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Abstract For a function ϕ satisfying some suitable growth conditions, consider the following general disper-
sive equation defined by {

i∂tu+ ϕ(
√
−∆)u = 0, (x, t) ∈ Rn × R,

u(x, 0) = f(x), f ∈ S(Rn),
(∗)

where ϕ(
√
−∆) is a pseudo-differential operator with symbol ϕ(|ξ|). In the present paper, when the initial data

f belongs to Sobolev space, we give the local and global weighted Lq estimate for the global maximal operator
S∗∗
ϕ defined by S∗∗

ϕ f(x) = sup
t∈R

|St,ϕf(x)|, where

St,ϕf(x) = (2π)−n

∫
Rn

eix·ξ+itϕ(|ξ|)f̂(ξ)dξ

is a formal solution of the equation (∗).
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1 Introduction

For t ∈ R and a > 1, defined the operator St,a by

St,af(x) =
1

(2π)n

∫
Rn

eix·ξeit|ξ|
a

f̂(ξ)dξ, f ∈ S(Rn),

where f̂(ξ) =
∫
Rn e

−iξ·xf(x)dx. Then the local and global maximal operators S∗
a and S∗∗

a

associated with the family of operators {St,a}0<t<1 and {St,a}t∈R respectively, are defined by

S∗
af(x) = sup

0<t<1
|St,af(x)|, x ∈ Rn

and

S∗∗
a f(x) = sup

t∈R
|St,af(x)|, x ∈ Rn.

In 1995, Sjölin[18] gave the following local weighted estimate of the local maximal operator
S∗
a:
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Theorem A[18]. Assume that a > 1, n ≥ 2 and f is radial. If 2 ≤ q ≤ 4, α = q(2n−1)
4 − n,

then (∫
B(0,R)

|S∗
af(x)|q|x|αdx

)1/q

≤ CR∥f∥
H

1
4 (Rn)

, (1.1)

where B(0;R) := {x ∈ Rn; |x| ≤ R}. If α < q(2n−1)
4 − n, then the estimate (1.1) does not hold

for all radial functions f .
Here and in the sequel, Hs(Rn) (s ∈ R) denotes the non-homogeneous Sobolev space defined

by

Hs(Rn) =
{
f ∈ S ′ : ∥f∥Hs =

(∫
Rn

(1 + |ξ|2)s|f̂(ξ)|2dξ
)1/2

<∞
}
.

It is well-known that u(x, t) := St,af(x) is the solution of the fractional Schrödinger equa-
tion: { i∂tu+ (−∆)a/2u = 0, (x, t) ∈ Rn × R,

u(x, 0) = f(x).
(1.2)

The estimate (1.1) implies that for suitable index s, the solution of the equation (1.2) converges
to its initial date f almost everywhere, that is

lim
t→0

u(x, t) = f(x), a.e. x ∈ Rn. (1.3)

See [1–3, 6, 9, 15, 17, 24, 25] for example.
In 2001, Walther[26] obtain the following global weighted estimate for the global maximal

operator S∗∗
a :

Theorem B[26]. Assume that n = 1, a > 1, 2 ≤ q ≤ 4, for f in Schwartz class S(R), then(∫
R
|S∗∗

a f(x)|q|x|
q
4−1dx

)1/q

≤ C∥f∥
Ḣ

1
4 (R)

, (1.4)

where Ḣs(Rn) (s ∈ R) denotes the homogeneous Sobolev space, which is defined by

Ḣs(Rn) =
{
f ∈ S ′ : ∥f∥Ḣs =

(∫
Rn

|ξ|2s|f̂(ξ)|2dξ
)1/2

<∞
}
.

Recently, the authors of [11, 12] and [4] gave some Strichartz estimates for a class of gener-
alized dispersive equation defined by

{ i∂tu+ ϕ(
√
−∆)u = 0, (x, t) ∈ Rn × R,

u(x, 0) = f(x), f ∈ S(Rn),
(1.5)

where ϕ(
√
−∆) is a pseudo-differential operator with symbol ϕ(|ξ|). The equation (1.5) includes

many well-known equations. For instance, the half-wave equation (ϕ(r) = r), the fractional
Schrödinger equation (ϕ(r) = ra (0 < a, a ̸= 1)), the Beam equation (ϕ(r) =

√
1 + r4), Klein-

Gordon or semirelativistic equation (ϕ(r) =
√
1 + r2), iBq (ϕ(r) = r

√
1 + r2), imBq (ϕ(r) =

r√
1+r2

) and the fourth-order Schrödinger equation (ϕ(r) = r2 + r4) (see [5, 10, 13, 14] and

references therein). Noting that

u(x, t) = eitϕ(
√
−∆)f(x) = (2π)−n

∫
Rn

eix·ξ+itϕ(|ξ|)f̂(ξ)dξ =: St,ϕf(x)
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is the formal solution of the equation (1.5). Then the local maximal operator S∗
ϕ defined by

S∗
ϕf(x) = sup

0<t<1
|St,ϕf(x)|, x ∈ Rn

and the global maximal operator S∗∗
ϕ of the family of operators {St,ϕ}t∈R defined by

S∗∗
ϕ f(x) = sup

t∈R
|St,ϕf(x)|, x ∈ Rn.

On the other hand, the authors in [7] gave some global L2 estimate for the maximal opera-
tor S∗

ϕ under symbol ϕ satisfying some growth conditions. Moreover, in one dimension, under
symbol ϕ satisfying the conditions (H1)–(H3), and curve satisfying some suitable growth condi-
tions, in [8] we also obtained some weighted Lq maximal estimate along curve associated with
solution to dispersive equation (1.5). The main purpose of the present paper is to give a local
and global weighted estimates for the global maximal operator S∗∗

ϕ with ϕ : R+ → R, satisfying
some suitable conditions. We first give our main result in this paper for the dimension n = 1.

Theorem 1.1. Assume that n = 1 and ϕ satisfies the following conditions:

(H1) There exists m1 > 1, such that |ϕ′(r)| ∼ rm1−1 and |ϕ′′(r)| & rm1−2 for all 0 < r < 1;

(H2) There exists m2 > 1, such that |ϕ′(r)| ∼ rm2−1 and |ϕ′′(r)| & rm2−2 for all r ≥ 1;

(H3) Either ϕ′′(r) > 0 or ϕ′′(r) < 0 for all r > 0.

If 1
4 ≤ s < 1

2 , 2 ≤ q ≤ 2
1−2s and α = q( 12 − s)− 1, then(∫

R
|S∗∗

ϕ f(x)|q|x|αdx
)1/q

≤ C∥f∥Ḣs(R). (1.6)

Moreover, only if α ≥ q( 12 − s)− 1, the local estimate(∫
B

|S∗∗
ϕ f(x)|q|x|αdx

)1/q

≤ C∥f∥Ḣs(R) (1.7)

holds for all f, where B is an arbitrary ball in R.

Remark 1.2. There are many elements ϕ satisfying the conditions (H1)–(H3), for instance,
ra (a > 1),

√
1 + r4 and r2 + r4 and so on. However, the aforementioned

√
1 + r2, r

√
1 + r2

and r√
1+r2

do not satisfy the condition (H1) or (H2).

Remark 1.3. Obviously, in case s = 1
4 , Theorem 1.1 implies Theorem B. Noting that the

fact Hs(R) ⊂ Ḣs(R) if s > 0, one may see that the conclusions of Theorem 1.1 also hold if
replacing Ḣs(R) by non-homogeneous Sobolev space Hs(R) in estimate (1.6) and (1.7). Hence,
the following consequence of Theorem 1.1 is immediately when α = 0.

