Acta Mathematicae Applicatae Sinica, English Series Acta Mathematicae Applicatae Sinica,
Vol. 38, No.1 (2022) 187-208 English Series
https://doi.org/10.1007/s10255-022-1071-y © The Editorial Office of AMAS &
http://www.ApplMath.com.cn & www.SpringerLink.com Springer-Verlag GmbH Germany 2022

Weighted Estimates for a Class of Global Maximal
Operators Associated with Dispersive Equation

Yong DING'!, Yao-ming NIU?f

ISchool of Mathematical Sciences, Beijing Normal University; Laboratory of Mathematics and Complex Systems
(BNU), Ministry of Education, Beijing 100875, China (E-mail: dingy@bnu.edu.cn)

2Faculty of Mathematics, Baotou Teachers’ College of Inner Mongolia University of Science and Technology,
Baotou 014030, China (TE-mail: nymmath@126.com)

Abstract For a function ¢ satisfying some suitable growth conditions, consider the following general disper-
sive equation defined by

{ 0w+ ¢(v/—A)u =0, (z,t) € R™ x R, %)

u(x,0) = f(z), fe SR,

where ¢(/—A) is a pseudo-differential operator with symbol ¢(|€|). In the present paper, when the initial data
f belongs to Sobolev space, we give the local and global weighted L? estimate for the global maximal operator
S defined by S3* f(x) = §1€1£ |St,6 f(x)], where

Si,pf(z) = (2m) 7" / etm SHito el f(¢)dg

n

is a formal solution of the equation (x).
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1 Introduction

For t € R and a > 1, defined the operator S; , by

51t (@) = oy [ €S flepde, 1 e SR,

where f(£) = Jgn €7 f(@)dz. Then the local and global maximal operators S} and S;*
associated with the family of operators {S; q}o<i<1 and {Siq}ier respectively, are defined by

Sif(z) = sup [Spaf(x)], z€R”

0<t<1

and
Sy f(z) =sup|Seof(z)], x€R™
teR

In 1995, Sjolin[*®! gave the following local weighted estimate of the local maximal operator
Sy
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Theorem A8l Assume that a > 1, n > 2 and f is radial. If2 < q <4, o = W -n
then

7

1/q
Sy f()|?x|*dx < CgrlIfll ..z , 1.1
(/B(O,R)' @)faldr) " < Callfl 3 gy (L.1)

where B(0; R) := {x e R™; |z| < R}. Ifa< W —n, then the estimate (1.1) does not hold
for all radial functions f.

Here and in the sequel, H*(R™) (s € R) denotes the non-homogeneous Sobolev space defined
by

@) = {f e Ifln = ([ a+lePrliepae) <o

R

It is well-known that u(z,t) := S . f(z) is the solution of the fractional Schrédinger equa-
tion:

{ i0pu + (—A)*%u = 0, (z,t) e R™ x R,

u(z,0) = f(z). (1.2)

The estimate (1.1) implies that for suitable index s, the solution of the equation (1.2) converges
to its initial date f almost everywhere, that is

7}1_r>r(1)vvc(ac,t) = f(x), a.e. x € R". (1.3)
See [1-3, 6, 9, 15, 17, 24, 25] for example.
In 2001, Walther29 obtain the following global weighted estimate for the global maximal
operator S;*:

Theorem BPY. Assume that n =1, a > 1, 2 < ¢ < 4, for f in Schwartz class S(R), then
5 f@) et 1de) " < 0 14
([1szs@ralttaz) ™ < Clfl (1.4
where H*(R™) (s € R) denotes the homogeneous Sobolev space, which is defined by

@) = {7 Ifls = [ lePIfora)" <ol

Recently, the authors of [11, 12] and [4] gave some Strichartz estimates for a class of gener-
alized dispersive equation defined by

{ 0w+ ¢(vV—A)u =0, (x,t) e R" x R, (15)
u(z,0) = f(z), feS®m), '
where ¢(v/—A) is a pseudo-differential operator with symbol ¢(|€|). The equation (1.5) includes
many well-known equations. For instance, the half-wave equation (¢(r) = r), the fractional
Schrodinger equation (¢(r) = r* (0 < a,a # 1)), the Beam equation (¢(r) = 1+ 1), Klein-
Gordon or semirelativistic equation (¢(r) = v1+12?), iBq (¢(r) = rv1+12?), imBq (¢(r) =

") and the fourth-order Schrédinger equation (¢(r) = 72 + r?) (see [5, 10, 13, 14] and

Vitr?
references therein). Noting that

n

u(z,t) = VR () = (2m) 7" / G EHid (e f(¢)dg =: Sy o f (x)
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is the formal solution of the equation (1.5). Then the local maximal operator S defined by
Sif(x) = sup [Sef(z)l, xr eR™?
0<t<1
and the global maximal operator S3* of the family of operators {St,6 }ter defined by

S;*f(@ =sup [Sy,¢f ()], r e R™
teR

On the other hand, the authors in [7] gave some global L? estimate for the maximal opera-
tor S; under symbol ¢ satisfying some growth conditions. Moreover, in one dimension, under
symbol ¢ satisfying the conditions (H1)—(H3), and curve satisfying some suitable growth condi-
tions, in [8] we also obtained some weighted L? maximal estimate along curve associated with
solution to dispersive equation (1.5). The main purpose of the present paper is to give a local
and global weighted estimates for the global maximal operator S3* with ¢ : R* — R, satisfying
some suitable conditions. We first give our main result in this paper for the dimension n = 1.

