 2, h)x(h) +
h+1∑
i=h

Φ(h+ 2, i+ 1)B(i)u(i)

+
h+1∑
i=h

Φ(h+ 2, i+ 1)f(i, x(i)),
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...

x(h+ k) =A(h+ k − 1)x(h+ k − 1) +B(h+ k − 1)u(h+ k − 1)

+ f(h+ k − 1, x(h+ k − 1))

= · · ·

=Φ(h+ k, h)x(h) +
h+k−1∑
i=h

Φ(h+ k, i+ 1)B(i)u(i)

+

h+k−1∑
i=h

Φ(h+ k, i+ 1)f(i, x(i)),

where the state-transition matrix Φ(k, h) (k ≥ h) is given by{
Φ(k, h) = A(k − 1)A(k − 2) · · ·A(h),

Φ(k, k) = I.

Definition 3.5. System (1.2) is said to be controllable with respect to (S, T ) if for any ξ ∈
S, η ∈ T , there exist a positive integer N and a control sequence u(h), u(h+1), · · · , u(h+N−1)
such that the solution sequence x(h), x(h + 1), · · · , x(h + N) of (1.2) starting at x(h) = ξ
satisfies x(h+N) = η. If S = T = Rn. Then (1.2) is said to be completely controllable.

Let

M1 := (B(h+N − 1) Φ(h+N,h+N − 1)B(h+N − 2) · · ·Φ(h+N,h+ 1)B(h)),

v :=


u(h+N − 1)

u(h+N − 2)
...

u(h)

 ,

F1(v, x(h), x(h+N)) := x(h+N)− Φ(h+N,h)x(h)−
h+N−1∑

i=h

Φ(h+N, i+ 1)f(i, x(i)).

Then the following equation

x(h+N) =Φ(h+N,h)x(h) +
h+N−1∑

i=h

Φ(h+N, i+ 1)B(i)u(i)

+
h+N−1∑

i=h

Φ(h+N, i+ 1)f(i, x(i)),

can be written as

M1v = F1(v, x(h), x(h+N)),

equivalently,

M̃1v := MT
1 M1v = MT

1 F1(v, x(h), x(h+N)) := F̃1(v, x(h), x(h+N)),

where N is a positive integer. Then M1 is an n×m matrix with m = Np, and v ∈ Rm.
We turn the controllability problem of system (1.2) into a solvability one and get the fol-

lowing theorems with the same proof of Theorem 3.1.
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Theorem 3.6. Suppose f is continuous and there exists a bounded open subset Ω of Rn such
that the following conditions hold:
(i) for any λ ∈ (0, 1), and x(0) = ξ ∈ S, x(N) = η ∈ T, equation M̃1v = λF̃1(v, x(h), x(h+N))
has no solution on ∂Ω;
(ii) for all v ∈ Ker M̃1 ∩ ∂Ω, and x(0) = ξ ∈ S, x(N) = η ∈ T, QF̃1(v, x(h), x(h+N)) ̸= 0;
(iii) degB(QF̃1|Ker M̃1

,Ker M̃1 ∩Ω, 0) ̸= 0.
Then nonlinear nonautonomous discrete control system (1.2) is controllable with respect to
(S, T ) in step h, where mapping Q : Rm → Rm is a continuous projector satisfying KerQ =
Im M̃1.

Theorem 3.7. Suppose that M̃1 is nonsingular, and f bounded and continuous. Then nonlinear
nonautonomous discrete control system (1.2) is completely controllable in step h.

Remark 3.8. We have the following criteria: if one of the following conditions holds, then M̃1

is nonsingular,
(i) rank(B(h+N − 1), A(h+N − 1)B(h+N − 2), · · · , A(h+N − 1) · · ·A(h+ 1)B(h)) = n;
(ii) MT

1 M1 is a positive-definite matrix.

4 Applications

For a specific nonlinear discrete control system, to apply Theorem 3.1, one can follow the
following steps.

