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Abstract In this paper, we investigate dual problems for nonconvex set-valued vector optimization via ab-

stract subdifferential. We first introduce a generalized augmented Lagrangian function induced by a coupling

vector-valued function for set-valued vector optimization problem and construct related set-valued dual map

and dual optimization problem on the basic of weak efficiency, which used by the concepts of supremum and

infimum of a set. We then establish the weak and strong duality results under this augmented Lagrangian and

present sufficient conditions for exact penalization via an abstract subdifferential of the object map. Finally, we

define the sub-optimal path related to the dual problem and show that every cluster point of this sub-optimal

path is a primal optimal solution of the object optimization problem. In addition, we consider a generalized

vector variational inequality as an application of abstract subdifferential.
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1 Introduction

It is well known that augmented Lagrangian methods are useful for solving nonconvex optimiza-
tion problems. Rockafellar and Wets[12] considered a primal problem of minimizing an extended
real-valued function and proposed and analyzed a dual approach via augmented Lagrangians
which is convex. They also presented strong duality and a criterion for exact penalty representa-
tion (see [12], Theorems 11.59 and 11.61). Wang et al. (see [16], Sect. 3.1) studied an augment-
ed Lagrangian type function via an auxiliary coupling function, and proposed a valley-at-zero
type property in the derivative of the coupling function with respect to the penalty parame-
ter. Burachik and Iusem[2] considered a primal problem of minimizing an extended real-valued
function in a Hausdorff topological space. With abstract convexity tools, they proposed duality
scheme induced by a generalized augmented Lagrangian function and analyzed a valley-at-zero
type property on the coupling (augmenting) function, which generalizes the valley-at-zero type
property proposed in the related literature (e.g., Burachik and Rubinov[3] and references there-
in). Recently, Huang and Yang[13] extended augmented Lagrangian approach introduced by
Rockafellar to vector optimization. Huy and Kim[4] developed augmented Lagrangian duality
theory in set-valued vector optimization. By using the concepts of the supremum and infimum
of a set and conjugate duality of a set-valued map on the basis of weak efficiency, they proposed
an augmented Lagrangian function for a vector optimization problem with set-valued data and
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established weak and strong Lagrangian duality results under assumptions of Rm
+−lower semi-

continuity and Rm
+−lower boundness. Except mentioned above, there are also many researches

concerning with nonconvex set-valued optimization problems (see [10, 11]).
In the present paper, we consider dual problems for nonconvex set-valued vector optimiza-

tion via abstract subdifferential. We introduce a generalized augmented Lagrangian function
induced by a coupling vector-valued function for primal optimization problem and construct
related set-valued dual map and dual optimization problem on the basis of weak efficiency,
which used by the concepts of supremum and infimum of a set. Then we establish weak and
strong duality results under this augmented Lagrangian and present sufficient conditions for
exact penalization via an abstract subdifferential of the object map. This abstract subdif-
ferential (see Definition 2.2) which develops from scalar situation, recently became a natural
language to investigate duality schemes via augmented Lagrangian function. We also define
the sub-optimal path related to the dual problem and show that every cluster point of this
sub-optimal path is a primal optimal solution of the object optimization problem. Our these
results extend the corresponding theorems existing in scalar optimization. As an application of
abstract subdifferential mentioned above, we construct in the final section a generalized vector
variational inequality problem and investigate some properties of this variational inequality.

The paper is structured as following. In Section 2, we present basic definitions and assump-
tions, and also state our primal-dual scheme. In Section 3, we first show that our duality results
including weak and strong duality, and then establish a criterion to exact penalty representa-
tion. In Section 4, we define the sub-optimal path related to the dual problem and examine
the convergence properties of this sub-optimal path. The final Section 5, as an application
of abstract subdifferential, we consider a generalized vector variational inequality defined by
means of abstract subdifferential and its gap function.

2 Preliminaries

Let Y be a real linear topological space which is partially ordered by a pointed closed convex
cone K with a nonempty interior intK in Y . We use the following notations:

y ≤K y′ iff y′ − y ∈ K,

y <K y′ iff y′ − y ∈ intK,

and

y 
K y′ iff y′ − y /∈ K,

y ≮K y′ iff y′ − y /∈ intK.

The largest element (not belonging to Y ) of Y with respect to partial order ≤K is denoted as
+∞Y . In the same way, the smallest element (not belonging to Y ) of Y related to partial order
≤K is denoted as −∞Y . Let Y = Y ∪ {±∞Y }.

For simplicity, we use “≤” instead of “≤K”, “<” instead of “<K” and also “+∞” instead
of “+∞Y ”, “−∞” instead of “−∞Y ”, “0” instead of the origin of all space.

Given a set M ⊂ Y , we define the set of elements above M and the set of elements below
M by A(M) = {y ∈ Y | y′ < y for some y′ ∈ M}, B(M) = {y ∈ Y | y < y′ for some y′ ∈
M}, respectively. Clearly,

A(M) = (M + intK) ∪ {+∞}, B(M) = (M − intK) ∪ {−∞}, ∀M ⊂ Y, M ̸= ∅,

and A(∅) = B(∅) = ∅. Here, A({y}) and B({y}) are simply denoted by A(y) and B(y),
respectively.
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Definition 2.1[15]. Let M ⊂ Y be a given set.