Theorem 1.1. Assume that n =1 and ¢ satisfies the following conditions:

(H1) There exists my > 1, such that |¢'(r)| ~ r™ =1 and |¢"(r)| = r™ =2 for all 0 < r < 1;
(H2) There exists ma > 1, such that |¢'(r)| ~ r™2=1 and |¢" (r)| Z r™272 for all r > 1;
(H3) Either ¢"(r) >0 or ¢"(r) <0 for all r > 0.

Ifi<s<i 2<q< 3. anda=q(3—s)—1, then
sk q @ /4
([ 1z s@riatodar) ™ < Ul ey (16)
Moreover, only if a > q(% — 8) — 1, the local estimate

)19z 1/q
([ 155 s@ald) " < ey w7

holds for all f, where B is an arbitrary ball in R.

Remark 1.2. There are many elements ¢ satisfying the conditions (H1)-(H3), for instance,
r® (a > 1), vV1+7% and r2 + 7% and so on. However, the aforementioned v/1 + 12, rv/1 + r2
and == do not satisfy the condition (H1) or (H2).

Remark 1.3. Obviously, in case s = %, Theorem 1.1 implies Theorem B. Noting that the
fact H*(R) ¢ H*(R) if s > 0, one may see that the conclusions of Theorem 1.1 also hold if
replacing H*(R) by non-homogeneous Sobolev space H*(R) in estimate (1.6) and (1.7). Hence,
the following consequence of Theorem 1.1 is immediately when o = 0.

Corollary 1.4. Assume that n = 1, ¢ satisfies the conditions in Theorem 1.1. If% <s < %,
2
q = 1-25’ then

1/
([ 185 5@0ae) ™ < il (18)

If% <s< %, then the local estimate

([ 185 s@paz)"™ < Cllfle (19)

holds if and only if ¢ < where B is an arbitrary ball in R.

1—2s 257
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In 1997, Sjolin" gave the following global and local estimates for the local maximal oper-
ator S*, which implies the convergence almost everywhere of the solution for the equation (1.2)
with initial date:

Theorem CI?l. Assume thatn =1, a > 1, i <s< %, then the global estimate
155 fllLar) < Cllf s (m) (1.10)
and the local estimate

155 fllLas) < Collfllas®) (1.11)

holds for q =

1— 28’

holds if and only if ¢ < =53 25’ where B is an arbitrary ball in R.
Remark 1.5. Clearly, Corollary 1.4 improves and extends Theorem C.
Now let us turn to the case of the dimension n > 2.

Theorem 1.6. Assume that n > 2 and f is radial, ¢ is radial and satisfies (H1)-(H3). If
1 <s<f, 2§q§ﬁ and o = q(5 — s) —n, then

1/q
(/R 1S3 F@)lald) " < Ol (1.12)

Moreover, only if o > q(§ — s) —n, the local estimate

1/q
([ 153 r@itelda) ™ < €l e (113

holds for all radial functions f, where B is an arbitrary ball in R™.

Remark 1.7. Obviously, Theorem 1.6 is an improvement and extension of Theorem A for the
case s = i. The following consequence of Theorem 1.6 is also obvious when o = 0.

Corollary 1 8. Assume that n > 2 and f is radial, ¢ satisfies the conditions in Theorem 1.6.
If <s< then

57‘1*” 2@’

1/q
([ 15 s@lrae) ™ < Clllne (1.14)

If% <s< %, then the local estimate

1/q
([ 155 @) ™ < Clfllqao (1.15)

holds if and only if ¢ <

Remark 1.9. When ¢ satisfies the conditions (H1)-(H3), Corollary 1.4 and Corollary 1.8
implies the a.e. convergence of the solution of the general dispersive equation (1.5) for for
s > 1 when the initial data f in H*(R) and the radial initial data f in H*(R™)(n > 2),
respectively.

pras 25, where B is an arbitrary ball in R™.

This paper is organized as follows. The proofs of Theorem 1.1 and Theorem 1.6 are given
in Section 2 and Section 3, respectively. In the proofs of above main conclusions, Lemma 2.1
plays an important role, which will be proved in Section 4. In final section, we give the weighted
maximal estimates for the functions in Hj, which is the set of all combination by the radial
functions and solid spherical harmonics.
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2 The Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. To do this, we need to present two lemma (i.e.,
Lemma 2.1 and Lemma 2.3 below), which play a key role in proving Theorem 1.1 and Theorem
1.6. The proof of Lemma 2.1 will be given in Section 4.

2.1 Key Lemma and Proof of the Sufficiency in Theorem 1.1

Lemma 2.1. Assume that ¢ satisfies (H1)—(H3). If £ < s <1, and p € C§°(R), then

in€+ita(1€) [¢)~5 , ($ ) g ‘< 1
’/Re |§‘ N(N) 3 —C|x|1—s’

forz e R\ {0}, t € R and N =1,2,3,--- . Here the constant C may depend on s and my, ma
and p but not on x, t and N.