Corollary 1.4. Assume that n = 1, ϕ satisfies the conditions in Theorem 1.1. If 1
4 ≤ s < 1

2 ,
q = 2

1−2s , then (∫
R
|S∗∗

ϕ f(x)|qdx
)1/q

≤ C∥f∥Hs(R). (1.8)

If 1
4 ≤ s < 1

2 , then the local estimate(∫
B

|S∗∗
ϕ f(x)|qdx

)1/q

≤ C∥f∥Hs(R) (1.9)

holds if and only if q ≤ 2
1−2s , where B is an arbitrary ball in R.
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In 1997, Sjölin[19] gave the following global and local estimates for the local maximal oper-
ator S∗

a, which implies the convergence almost everywhere of the solution for the equation (1.2)
with initial date:

Theorem C[19]. Assume that n = 1, a > 1, 1
4 ≤ s < 1

2 , then the global estimate

∥S∗
af∥Lq(R) ≤ C∥f∥Hs(R) (1.10)

holds for q = 2
1−2s , and the local estimate

∥S∗
af∥Lq(B) ≤ CB∥f∥Hs(R) (1.11)

holds if and only if q ≤ 2
1−2s , where B is an arbitrary ball in R.

Remark 1.5. Clearly, Corollary 1.4 improves and extends Theorem C.

Now let us turn to the case of the dimension n ≥ 2.

Theorem 1.6. Assume that n ≥ 2 and f is radial, ϕ is radial and satisfies (H1)–(H3). If
1
4 ≤ s < 1

2 , 2 ≤ q ≤ 2
1−2s and α = q(n2 − s)− n, then(∫

Rn

|S∗∗
ϕ f(x)|q|x|αdx

)1/q

≤ C∥f∥Hs(Rn). (1.12)

Moreover, only if α ≥ q(n2 − s)− n, the local estimate(∫
B

|S∗∗
ϕ f(x)|q|x|αdx

)1/q

≤ C∥f∥Hs(Rn) (1.13)

holds for all radial functions f , where B is an arbitrary ball in Rn.

Remark 1.7. Obviously, Theorem 1.6 is an improvement and extension of Theorem A for the
case s = 1

4 . The following consequence of Theorem 1.6 is also obvious when α = 0.

Corollary 1.8. Assume that n ≥ 2 and f is radial, ϕ satisfies the conditions in Theorem 1.6.
If 1

4 ≤ s < 1
2 , q =

2n
n−2s , then(∫

Rn

|S∗∗
ϕ f(x)|qdx

)1/q

≤ C∥f∥Hs(Rn). (1.14)

If 1
4 ≤ s < 1

2 , then the local estimate(∫
B

|S∗∗
ϕ f(x)|qdx

)1/q

≤ C∥f∥Hs(Rn) (1.15)

holds if and only if q ≤ 2n
n−2s , where B is an arbitrary ball in Rn.

Remark 1.9. When ϕ satisfies the conditions (H1)–(H3), Corollary 1.4 and Corollary 1.8
implies the a.e. convergence of the solution of the general dispersive equation (1.5) for for
s ≥ 1

4 when the initial data f in Hs(R) and the radial initial data f in Hs(Rn) (n ≥ 2),
respectively.

This paper is organized as follows. The proofs of Theorem 1.1 and Theorem 1.6 are given
in Section 2 and Section 3, respectively. In the proofs of above main conclusions, Lemma 2.1
plays an important role, which will be proved in Section 4. In final section, we give the weighted
maximal estimates for the functions in Hk, which is the set of all combination by the radial
functions and solid spherical harmonics.
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2 The Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. To do this, we need to present two lemma (i.e.,
Lemma 2.1 and Lemma 2.3 below), which play a key role in proving Theorem 1.1 and Theorem
1.6. The proof of Lemma 2.1 will be given in Section 4.

2.1 Key Lemma and Proof of the Sufficiency in Theorem 1.1

Lemma 2.1. Assume that ϕ satisfies (H1)–(H3). If 1
2 ≤ s < 1, and µ ∈ C∞

0 (R), then∣∣∣ ∫
R
eixξ+itϕ(|ξ|)|ξ|−sµ

( ξ
N

)
dξ

∣∣∣ ≤ C
1

|x|1−s
,

for x ∈ R \ {0}, t ∈ R and N = 1, 2, 3, · · · . Here the constant C may depend on s and m1, m2

and µ but not on x, t and N.

Remark 2.2. In case ϕ(|ξ|) = |ξ|a(a > 1), Lemma 2.1 was showed by Sjölin in [21].

Lemma 2.3[16]. If r ≥ p, 0 ≤ α < 1− 1
p , 0 ≤ γ < 1

r and γ = α+ 1
p + 1

r − 1, then(∫
R

|f̂(ξ)|r|ξ|−γrdξ
)1/r

≤
(∫

R

|f(x)|p|x|αpdx
)1/p

.

Applying Lemma 2.3, we have the following estimate:(∫
R

|f̂(ξ)|2|ξ|−2sdξ
)1/2

≤
(∫

R

|f(x)|p|x|(s+ 1
2 )p−1dx

)1/p

, (2.1)

where 1
4 ≤ s < 1

2 and 2
1+2s ≤ p ≤ 2. In fact, taking r = 2, γ = s, it follows that

α = γ − 1

p
− 1

r
+ 1 = s− 1

p
− 1

2
+ 1 = s+

1

2
− 1

p
.

Note that 2
1+2s ≤ p ≤ 2 = r and 0 ≤ α < 1 − 1

p , 0 ≤ γ = s < 1
2 = 1

r by α = s + 1
2 − 1

p and
1
4 ≤ s < 1

2 . Thus, the estimate (2.1) follows by Lemma 2.3.
Let us turn to the proof of sufficiency in Theorem 1.1. That is, it only needs to show that

the following estimate : (∫
R
|S∗∗

ϕ f(x)|q|x|αdx
)1/q

≤ C∥f∥Ḣs(R), (2.2)

where 1
4 ≤ s < 1

2 , 2 ≤ q ≤ 2
1−2s and α = q( 12 − s) − 1. Let t(x) : R → R be a measurable

function. Denote

Tf(x) = |x|
α
q

∫
R
eix·ξeit(x)ϕ(|ξ|)f̂(ξ)dξ, f ∈ S(R).

By linearizing the maximal operator (see [17, p. 707]), to prove (2.2) it needs to show that(∫
R
|Tf(x)|qdx

)1/q

≤ C∥f∥Ḣs(R), (2.3)

where 1
4 ≤ s < 1

2 and 2 ≤ q ≤ 2
1−2s . Taking function ρ ∈ C∞

0 (R) such that ρ(x) = 1 if |x| < 1,
and ρ(x) = 0 if |x| ≥ 2. Denote

Rg(x) = |x|
α
q

∫
R
eix·ξeit(x)ϕ(|ξ|)|ξ|−sg(ξ)dξ, g ∈ S(R).
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We claim
∥Rg∥Lq(R) ≤ C∥g∥L2(R). (2.4)

Note that Tf(x) = R
(
| · |sf̂(·)

)
(x), we have by (2.4)(∫

R
|Tf(x)|qdx

)1/q

≤ C
(∫

R

∣∣∣R(| · |sf̂(·))(x)∣∣∣qdx)1/q

≤ C
(∫

R
|ξ|2s|f̂(ξ)|2dξ

)1/2

= C∥f∥Ḣs(R),

which implies (2.3). Now we prove (2.4). Denote

RNg(x) = ρ
( x
N

)
|x|

α
q

∫
R
eix·ξeit(x)ϕ(|ξ|)ρ

( ξ
N

)
|ξ|−sg(ξ)dξ, N > 2.

