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Abstract Several tests for multivariate mean vector have been proposed in the recent literature. Generally,

these tests are directly concerned with the mean vector of a high-dimensional distribution. The paper presents

two new test procedures for testing mean vector in large dimension and small samples. We do not focus on the

mean vector directly, which is a different framework from the existing choices. The first test procedure is based

on the asymptotic distribution of the test statistic, where the dimension increases with the sample size. The

second test procedure is based on the permutation distribution of the test statistic, where the sample size is

fixed and the dimension grows to infinity. Simulations are carried out to examine the finite-sample performance

of the tests and to compare them with some popular nonparametric tests available in the literature.
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1 Introduction

Suppose that x1, · · · ,xn are n independent realizations of a p-dimensional random vector x,

which is symmetric about µ ∈ Rp, i.e., x − µ
d
= µ − x. In multivariate analysis, a canonical

testing problem is that of testing the mean vector. With the rapid development of information
technologies, analyses involving a large number of variables p are becoming more prevalent in
statistical applications. High dimensionality poses significant challenge to hypothesis testing.
The main challenge of high-dimensional data is that the dimension p is much larger than the
sample sizes n. When this happens, many traditional statistical methods and theories may not
necessarily work since they assume that p keeps unchanged as n increases. In this article, we
shall test in large dimension and small samples the hypothesis

H0 : µ = 0 versus H1 : µ ̸= 0. (1.1)

To cope with the high dimensionality, several alternative approaches have been suggested
in the recent literature. These methods include, but are not limited to [2, 5–8, 12, 15, 16] and
[18]. These tests are very useful. Generally, these tests are directly concerned with the mean
vector of a high-dimensional distribution. Under a different framework where we do not focus
on the mean vector directly, we propose two novel test procedures for testing mean vector. Our
proposals are based on an energy statistic and can be conveniently used in high dimension low
sample size situations.

There are other tests for high dimensional data based on energy statistic; see [14] and [19]
in the context of testing dependence. In this paper, we exploit the same principle in the context
of testing mean vector. As pointed out by [13], energy statistics are extremely useful and are
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typically more general and often more powerful against general alternatives than classical (non-
energy type) statistics. The simulation results also demonstrate that our proposals are quite
competitive in comparison with some popular nonparametric tests available in the literature.

The rest of this paper is organized as follows. The two new test procedures are presented in
Section 2. Specifically, the first test procedure is introduced in Section 2.1 where we derive the
asymptotic distribution of the test statistic when the dimension increases with the sample size.
The second test procedure is based on the permutation distribution of the test statistic and is
investigated in Section 2.2 where we assume that the sample size is fixed and the dimension
grows to infinity. Simulation studies are carried out in Section 3 to investigate the numerical
performance of the test procedures. The article concludes with a short discussion in Section 4.
All the technical proofs are gatheblack in the Appendix.

2 Main Results

Let x be Rp-valued random vector with finite expectation. From [4] and [13], we know that H0

holds if and only if M(x) = 0, where M(x) = E||x1+x2||−E||x1−x2|| is nonnegative and ||x||
is the Eucledean norm of x. According to [13], one can refer to M(x) as an energy distance.
Based on the energy distance, it is natural to consider the energy statistic

Tn =
2

n(n− 1)

∑
1≤i<j≤n

(||xi + xj || − ||xi − xj ||). (2.1)

Based on Tn, we give two new test procedures for testing mean vector in high dimension low
sample size situations. One focuses on the asymptotic and high-dimensional distribution of Tn;
the other focuses on the high-dimensional permutation distribution of Tn.

2.1 The Test Based on the Asymptotic and High-dimensional Distribution

In this section, we present a test via investigating the asymptotic distribution of Tn when the
dimension increases with the sample size. To this end, we first assume that the random vector
xi is generated from the symmetric independent component models ([11]). That is,

xi = µ+ Γzi, (2.2)

where Γ is a full rank p× p matrix; zi = (Zi1, · · · , Zip)
T has independent components Zijs and

Zij is symmetric about zero. We denote Σ = ΓΓT for easy future reference. To implement the
analysis, we further assume that each Zij has finite 8th moment. A similar condition was used
by [7, 17] and [20].

Additional, we need the following conditions to regulate for the “large p, small n” is,

(C1) p → ∞, as n → ∞;

(C2) tr(Σ4) = o{tr2(Σ2)};

(C3)
n
√

tr(Σ2)

tr(Σ) = o(1).