(i) An element ŷ ∈ Y is said to be a weakly infimal element of M if ŷ /∈ A(M) and
A(ŷ) ⊂ A(M), that is, there is no y ∈M such that y < ŷ and if the relation ŷ < y′ implies the
existence of some y ∈M such that y < y′. The set of all weakly infimal elements of M is called
the weak infimum of M and is denoted by infM . The weak supremum of M , supM , is defined
analogously.

(ii) An element ŷ ∈ M is said to be a weakly minimal element of M if ŷ /∈ A(M), that is,
there is no y ∈ M such that y < ŷ. The set of all weakly minimal elements of M is called the
weak minimal of M and is denoted by minM . The weak maximum of M , maxM , is defined
analogously.

Let us summarize some properties of the supremum and infimum of a set which is useful in
next section.

Lemma 2.1[15]. Let M ⊂ Y be a given set. Then, one has:

(i) A(M) = A(infM) and B(M) = B(supM).

(ii) M ⊂ infM ∪A(M) and M ⊂ supM ∪B(M).

(iii) Y = infM ∪A(infM)∪B(infM) and the three sets on the right-hand side are disjoint.

(iv) B(
∪
i∈I

Mi) =
∪
i∈I

B(Mi) and A(
∪
i∈I

Mi) =
∪
i∈I

A(Mi), where Mi ⊂ Y , i ∈ I and I is an

arbitrary index set.

(v) sup(infM) = infM , inf(supM) = supM , sup(supM) = supM , inf(infM) = infM .

(vi) infM1 ⊂ (infM2)∪A(infM2) and supM1 ⊂ (supM2)∪B(supM2) for all M1 ⊂M2 ⊂
Y .

(vii) For two arbitrary sets M1 and M2 in Y it holds: M1 ∩ A(M2) = ∅ if and only if
B(M1) ∩M2 = ∅.

Proposition 2.2. If M ⊂ inf N , then B(M) ∩N = ∅.

Proof. It follows immediately from the definition of inf N , we know A(N)∩ inf N = ∅. Consid-
eringM ⊂ inf N , we obtain A(N)∩M = ∅, this together with Lemma (vii) yield B(M)∩N = ∅.

Let F : X → Y be a set-valued map with its domain given by

domF = {x ∈ X | F (x) ∩ Y ̸= ∅}.

Define

Argmin
x∈X

F (x) =
{
x ∈ domF | ∃ z ∈ F (x) \ {±∞} and z ∈ inf

x∈X
F (x)

}
,

and

ArgminF = ArgminxF (x) = Argmin
x∈X

F (x).

Obviously, if x ∈ Argmin
x∈X

and z ∈ F (x) ∩ inf
x∈X

F (x), then z ∈ inf F (x).

Lemma 2.3[14]. Let F : X → Y be a set-valued map. Then one has

sup
( ∪

x∈X

F (x)
)
= sup

( ∪
x∈X

supF (x)
)
,

inf
( ∪

x∈X

F (x)
)
= inf

( ∪
x∈X

inf F (x)
)
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Lemma 2.4[4]. For F : X × Y → Z one has in terms of P (y) = inf
x∈X

F (x, y) and Q(x) =

inf
y∈Y

F (x, y) that

inf
(x,y)∈X×Y

F (x, y) = inf
y∈Y

P (y) = inf
x∈X

Q(x),

Argmin(x,y)F (x, y) =
{
(x, y) ∈ X × Y | (F (x, y) \ {±∞}) ∩

(
inf
x
F (x, y)

)
∩
(
inf
y
P (y)

)
̸= ∅

}
=
{
(x, y) ∈ X × Y | (F (x, y) \ {±∞}) ∩

(
inf
y
F (x, y)

)
∩
(
inf
x
Q(x)

)
̸= ∅

}
.

Lemma 2.5[4]. Let M ⊂ Y , and let K ⊂ Y be a pointed closed convex cone with intK ̸= ∅ and
0 ∈ K. Then,

(i) sup(M −K) = supM , inf(M +K) = infM ;

(ii) infM = min(M +K) ⊂M +K, if M is a nonempty compact set in Y .

In the sequel, we assume that Y be a real linear topological space, X, Z be two Haus-
dorff topological spaces and order cone Rm

+ ⊂ Rm is a positive quadrant. We consider the
optimization problem,

(P) inf
x∈X

F (x) = inf F (X) = inf
( ∪

x∈X

F (x)
)
,

where F : X → Rm ∪ {+∞} = Rm
+∞ is a set-valued map with domF ̸= ∅ and F (x) ̸= −∞,

∀x ∈ X. This is equivalent to that F is proper on X, i.e., F (x) ̸= −∞ for all x ∈ X, and there
exist x ∈ X and v ∈ F (x) such that v < +∞. We fix a base point in Z and denote it by 0. In
order to introduce our duality scheme, we consider a duality parameterization for F , which is a
set-valued map ϕ : X × Z → Rm

+∞ satisfying ϕ(x, 0) = F (x) for all x ∈ X. We also consider a

perturbation map H : Z → Rm ∪ {±∞} = Rm, related to this duality parameterization, given
by

H(z) = inf
x∈X

ϕ(x, z).

Since F is proper, H(0) ̸= +∞. For a set V ⊂ Z, we use the notation V C = Z \ V .

In what follows, we consider a coupling vector-valued function (for similar scalar function see
[2]) ρ : Z×Y ×R+ → Rm, where R+ = [0,+∞), that satisfies the following basic assumptions:

(C1) For any (y, r) ∈ Y ×R+, ρ(0, y, r) = 0.