On the other hand, it is easy to see that the adjoint operator R′
N of RN is given by

R′
Nh(ξ) = |ξ|−sρ

( ξ
N

)∫
R
|x|

α
q ρ

( x
N

)
e−ix·ξe−it(x)ϕ(|ξ|)h(x)dx, N > 2.

To prove (2.4) it suffices to prove that

∥RNg∥Lq(R) ≤ C∥g∥L2(R). (2.5)

By duality, we turn to prove that

∥R′
Nh∥L2(R) ≤ C∥h∥Lp(R), (2.6)

where 2
1+2s ≤ p ≤ 2 by 2 ≤ q ≤ 2

1−2s and 1
p + 1

q = 1. Since

∥R′
Nh∥2L2(R) =

∫
R
|R′

Nh(ξ)|2dξ

=

∫
R

(
|ξ|−sρ(

ξ

N
)

∫
R
|x|

α
q ρ(

x

N
)e−ix·ξe−it(x)ϕ(|ξ|)h(x)dx

)
×

(
|ξ|−sρ(

ξ

N
)

∫
R
|y|

α
q ρ(

y

N
)e−iy·ξe−it(y)ϕ(|ξ|)h(y)dy

)
dξ

=: ρ
( x
N

)
ρ
( y
N

)∫
R

∫
R
KN (x, y)|x|

α
q h(x)|y|

α
q h(y)dxdy,

(2.7)

where

KN (x, y) :=

∫
R
ei[(y−x)ξ+(t(y)−t(x))ϕ(|ξ|)]|ξ|−2sρ

( ξ
N

)2

dξ.

Note that ϕ satisfies the conditions in Lemma 2.1, and 1
2 ≤ 2s < 1 by 1

4 ≤ s < 1
2 , thus by

Lemma 2.1, we obtain

|KN (x, y)| ≤ C
1

|x− y|1−2s
. (2.8)

Thus, by (2.7) and (2.8), Parseval’s equality and (2.1), combining with the fact αp
q +(s+ 1

2 )p−1 =

0 by α = q( 12 − s)− 1 and 1
p + 1

q = 1, we obtain∫
|R′

Nh(ξ)|2dξ ≤ C

∫
R

(∫
R

1

|x− y|1−2s
|y|

α
q |h(y)|dy

)
|x|

α
q |h(x)|dx
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= C

∫
R
I2s(| · |

α
q |h(·)|)(x)(|x|

α
q |h(x)|)dx

= C

∫
R

∣∣(|h(·)|| · |αq )̂(ξ)∣∣2|ξ|−2sdξ

≤ C
(∫

R

(
|h(x)||x|

α
q
)p|x|(s+ 1

2 )p−1dx
)2/p

= C
(∫

R
|h(x)|p|x|

αp
q +(s+ 1

2 )p−1dx
)2/p

= C∥h∥Lp(R),

where and in the sequel, Iα denotes the Riesz potential of order α, which is defined by

Iα(f)(u) =

∫
R

f(v)

|u− v|1−α
dv.

It follows that (2.6) holds.
Summing up above estimates, we complete the proof of the sufficiency part of Theorem 1.1.

2.2 Proof of the Necessity of Theorem 1.1

We choose an even and non-negative φ ∈ C∞
c (R) with suppφ ⊂ {ξ; 1

2 < |ξ| < 2} satisfying

φ(ξ) = 1 if 5
4 ≤ |ξ| ≤ 7

4 . Denote f̂ := φ( ξλ ) for λ > 1. By simple calculation, we have

∥f∥Ḣs(R) ≤ Cλ
1
2+s, (2.9)

where C is independent of λ. On the other hand,

St,ϕf(x) = (2π)−1

∫
R
eix·ξeitϕ(|ξ|)φ

( ξ
λ

)
dξ = (2π)−1λ

∫
R
eiλx·ηeitϕ(|λη|)φ(η)dη. (2.10)

Thus, taking t = 0 in (2.10), we get

S0,ϕf(x) = (2π)−1λ

∫
R
eiλx·ηφ(η)dη = (2π)−1λφ̂(λx). (2.11)

Note that

φ̂(0) =

∫
R
φ(x)dx ≥

∫
5
4≤|ξ|≤ 7

4

φ(x)dx > 1,

there exists 0 < δ < λ
2 , when |x| ≤ δ

λ , we have φ̂(λx) > 1
2 . Hence, when |x| ≤ δ

λ , we obtain

S∗∗
ϕ f(x) ≥ |S0,ϕf(x)| ≥ c0λ, (2.12)

where c0 = 1
4π . Since S

∗∗
ϕ satisfies the local estimate (1.7), so if take B0 := B(0, 1), the unit

ball in R, then by (2.9) and (2.12), we obtain

CB0Cλ
1
2+s ≥

(∫
B0

|S∗∗
ϕ f(x)|q|x|αdx

)1/q

≥
(∫

|x|≤ δ
λ

(c0λ)
q|x|αdx

)1/q

≥ c0

( δα+1

α+ 1

) 1
q

λ1−
α+1
q ,

which follows that
λ1−

α+1
q ≤ Cλ

1
2+s, (2.13)

where C only depends on δ and q, not depend on λ. Taking λ large in (2.13), then α ≥ q( 12−s)−1
is necessary for the inequality (2.13), i.e., α ≥ q( 12 − s) − 1 is necessary for the local estimate
(1.7) holds when 1

4 ≤ s < 1
2 and 2 ≤ q ≤ 2

1−2s .
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3 The Proof of Theorem 1.6

3.1 Proof of the Sufficiency in Theorem 1.6

We prove the sufficiency part of Theorem 1.6. That is, when n ≥ 2 and f is radial, ϕ is radial
and satisfies (H1)–(H3), it only needs to prove that the following estimate:(∫

Rn

|S∗∗
ϕ f(x)|q|x|αdx

)1/q

≤ C∥f∥Hs(Rn), (3.1)

where 1
4 ≤ s < 1

2 , 2 ≤ q ≤ 2
1−2s and α = q(n2 − s)− n. Assume f ∈ S(Rn) is a radial function,

then (see [22, p. 155])

f̂(ξ) = (2π)
n
2 |ξ|1−n

2

∫ ∞

0

f(s)Jn
2 −1(s|ξ|)s

n
2 ds,

where and in the sequel, Jm(r) denotes the Bessel function defined by

Jm(r) =
( r2 )

m

Γ(m+ 1
2 )π

1
2

∫ 1

−1

eirt(1− t2)m− 1
2 dt, m > −1

2
.

Let t(x) : Rn → R be a measurable and radial function. Denote

Tf(x) = (2π)−n

∫
Rn

eix·ξ+it(x)ϕ(|ξ|)f̂(ξ)dξ.