1. Based on the specific control equation, for any given x(0) ∈ S and x(N) ∈ T we can get

F (v, x(0), x(N)) := x(N)−ANx(0)−
N−1∑
i=0

AN−1−if(x(i))

and

Mv := (B,AB, · · · , AN−1B)


u(N − 1)

u(N − 2)
...

u(0)

 ,

equivalently,

M̃v = MTMv;

2. By parameter equation M̃v = λF̃ (v, x(0), x(N)), we construct the set Ω of v, such that
for any λ ∈ (0, 1) the parameter equation has no solution on ∂Ω;

3. Based on M := (B AB · · · AN−1B), we get the continuous projection mapping Q
satisfying Ker Q = Im M̃ , with M̃ = MTM ;

4. Work out Ker M̃ ∩ ∂Ω, and for v ∈ Ker M̃ ∩ ∂Ω verify QF̃ (v, x(0), x(N)) ̸= 0.
5. Calculate degB(QF̃ |Ker M̃ ,Ker M̃ ∩Ω, 0) and verify degB(QF̃ |Ker M̃ ,Ker M̃ ∩Ω, 0) ̸= 0.
Notice that whenM andM1 are square matrices, we need to assume dimKerM+rankM = n

and dimKerM1 + rankM1 = n, which ensure the operators M and M1 are of zero-index.
The following we illustrate some applications by examples. Since M is a square matrix, we

consider the equation Mv = F (v, x(0), x(N)).

Example 1. Consider the controllability of the following nonlinear autonomous discrete control
system: (

x1(k + 1)

x2(k + 1)

)
=

(
1 0

0 0

)(
x1(k)

x2(k)

)
+

(
0

1

)
u(k) +

(
x3
2(k)

x1(k)x2(k)

)
. (4.1)
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Discrete control system (4.1) shows that

n = 2, p = 1, A =

(
1 0

0 0

)
, B =

(
0

1

)
.

We deduce that v = (u(1), u(0))T,

M = (B AB) =

(
0 0

1 0

)
,

and

F (v, x(0), x(2)) =

(
x1(2)− x1(0)− x3

2(0)− [u(0) + x1(0)x2(0)]
3

x2(2)− [x1(0) + x3
2(0)][u(0) + x1(0)x2(0)]

)
.

So the linear part of system (4.1) is degenerate. Obviously, KerM = ImM = {(0, y2)T ∈ R2 :
∀y2 ∈ R}. Let

Q : R2 → R2, (y1, y2)
T 7→ (y1, 0)

T.

Then mapping Q is a continuous projector satisfying KerQ = ImM .
For any x(0) = (x1(0), x2(0))

T, x(2) = (x1(2), x2(2))
T ∈ R2, by (3.4){

u(1) = λ[x1(2)− x1(0)− x3
2(0)]

4/3,

u(0) = 3
√

x1(2)− x1(0)− x3
2(0)− x1(0)x2(0).

Let

Ω := {v ∈ R2 : ∥v∥ < ([x1(2)− x1(0)− x3
2(0)]

8/3

+ [− 3

√
x1(2)− x1(0)− x3

2(0)− x1(0)x2(0)]
2)1/2 + 1}.

For any λ ∈ (0, 1), (3.4) has no solution on ∂Ω, because (3.4) has only one solution v =
(u(1), u(0))T and v = (u(1), u(0))T /∈ ∂Ω. Note that

KerM ∩ ∂Ω =
{
± (0, ([x1(2)− x1(0)− x3

2(0)]
8/3

+ [− 3

√
x1(2)− x1(0)− x3

2(0)− x1(0)x2(0)]
2)1/2 + 1)

}
,

QF
(
x(0),±(0, ([x1(2)− x1(0)− x3

2(0)]
8/3

+
[
− 3

√
x1(2)− x1(0)− x3

2(0)− x1(0)x2(0)
]2
)1/2 + 1)

)
̸= 0,

and

QF (v, x(0), x(2)) =

(
x1(2)− x1(0)− x3

2(0)− [u(0) + x1(0)x2(0)]
3

0

)
.

The determinant of Jacobi matrix JQF (v) is

JQF (v) =

∣∣∣∣∣ 0 3[u(0) + x1(0)x2(0)]
2

0 0

∣∣∣∣∣ = 0,
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thus NQF = {v ∈ KerM ∩ Ω : JQF (v) = 0} = KerM ∩ Ω and 0 ∈ QF (NQF ). The auxiliary
function is

(QF )ε(x(0), v) =

(
x1(2)− x1(0)− x3

2(0)− [u(0) + x1(0)x2(0)]
3

εu(1)

)
,

where ε > 0. Then

J(QF )ε(v) =

∣∣∣∣∣ 0 3[u(0) + x1(0)x2(0)]
2

ε 0

∣∣∣∣∣ = −3ε[u(0) + x1(0)x2(0)]
2.