We here remark that Conditions (C1) and (C2) are rather mild and are similar to Assump-
tion 2 in [7] and condition (2.8) in [20]. Condition (C2) also implies that tr(Σ2) = o{tr2(Σ)} and
tr(Σ3) = o{tr(Σ)tr(Σ2)}. These facts are need to show (5.1) in Appendix, although we omit

the technical details. Since there would be a little bias term when dealing with
( ||xi−xj ||√

2tr(Σ)
+1

)−1
,

we need Condition (C3) to eliminate the bias term in (5.2). To appreciate condition (C3), con-
sider that all the eigenvalues of Σ are bounded. Thus, the condition becomes n2 = o(p), which
is true when p gets larger.
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Theorem 1. Let the test statistic Tn be defined as in (2.1). Assume that Model (2.2) and
Conditions (C1)–(C3). Then under H0, as n, p → ∞,

n
√

tr(Σ)

2
√
tr(Σ2)

Tn
d−→ N(0, 1).

However, tr(Σ) and tr(Σ2) are appeablack in the asymptotic variance, so we need to esti-

mate them. From (2.3) of [7], we can estimate tr(Σ) by t̂r(Σ) = 1
n

n∑
i=1

xT
i xi − 1

n(n−1)

∑
i̸=j

xT
i xj .

To estimate tr(Σ2), define

A1n =
1

n(n− 1)

n∑
i,j=1
i̸=j

(xT

i xj)
2, A2n =

1

n(n− 1)(n− 2)

n∑
i,j,k=1

i̸=j,j ̸=k,k ̸=i

xT

i xjx
T

j xk,

and

A3n =
1

n(n− 1)(n− 2)(n− 3)

n∑
i,j,k,l=1

i̸=j,j ̸=k,k ̸=l,

xT

i xjx
T

kxl.

Like [7], we propose the following ratio consistent estimator of tr(Σ2),

t̂r(Σ2) = A1n − 2A2n +A3n.

By combining Slutsky’s theorem, the first test procedure rejects H0 at a significant level α if

nTn ≥
2
√
t̂r(Σ2)√
t̂r(Σ)

zα. (2.3)

2.2 The Test Based on the High-dimensional Permutation Distribution

Note that

Tn =
2

n(n− 1)

∑
1≤i<j≤n

(||xi − x∗
j || − ||xi + x∗

j ||), (2.4)

where x∗
i = −xi for i = 1, · · · , n. Under H0, x1, · · · ,xn and x∗

1, · · · ,x∗
n have the same distri-

bution, while under H1 they differ in their locations. Consider the pooled sample {z1, · · · , zn,
zn+1, · · · , z2n} with zi = xi and zn+i = x∗

i . We first give the descriptions of this procedure.
(S1) We generate a permutation from the set {1, · · · , n, n+1, · · · , 2n}, namely, {k1, · · · , k2n}.

Let the set I = {kj : n < kj , 1 ≤ j ≤ n}. For any i ∈ I, we exchange zi and zi−n. We then
obtain the bootstrap sample {zb1, · · · , zbn, zbn+1, · · · , zb2n}.

(S2) Compute T
(1)
n by using the bootstrap sample with xi = zbi and x∗

i = zbi+n for i =
1, · · · , n.

(S3) Repeat (S1) and (S2) for B times, and obtain T
(l)
n , l = 1, · · · , B. And then the

bootstrap estimate of P (Tn ≤ t) is 1
B

B∑
l=1

I{T (l)
n ≤ t}. Based on the bootstrap estimate, we can

compute the corresponding p-value.
To enhance readability, we here restate that µ and Σ are the mean vector and the dispersion

matrix. In what follows, we investigate the limiting behavior of the permutation test when the
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sample size is fixed and the dimension grows to infinity. In order to carry out our investigation,
we make the following assumptions, which are different from Section 2.1.

(D1) There exist σ2 > 0 and v such that (i) tr(Σ)/ → σ2 and (ii) ||µ||2/p → v2 as p → ∞.
(D2) Fourth moments of the components of x are uniformly bounded.
(D3) Let x1,x2,x3 be three independent copies of x and let y3 = −x3. Let xi =

(Xi1, · · · , Xip) and yi = (Yi1, · · · , Yip). For (Ui, Vi) = (X1i, X2i) or (X1i, Y3i),
∑
i̸=j

∣∣Corr {(Ui −

Vi)
2, (Uj − Vj)

2}
∣∣ is of the order o(p2).

We here remark that the conditions (D1)–(D3) are common assumptions under the frame-
work where the sample size is fixed and the dimension grows to infinity. See [10] and [3] for
more details. In fact, we need the fourth moment condition (D2) and the weak dependence
among the component variables (D3) to have the weak law of large numbers (WLLN) for the se-
quence of dependent and non-identically distributed random variables. Furthermore, note that
if the components of x are i.i.d. with finite second moments, (D1) and (D3) get automatically
satisfied. Recall that [1] derived the WLLN for mixingales. Therefore, under (D1), (D2) and
(D3), we can show that

(a) ||xi − xj ||/
√
p →

√
2σ for 1 ≤ i < j ≤ n;

(b) ||xi + xj ||/
√
p →

√
2σ2 + 4v2 for 1 ≤ i < j ≤ n.