Therefore, we get

Tf(u) = (2π)
n
2 −nu1−

n
2

∫ ∞

0

Jn
2 −1(ru)e

it(u)ϕ(r)f̂(r)r
n
2 dr, u > 0, (3.2)

where Tf(u) = Tf(x) with u = |x| and f̂(r) = f̂(ξ) with r = |ξ|. By linearizing the maximal
operator and using polar coordinates, to prove (3.1) it suffices to prove that(∫ ∞

0

|Tf(u)|quq(n
2 −s)−1du

)1/q

≤
(∫ ∞

0

|f̂(r)|2(1 + r2)srn−1dr
)1/2

, (3.3)

where 1
4 ≤ s < 1

2 , 2 ≤ q ≤ 2
1−2s . Denote

g(r) = f̂(r)(1 + r2)
s
2 r

n
2 − 1

2 , r > 0. (3.4)

By (3.2) and (3.4), we have

Tf(u)u
n
2 −s− 1

q = (2π)−
n
2 u1−

n
2 u

n
2 −s− 1

q

∫ ∞

0

Jn
2 −1(ru)e

it(u)ϕ(r)f̂(r)r
n
2 dr

= (2π)−
n
2 u1−s− 1

q

∫ ∞

0

Jn
2 −1(ru)e

it(u)ϕ(r)g(r)(1 + r2)−
s
2 r

1
2 dr

=: (2π)−
n
2 Pg(u),

where the operator P is defined by

Pg(u) := u1−s− 1
q

∫ ∞

0

Jn
2 −1(ru)e

it(u)ϕ(r)g(r)(1 + r2)−
s
2 r

1
2 dr, r > 0.
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Thus, to get (3.3) it only to show that(∫ ∞

0

|Pg(u)|qdu
)1/q

≤ C
(∫ ∞

0

|g(r)|2dr
)1/2

. (3.5)

Denote by P ′ the adjoint operator of P , that is∫ ∞

0

Pg(r)h(r)du =

∫ ∞

0

g(r)P ′h(r)dr. (3.6)

It is easy to check that

P ′h(r) = (1 + r2)−
s
2 r

1
2

∫ ∞

0

Jn
2 −1(ru)e

−it(u)ϕ(r)u1−s− 1
q h(u)du, r > 0.

Therefore, by (3.5) and (3.6), to obtain (3.3) we only need to verify that

∥P ′h∥L2(0,∞) ≤ C∥h∥Lp(0,∞), (3.7)

where p satisfies 1
p + 1

q = 1 with 2 ≤ q ≤ 2
1−2s and 1

4 ≤ s < 1
2 . In fact, it follows that

1 < 2
1+2s ≤ p ≤ 2. Denote σ = 1

q + s− 1
2 , then

P ′h(r) = (1 + r2)−
s
2

∫ ∞

0

(ru)
1
2 Jn

2 −1(ru)e
−it(u)ϕ(r)u−σh(u)du.

Lemma 3.1[22]. Jm(r) =
√

2
πr cos(r −

πm
2 − π

4 ) + O(r−
3
2 ) as r → ∞. In particular, Jm(r) =

O(r−
1
2 ) as r → ∞.

Applying Lemma 3.1, we shall prove the following estimates:∣∣t 1
2 Jn

2 −1(t)− (b1e
it + b2e

−it)
∣∣ ≤ C

t
, t > 1, (3.8)

and ∣∣t 1
2 Jn

2 −1(t)− (b1e
it + b2e

−it)
∣∣ ≤ C, 0 < t ≤ 1, (3.9)

where b1 and b2 are the constants depending on n. In fact, by Lemma 3.1, when t→ ∞, we get

Jn
2 −1(t) =

√
2

πt
cos

(
t− π(n− 1)

4

)
+O(t−

3
2 ).

It follows that when t→ ∞, we get

t
1
2 Jn

2 −1(t) =

√
2

π
cos

(π(n− 1)

4

)
cos t+

√
2

π
sin

(π(n− 1)

4

)
sin t+O(t−1)

= (b1 + b2) cos t+ i(b1 − b2) sin t+O(t−1)

= b1e
it + b2e

−it +O(t−1),

where

b1 =
1

2

√
2

π

(
cos

(π(n− 1)

4

)
+ i sin

(π(n− 1)

4

))
and

b2 =
1

2

√
2

π

(
cos

(π(n− 1)

4

)
− i sin

(π(n− 1)

4

))
.
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It follows that (3.8) holds when t > 1. On the other hand, by the definition of Bessel function

Jm(t) =
( t2 )

m

Γ(m+ 1
2 )π

1
2

∫ 1

−1

eits(1− s2)m− 1
2 ds, m > −1

2
,

we have |Jm(t)| ≤ Ctm for m > −1
2 and t > 0. Since n ≥ 2, so |Jn

2 −1(t)| ≤ Ct
n
2 −1 for 0 < t < 1.

Therefore, when 0 < t < 1, we have

|t1/2Jn
2 −1(t)− (b1e

it + b2e
−it)| ≤ Ct

1
2 t

n
2 −1 + |b1eit|+ |b2e−it| ≤ Ct

n
2 − 1

2 + |b1|+ |b2| ≤ C,

(3.10)

which implies the estimate (3.9). Invoking (3.8) and (3.9), we have

P ′h(r) =: b1A1(r) + b2A2(r) +B(r), (3.11)

where

A1(r) = (1 + r2)−
s
2

∫ ∞

0

eirue−it(u)ϕ(r)u−σh(u)du,

A2(r) = (1 + r2)−
s
2

∫ ∞

0

e−irue−it(u)ϕ(r)u−σh(u)du,

and

|B(r)| ≤ C(1 + r2)−
s
2

∫ ∞

0

min
{
1,

1

ru

}
u−σ|h(u)|du. (3.12)

We first estimate A1 and A2. Denote

A(r) = (1 + r2)−
s
2

∫ ∞

0

eirue−it(u)ϕ(|r|)u−σh(u)du, r ∈ R.

We claim that (∫
R
|A(r)|2dr

)1/2

≤ C∥h∥Lp(0,∞), (3.13)

and then (∫ ∞

0

|Ai(r)|2dr
)1/2

≤ C
(∫

R
|A(r)|2dr

)1/2

, i = 1, 2, (3.14)

by (3.13) and (3.14), we have(∫ ∞

0

|Ai(r)|2dr
)1/2

≤ C∥h∥Lp(0,∞), i = 1, 2. (3.15)

Now we prove (3.13) holds. We take a real-valued function ρ ∈ C∞
0 (R) such that ρ(r) = 1 if

|r| < 1, and ρ(r) = 0 if |r| ≥ 2, and for N > 1, set ρN (r) = ρ( r
N ). And define

AN (r) = ρN (r)|r|−s

∫ ∞

0

eirue−it(u)ϕ(|r|)u−σh(u)du.

We first assume that the following estimate holds:(∫
R
|AN (r)|2dr

)1/2

≤ C∥h∥Lp(0,∞). (3.16)

Thus, let N → ∞ in (3.16) and by Fatou’ Lemma, it follows (3.13) holds. Now we prove (3.16).
By Fubini’s Theorem, we have∫

R
|AN (r)|2dr =:

∫ ∞

0

∫ ∞

0

I(u, v)u−σh(u)v−σh(v)dudv, (3.17)
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where

I(u, v) :=

∫
R
ei[(u−v)r−(t(u)−t(v))ϕ(|r|)]|r|−2sρN (r)2dr.

Note that ϕ satisfies the conditions in Lemma 2.1, and 1
2 ≤ 2s < 1 by 1

4 ≤ s < 1
2 , thus by

Lemma 2.1, we get

I(u, v) ≤ C
1

|u− v|1−2s
. (3.18)

By (3.17), (3.18) and Parseval’s equality, we obtain

∥AN∥2L2(R) ≤ C

∫ ∞

0

∫ ∞

0

1

|u− v|1−2s
u−σh(u)v−σ|h(v)|dudv

= C

∫
R

∫
R

1

|u− v|1−2s
u−σh1(u)v

−σ|h1(v)|dudv

= C

∫
R
I2s(t

−σ|h1|)(u)u−σ|h1(u)|du

= C

∫
R
|ξ|−2s(u−σ|h1|)ˆ(ξ)(u−σ|h1|)̂(ξ)dξ

= C

∫
R
|(u−σ|h1|)ˆ(ξ)|2|ξ|−2sdξ, (3.19)

where

h1(u) =
{ h(u), u ≥ 0,

0, u < 0.
(3.20)

Thus by (2.1), we get(∫
R
|(u−σ|h1|)ˆ(ξ)|2|ξ|−2sdξ

)1/2

≤ C
(∫

R
|u−σh1|p|u|(s+

1
2 )p−1du

)1/p

= C
(∫

R
u−σp+sp+ p

2−1|h1|pdu
)1/p

= C∥h1∥R = C∥h∥Lp(0,∞),

(3.21)

where we invoking the fact −σp+ sp+ p
2 − 1 = −p

q − sp+ p
2 + sp+ p

2 − 1 = −p
q + p− 1 = 0 by

σ = 1
q + s− 1

2 and 1
p + 1

q . Thus (3.16) holds from (3.19) and (3.21).
Next, we will show the estimate(∫ ∞

0

|B(r)|2dr
)1/2

≤ C∥h∥Lp(0,∞) (3.22)

holds. The proof for (3.22) will be split into the following two cases.