(C2) For every neighborhood V ⊂ Z of 0, and for every (y, r) ∈ Y ×R+, it holds that

(i) AV
y,r(r) = inf

z∈V C
{ρ(z, y, r)− ρ(z, y, r)} ⊂ intRm

+ , ∀ r > r;

(ii) lim
r→∞

AV
y,r(r) = +∞.

Remark 2.6. It follows immediately from C2 that

ρ(z, y, r)− ρ(z, y, r) ∈ Rm
+ ,

and

lim
r→+∞

min
1≤i≤m

(ρ1, ρ2, · · · , ρm) = +∞, ∀ ρ ∈ AV
y,r(r) ⊂ intRm

+ ,

for every neighborhood V ⊂ Z of 0 and for all (y, r) ∈ Y ×R+, r > r.
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The augmented Lagrangian function L : X×Y ×R+ → Rm for (P), induced by the coupling
function ρ, is defined as

L(x, y, r) = inf
z∈Z

{ϕ(x, z)− ρ(z, y, r)}

The dual map ψ : Y ×R++ → Rm is defined as

ψ(y, r) = inf
x∈X

L(x, y, r),

and therefore the dual problem is stated as

(P∗) sup
(y,r)∈(Y×R+)

ψ(y, r).

We denote inf P = inf
x∈X

F (x) and supP ∗ = sup
(y,r)∈Y×R+

ψ(y, r).

From definition in [2] and [9], we consider an extension of the concept of generalized abstract
subgradient to the case of set-valued map.

Definition 2.2. Let G : Z → Rm be a set-valued map, z ∈ Z and λ ∈ G(z), we say that (y, r)
is a generalized abstract subgradient of G at (z, λ) (with respect to ρ) iff

λ− ρ(z, y, r) ∈ inf
z∈Z

{G(z)− ρ(z, y, r)}.

The set of generalized abstract subgradient of G at (z, λ), denoted by ∂ρG(z, λ), is called gener-
alized abstract subdifferential of G at (z, λ) with respect to the coupling function ρ. Moreover,
we let ∂ρG(z) =

∪
λ∈G(z)

∂ρG(z, λ). If ∂ρG(z, λ) ̸= ∅ for every λ ∈ G(z), then G is said to be

abstract subdifferentiable at z.

Remark 2.7. It follows from C1, the definition of ∂ρG(0) and Remark 2.6 that, if (y, r0) ∈
∂ρG(0), then (y, r) ∈ ∂ρG(0) for all r ≥ r0.

Proposition 2.8. Take (y, r) ∈ Y ×R+ and λ0 ∈ H(0). Then

(i) (y, r) ∈ ∂ρH(0, λ0) if and only if λ0 ∈ ψ(y, r);

(ii) (y, r) ∈ dom(−ψ) if and only if there exists c ∈ Rm such that c ∈ ψ(y, r).

Proof. (i) follows from the following equivalences:

(y, r) ∈ ∂ρH(0, λ0) ⇔λ0 ∈ inf
z∈Z

{H(z)− ρ(z, y, r)} ⇔ λ0 ∈ inf
z∈Z

inf
x∈X

{ϕ(x, z)− ρ(z, y, r)}

⇔λ0 ∈ inf
x∈X

inf
z∈Z

{ϕ(x, z)− ρ(z, y, r)} ⇔ λ0 ∈ inf
x∈X

L(x, y, r) ⇔ λ0 ∈ ψ(y, r).

The third “⇔” is from Lemma 2.4. Next, (ii) follows from the following

(y, r) ∈ dom(−ψ) ⇔− ψ(y, r) ̸= +∞ ⇔ ψ(y, r) ̸= −∞
⇔∃ c ∈ Rm such that c ∈ ψ(y, r).

The following Theorem shows that the perturbation map H associated with (P) is abstract
subdifferential at 0.
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Theorem 2.9. Assume that C1, C2 hold and there exist (y, r) ∈ Y × R+ such that (y, r) ∈
dom(−ψ). If there also exists a neighborhood V ⊂ Z of 0 such that B(H(0)) ∩ (H(z) −
ρ(z, y, r)) = ∅ for all z ∈ V . Then there exists r0 such that (y, r) ∈ ∂ρH(0) for all r ≥ r0.

Proof. Since F is proper on X, then H(0) ̸= +∞. Since (y, r) ∈ dom(−ψ), then by Proposition
2.8 (ii) that there exists c ∈ Rm such that c ∈ ψ(y, r) = inf

z∈Z
{H(z) − ρ(z, y, r)}, so for all

λ0 ∈ H(0), λ0 ≮ c, that is H(0) ̸= −∞. As a consequence, H(0) ⊂ Rm. Suppose by
contradiction that for all λ0 ∈ H(0), k > 0, there exist rk > k, zk ∈ Z and λk ∈ H(zk)
satisfying

λ0 > λk − ρ(zk, y, rk). (2.1)

Assume that {zk}k∈N converges to 0. Then there exists k0 such that zk ∈ V for all k ≥ k0 ≥ r
and so λk−ρ(zk, y, rk) ∈ B(H(0)), which contradict assumptionB(H(0))∩(H(z)−ρ(z, y, r)) = ∅
for all z ∈ V and r ≥ r. Therefore, {zk}k∈N does not converge to 0, which implies that
there exists some open neighborhood W ⊂ Z of 0, we can take W = V , and a subsequence
{zkj}j∈N ⊂ {zk}k∈N such that {zkj}j∈N ⊂ V C . Now using (2.1) and the fact there exists
c ∈ Rm such that c ∈ ψ(y, r), so we have

λ0 > λkj − ρ(zkj , y, rkj ) =λkj − ρ(zkj , y, r) + ρ(zkj , y, r)− ρ(zkj , y, rkj )

≮c+ (ρ(zkj , y, r)− ρ(zkj , y, rkj )).