Remark 2.2. In case ¢(|¢]) = [£|*(a > 1), Lemma 2.1 was showed by Sjélin in [21].
Lemma 2.3'6, Ifr > p, O§a<1—%, O§’y<% and’yza—!—%—l—%—l, then

([ii@rierae)” < ([ 1)

Applying Lemma 2.3, we have the following estimate:

([ 17orierae)™ < ([ 1r@plaerirtas) ™ (2.)

where 1 1Ss<3 L and < p < 2. In fact, taking r = 2, v = s, it follows that

1+2
1 1 1 1 1 1
a—v—f—f—i—lzs—f—f—i—l—s—i—f —
p p 2 2 p
Notethat 1+2 <p§2:rand0§oz<17%,0§’y:5<%:%bya:s+%f%and

1 < s < 1. Thus, the estimate (2.1) follows by Lemma 2.3.
Let us turn to the proof of sufficiency in Theorem 1.1. That is, it only needs to show that
the following estimate :

1/q
([ 153 f@leldn) " < Ol ey (22)

where + < s < 1,2<¢< 2 and @ = q(3 — s) — 1. Let t(z) : R — R be a measurable

function. Denote
Tfa) = lal ¥ [ @<t @HD g, f e SR
R
By linearizing the maximal operator (see [17, p.707]), to prove (2.2) it needs to show that
p 1/q
( / i@ de) " < Ol ooy (23)

where 1 <'s < 1 and 2 < ¢ < . Taking function p € C§°(R) such that p(z) = 1 if 2] < 1,
and p(z) =0 if |x| > 2. Denote

Rg(z) = |z|e /R e wtet@olEl || s g(e)de, g e S(R).
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We claim
[RgllLaw) < CllgllL2()- (2.4)

Note that Tf(z) = R(| - [*£(-)) (z), we have by (2.4)

([irs@ras)” <o [[rg-rf
<c(/ |£|2S|f(£)l2d£)
= C”f”HS(R)v

)1/11

which implies (2.3). Now we prove (2.4). Denote

Rugla) = p(5p) lal¥ [ e eet@X0p( LY iei (), N >

On the other hand, it is easy to see that the adjoint operator R/ of Ry is given by

Righ() = el ()

s (TN ine —it(@)a(lel)
p()e e h(z)dz, N >2.

To prove (2.4) it suffices to prove that

IBNgllLe®) < CligllLzm)- (25)
By duality, we turn to prove that

[RxAllL2 ) < ClIbll Lo )., (2.6)
where 55- <p<2by2<qg< 7 2 and 1 i L — 1. Since

IRy A2 = / IRIh(E)2de

/ €]~*p /|x|qp —zxfe—it(x)qb(lél)h(w)dm)

|€\‘5 / oL iyfe—it(y)¢(|§|)h(y)dy)d§

::p(%)p(ﬁ / / Km,y)\x|%h<x>|y\%h<y>d:cdy,

(2.7)

where

N

Note that ¢ satisfies the conditions in Lemma 2.1, and % < 2s <1by i < s < %, thus by
Lemma 2.1, we obtain

(y—x —t(x —2s 5 2
Kn(z,y) ::/Re[(y &+ ()= t2)o(1€D) || -2 p(f) de.

|Kn(z,y)| < C (2.8)

R
Thus, by (2.7) and (2.8), Parseval’s equality and (2.1), combining with the fact %—i—(s—i—%)p—l =
Obya:q(%fs)fland%Jr%:l,weobtain

Jirsn@Pae < [ ([ vl bldy) el (o)l
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=€ [ Bl 1RO D@ (o)) da
=c [ 1m0
R
<c( [ (b@lal#)lal 7 1d)
R

ap s+ Lyp— 2/p
— C(/R|h(z)|p|x| Lt (s+3)p 1d:c) = C||h|\Lp(R),

) (©)7 )¢ de

where and in the sequel, I, denotes the Riesz potential of order «, which is defined by

(e = [ Ao,

It follows that (2.6) holds.
Summing up above estimates, we complete the proof of the sufficiency part of Theorem 1.1.

2.2 Proof of the Necessity of Theorem 1.1

We choose an even and non-negative ¢ € C°(R) with suppy C {& 3 < [¢] < 2} satisfying
e(§)=1if 2 <g < %. Denote f := Lp(%) for A > 1. By simple calculation, we have

11l 7 zy < A>T, (2.9)

where C' is independent of A\. On the other hand,

Stof(@) = (2m)7F [ emeer Dy ($)de = (2m7ia [ N ipay.  (2.10)
R R
Thus, taking ¢ = 0 in (2.10), we get
Suaf(@) = (202 [ N p(mdy = (2m) Ap(ke). 2.11)
R

Note that

(0) = / o(x)dz > / o P> 1

there exists 0 < § < 3, when |z| < 2, we have ¢(Az) > 1. Hence, when |z| < £, we obtain

S5 (@) >[S00 (2)] > coh, (2.12)

where ¢y = ;. Since Sy satisfies the local estimate (1.7), so if take By := B(0,1), the unit

ball in R, then by (2.9) and (2.12), we obtain

1 l/q
Cp, AT > /B 1857 F@)lfaldr) " > ( /| }

which follows that

5a+1 % 1— a4l
AT

1/q
) o
(CO ) |I]C‘ X = Cp a+1

s
X

a+1

AT <ot (2.13)

where C only depends on § and ¢, not depend on A. Taking X large in (2.13), then o > q(%—s)—l
is necessary for the inequality (2.13), i.e., o > q(% — s) — 1 is necessary for the local estimate

1.7 holdswhen1§s<land2§q§ f .
1 2 I-2s




194 Y. DING, Y.M. NIU

3 The Proof of Theorem 1.6

3.1 Proof of the Sufficiency in Theorem 1.6

We prove the sufficiency part of Theorem 1.6. That is, when n > 2 and f is radial, ¢ is radial
and satisfies (H1)—(H3), it only needs to prove that the following estimate:

1/q
([ 155 r@)aldz) ™ < Cl e (3.)

where i <s< %, 2<¢q< 1_—225 and a = q(§ — s) —n. Assume f € S(R") is a radial function,
then (see [22, p.155])

o0
fO) = nHe [ )T a(slehstas,
0
where and in the sequel, J,,(r) denotes the Bessel function defined by

r\m 1
Jm(T): (2) : / eiTt(l_t2>m_%dt, m>_1
I'(m+ %)’n’f 1 2

Let t(z) : R™ — R be a measurable and radial function. Denote

Tf(a) = (2m) " [ e fgya.