Case I. 0 < r < 1. we have(∫ 1

0

|B(r)|2dr
)1/2

≤ C∥h∥Lp(0,∞). (3.23)

In fact, by (3.12), when 0 < r < 1, we have

|B(r)| ≤ C

∫ ∞

0

min
{
1,

1

ru

}
u−σ|h(u)|du ≤ C

(∫ 1
r

0

u−σ|h(u)|du+
1

r

∫ ∞

1
r

u−1−σ|h(u)|du
)
,
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where σ = 1
q + s− 1

2 . By Hölder’s inequality, we get

|B(r)| ≤ C
(∫ 1

r

0

u−σqdu
)1/q

∥h∥Lp(0,∞) + C
1

r

(∫ ∞

1
r

u(−1−σ)qdu
)1/q

∥h∥Lp(0,∞)

= C(
1

r
)

1
q−σ∥h∥Lp(0,∞) + C

1

r
(
1

r
)

1
q−σ−1∥h∥Lp(0,∞)

= Crσ−
1
q ∥h∥Lp(0,∞) = Crs−

1
2 ∥h∥Lp(0,∞),

where we using the fact σ − 1
q = s− 1

2 . Thus, when
1
4 ≤ s < 1

2 , we have

(∫ 1

0

|B(r)|2dr
)1/2

≤
(∫ 1

0

r2s−1dr
)1/2

∥h∥Lp(0,∞) ≤ C∥h∥Lp(0,∞),

which implies (3.22).

Case II. r ≥ 1. In this case,(∫ ∞

1

|B(r)|2dr
)1/2

≤ C∥h∥Lp(0,∞). (3.24)

In fact, by (3.12), when r ≥ 1, we have

|B(r)| ≤ Cr−s

∫ 1
r

0

min
{
1,

1

ru

}
u−σ|h(u)|du+ Cr−s

∫ ∞

1
r

min{1, 1

ru
}u−σ|h(u)|du

= Cr−s

∫ 1
r

0

u−σ|h(u)|du+ Cr−1−s

∫ ∞

1
r

u−σ−1|h(u)|du

=: CQ1(r) + CQ2(r).

(3.25)

Denote M1(t) =
1
tQ1(

1
t ), 0 < t < 1. Note that t−1+s ≤ (t−u)−1+s when 1

4 ≤ s < 1
2 and u ≤ t.

It follows that

M1(t) = t−1+s

∫ t

0

u−σ|h(u)|du

≤
∫ t

0

(t− u)−1+su−σ|h(u)|du

≤
∫
R
(t− u)−1+su−σ|h1(u)|du

=: Is(u
−σ|h1|)(t),

where h1 defined as above. Thus, by Parseval’s equality and (3.21), we obtain(∫ ∞

1

|Q1(r)|2dr
)1/2

=
(∫ 1

0

|M1(t)|2dt)1/2

≤ C
(∫

R
|Is(u−σ|h1|)(t)|2dt

)1/2

= C
(∫

R
|(u−σ|h1|)ˆ(ξ)|2|ξ|−2sdξ

)1/2

≤ C∥h1∥Lp(R) = C∥h∥Lp(0,∞),
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which follows that (∫ ∞

1

|Q1(r)|2dr
)1/2

≤ C∥h∥Lp(0,∞). (3.26)

Next, we estimate Q2. Denote M2(t) =
1
tQ2(

1
t ),0 < t < 1. Note that u−1+s ≤ (u− t)−1+s when

1
4 ≤ s < 1

2 and u ≥ t. It follows that

M2(t) = ts
∫ ∞

t

u−1−σ|h(u)|du

≤
∫ ∞

t

usu−1u−σ|h(u)|du

≤
∫ ∞

t

u−1+su−σ|h(u)|du

≤
∫ ∞

t

(u− t)−1+su−σ|h(u)|du

≤
∫
R
|u− t|−1+su−σ|h1(u)|du

=: Is(u
−σ|h1|)(t),

where h1 defined as above. Thus, by Parseval’s equality and (3.21), we obtain(∫ ∞

1

|Q2(r)|2dr
)1/2

=
(∫ 1

0

|M2(t)|2dt
)1/2

≤ C
(∫

R
|Is(u−σ|h|)(t)|2dt

)1/2

= C
(∫

R
|(u−σ|h1|)ˆ(ξ)|2|ξ|−2sdξ

)1/2

≤ C∥h1∥Lp(R) = C∥h∥Lp(0,∞),

which follows that (∫ ∞

1

|Q2(r)|2dr
)1/2

≤ C∥h∥Lp(0,∞). (3.27)

Thus (3.24) holds from (3.25), (3.26) and (3.27). It follows that the estimate (3.22) from (3.23)
and (3.24). Hence, the estimate (3.7) holds from (3.11), (3.15) and (3.22).

Summing up above estimates, we finish the proof of the sufficiency part of Theorem 1.6.

3.2 Proof of the Necessity Part of Theorem 1.6

Taking a radial nonnegative function φ in C∞
c (Rn) with suppφ ⊂ {ξ; 1 < |ξ| < 2}, which

satisfies φ(ξ) = 1 if 5
4 ≤ |ξ| ≤ 7

4 . Denote f̂(ξ) := φ( ξλ ) for λ > 1. By simple calculation, we
have

∥f∥Hs(Rn) ≤ Cλ
n
2 +s, (3.28)

where C is independent of λ. Since

St,ϕf(x) = (2π)−n

∫
Rn

eix·ξeitϕ(|ξ|)φ
( ξ
λ

)
dξ = (2π)−nλn

∫
Rn

eiλx·ηeitϕ(|λη|)φ(η)dη, (3.29)

if taking t = 0 in (3.29), we get

S0,ϕf(x) = (2π)−nλn
∫
Rn

eiλx·ηφ(η)dη = (2π)−nλnφ̂(λx). (3.30)
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Note that

φ̂(0) =

∫
Rn

φ(x)dx ≥
∫

5
4≤|ξ|≤ 7

4

φ(x)dx > 1,

there exists 0 < δ < λ
2 , when |x| ≤ δ

λ , we get φ̂(λx) > 1
2 . Thus, when |x| ≤ δ

λ , we obtain

S∗∗
ϕ f(x) ≥ |S0,ϕf(x)| ≥ c0λ

n, (3.31)

where c0 = 1
2(2π)n . Assume the local estimate (1.13) holds, so if choose B0 := B(0, 1), the unit

ball in Rn, then by (3.28) and (3.31), we get

CB0Cλ
n
2 +s ≥

(∫
B0

|S∗∗
ϕ f(x)|q|x|αdx

)1/q

≥ c0

(∫
|x|≤ δ

λ

λnq|x|αdx
)1/q

=: c1λ
n−α+n

q ,

where c1 = c0
(ωn−1δ

α+n

α+n

) 1
q and ωn−1 denote the area of the unit sphere in Rn. It follows that

λn−
α+n

q ≤ Cλ
n
2 +s, (3.32)

where C depends on δ, n and q only, not depend on λ. Taking λ large enough in (3.32), then
α ≥ q(n2 − s) − n is necessary for the inequality (3.32), i.e., α ≥ q(n2 − s) − n is necessary for
the weight local estimate (1.13) holds when 1

4 ≤ s < 1
2 and 2 ≤ q ≤ 2

1−2s .