Furthermore,

λ0 ≮ c+ (ρ(zkj
, y, r)− ρ(zkj

, y, rkj
)),

which contradicts C2 (ii), because lim
j→∞

(ρ(zkj , y, r) − ρ(zkj , y, rkj )) = +∞. So we conclude

that there exists r0 ≥ r such that λ0 ≯ λ − ρ(z, y, r0) for all z ∈ Z and λ ∈ H(z) and
A(λ0) ⊂ A(

∪
z∈Z

H(z) − ρ(z, y), r0) with λ0 ∈ H(0), which means that (y, r0) ∈ ∂ρH(0). The

result follows immediately from Remark 2.6.

Remark 2.10. It follows from Theorem 2.9 that, if (y, r) ∈ Y × R+ such that H(0) ⊂
inf
z∈Z

{H(z) − ρ(z, y, r)}, then H(0) ⊂ inf
z∈Z

{H(z) − ρ(z, y, r)} for all r ≥ r. Obviously, for all

λ1 ∈ inf
z∈Z

{H(z)− ρ(z, y, r)} and λ2 ∈ inf
z∈Z

{H(z)− ρ(z, y, r)}, we have λ2 ≮ λ1, where r ≥ r.

3 Duality and Exact Penalty Representation

In this section we establish sufficient conditions for weak and strong duality as well as penalty
representations of the primal problem (P).

The following result gives a weak duality theorem.

Theorem 3.1 (Weak duality). One has

A(inf P ) ∩ supP ∗ = ∅.

Proof. First we need to prove

F (x) ∩B(ψ(y, r)) = ∅,

for all x ∈ X, y ∈ Y and r ∈ R+. Suppose on the contrary that there exist x ∈ X, v ∈ F (x)
and (y, r) ∈ Y ×R+ such that v ∈ B(ψ(y, r)). Then there are some q ∈ ψ(y, r) such that q > v.



Generalized Lagrangian Duality in Set-valued Vector Optimization via Abstract Subdifferential 343

Since ψ(y, r) = inf
x∈X

inf
z∈Z

{ϕ(x, z) − ρ(z, y, r)} = inf{
∪
x∈x

∪
z∈Z

{ϕ(x, z) − ρ(z, y, r)}}, thus, for all

v ∈
∪
x∈x

∪
z∈Z

(ϕ(x, z)− ρ(z, y, r)), we have v ≮ q. However, v ∈ F (x) = ϕ(x, 0)− ρ(0, y, r), hence,

v ≮ q, it is a contradiction. Which means F (x) ∩B(ψ(y, r)) = ∅, ∀ x ∈ X, y ∈ Y , r ∈ R+.

It follows that

F (x) ∩B
(

inf
x∈X

L(x, y, r)
)
= ∅, ∀x ∈ X, y ∈ Y, r ∈ R+.

Hence, ( ∪
x∈X

F (x)
)
∩B

(
inf
x∈X

L(x, y, r)
)
= ∅, y ∈ Y, r ∈ R+.

Since r is arbitrary, we can assert from Lemma 2.1(iv) that( ∪
x∈X

F (x)
)
∩B

( ∪
r∈R+

∪
y∈Y

inf
x∈X

L(x, y, r)
)
= ∅.

Combining this above with Lemma 2.1(i), we have( ∪
x∈X

F (x)
)
∩B(supP ∗) = ∅.

By Lemma 2.1(vii),

A
( ∪

x∈X

F (x)
)
∩ supP ∗ = ∅.

This and Lemma 2.1(i) imply that

A
(
inf

∪
x∈X

F (x)
)
∩ supP ∗ = ∅.

That is,

A(inf P ) ∩ supP ∗ = ∅.

The proof is complete.

Now we give a sufficient condition which is related to abstract subdifferentiable of pertur-
bation map H at 0 ensuring strong duality for the primal problem.

Theorem 3.2 (Strong duality). If H is abstract subdifferentiable at 0, then H(0) ⊂ supP ∗.
Consequently, H(0) = maxP ∗.

Proof. We note that

supP ∗ = sup
(y,r)∈Y×R+

ψ(y, r)

= sup
(y,r)∈Y×R+

inf
x∈X

inf
z∈Z

(ϕ(x, z)− ρ(z, y, r)})

= sup
(y,r)∈Y×R+

inf
z∈Z

inf
x∈X

(ϕ(x, z)− ρ(z, y, r)})

= sup
(y,r)∈Y×R+

{ inf
z∈Z

{H(z)− ρ(z, y, r)}},
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where the third “=” above is from Lemma 2.4. Since H is abstract subdifferentiable at 0, so
for every λ0 ∈ H(0), there exist (y0, r0) ∈ Y ×R+ such that

λ0 ∈ inf
z∈Z

{H(z)− ρ(z, y0, r0)}.

That is,

H(0) ⊂
∪

(y,r)∈Y×R+

inf
z∈Z

{H(z)− ρ(z, y, r)}

⊂ sup
(y,r)∈Y×R++

inf
z∈Z

{H(z)− ρ(z, y, r)} ∪B(supP ∗),

the last inclusion follows from Lemma 2.1 (ii). By the weak duality and Lemma 2.1 (vii), we
know that H(0) ∩B(supP ∗) = ∅, therefore, H(0) ⊂ supP ∗.