Therefore, we get
Tf(u) = (27r)%*”u1*%/0 Ju_1(ru)e™ ™M fryrEdr,  u >0, (3.2)

where T'f(u) = Tf(x) with v = |z| and f(r) = f(€) with r = |¢|. By linearizing the maximal
operator and using polar coordinates, to prove (3.1) it suffices to prove that

1/2

(/ |Tf (u)]9udlz =)~ 1du>1/q§ (/Ooo|f(r)|2(1+r2)sr”_ldr) ; (3.3)

0

where § < s < 1 ,2< =
g(r) = (A +r)3rE2 r>o0. (3.4)
By (3.2) and (3.4), we have
Tf(u)u%—s—% = (QW)_%ul—%u%_S—% /OOO J%71(ru)eit(u)qﬁ(r).}?(,r),r%dr
= (2m) %! /OOO T 1 (ru)e @0 g(r) (1 +r2) " Erddr
=: (2m)" ¥ Pg(u),

where the operator P is defined by

o0
Pg(u) := wl™ 79 / Jgfl(ru)eit(“)‘f’mg(r)(l + 7‘2)_37‘%dr, r > 0.
0
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Thus, to get (3.3) it only to show that

(/ " IPguiran) " < o / " lgtryar) (3.5)

Denote by P’ the adjoint operator of P, that is

/ Po(r)R()du = / (PR dr. (3.6)
0 0
It is easy to check that
P'h(r) = (1+ 7“2)_%7‘%/ Tn 1 (ru)e = O 1= T () du, 7> 0.
0

Therefore, by (3.5) and (3.6), to obtain (3.3) we only need to verify that

[P"R| L2(0,00) < CllPl|Lr(0,00)5 (3.7)
where p satisfies % +% = 1with 2 < ¢g < % and i < s < % In fact, it follows that
1< ﬁgpgz Denotea:é—ks—%,then

oo
P'h(ry=(1+r%)"2 /0 (TU)%J%,1(Tu)e_it(")¢(T)u_Uh(u)du,

Lemma 3.1%2. J,,(r) = /2 cos(r — =22 — T) + O(r=2) as r — oo. In particular, Jo,(r) =
O(r=2) as r — oo.

Applying Lemma 3.1, we shall prove the following estimates:

|t%J%_1(t) — (bleit + bgeiit)| S ¢

?7 t> ]-a (3.8)

and . ‘ .
|t§J%,1(t) - (ble” + bQG_Zt)‘ S C, 0<t S ]., (39)

where by and by are the constants depending on n. In fact, by Lemma 3.1, when t — oo, we get

Ts () = \/Zcos (- @) + o).

It follows that when ¢t — oo, we get

1 /2 m(n—1) 2 . /man—1)\ . .
t2Jn_4(t) = \/;cos (T) cost + \/;sm (T) sint + O(t™")
= (by 4+ by) cost +i(by — by)sint + O(t™ 1)
= bleit + bge_it + O(t_l),

where

and



196 Y. DING, Y.M. NIU
It follows that (3.8) holds when ¢ > 1. On the other hand, by the definition of Bessel function
t\m 1
= ) 1
I (t) = 7(2) n / e (1 — 82)m_%d8, m> ——,
D(m+ 3)mz J1 2

we have [J, (t)] < Ct™ form > —5 and t > 0. Since n > 2,50 [Jz_1(t)] < Ct2 ! for 0 <t < 1.
Therefore, when 0 < t < 1, we have

[£1/2 T 1 (t) — (bre™ + boe™™)| < Ct2tE 71 4 [bye| + boe ™| < CtE7% + |by| + |ba| < O,

(3.10)
which implies the estimate (3.9). Invoking (3.8) and (3.9), we have
Plh(T') =: blAl(T) + bQAQ(T) + B(T), (311)
where -
Ai(r)=(1+ 7“2)7%/ eime*“(“)(ﬁ(r)uﬂ’h(u)du,
0
Ay(r)y=(1+7r%)"2 / e e W) = by du,
0
and -
IB(r)| < C(1 +r2)’%/ min{l i}uﬂh(u)uu. (3.12)
- 0 ru
We first estimate A; and As. Denote
A(r) = (1+r2)—%/ ety o p () du, e R
0
We claim that
5 \1/2
([ 1amPar)™ < Cllzso. (313)
and then
o0 1/2 1/2
(/ Aur)ar) < c(/ A@)Par) . =12, (3.14)
0 R
by (3.13) and (3.14), we have
o0 5 \1/2 '
(/ Adr)Pdr) < Ol =12 (3.15)
0

Now we prove (3.13) holds. We take a real-valued function p € C§°(R) such that p(r) = 1 if
|r| <1, and p(r) = 0 if [r| > 2, and for N > 1, set pn(r) = p(%). And define