4 The Proof of Lemma 2.1

Now we prove Lemma 2.1, we need the following variant of van der Corput’s lemma:

Lemma 4.1[23]. Assume that a < b and set I = [a, b]. Let F ∈ C∞(I) be real-valued and
assume that ψ ∈ C∞(I).

(i) Assume that |F ′(x)| ≥ λ > 0 for x ∈ I and that F ′ is monotonic on I. Then∣∣∣ ∫ b

a

eiF (x)ψ(x)dx
∣∣∣ ≤ C

1

λ

{
|ψ(b)|+

∫ b

a

|ψ′(x)|dx
}
,

where C does not depend on F , ψ or I.

(ii) Assume that |F ′′(x)| ≥ λ > 0 for x ∈ I. Then∣∣∣ ∫ b

a

eiF (x)ψ(x)dx
∣∣∣ ≤ C

1

λ1/2

{
|ψ(b)|+

∫ b

a

|ψ′(x)|dx
}
,

where C does not depend on F , ψ or I.

We now return to the proof of Lemma 2.1. By the conditions (H1) and (H2), there exist
positive constants Ci (i = 1, 2, · · · , 6) so that for r ≥ 1 and m2 > 1 such that

C1r
m2−1 ≤ |ϕ′(r)| ≤ C2r

m2−1 and |ϕ′′(r)| ≥ C3r
m2−2, (4.1)

and for 0 < r < 1 and m1 > 1 such that

C4r
m1−1 ≤ |ϕ′(r)| ≤ C5r

m1−1 and |ϕ′′(r)| ≥ C6r
m1−2. (4.2)

Without loss of generality, we may assume t > 0 and ξ > 0. Denote

I =

∫ ∞

0

eixξ+itϕ(ξ)ξ−sµ
( ξ
N

)
dξ.
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To prove Lemma 2.1 it suffices to show that

|I| ≤ C
1

|x|1−s
, (4.3)

where the constant C may depend on s and m1, m2, Ci (i = 1, 2, · · · , 6) and µ but not on x,
t and N. Write

I =

∫
ξ≤|x|−1

eixξ+itϕ(ξ)ξ−sµ
( ξ
N

)
dξ +

∫
ξ≥|x|−1

eixξ+itϕ(ξ)ξ−sµ
( ξ
N

)
dξ =: I1 + I2.

Thus, to get (4.3) it suffices to give the following estimates:

|I1| ≤ C
1

|x|1−s
, (4.4)

and

|I2| ≤ C
1

|x|1−s
, (4.5)

where the constant C may depend on s and m1, m2, Ci (i = 1, 2, · · · , 6) and µ but not on x,
t and N. The estimate of (4.4) is simple. Since µ ∈ C∞

0 (R) and s < 1, we have

|I1| ≤ C

∫
ξ≤|x|−1

ξ−sdξ = C
1

|x|1−s
,

which follows (4.4) holds. As for (4.5), denote ψ(ξ) = ξ−sµ
(

ξ
N

)
. We first show the following

estimate holds:

max
ξ≥|x|−1

|ψ(ξ)|+
∫ ∞

|x|−1

|ψ′(ξ)|dξ ≤ C|x|s. (4.6)

In fact, by µ ∈ C∞
0 (R) and 1

2 ≤ s < 1, we obtain

max
ξ≥|x|−1

|ψ| ≤ C|x|s. (4.7)

Since

ψ′(ξ) = ξ−s 1

N
µ′
( ξ
N

)
− sξ−s−1µ

( ξ
N

)
,

and ∫ ∞

|x|−1

1

N

∣∣∣µ′
( ξ
N

)∣∣∣dξ ≤ C,

it follows that∫ ∞

|x|−1

|ψ′(ξ)|dξ ≤ |x|s
∫ ∞

|x|−1

1

N

∣∣∣µ′
( ξ
N

)∣∣∣dξ + C

∫ ∞

|x|−1

ξ−s−1dξ ≤ C|x|s. (4.8)

Therefore, (4.6) follows from (4.7) and (4.8). Now we split the proof for (4.5) into two cases
according to the value of |x|.

Case I. |x| ≤ 1. We choose C7 such that C7 ≥ 2
C1

.

(I-a). |x|m2 ≤ t
C7

. Denote F (ξ) = xξ + tϕ(ξ), we have

F ′(ξ) = x+ tϕ′(ξ) and F ′′(ξ) = tϕ′′(ξ).
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Note that ξ ≥ |x|−1 ≥ 1 by |x| ≤ 1, by (4.1), we have∣∣∣ t
x
ϕ′(ξ)

∣∣∣ ≥ C1C7|x|m2

|x|
ξm2−1 ≥ C1C7|x|m2

|x|
|x|1−m2 = C1C7 ≥ 2. (4.9)

Note that F ′(ξ) = x(1 + t
xϕ

′(ξ)) and by (4.9), we get

|F ′(ξ)| ≥ |x|
(∣∣∣ t
x
ϕ′(ξ)

∣∣∣− 1
)
≥ |x|. (4.10)

Note that ϕ′ is monotonic on R+ by the condition (H3), it follows that F ′ is monotonic for
ξ ≥ |x|−1. Thus, using (i) of Lemma 4.1 and by estimates (4.10) and (4.6), we obtain

|I2| =
∣∣∣ ∫ ∞

|x|−1

eiF (ξ)ψ(ξ)dξ
∣∣∣ ≤ C|x|−1|x|s = C

1

|x|1−s
,

it follows that (4.5) holds.

(I-b). |x|m2 > t
C7

. We choose δ1 > 0 is small enough such that δ1 ≤ ( 1
2C2

)
1

m2−1 and λ1 > 0

is large enough such that λ1 ≥ ( 2
C1

)
1

m2−1 . Note that λ1 > δ1 by C1 ≤ C2 and m2 > 1. Denote

A1 =
{
ξ ≥ |x|−1 : ξ ≤ δ1

( |x|
t

) 1
m2−1

}
,

A2 =
{
ξ ≥ |x|−1 : δ1

( |x|
t

) 1
m2−1 ≤ ξ ≤ λ1

( |x|
t

) 1
m2−1

}
,

A3 =
{
ξ ≥ |x|−1 : ξ ≥ λ1

( |x|
t

) 1
m2−1

}
.

Hence we may write

I2 =

∫
A1

eiF (ξ)ψ(ξ)dξ +

∫
A2

eiF (ξ)ψ(ξ)dξ +

∫
A3

eiF (ξ)ψ(ξ)dξ := I2,1 + I2,2 + I2,3. (4.11)

Now we give the estimates of I2,j (j = 1, 2, 3), respectively. First, we consider I2,1. For ξ ∈ A1,
since m2 > 1 and by (4.1) we get

t|ϕ′(ξ)| ≤ C2tξ
m2−1 ≤ tδm2−1

1

( |x|
t

)m2−1
m2−1

= C2δ
m2−1
1 |x| ≤ |x|

2
,

which follows that

|F ′(ξ)| ≥ |x| − t|ϕ′(ξ)| ≥ |x|
2
. (4.12)

Applying (i) of Lemma 4.1, by (4.12) and (4.6) we obtain

|I2,1| ≤ C|x|−1|x|s = C
1

|x|1−s
. (4.13)

Next, we estimate I2,3. For ξ ∈ A3, since m2 > 1 and by (4.1) we have

t|ϕ′(ξ)| ≥ C1tξ
m2−1 ≥ C1tλ

m2−1
1

( |x|
t

)m2−1
m2−1

= C1λ
m2−1
1 |x| ≥ 2|x|.