Now, we prove H(0) ⊃ supP ∗. Take any λ0 ∈ supP ∗, from the weak duality, we know
that λ0 /∈ A(H(0)). If λ0 ∈ inf(H(0)), by Lemma 2.1 (v) and the definition of H(0), we
have H(0) = inf(H(0)), so λ0 ∈ H(0); otherwise, if λ0 /∈ inf(H(0)), then by Lemma 2.1 (iii),
λ0 ∈ B(inf(H(0))), i.e., there exists λ ∈ inf(H(0)) such that

λ0 < λ. (3.1)

By H(0) = inf(H(0)), so λ ∈ H(0). Since H is abstract subdifferentiable at 0, thus, there exist
(y, r) ∈ Y ×R+ such that λ ∈ inf

z∈Z
{H(z)− ρ(z, y, r)}, consequently,

λ0 ≮ λ

which contradict (3.1), so H(0) ⊃ supP ∗ holds. In the following, we just need to prove
H(0) ⊂ maxP ∗. Let λ0 ∈ H(0), since H is abstract subdifferentiable at 0, so there exist (y0, r0)
such that λ0 ∈ inf

z∈Z
{H(z)− ρ(z, y0, r0)}. Considering λ0 ∈ H(0), so we have λ0 ∈ maxP ∗. The

proof is complete.

Theorem 3.3. If H(0) = maxP ∗, then H is abstract subdifferentiable at 0.

Proof. It follows immediately from the definition of abstract subdifferential.
Exact penalty representation for augmented Lagrangian function was defined and studied by

Rockafellar and Wets ([12], Chap.11). A criterion for such a representation was also presented
in ([12], Theorem 11.61), and this criterion has been studied for more generalized augmented
Lagrangians, for instance, by Burachik and Rubinov[3], Huang and Yang[6] and, Zhou and
Yang[17]. In next theorem we extend this criterion to our more general setting.

Recall the definitions about exact penalty representation in [2] and [4], we introduce the
following concept.

Definition 3.1. Consider the primal and dual problems (P) and (P ∗). An element y ∈ Y is
said to support an exact penalty representation for problem(P) iff there exists r0 ∈ R+, such
that for any r ≥ r0,

(i) H(0) ⊂ ψ(y, r);

(ii) ArgminxF (x) ⊂ ArgminxL(x, y, r).

Theorem 3.4. Assume that assumptions of Theorem 2.9 hold, if (y, r0) ∈ Y × R+ such that
(y, r0) ∈ ∂ρH(0, λ0) for all λ0 ∈ H(0), then y supports an exact penalty representation for
problem (P).
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Proof. By assumption (y, r0) ∈ ∂ρH(0, λ0) for all λ0 ∈ H(0), we can conclude that

H(0) ⊂ inf
z∈Z

{H(z)− ρ(z, y, r0)} = inf
z∈Z

inf
x∈X

{ϕ(x, z)− ρ(z, y, r0)}

= inf
x∈X

inf
z∈Z

{ϕ(x, z)− ρ(z, y, r0)} = inf
x∈X

L(x, y, r0),

the second “=” above being from Lemma 2.4. By Remark 2.10, we have

H(0) ⊂ inf
z∈Z

{H(z)− ρ(z, y, r)} = inf
x∈X

L(x, y, r) = ψ(y, r)

for all r ≥ r0.
We now prove that (ii) holds. Let x ∈ ArgminxF (x). It remains to prove that x ∈

ArgminxL(x, y, r) for r large enough. Since x ∈ ArgminxF (x), it follows F being proper on X
that there exists v ∈ F (x) \ {±∞} and v ∈ inf

x∈X
F (x). We can assert from (y, r) ∈ dom(−ψ)

that H(0) ∩ F (x) ⊂ Rm. By (i) and Lemma 2.4, one has

v ∈ inf
(x,z)∈X×Z

[ϕ(x, z)− ρ(z, y, r)],

when r large enough. Clearly, v ∈ F (x) = ϕ(x, 0)− ρ(0, y, r). Therefore,

(x, 0) ∈ Argmin
(x,z)∈X×Y

[
ϕ(x, z)− ρ(z, y, r)

]
.

Consider the following functions M(x, z) = ϕ(x, z)−ρ(z, y, r), J(z) = inf
x∈X

M(x, z) and K(x) =

inf
z∈Z

M(x, z). Then J(z) = H(z)− ρ(z, y, r) and K(x) = L(x, y, r). By Lemma 2.4, we have

v ∈
(
inf
z∈Z

M(x, z)
)
∩
(

inf
x∈X

K(x)
)
.

This means that there exists v ∈ ϕ(x, 0)− ρ(0, y, r) = F (x) ⊂ Rm such that

v ∈ L(x, y, r) and v ∈ inf
x∈X

L(x, y, r).

Hence, x ∈ Argmin
x∈X

L(x, y, r), which shows y supports an exact penalty representation for

problem (P).

Remark 3.5. It follows immediately from the Theorem 3.4 that if H(z) is subdifferential at 0
and (y, r0) ∈ Y ×R+ such that (y, r0) ∈ ∂ρH(0), then y supports an exact penalty representation
for problem (P).

In the special case X = R and F is a vector-valued function and proper on X, we can assert
that y in Theorem 3.4 supports an exact penalty representation for (P).