An(r) = pw(r)[r|~* / im0 (1) dus
0
We first assume that the following estimate holds:

5 \1/2
(/R|AN(T)| ar) " < Ol oo (3.16)

Thus, let N — oo in (3.16) and by Fatou’ Lemma, it follows (3.13) holds. Now we prove (3.16).
By Fubini’s Theorem, we have

/R|AN(T)|2dr =: /000 /OOO I(u,v)u™% h(u)v=? h(v)dudv, (3.17)
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where
I(u,0) ;:/ez‘[(u—v)r—<t<u>—t<v>>¢<\r\>]|r|—2spN(r)2dr.
R

Note that ¢ satisfies the conditions in Lemma 2.1, and % < 2s <1by i < s < %, thus by

Lemma 2.1, we get

I(u,v) < c— 1 (3.18)

|U _ 1}|1_28 '

By (3.17), (3.18) and Parseval’s equality, we obtain
Al < C [ [ o b () dud
Nlzee =€ ) \u—v|1—25u u)v v)|dudv

1 . -
C/R/Rm—vp—?“ ha(w)o™ | (v) |dudv
::C1/ hs@7aV“un)U7UVh(u”du

R

e / 161729 (= [ | () (a7 T ) () dé
R

e / (a7 | () [2le] 2 de, (3.19)
R
where
b, w0,
ha(u) = { 0 . (3.20)

Thus by (2.1), we get

~ 1/2 1 1/P
([ teimiyerierae) ™ < o [ ummpru+ria)
P 1/p
:C(/u—ap+sp+§—1|hl|pdu) (3.21)
R
= Cllh1llr = Clhl|Lr(0,00)
where we invoking the fact —op+sp+5 —1= fgfsp+g+sp+gfl = f§+p71 =0 by

0= 1+s—4and ; + . Thus (3.16) holds from (3.19) and (3.21).
Next, we will show the estimate

00 5, \1/2
(] 1B)Par) ™ < Clllro (3:22)

holds. The proof for (3.22) will be split into the following two cases.
Case I. 0 <r < 1. we have

1 ) 1/2
(/O BE)Pdr) " < Clal 10,00 (3.23)

In fact, by (3.12), when 0 < r < 1, we have

) 1y _ v _ 1 i
< _ a < (o2 - a
|B(r)| < C’/O mln{l, ru}u |h(u)|du < C(/O u” 7 |h(u)|du + . A u |h(u)|du)7
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where o = % + 55— % By Holder’s inequality, we get

% 1/q 1 o0 1/q
|B(7’)|§C(/O u™"1du) |\h||Lp(0,oo)+c;(/l a0 oo e

1.1 1 1.1
=C(=)a7|h C=(=)s 7 M
()7 hllzr 000 + €5 ()37 Il a0,
o—1L s—2x
= Cr7 4|\l Lr0,00) = CT° " 2||h]| Lr (0,005

where we using the fact o — % =s— %. Thus, when § < s < 3, we have

1 ) 1/2 1 o 1/2
([ 1Beyear) ™ < ([ 2dr) bl < Clliroo.

which implies (3.22).
Case II. r > 1. In this case,

00 9 1/2
(/1 |B(r)] dr) < Ol zr(0,00)- (3.24)

In fact, by (3.12), when r > 1, we have

|B(r)| SCT‘S/T min{l,%}u‘”\h(uﬂdu%—Cr‘s/l min{l,%}u‘“|h(u)|du

0
— o /0? W () |du + Cr— 1= /Oo w= Y h(w) | du (3:25)
= CQl(T) + CQQ(T)

Denote M (t) = $Q1(1), 0 <t < 1. Note that t '™ < (t —u)~'** when § < s < 1andu <t
It follows that

M (t) :t_1+s/0 u” % |h(u)|du
< [ = )

— ) T by (w)|du
< / (t— ) [ () d
=: Is(u7|h1]) (),

where hy defined as above. Thus, by Parseval’s equality and (3.21), we obtain

(/100621( \dr /|M (1) 2de) /2

<o [ i mbora)”

. 1/2
= o [ Il )
R
< Clhllze@) = CllBllLr(0,00)»
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which follows that
o0 5 \1/2
([ 1@rar)” <l o, (3.26)
1
Next, we estimate Q2. Denote Ma(t) = 1Q2(1),0 < ¢ < 1. Note that u='™ < (u— )~ when

i <s< % and u > ¢. It follows that

My(t) = ts/ w0 h(u)|du
¢
wu~ a7 | h(u)|du

IN

oo

w0 | h(u) |du

o0

(u— 1)~ w7 h(w)|du

IN

IN
— T

u—t| e u
</R\ 0w [y )| d
= L (w7 ) (1),

where hy defined as above. Thus, by Parseval’s equality and (3.21), we obtain

([ 1@arar)” = ([ nora)’

<c(/ |Is<u—°'|h|><t>|2dt)” :

. 1/2
= o [ I lmlyri) )
R
< Clhallr @y = CllRll Lr(0,00)5
which follows that
oo o \1/2
(] 1Qumkar) ™ < o (3.27)

Thus (3.24) holds from (3.25), (3.26) and (3.27). It follows that the estimate (3.22) from (3.23)
and (3.24). Hence, the estimate (3.7) holds from (3.11), (3.15) and (3.22).
Summing up above estimates, we finish the proof of the sufficiency part of Theorem 1.6.