From this we have
|F ′(ξ)| ≥ t|ϕ′(ξ)| − |x| ≥ |x|. (4.14)
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Using (i) of Lemma 4.1, (4.14) and (4.6), we get

|I2,3| ≤ C|x|−1|x|s = C
1

|x|1−s
. (4.15)

Finally, we estimate I2,2. Note that for ξ ∈ A2, |F ′′(ξ)| ≥ C3tξ
m2−2 by F ′′(ξ) = tϕ′′(ξ) and

(4.1). Thus, we have

|F ′′(ξ)| ≥ Ct
( |x|
t

)m2−2
m2−1

= Ct
1

m2−1 |x|
m2−2
m2−1 (4.16)

and

max
ξ∈A2

|ψ|+
∫ ∞

|x|−1

|ψ′|dξ ≤ C
( |x|
t

) −s
m2−1

. (4.17)

In fact, since

|ψ(ξ)| ≤ ξ−s ≤ δ−s
1

( |x|
t

) −s
m2−1 ≤ C

( |x|
t

) −s
m2−1

(4.18)

and ∫
A2

|ψ′(ξ)|dξ ≤
∫
A2

ξ−s 1

N

∣∣∣µ′
( ξ
N

)∣∣∣dξ + C

∫
A2

ξ−s−1dξ

≤ δ−s
( |x|
t

) −s
m2−1

∫
A2

1

N

∣∣∣µ′
( ξ
N

)∣∣∣dξ + C
( |x|
t

) −s
m2−1

≤ C
( |x|
t

) −s
m2−1

, (4.19)

which imply (4.17). Applying (ii) of Lemma 4.1, by (4.16) and (4.17) we get

|I2,2| ≤ C
(
t

1
m2−1 |x|

m2−2
m2−1

)− 1
2

( |x|
t

) −s
m2−1 ≤ Ct

2s−1
2(m2−1) |x|

2−m2−2s

2(m2−1) . (4.20)

Since t < C7|x|m2 by |x|m2 > t
C7

and s ≥ 1
2 , m2 > 1, thus by (4.20), we obtain

|I2,2| ≤ C|x|
m2(2s−1)

2(m2−1) |x|
2−m2−2s

2(m2−1) = C|x|
(m2−1)(2s−2)

2(m2−1) = C
1

|x|1−s
. (4.21)

Thus, the estimate (4.5) follows from estimate (4.11), (4.13), (4.15) and (4.21).

Case II. |x| > 1. Denote

I2 =

∫ ∞

1

eixξ+itϕ(ξ)ξ−sµ
( ξ
N

)
dξ +

∫
|x|−1≤ξ≤1

eixξ+itϕ(ξ)ξ−sµ
( ξ
N

)
dξ =: I2,4 + I2,5. (4.22)

We first estimate I2,4. Note that ξ ≥ 1, similar to estimating I2 in Case I. We may estimate
I2,4 for the cases |x|m2 ≤ t

C7
and |x|m2 > t

C7
, respectively. Hence, we obtain

|I2,4| =
∣∣∣ ∫ ∞

1

eiF (ξ)ψ(ξ)dξ
∣∣∣ ≤ C

1

|x|1−s
. (4.23)

Next, we consider I2,5. Since |x|−1 ≤ ξ < 1, we choose C8 such that C8 ≥ 2
C4

.

(II-a) If |x|m1 ≤ t
C8

. Similar to the estimate in (I-a) of Case (I), we may get

|I2,5| =
∣∣∣ ∫

|x|−1≤ξ<1

eiF (ξ)ψ(ξ)dξ
∣∣∣ ≤ C|x|−1|x|s = C|x|s−1.
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(II-b) If |x|m1 > t
C8

. We choose δ2, λ2 > 0 such that δ2 ≤ ( 1
2C5

)
1

m1−1 and λ2 ≥ ( 2
C4

)
1

m1−1 .
Then λ2 > δ2 by C4 ≤ C5 and m1 > 1. Denote

B1 =
{
1 > ξ ≥ |x|−1 : ξ ≤ δ2

( |x|
t

) 1
m1−1

}
,

B2 =
{
1 > ξ ≥ |x|−1 : δ2

( |x|
t

) 1
m1−1 ≤ ξ ≤ λ2

( |x|
t

) 1
m1−1

}
,

B3 =
{
1 > ξ ≥ |x|−1 : ξ ≥ λ2

( |x|
t

) 1
m1−1

}
.

Therefore,

I2,5 =

∫
B1

eiF (ξ)ψ(ξ)dξ +

∫
B2

eiF (ξ)ψ(ξ)dξ +

∫
B3

eiF (ξ)ψ(ξ)dξ. (4.24)

Similar to estimating I2,j (j = 1, 2, 3) above, we may get∣∣∣ ∫
B1

eiF (ξ)ψ(ξ)dξ
∣∣∣ ≤ C|x|−1|x|s = C

1

|x|1−s
, (4.25)

∣∣∣ ∫
B3

eiF (ξ)ψ(ξ)dξ
∣∣∣ ≤ C|x|−1|x|s = C

1

|x|1−s
(4.26)

and ∣∣∣ ∫
B2

eiF (ξ)ψ(ξ)dξ
∣∣∣ ≤ Ct

2s−1
2(m1−1) |x|

2−m1−2s

2(m1−1) . (4.27)

Since |x|m1 > t
C8

and s ≥ 1
2 , m1 > 1, by (4.27) we have∣∣∣ ∫

B2

eiF (ξ)ψ(ξ)dξ
∣∣∣ ≤ C|x|

m1(2s−1)

2(m1−1) |x|
2−m1−2s

2(m1−1) = C|x|
(m1−1)(2s−1)

2(m1−1) = C
1

|x|1−s
. (4.28)

Thus, by (4.24), (4.25), (4.26) and (4.28), we get

|I2,5| ≤ C
1

|x|1−s
, (4.29)

and (4.5) holds from (4.23) and (4.29).
Summing up above all estimates, we show (4.3) and complete the proof of Lemma 2.1.

5 Estimate for Combination by Radial Functions and Solid Spherical
Harmonics

Let Ak be the set of all solid spherical harmonics of degree k. It is well-known (see [22, p. 151])
that there exists a direct decomposition

L2(Rn) =
∞∑
k=0

⊕Dk.

The subspace Dk is of all finite linear combinations of functions of the form f(|x|)P (x), where
f ranges over the radial functions and P over Ak such that f(| · |)P (·) ∈ L2(Rn).

Fix k ≥ 0 and let P1, P2, · · · , Pak
denote an orthonormal basis in Ak. Every element in Dk

can be written in the following form

f(x) =

ak∑
j=1

fj(|x|)Pj(x), (5.1)
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and ∫
Rn

|f(x)|2dx =

ak∑
j=1

∫ ∞

0

|fj(r)|2rn+2k−1dr.