There is only a solution v∗ = (0,− 3
√
x1(0) + x3

2(0) − x1(0)x2(0)) of equation (QF )ε(v) = 0 in
KerM ∩Ω, and J(QF )ε(v

∗) < 0. So

degB((QF )ε|KerM ,KerM ∩Ω, 0) = −1 ̸= 0,

and

degB(QF |KerM ,KerM ∩Ω, 0) = degB((QF )ε|KerM ,KerM ∩Ω, 0) = −1 ̸= 0,

where ε is sufficiently small. By Theorem 3.1, nonlinear autonomous discrete control system
(4.1) is completely controllable.

Example 2. Consider the controllability of the following nonlinear autonomous discrete control
system:

x1(k + 1)

x2(k + 1)

x3(k + 1)

x4(k + 1)

 =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




x1(k)

x2(k)

x3(k)

x4(k)

+


1 0

1 0

0 1

0 1


(

u1(k)

u2(k)

)
+


−x3

2(k)

0

0

−x3
3(k)

 .

(4.2)

Discrete control system (4.2) shows that n = 4, p = 2,

A =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 , B =


1 0

1 0

0 1

0 1

 .

Let v = (u1(1), u2(1), u1(0), u2(0))
T,

M = (B,AB) =


1 0 0 1

1 0 0 1

0 1 1 0

0 1 1 0


and

F (v, x(0), x(2)) =


x1(2)− x1(0) + x3

3(0) + [x3(0) + u1(0)]
3

x2(2)− x2(0)

x3(2)− x3(0)

x4(2)− x4(0) + x3
2(0) + [x2(0) + u2(0)]

3

 .
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So the linear part of system (4.2) is degenerate. Obviously,

KerM = {(y1, y2, y3, y4)T ∈ R4 : y1 + y4 = 0, y2 + y3 = 0}

and

Im (M) = {(y1, y2, y3, y4)T ∈ R4 : y1 = y2, y3 = y4}.

Let

Q : R4 → R4, (y1, y2, y3, y4)
T 7→ (y1 − y2, 0, 0, y4 − y3)

T.

Then mapping Q is a continuous projector satisfying KerQ = ImM .
For any x(0) = (x1(0), x2(0), x3(0), x4(0))

T ∈ R4, by (3.4)
u1(1) = λx2(2) + (1− λ)x2(0)− 3

√
x4(0)− x4(2) + x3(2)− x3(0)− x3

2(0),

u2(1) = λx3(2) + (1− λ)x3(0)− 3
√
x1(0)− x1(2) + x2(2)− x2(0)− x3

3(0),

u1(0) = −x3(0) +
3
√
x1(0)− x1(2) + x2(2)− x2(0)− x3

3(0),

u2(0) = −x2(0) +
3
√
x4(0)− x4(2) + x3(2)− x3(0)− x3

2(0).

Let

Ω :={v ∈ R4 : ∥v∥ < (4(x2
3(0) + x2

2(0) + [x1(0)− x1(2) + x2(2)− x2(0)− x3
3(0)]

2/3

+ x2
3(2) + x2

2(2) + [x4(0)− x4(2) + x3(2)− x3(0)− x3
2(0)]

2/3))1/2}.

For any λ ∈ (0, 1) (3.4) has no solution on ∂Ω, because (3.4) has only one solution
v = (u1(1), u2(1), u1(0), u2(0))

T and v = (u1(1), u2(1), u1(0), u2(0))
T /∈ ∂Ω. Note that

KerM ∩ ∂Ω = {(y1, y2, y3, y4)T ∈ R4 : y1 + y4 = 0, y2 + y3 = 0,

y21 + y22 + y23 + y24 = 4(x2
3(0) + x2

2(0)

+ [x1(0)− x1(2) + x2(2)− x2(0)− x3
3(0)]

2/3

+ x2
3(2) + x2

2(2) + [x4(0)− x4(2) + x3(2)− x3(0)− x3
2(0)]

2/3)},

QF (v, x(0), x(2)) =


x2(0)− x2(2) + x1(2)− x1(0) + x3

3(0) + [x3(0) + u1(0)]
3

0

0

x3(0)− x3(2) + x4(2)− x4(0) + x3
2(0) + [x2(0) + u2(0)]

3

 .