3.2 Proof of the Necessity Part of Theorem 1.6

Taking a radial nonnegative function ¢ in C°(R™) with suppy C {&1 < [£] < 2}, which
satisfies (&) = 1 if 2 < [¢] < Z. Denote f(£) := <p(§) for A > 1. By simple calculation, we
have ’

11| zrs ey < CAZF2, (3.28)

where C' is independent of A. Since

Stof(e) = (2m) " [ emeenotp($)ae = 2mrar [ edenete oy, (329)

n

if taking ¢ = 0 in (3.29), we get

Suaf(@) = (20 "A" [ P pn)dn = (2m) NG, (3.30)
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Note that

there exists 0 < § < 3, when |z| < £, we get ¢(Az) > 3. Thus, when |z| < £, we obtain
Sg f(x) =[S0, f ()] = coA”™, (3.31)

where ¢o = ﬁ Assume the local estimate (1.13) holds, so if choose By := B(0, 1), the unit

ball in R™, then by (3.28) and (3.31), we get

n 1/q
Cooxt = ([ 15y f@pafar) "z af [ |
BD x S

6a+n

a+n

1/q
/\”q|:c\°‘d:v) =\ e,

s
X

Wn—1

1
o ) 7 and w,_1 denote the area of the unit sphere in R™. It follows that

where ¢ = co(
AT < OB (3.32)

where C' depends on §, n and ¢ only, not depend on A. Taking A large enough in (3.32), then
o > q(% —s) — n is necessary for the inequality (3.32), i.e., @ > (% — s) — n is necessary for
the weight local estimate (1.13) holds when % <s< % and 2 < ¢ < ﬁ

4 The Proof of Lemma 2.1

Now we prove Lemma 2.1, we need the following variant of van der Corput’s lemma:

Lemma 4.12%. Assume that a < b and set I = [a,b]. Let F € C>®(I) be real-valued and
assume that p € C(I).

(1) Assume that |F'(x)| > A > 0 for x € I and that F’ is monotonic on I. Then

| [ ovwan < ool + [ W),

where C does not depend on F', i or I.
(i1) Assume that |F"(x)] > A >0 for x € I. Then

/ @ y(a)da] < Cx{len+ [ s,

where C does not depend on F, ¢ or I.

We now return to the proof of Lemma 2.1. By the conditions (H1) and (H2), there exist
positive constants C; (i =1,2,---,6) so that for r > 1 and ms > 1 such that

Crrm < @) < Cor™ Tt and |8 ()] = Gy, (4.1)
and for 0 < r < 1 and m; > 1 such that
Corm™ = < |g(r)| < Csr™ ' and  |¢"(r)| > Cor™ 2, (4.2)

Without loss of generality, we may assume ¢ > 0 and £ > 0. Denote

I = /Ooo eiwé-s-itaﬁ(f)g—su(%)dé
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To prove Lemma 2.1 it suffices to show that

1

1] < CIwITS’ (4.3)
where the constant C may depend on s and my, me, C; (i =1,2,---,6) and u but not on x,
t and N. Write

I = / em5+it¢(§)§_su(£)d§ +/ eix§+it¢(f)§—sﬂ<£)d§ =1 + I5.
E<]z| T N £>|a| 1 N

Thus, to get (4.3) it suffices to give the following estimates:

|| < CW’ (4.4)
and

B < O (45)
where the constant C may depend on s and my, mo, C; (i =1,2,---,6) and u but not on x,

t and N. The estimate of (4.4) is simple. Since p € C§°(R) and s < 1, we have

1
e 0/ e = C—1—,
E< ||t

]

which follows (4.4) holds. As for (4.5), denote ¥(§) = f_s,u(%). We first show the following
estimate holds:

max, [6(6)| + [ Y (©)lde < Clal*. (4.6)

2|zt |1

In fact, by 1 € C§°(R) and 3 < s < 1, we obtain

(e Y] < Clz|®. (4.7)
Since ) ¢ ¢
WO =65 () — s (),
and

[ b (R lee<e

it follows that

oo o0 1
P (€)]dE < |z|* ~
[ e s [ 5

Therefore, (4.6) follows from (4.7) and (4.8). Now we split the proof for (4.5) into two cases
according to the value of |z|.
Case I. |z| <1. We choose C7 such that C7 > c%

(T-a). |z|™ < c% Denote F (&) = x€ + t¢p(€), we have

M(%) ’d{ + c/oo €757 1de < Ol (4.8)

Edi

Fl(§) =x+td'(§)  and  F'(§) =" (S).
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Note that £ > |#|~! > 1 by |z| < 1, by (4.1), we have

ClC7|x|m2

§m2_1
Ed

|£L’|1_m2 = 0107 Z 2. (49)

‘t ‘ > C1Cr|x|™2

||

Note that F'(¢) = z(1 + £¢/(£)) and by (4.9), we get
t
F'©) = ol (|=¢' )] =1) = Jal. (4.10)
Note that ¢’ is monotonic on RT by the condition (H3), it follows that F’ is monotonic for

¢ > |z|7t. Thus, using (i) of Lemma 4.1 and by estimates (4.10) and (4.6), we obtain

1

|:L.|lfs’

Bl =| [ Qv <l e = 0

it follows that (4.5) holds.
(I-b). |z|™ > C% We choose 6; > 0 is small enough such that §; < (i)m;—1 and Ay >0

2C5
is large enough such that Ay > (C%)mzlfl. Note that Ay > §; by C; < Cy and ms > 1. Denote
1