Example 1. Consider the following optimization:

(VO) inf
x∈X

f(x)

s.t. g(x) ≤ 0,

where f(x) = (x,−x) and g(x) = x2 − 1, x ∈ X. Let S = {x ∈ X | g(x) ≤ 0}. Define

F (x) =

{
f(x), x ∈ S,

∞, otherwise.
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Then (VO) is equivalent to (P) when X = Z = R and m = 2. Let z ∈ R, define

ϕ(x, z) =

{
f(x), if g(x) ≤ z,

+∞, otherwise.

We see that ϕ is a perturbed function of F and ϕ(x, 0) = F (x) for all x ∈ X. Let σ : Z → R
satisfy σ(0) = 0, inf

V C
σ(z) > 0 and σ(z) ≥ |z|, where V is a neighborhood of 0. It can be

computed that

H(0) = {(x,−x)| x ∈ [−1, 1]},

H(z) =

{
{(x,−x) | x ∈ [

√
z + 1,−

√
z + 1]}, if z ≥ −1

+∞, if z < −1.

Let ρ(z, y, r) = y · z − rσ(z). Take any y ∈ R and r > |y|, we can conclude that y supports a
penalty representation for (VO), which means that there exist r ≥ 0 such that for any r ≥ r,

inf
x∈S

f(x) ⊂ inf
x∈X

L(x, y, r), Argmin
x∈S

f(x) ⊂ Argmin
x∈X

L(x, y, r),

Now take any r > |y|, we can assert that

L(x, y, r) =

{
(x,−x), x ∈ [−1, 1]

+∞, otherwise,

and

inf
x∈X

L(x, y, r) = {(x,−x), x ∈ [−1, 1]}, Argmin
x∈X

L(x, y, r) = [−1, 1].

Actually, we have

inf
x∈S

f(x) = inf
x∈X

L(x, y, r), Argmin
x∈S

f(x) = Argmin
x∈X

L(x, y, r), ∀ r > |y|,

and so y support an exact penalty representation for (VO).

Theorem 3.6. If y supports an exact penalty representation for problem (P ) and H(0) ̸= −∞,
then there exist r ∈ R+ such that (y, r) ∈ dom(−ψ) and there also exists a neighborhood V ⊂ Z
of 0 such that B(H(0)) ∩ (H(z)− ρ(z, y, r)) = ∅ for all z ∈ V .

Proof. Let y supports an exact penalty representation for problem (P ). Then there exist
r ∈ R+ such that Definition 3.1 (i) holds, that is

H(0) ⊂ ψ(y, r) = inf
x∈X

{L(x, y, r)} = inf
z∈Z

{H(z)− ρ(z, y, r)},

for all r ≥ r. Thus,

B(H(0)) ∩ (H(z)− ρ(z, y, r)) = ∅,

for all r ≥ r and z ∈ Z. Furthermore, H(0) ̸= −∞, then there exist −∞ ̸= λ0 ∈ H(0) such
that

λ0 ∈ ψ(y, r) (3.2)

for all r ≥ r. In particular, when r = r, (3.2) implies (y, r) ∈ dom(−ψ). The proof is
complete.

Corollary 3.7. Assume that C1, C2 hold and H(0) ̸= −∞, then y supports a penalty repre-
sentation for problem (P) if and only if H(z) is subdifferential at 0.

Proof. The result follows immediately from Theorem 2.9, Theorem 3.4 and Theorem 3.6.
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4 Sub-optimal Path

To obtain an exact solution of an optimization problem may, in general, be very hard or even
impossible. However, when the optimal value of the problem is finite, approximate solutions
always exist and they are, in principle, easier to find than exact solutions. In [16], the authors
defined a sub-optimal path related with the dual problem and established some convergence
results in finite dimensional spaces. In [2], the authors considered an optimal path related to the
duality scheme and analyze its convergence properties. This result is related to Burachik and
Rubinov[3], where the authors consider an optimal path in the sense that all the subproblems are
supposed to be solved exactly. Motivated by the references above, in this section, we consider
the sub-optimal path related to our duality scheme and analyze its convergence properties.

Recall that the calculation of the dual map leads to the following problem:

inf{ϕ(x, z)− ρ(z, y, r) : (x, z) ∈ X × Z)}. (4.1)

Next we define the sub-optimal path related to our duality scheme.

Definition 4.1. Let I ∈ R+ be unbounded above, and for each r ∈ I take εr ∈ intK. The set
{(xr, zr)}r ⊂ X × Z is called a sub-optimal path of problem (4.1) if for each qr ∈ ψ(y, r) with
qr ̸= −∞, there exists hr ∈ ϕ(xr, zr) such that

hr − ρ(zr, y, r) ≤ qr + εr. (4.2)

Definition 4.2 ([7], Definition 3.1.7). Set-valued map F : X → Rm is said to be closed at x if
for every net (xk, yk)k∈I with yk ∈ F (xk) converging to (x, y), we have y ∈ F (x).

We denote by N(z0) the collection of all neighborhoods of z0 ∈ Z.

Definition 4.3[4]. Set-valued map H : Z → Rm is said to be Rm
+−lower bounded at z0 by a

vector b ∈ Rm, if there exists a set V ∈ N(z0) such that H(V ) ⊂ (b+Rm
+ ) ∪ {+∞}.

In the following, we denote e = (1, 1, · · · , 1) ∈ Rm and assume

(C3) for each (y, r) ∈ Y ×R+, ρ(·, y, r) is continuous at 0.