Both (a) and (b) are very useful to show the consistency result on the permutation test
when the sample size is fixed and the dimension grows to infinity. Define C(n,m) to be the
number of m-combinations from a set of n elements.

Theorem 2. Suppose that we have n independent observations, which satisfy (D1), (D2) and
(D3). Also assume that v2 > 0. Then, unless n is very small (i.e., C(2n, n) ≤ 2/α), the power
of the proposed permutation test with level α converges to 1 as p tends to infinity.

Due to the proof of Theorem 2, it is clear that for fixed n, the limiting p-value of the
permutation test, i.e., the limiting value (as p → ∞) of P ( 1√

pTn ≥ γ0) under the permutation

distribution is 2/(2nn ), where γ0 =
√
2σ2 + 4v2 −

√
2σ which is positive unless v2 = 0. In

particular, for a test of level 0.05 (or 0.01), it is enough to have 4 (or 5) observations from each
class for the convergence of the power to unity.

3 Numerical Study

3.1 Simulation Study

In this section, we conduct simulations to demonstrate the performance of the proposed test
procedures. We refer to the test based on the asymptotic and high-dimensional distribution
and the test based on the high-dimensional permutation distribution as the AH test and the
PH test, respectively. For comparison purposes, we also conducted the test proposed by [7]
and the scalar transformation invariant test proposed by [12]. We refer to them as the CQ test
and the PA test, respectively. The proposed test, the CQ test and the PA test are sum-of-
squares-based tests and designed for dense alternatives. For the sake of fairness, we exclude the
supremum-based tests developed in [5], [6] [8] and [18]. The attained significance level to the
nominal value α = 0.05 and the power are investigated in finite samples by simulation. The
number of experiments is 500. The number of permutations is 500.

Consider that x is taken to be the multivariate t-distribution with v degrees of freedom.
We take v = 3 and v = ∞, respectively. The v = ∞ corresponds to the multivariate normal
distribution. The distribution with v = 3 is heavy-tailed. The mean vector of x and the scatter
matrix of x are taken to be µ = δ1p and Σ = (ρ|i−j|), where 1p denotes the p-dimensional
vector with all elements unity. For comparison, we take ρ = 0 and ρ = 0.5, respectively. For
normally distributed data, we only consider the case of ρ = 0.5 to conserve space because all the
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tests perform well and the simulation results are not significantly improved in this case. The
δ = 0 corresponds to the null hypothesis. To assess the power of the tests, we take δ = 0.1, 0.2
when v = ∞ and δ = 0.15, 0.2 when v = 3. To demonstrate the effectiveness of the proposed
permutation test, we consider one relatively small sample size (n = 20). We compute powers
of these tests for nine different values of p, i.e., p = 25, 50, 75, 100, 125, 150, 175, 200, 225.

Table 1. Empirical size and power of the tests for different (δ, p) when v = ∞ and ρ = 0.5

p

25 50 75 100 125 150 175 200 225

δ = 0

PH 0.04 0.05 0.06 0.05 0.06 0.05 0.05 0.06 0.06

AH 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.06 0.05

CQ 0.05 0.06 0.06 0.05 0.06 0.07 0.06 0.06 0.05

PA 0.06 0.06 0.07 0.06 0.07 0.07 0.06 0.07 0.06

δ = 0.1

PH 0.16 0.20 0.24 0.30 0.32 0.37 0.41 0.45 0.48

AH 0.16 0.22 0.24 0.27 0.33 0.38 0.42 0.44 0.47

CQ 0.17 0.21 0.24 0.28 0.33 0.39 0.42 0.45 0.48

PA 0.17 0.23 0.28 0.31 0.35 0.40 0.45 0.48 0.50

δ = 0.2

PH 0.53 0.75 0.83 0.94 0.95 0.97 0.98 1.00 1.00

AH 0.56 0.71 0.81 0.93 0.96 0.98 1.00 1.00 1.00

CQ 0.54 0.70 0.82 0.93 0.96 0.98 1.00 1.00 1.00

PA 0.55 0.73 0.85 0.94 0.96 0.98 1.00 1.00 1.00

Table 2. Empirical size and power of the tests for different (δ, p) when v = 3 and ρ = 0