= > 1. < m mat

w=fes b eca(E) )
1

Y PR m T m T
A2 {5 =1 51(1&) *5*)‘1(15) }

Y PR S m T
Ag={ez e €20 ()™

Hence we may write

L= /A Oy (¢)de + /A Oy (¢)de + / SFEY(E)E = Tyy + o + Tos.  (4.11)

As

Now we give the estimates of I ; (j = 1,2, 3), respectively. First, we consider I3 ;. For £ € A4,
since mg > 1 and by (4.1) we get

mog—1

¢ (€)] < Cate™ ! < té{”rl(@) T = ooy Val < %
which follows that
)] 2 o] - tig'©)] = 2. (1.12)
Applying (i) of Lemma 4.1, by (4.12) and (4.6) we obtain
L] < Cla| " fof* = Cﬁ (4.13)

Next, we estimate I 3. For { € Ag, since mg > 1 and by (4.1) we have

N = e —
tlo'(€)] > Catem™ ™t > CrEAT™ 1('%) = CIAT2 Y| > 2.

From this we have

[F'(©)] =t ()] — |z] = |al. (4.14)
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Using (i) of Lemma 4.1, (4.14) and (4.6), we get

1

Lo 3] < Cla| ™ a]* = Cmﬁ~

Finally, we estimate I55. Note that for £ € Ag, |[F”(£)] > Cst&™22 by F”(€)
(4.1). Thus, we have

mg—2
Mo —1

o= co(E)F — v

and

max?/}—f—/loo o |dg<c(|x|)"‘7‘1.

EEA :D‘

In fact, since

W) <€° <ér (W)mgléC(m)m%l

t t
/ \d£</ -
] 2

o)

and

)‘d& +C g—s—ldg

(& hero(t)

which imply (4.17). Applying (ii) of Lemma 4.1, by (4.16) and (4.17) we get

—S
‘x|)m2_1 2—mg—2s

ool < C(E7 o] 1) 73 (B1) ™7 < Cronm o] 30T

Since t < C7|x|™2 by |z|™2 > C% and s > %, ma > 1, thus by (4.20), we obtain

mg(2s—1) 2—mo—2s (mg—1)(25—2) 1
|12,2‘ < C|.’17| 2(mg—1) |$| 2(mo—1) — C|$L" 2(mg—1) — C| |1is_
X

Thus, the estimate (4.5) follows from estimate (4.11), (4.13), (4.15) and (4.21).
Case II. |z| > 1. Denote

203

(4.15)

= t¢”'(§) and

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

I, = = iz+it(€) ¢—s £ d / iz§+it(€) ¢—s é de =T I = 4.99
o= [ O (e [ O () =yt s (422

We first estimate I3 4. Note that £ > 1, similar to estimating I5 in Case I. We may estimate

t t . .
I5 4 for the cases |x|™2 < o and |z|™2 > o> respectively. Hence, we obtain

o< 1
o] = ‘/1 ezF<s>¢(5)dg’ gcmﬁ.

Next, we consider I 5. Since |z|~! < ¢ < 1, we choose Cg such that Cg > C%

(Il-a) If |z|™ < Z£. Similar to the estimate in (I-a) of Case (I), we may get

s = \ [ €T Ouds| < Clalaf = Claf* .
o]~ <g<1

(4.23)
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(I1-b) Tf [z[™ > &. We choose da, Ay > 0 such that d < (2és)mllf1 and Ay > (C%)mlfl.
Then Ay > 62 by Cy < C5 and my > 1. Denote

By={1> 2l e ()™,

Therefore,
o= [ eFOu©ds+ [ FOueds+ [ eTOu(e)de, (4.24)
B B> Bs
Similar to estimating I ; (j = 1,2, 3) above, we may get
. ) 1
| [ erOuipde] < Clal Mot = 0, (1.25)
B |z|
. 1
|| erOutepie] < Claf et = i (4:26)
Bs Y
and
. 25—1 2—my—2s
‘/ ezF(f)w(é')dé" < CtZ0mi=D |g| Tom=1) (4.27)
By
Since |z|™ > CLS and s > %, my > 1, by (4.27) we have
i my(2s—1) 2—mq—2s (mq—1)(2s—1) 1
‘/ elF(g)qZ)(g)dé" < C|.’L'| 2(17"1*1) |x| 2(7"11*1) = C|(E| %(7"1*1) = Ci| |175. (428)
Bs Y
Thus, by (4.24), (4.25), (4.26) and (4.28), we get
1
Ll <C—— 4.29
5] € Oy, (4.29)

and (4.5) holds from (4.23) and (4.29).
Summing up above all estimates, we show (4.3) and complete the proof of Lemma 2.1.

5 Estimate for Combination by Radial Functions and Solid Spherical
Harmonics

Let Ay be the set of all solid spherical harmonics of degree k. It is well-known (see [22, p. 151])
that there exists a direct decomposition

L*(R") = Z DDy
k=0

The subspace Dy, is of all finite linear combinations of functions of the form f(|z|)P(z), where
f ranges over the radial functions and P over Ay, such that f(|-|)P(-) € L2(R"™).