Let QF (v, x(0), x(2)) = 0. Then

v =(u1(1), u2(1),−x3(0) +
3

√
x1(0)− x1(2) + x2(2)− x2(0)− x3

3(0),

− x2(0) +
3

√
x4(0)− x4(2) + x3(2)− x3(0)− x3

2(0))
T,

where u1(1) and u2(1) are arbitrary. The equation QF (v, x(0), x(2)) = 0 has a unique solution

v∗ =
(
x2(0)− 3

√
x4(0)− x4(2) + x3(2)− x3(0)− x3

2(0),

x3(0)− 3

√
x1(0)− x1(2) + x2(2)− x2(0)− x3

3(0),

− x3(0) +
3

√
x1(0)− x1(2) + x2(2)− x2(0)− x3

3(0),
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− x2(0) +
3

√
x4(0)− x4(2) + x3(2)− x3(0)− x3

2(0)
)T

,

and v∗ /∈ KerM ∩ ∂Ω, so for any v ∈ KerM ∩ ∂Ω, QF (v, x(0), x(2)) ̸= 0. The determinant of
Jacobi matrix JQF (v) is

JQF (v) =

∣∣∣∣∣∣∣∣∣
0 0 3[x3(0) + u1(0)]

2 0

0 0 0 0

0 0 0 0

0 0 0 3[x2(0) + u2(0)]
2

∣∣∣∣∣∣∣∣∣ = 0,

thus NQF = {v ∈ KerM ∩ Ω : JQF (v) = 0} = KerM ∩ Ω and 0 ∈ QF (NQF ). The auxiliary
function is

(QF )ε(x(0), v) =


x2(0) + x1(2)− x2(2)− x1(0) + x3

3(0) + [x3(0) + u1(0)]
3

ε1[u1(1)− x2(0) +
3
√
x4(0)− x4(2) + x3(2)− x3(0)− x3

2(0)]

ε2[u2(1)− x3(0) +
3
√
x1(0)− x1(2) + x2(2)− x2(0)− x3

3(0)]

x3(0) + x4(2)− x3(2)− x4(0) + x3
2(0) + [x2(0) + u2(0)]

3

 ,

where ε1 > 0, ε2 > 0. Then

J(QF )ε(v) =

∣∣∣∣∣∣∣∣∣
0 0 3[x3(0) + u1(0)]

2 0

ε1 0 0 0

0 ε2 0 0

0 0 0 3[x2(0) + u2(0)]
2

∣∣∣∣∣∣∣∣∣
= 9ε1ε22[x3(0) + u1(0)]

2[x2(0) + u2(0)]
2.

v∗ is the solution of equation (QF )ε(v) = 0 and QF (v) = 0 in KerM ∩Ω, and J(QF )ε(v
∗) > 0.

So

degB((QF )ε|KerM ,KerM ∩Ω, 0) = 1 ̸= 0,

and

degB(QF |KerM ,KerM ∩Ω, 0) = degB((QF )ε|KerM ,KerM ∩Ω, 0) = 1 ̸= 0,

where ε1 and ε2 are sufficiently small. By Theorem 3.1, nonlinear autonomous discrete system
(4.2) is completely controllable.

Example 3. Consider the controllability of the following nonlinear nonautonomous discrete
system:(

x1(k + 1)

x2(k + 1)

)
=

(
0 1

−1 0

)(
x1(k)

x2(k)

)
+

(
b1

b2

)
u(k) +

(
g1(x1(k), x2(k))

g2(x1(k), x2(k))

)
, (4.3)

where b21 + b22 ̸= 0, g1 and g2 are continuous, | g1(x1(k), x2(k)) |≤ l1, | g2(x1(k), x2(k)) |≤ l2,
l1, l2 are constants.

From (4.3), n = 2, p = 1,

A =

(
0 1

−1 0

)
, B =

(
b1

b2

)
,
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and

M = (B,AB) =

(
b1 b2

b2 −b1

)
.

The matrix M is full rank by b21+b22 ̸= 0. We can obtain that nonlinear nonautonomous discrete
system (4.3) is controllable by applying Theorem 3.2.

5 Conclusions

In this paper, the controllability of nonlinear discrete control systems is studied. Sufficient con-
ditions for the systems to be controllable are presented via Fredholm operators and coincidence
degree theory. Applications are given to illustrate results of this paper. In future work, we
should more in-depth study the controllability of nonlinear discrete control systems and find
necessary conditions.
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