Theorem 4.1. Assume that

(a) there exists (y, r) ∈ dom(−ψ), and conditions C1, C2 and C3 hold;

(b) H(z) is Rm
+ -lower bounded at 0 by a vector b and there exists a neighborhood V ⊂ Z

of 0 such that B(H(0)) ∩ (H(z) − ρ(z, y, r)) = ∅ for all z ∈ V and r ≥ r. If there also
exist a neighborhood W ⊂ Z of 0, a vector α ∈ Rm and a compact subset B ⊂ X such that
H(0) ⊂ (α− intRm

+ ) and

Lϕ,W (α) = {x ∈ X : ∃ hx ∈ ϕ(x, z) s.t. hx ≤ α} ⊂ B, for all z ∈W, (4.3)

whenever the parameterization function ϕ(x, z) is closed at (x, 0) for each x ∈ X. Then

(i) there exists a sub-optimal path {(xr, zr)}r≥r0 .

(ii) Take a set I ⊂ R+ unbounded above and consider a sub-optimal path {(xr, zr)}r≥r0

satisfying lim
r∈I,r→∞

εr = 0. Then {zr}r∈I converges to 0, and the set of cluster points of {xr}r∈I

is a nonempty set contained in the primal optimal solution set.

Proof. Considering Remark 2.6 and Remark 2.10, if r > r, then ψ(y, r) ̸= −∞ and qr ≮ c for
all qr ∈ ψ(y, r) by item (a) and Proposition 2.2 (ii), consequently, H(0) ̸= −∞. From Theorem
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2.9, there exists r0 ≥ r and λ0 ∈ H(0) such that (y, r) ∈ ∂ρH(0, λ0) for all r ≥ r0, so we can
conclude λ0 ∈ ψ(y, r) for all r ≥ r0. For λ0 = qr ∈ ψ(y, r) and εr ∈ intK, we have

qr < qr + εr.

Thus the existence of a sub-optimal path is trivially ensured by the definition of weak infimal
element , which proves (i).

For proving (ii), let (xr, zr)}r∈I be a sub-optimal path. Assume that lim
r∈I,r→∞

εr = 0.

Suppose by contradiction that {zr}r does not converge to 0 when r → ∞. Thus there exist
an open neighborhood V ⊂ Z of 0 and J ⊂ I, unbounded above, such that {zrj}r∈J ⊂ V C .
Therefore, there exists hrj ∈ ϕ(xrj , zrj ) and qrj ∈ ψ(y, rj) such that

λ0 + εrj = qrj + εrj ≥hrj − ρ(zrj , y, rj)

=hrj − ρ(zrj , y, r) + ρ(zrj , y, r)− ρ(zrj , y, rj)

≮c+ inf
z∈V C

{ρ(z, y, r)− ρ(z, y, rj)}.

Since lim
rj→+∞

εrj = 0, we conclude that

λ0 + e− c ≮ inf
z∈V C

{ρ(z, y, r)− ρ(z, y, r)},

which contradicts to the condition C2 (ii). It follows that zr → 0 as r large enough.

Consider an open neighborhoodW ⊂ Z of 0 and α > λ0 as in assumption (b). Since {zr}r∈I

converges to 0, there exists r̃ ∈ I such that {zr}r≥r̃,r∈I ⊂ W . Take δ = min
1≤i≤m

{αi − λi0} > 0.

The function ρ(., y, r) is continuous at 0 by condition C3, so there exist some r1 > max{r0, r̃}
such that ρ(zr, y, r) <

δ
2e and εr <

δ
2e for all r > r1. Thus, we have

λ0 +
δ

2
e > qr + εr > hr − ρ(zr, y, r), for all r > r1, r ∈ I,

which implies

hr < λ0 + δe < α, for all r > r1, r ∈ I.

that is to say {xr}r≥r1 ⊂ Lϕ,W (α). Assumption (b) implies that {xr}r≥r1 ⊂ B, where B is
a compact set. In particular, since {zr}r∈I converges to 0, the set of cluster points of the
sub-optimal path {(xr, zr) : r ∈ I} is nonempty. Moreover, every cluster point has the form
(x0, 0). Let us prove that x0 is a primal optimal solution, where x0 is an arbitrary cluster point
of {xr}r∈I . Take a subnet {xrj}j∈J converging to x0, and j0 ∈ J satisfying rj ≥ r1 for all
j ≥ j0, j ∈ J . Observe that {zrj}j∈J converges to 0. Thus

λ0 + εrj = qrj + εrj > hrj − ρ(zrj , y, rj) > hrj − ρ(zrj , y, r),

for all j ≥ j0, j ∈ J . Since H(z) is Rm
+−lower bounded by a vector b, we can conclude that

{hrj} ⊂ Rm is bounded, so it has a converged subsequence. Without loss of generality, we take
the lim

j∈I,rj
in these inequalities, we obtain

λ0 ≥ λ− 0 = λ ∈ ϕ(x0, 0) = F (x0),

where λ ∈ ϕ(x0, 0) follows from ϕ being closed at (x0, 0). For λ ≤ λ0 and λ0 ∈ H(0), we obtain
λ ∈ H(0) = inf

x∈X
ϕ(x, 0), that is λ ∈ inf

x∈X
F (x). The proof is complete.
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The results of Theorem 4.1 is illustrated by the following simple counterexample.

Example 2. Consider the following optimization:

(VO) inf
x∈S

f(x)

s.t. fi(x) ≤ 0, i = 1, 2,

where x = (x1, x2, x3) ∈ R3, f = x3, f1 = x1 and f2 = x2. We let

S = {x ∈ R3 | x1y1 + x2y2 − x3 ≤ 0, for all (y1, y2) ∈ C},

where

C = {y ∈ R2 | y1 ≤ 0, y21 + 2y2 ≤ 0}.