Fix k> 0 and let P, P, - -, P,, denote an orthonormal basis in Ay. Every element in Dy,
can be written in the following form

F@) =Y fille))Pi(a), (5.1)
j=1
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and o
25 () |22k g
| @) d—Z/ (P

Let Ho(R™) be the class of all radial functions in S(R™), and Hy, (k € N) be the set of functions
defined by (5.1) with f; € Ho(R™) and P; € Ay for j = 1,2,--- , as. From the proof in [20,
p- 399-400], in fact, Sj6lin obtained the following result:

Theorem DY, Assume that a > 1, n>2and f € Hy (k> 0). f2<q<4,a= W—n,
then

1/q
*% q [e%
([ 182 rta)aldn) ™ < ClAlL o (52)
We give the global weighted L9 estimate of the maximal operator S3* for f € Hg.

Theorem 5.1. Assume that n > 2 and ¢ satisfies the conditions in Theorem 1.6, f € Hy (k >
0). If% §s<%, 2§q§ﬁ and o = q(5 — s) —n, then

1/q
([ 155 7@ el dz) ™ < 1w (53)

Remark 5.2. Obviously, Theorem 5.1 is an improvement and extension of Theorem D for the

=1
case s = 7.

Proof of Theorem 5.1. When k = 0, Theorem 5.1 follows from Theorem 1.6. Hence we need
only to give the proof of Theorem 5.1 for £ > 1. To do this, we need the following a well-known
fact:

Lemma 5.32l. Suppose n > 2 and f € L*(R") N L' (R™) has the form f(x) = fo(|z|)P(x),
where P(x) is a solid spherical harmonic of degree k, then f has the form f(z) = Fy(|z|)P(x),
where

Fo(r) = (Qﬂ)%i_kr_%_kﬂ/ fo(s)Jg+k_1(rs)s%+kds,
0
where J,, denotes the Bessel function.

Let us return to the proof of Theorem 5.1. By [20, p. 396] we know that for f € Hy(k > 1),

Ik poo 1/2
ey = (3 [ IO +r22=tar) (5.4)
j=1
On the other hand, by Lemma 5.3 we have
~ Ik
fl@) = F(ll)Pi(a), (5.5)
j=1

where -
Fi(r)= (QW)%i*krk%*k/ £i(s) %+k,1(rs)s%+kds, r > 0.
0

Thus, by (5.5) we get

Stal() = (20"

n

iw-€ o itd(1E]) £V de = N 27) " iw-g (it (IED) p (e Py de.
et feyde = 3 am R GG
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Applying Lemma 5.3, we obtain

/n e (eMUD Fy (1€)) Py (€)) dé
=("VE (|- )Py (=) (@)
:(2%)%2'*’%17%7}6(/0 J%+k—1(Ts)eit¢(T)Fj(T)r%+kdr>Pj(*x%

where s = |z| > 0. Thus, we have

Sisf () 22(27r)3ik|a:|13k(/000 Ty e (2O ()8 ) P(—a). (5.6)

Jj=1

Denote by JF, the Fourier transform in R", then F; = i*k?n+2kfj. Note that for a radial
function h € S(R"+2*), we have

Tasauh(a) = 0|l "3 [ b Ty o rlalr ar
Define the operator SZ:;% on the set of all radial function in S(R"*2¥) by
Spgh(z) o= (2m) / eI, oph(|€])dg
’ Rn+2k
Obviously, Slfg%h is still a radial function. Then

ST £ ((2]) = i*(2m) T2 / i€ (eit90€) ) de

Rn+2k

= ik(2ﬁ)7%*2k|z|1*%*k\/ J%+k_1(?”|17|) ztd)( )F ( )T2+kd’r.
0

By (5.6) and (5.7), we get

Si.of(x) =i (2m) 2’st"“’wfj lz|) - Pj(—z), x€R", (5.8)

where we may regard Sffkfjﬂx\) as a function on R™ since St";%fj is a radial function.
Denote

SR fi(lyl) = sup ISP (YD, y R or yeR™ (5.9)
Then by (5.8) and (5.9), we obtain

5" f(@) < Coe (S5 f(|1) |- (5.10)

J

Using the notation v = |z| and r = [£|. By (5.10), we get

1/ ax 1/
([sprs@imean) ™ o> ([ sy o) s
R = R
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where 2 < s <1, 2<¢< % and a = ¢(% — s) — n. Denote 8 = q(252% — s) — (n + 2k),
it follows that kq + a+n—1=p+n+ 2k — 1. Using representation of polar coordinates, we
obtain

/ |Sn+2k *ok ( )‘qv qudl’ = w1 / |Sn+2k *% ( )|qvkq+a+n71dv
Rn 0 (5.12)

_ Wp—1 / |Sn+2k *ok ( )|qU6d$
Wn42k—1 JRn+2k ¢

where w,,_1 and w, yor_1 denote areas of the unit sphere in R” and R"*2*_ respectively. Since
f; is a radial function in R"*2¢ 1 < g <1 2<¢< 1%25 and 8 = q(%% —8) — (n+ 2k), thus
applying Theorem 1.6, we obtain

([ LI p@ialbde) " < Clfliggony. (5.13)
Note that F,or f; = i*F}, we get
150y = [ IS ED+ Iy
Rn+2k
o0
an+2k71/ |Fj(r)\2(1 +r2)sr”+2k_1dr. (5.14)
0

Therefore, by (5.11), (5.12), (5.13), (5.14) and (5.4), we obtain

(\/" |SZ’**f(x)‘q|I|adx)1/q <C’ Z/ 1+ )srn+2k71dr> 1/2

=C| f| s ®n)- (5.15)
Thus, we complete the proof of Theorem 5.1.
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