Let H0(Rn) be the class of all radial functions in S(Rn), and Hk (k ∈ N) be the set of functions
defined by (5.1) with fj ∈ H0(Rn) and Pj ∈ Ak for j = 1, 2, · · · , ak. From the proof in [20,
p. 399–400], in fact, Sjölin obtained the following result:

Theorem D[20]. Assume that a > 1, n ≥ 2 and f ∈ Hk (k ≥ 0). If 2 ≤ q ≤ 4, α = q(2n−1)
4 −n,

then (∫
Rn

|S∗∗
a f(x)|q|x|αdx

)1/q

≤ C∥f∥
H

1
4 (Rn)

. (5.2)

We give the global weighted Lq estimate of the maximal operator S∗∗
ϕ for f ∈ Hk.

Theorem 5.1. Assume that n ≥ 2 and ϕ satisfies the conditions in Theorem 1.6, f ∈ Hk (k ≥
0). If 1

4 ≤ s < 1
2 , 2 ≤ q ≤ 2

1−2s and α = q(n2 − s)− n, then(∫
Rn

|S∗∗
ϕ f(x)|q|x|αdx

)1/q

≤ C∥f∥Hs(Rn). (5.3)

Remark 5.2. Obviously, Theorem 5.1 is an improvement and extension of Theorem D for the
case s = 1

4 .

Proof of Theorem 5.1. When k = 0, Theorem 5.1 follows from Theorem 1.6. Hence we need
only to give the proof of Theorem 5.1 for k ≥ 1. To do this, we need the following a well-known
fact:

Lemma 5.3[22]. Suppose n ≥ 2 and f ∈ L2(Rn) ∩ L1(Rn) has the form f(x) = f0(|x|)P (x),
where P (x) is a solid spherical harmonic of degree k, then f̂ has the form f̂(x) = F0(|x|)P (x),
where

F0(r) = (2π)
n
2 i−kr−

n
2 −k+1

∫ ∞

0

f0(s)Jn
2 +k−1(rs)s

n
2 +kds,

where Jm denotes the Bessel function.

Let us return to the proof of Theorem 5.1. By [20, p. 396] we know that for f ∈ Hk(k ≥ 1),

∥f∥Hs(Rn) =
( ak∑

j=1

∫ ∞

0

|Fj(r)|2(1 + r2)srn+2k−1dr
)1/2

. (5.4)

On the other hand, by Lemma 5.3 we have

f̂(x) =

ak∑
j=1

Fj(|x|)Pj(x), (5.5)

where

Fj(r) = (2π)
n
2 i−kr1−

n
2 −k

∫ ∞

0

fj(s)Jn
2 +k−1(rs)s

n
2 +kds, r > 0.

Thus, by (5.5) we get

St,ϕf(x) = (2π)−n

∫
Rn

eix·ξeitϕ(|ξ|)f̂(ξ)dξ =

ak∑
j=1

(2π)−n

∫
Rn

eix·ξ
(
eitϕ(|ξ|)Fj(|ξ|)Pj(ξ)

)
dξ.
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Applying Lemma 5.3, we obtain∫
Rn

eix·ξ
(
eitϕ(|ξ|)Fj(|ξ|)Pj(ξ)

)
dξ

=
(
eitϕ(|·|)Fj(| · |)Pj(−·)

)∧
(x)

=(2π)
n
2 i−ks1−

n
2 −k

(∫ ∞

0

Jn
2 +k−1(rs)e

itϕ(r)Fj(r)r
n
2 +kdr

)
Pj(−x),

where s = |x| > 0. Thus, we have

St,ϕf(x) =

ak∑
j=1

(2π)−
n
2 i−k|x|1−n

2 −k
(∫ ∞

0

Jn
2 +k−1(r|x|)eitϕ(r)Fj(r)r

n
2 +kdr

)
Pj(−x). (5.6)

Denote by Fn the Fourier transform in Rn, then Fj = i−kFn+2kfj . Note that for a radial
function h ∈ S(Rn+2k), we have

Fn+2kh(x) = (2π)
n
2 |x|1−n

2 −k

∫ ∞

0

h(r)Jn
2 +k−1(r|x|)r

n
2 +kdr.

Define the operator Sn+2k
t,ϕ on the set of all radial function in S(Rn+2k) by

Sn+2k
t,ϕ h(x) := (2π)−n−2k

∫
Rn+2k

eix·ξeitϕ(|ξ|)Fn+2kh(|ξ|)dξ.

Obviously, Sn+2k
t,ϕ h is still a radial function. Then

Sn+2k
t,ϕ fj(|x|) = ik(2π)−n−2k

∫
Rn+2k

eix·ξ
(
eitϕ(|ξ|)Fj(ξ)

)
dξ

= ik(2π)−
n
2 −2k|x|1−n

2 −k

∫ ∞

0

Jn
2 +k−1(r|x|)eitϕ(r)Fj(r)r

n
2 +kdr.

(5.7)

By (5.6) and (5.7), we get

St,ϕf(x) = i−2k(2π)2k
∑
j

Sn+2k
t,ϕ fj(|x|) · Pj(−x), x ∈ Rn, (5.8)

where we may regard Sn+2k
t,ϕ fj(|x|) as a function on Rn since Sn+2k

t,ϕ fj is a radial function.
Denote

Sn+2k,∗∗
ϕ fj(|y|) = sup

t∈R
|Sn+2k

t,ϕ fj(|y|)|, y ∈ Rn+2k or y ∈ Rn. (5.9)

Then by (5.8) and (5.9), we obtain

S∗∗
ϕ f(x) ≤ Cn,k

∑
j

(Sn+2k,∗∗
ϕ fj(|x|))|x|k. (5.10)

Using the notation v = |x| and r = |ξ|. By (5.10), we get

(∫
Rn

|Sn,∗∗
ϕ f(x)|qvαdx

)1/q

≤ C

ak∑
j=1

(∫
Rn

|Sn+2k,∗∗
ϕ fj(v)|q|x|αvkqdx

)1/q

, (5.11)
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where 1
4 ≤ s < 1

2 , 2 ≤ q ≤ 2
1−2s and α = q(n2 − s) − n. Denote β = q(n+2k

2 − s) − (n + 2k),
it follows that kq + α+ n− 1 = β + n+ 2k − 1. Using representation of polar coordinates, we
obtain ∫

Rn

|Sn+2k,∗∗
ϕ fj(v)|qvαvkqdx = ωn−1

∫ ∞

0

|Sn+2k,∗∗
ϕ fj(v)|qvkq+α+n−1dv

=
ωn−1

ωn+2k−1

∫
Rn+2k

|Sn+2k,∗∗
ϕ fj(v)|qvβdx,

(5.12)

where ωn−1 and ωn+2k−1 denote areas of the unit sphere in Rn and Rn+2k, respectively. Since
fj is a radial function in Rn+2k, 1

4 ≤ s < 1
2 , 2 ≤ q ≤ 2

1−2s and β = q(n+2k
2 − s)− (n+2k), thus

applying Theorem 1.6, we obtain(∫
Rn+2k

|Sn+2k,∗∗
ϕ fj(x)|q|x|βdx

)1/q

≤ C∥fj∥Hs(Rn+2k). (5.13)

Note that Fn+2kfj = ikFj , we get

∥fj∥2Hs(Rn+2k) =

∫
Rn+2k

|Fj(|ξ|)|2(1 + |ξ|2)sdξ

=ωn+2k−1

∫ ∞

0

|Fj(r)|2(1 + r2)srn+2k−1dr. (5.14)

Therefore, by (5.11), (5.12), (5.13), (5.14) and (5.4), we obtain(∫
Rn

|Sn,∗∗
ϕ f(x)|q|x|αdx

)1/q

≤C
( ak∑

j=1

∫ ∞

0

|Fj(r)|2(1 + r2)srn+2k−1dr
)1/2

=C∥f∥Hs(Rn). (5.15)

Thus, we complete the proof of Theorem 5.1.
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