Define

F (x) =

{
f(x), x ∈ S,

+∞, otherwise,

and

ϕ(x, z) =

{
f(x), if fi ≤ zi and x ∈ S

+∞, otherwise.

where z ∈ R2.

We see that ϕ is perturbed function of F and ϕ(x, 0) = F (x) for all x ∈ S. Let ρ(z, y, r) =
⟨y, z⟩ − r∥z∥2 with y ∈ R2. It can be computed that

H(z) =


z21
2z2

, if z1 ≤ 0 and z2 > 0,

0, if z1 ≥ 0, z2 ≥ 0,

+∞, otherwise.

So it can be shown that

ψ(y, r) = − 1

4r
∥y∥2.

Let xr = ( 1
r2 ,

1
r3 ,

1
r5 ), zr = ( 1

r2 ,
1
r3 ) and yr = ( 2r ,

2
r2 ), then

ψ(yr, r) = − 1

4r
∥yr∥2 = − 1

r3
− 1

r5
→ 0.

It is easy to see that

ϕ(xr, zr)− ⟨yr, zr⟩+ r∥zr∥2 = f0(xr)− ⟨yr, zr⟩+ r∥zr∥2 = − 1

r3
.

Now, take εr = 1
r2 , then all the assumptions in Theorem 4.1 are satisfied and

ϕ(xr, zr)− ⟨yr, zr⟩+ r∥zr∥2 < ψ(yr, r) + εr,

where r → +∞ and εr → 0. Thus {(xr, zr)}r>0 is a sub-optimal path, (xr, zr) → (0, 0) as
r → +∞ and 0 is the optimal solution of (VO).
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5 Generalized Vector Variational Inequality

Let (y, r) ∈ Y × R+ and set-valued map G : Z × Y × R++ → Rm, we define (y, r) : Z → Rm

as following:

For any fixed point z ∈ Z there exists g ∈ G(z, y, r) such that

⟨(y, r), z − z⟩ ≤ g − g, for all g ∈ G(z, y, r) and z ∈ Z. (5.1)

The vector variational inequality problem defined by pairs (y, r) consists in finding z ∈ Z and
(y, r)z (related to z) such that

(VVI) ⟨(y, r)z, z − z⟩ ≮ 0, ∀ z ∈ Z. (5.2)

Definition 5.1[1]. A set-valued map γ : Z → Rm is said to be a gap function for (VVI) if it
satisfies the following conditions:

(i) 0 ≮ γ(z), ∀ z ∈ Z (0 ≮ γ(z) means that 0 ≮ ν for all ν ∈ γ(z));
(ii) 0 ∈ γ(z) if and only if z ∈ Z solves the problem (VVI).

If we let G(z, y, r) = H(z)− ρ(z, y, r), where H(z) and ρ(z, y, r) defined in Section 2, then
the generalized duality results investigated in Section 3 allow us to introduce a gap function for
(VVI). We define the following map for all z ∈ Z,

γ(z) =
∪

(y,r)∈Y×R++

{ψ(y, r)− (λ− ρ(z, y, r))}

=
∪

(y,r)∈Y×R++

{
inf
u∈Z

{H(u)− ρ(u, y, r)} − (λ− ρ(z, y, r))
}
,

where λ ∈ H(z), and λ− ρ(u, y, r) is similar to ḡ in (5.1).

In order to prove function γ(z) is a gap function for (VVI), we need the following assumption:

(C4) ⟨(y, r)z, z − z⟩ ≮ 0 whenever g − ḡ ≮ 0 for all g ∈ G(z, y, r), z ∈ Z and ḡ ∈ G(z̄, y, r),
z̄ ∈ Z.

Theorem 5.1. Let assumption (C4) hold, then the above function γ(z) is a gap function for
(VVI).

Proof. By the definition of γ(z), we obtain 0 ≮ γ(z) for all z ∈ Z. This completes the proof of
Definition 5.1(i). Let us prove the Definition 5.1(ii). For sufficiency, if there exist z ∈ Z solves
the (VVI), then ∃ (y, r)z̄ such that (5.2) holds, that is

⟨(y, r), z − z⟩z̄ ≮ 0, ∀ z ∈ Z,

this together with (5.1), we derive there exist λ ∈ H(z) such that

0 ≯ λ− ρ(z, y, r)− (λ− ρ(z, y, r)), for all λ ∈ H(z) and z ∈ Z. (5.3)

That is

λ− ρ(z, y, r) ≮ (λ− ρ(z, y, r)), for all λ ∈ H(z) and z ∈ Z.

Hence

(λ− ρ(z, y, r)) ∈ inf
z∈Z

{H(z)− ρ(z, y, r)}, (5.4)
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this yields,

0 ∈ γ(z).

For necessity, by the converse process of proof of sufficiency, we derive (5.3) is true. This
combining with assumption (C4) yield (5.2) holds. The proof is complete.

Theorem 5.2. If z ∈ Z solves the (VVI), then ∂ρH(z) ̸= ∅.

Proof. Since z solves the (VVI), so there exist (y, r)z̄ such that (5.2) holds. Following from
the proof of sufficiency in Theorem 5.1, we obtain (5.4) is true, which implies ∂ρH(z, λ) ̸= ∅,
the proof is complete.
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