p

25 50 75 100 125 150 175 200 225

δ = 0

PH 0.06 0.06 0.04 0.07 0.06 0.05 0.07 0.06 0.04

AH 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.04 0.05

CQ 0.07 0.05 0.06 0.05 0.05 0.06 0.06 0.06 0.05

PA 0.04 0.03 0.02 0.02 0.03 0.02 0.03 0.03 0.02

δ = 0.15

PH 0.30 0.41 0.50 0.59 0.72 0.73 0.79 0.82 0.84

AH 0.22 0.35 0.40 0.52 0.58 0.67 0.72 0.75 0.78

CQ 0.23 0.30 0.36 0.42 0.47 0.53 0.54 0.61 0.64

PA 0.17 0.22 0.24 0.24 0.27 0.29 0.33 0.34 0.38

δ = 0.2

PH 0.52 0.71 0.80 0.89 0.95 0.96 0.98 1.00 1.00

AH 0.42 0.64 0.73 0.85 0.89 0.94 0.94 0.96 0.98

CQ 0.37 0.52 0.60 0.73 0.76 0.83 0.84 0.86 0.87

PA 0.29 0.30 0.31 0.33 0.34 0.37 0.37 0.39 0.43
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A well-behaved test should have an empirical size around 0.05. From Tables 1–3, we see
that most of the methods perform quite well except that the PA tends to be smaller than
the nominal 5% level when v = 3. This may imply that the PA test is adversely affected by
heavy-tailed distribution. For the sake of comparison, we further report the power of the tests.
Tables 1–3 also report the empirical powers of the tests for different (δ, p, ρ, v). It is easy to
observe that when v = ∞, all the tests have good performance and the differences among them
are very small. However, it is interesting to see that when v = 3, the proposed test procedures
PH and AH significantly outperform the selected tests CQ and PA. That is, the proposed test
performs better when the error is heavy-tailed. This may agree with [13]’s assertion that energy
statistics are are typically more general and often more powerful against general alternatives
than classical (non-energy type) statistics. In particular, we further observe that the PH is
better than the AH in such a case. Consequently, we tend to suggest using the PH in practice.

Table 3. Empirical size and power of the tests for different (δ, p) when v = 3 and ρ = 0.5

p

25 50 75 100 125 150 175 200 225

δ = 0

PH 0.06 0.06 0.05 0.06 0.07 0.06 0.07 0.06 0.06

AH 0.04 0.04 0.05 0.04 0.06 0.04 0.04 0.04 0.05

CQ 0.07 0.06 0.06 0.06 0.07 0.06 0.05 0.05 0.05

PA 0.04 0.03 0.03 0.04 0.03 0.02 0.02 0.03 0.03

δ = 0.15

PH 0.16 0.19 0.22 0.27 0.36 0.39 0.43 0.46 0.48

AH 0.11 0.12 0.17 0.23 0.26 0.30 0.32 0.35 0.39

CQ 0.15 0.14 0.18 0.22 0.24 0.24 0.25 0.31 0.32

PA 0.15 0.16 0.16 0.18 0.19 0.21 0.23 0.26 0.28

δ = 0.2

PH 0.25 0.37 0.46 0.56 0.71 0.76 0.82 0.85 0.88

AH 0.18 0.28 0.38 0.51 0.59 0.62 0.64 0.74 0.76

CQ 0.20 0.26 0.31 0.41 0.46 0.50 0.51 0.57 0.61

PA 0.21 0.23 0.25 0.25 0.28 0.29 0.33 0.36 0.41

3.2 A Real Example

In this section,we consider amicroarray data set consisting of a large p and small n. The data set
is a leukemia data set, which is available at http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.
There are p = 7129 genes and samples generated from the acute lymphocytic leukemia group
consist of n = 47. As an illustration of our approach, we ask if there is evidence of mean zero.
The p-value of energy statistic test is 1.6× 10−8. There is evidence that the data distribution
has nonzero mean.

4 Discussion

In this paper, we present some high-dimensional tests for mean vector based on an energy
distance, which leads to an energy statistic. Based on the energy statistic, we propose two
new test procedures for testing the mean vector. One is based on the asymptotic and high-
dimensional distribution of the statistic; the other is based on the high-dimensional permutation
distribution of the statistic. Monte Carlo simulations demonstrate that the new test procedures
are quite competitive.
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5 Appendix: Proof of Theorems

This appendix gives the proofs of Theorems 1 and 2.

Appendix A: Proof of Theorem 1

For any i ̸= j, we reformulate ||xi − xj || −
√
2tr(Σ) as follows,

||xi − xj || −
√
2tr(Σ) =

||xi−xj ||2√
2tr(Σ)

−
√
2tr(Σ)

||xi−xj ||√
2tr(Σ)

+ 1
.

Similar to Proposition 5.1 of [7], we can show that under Model (2.2), Var (||xi − xj ||2) =

2Var(xT
i xi) + 4Var(xT

i xj) = O{tr(Σ2)}. Noting that E
||xi−xj ||2
2tr(Σ) = 1, we have

||xi−xj ||2
2tr(Σ) − 1 =

Op{
√

tr(Σ2)
tr2(Σ)}, where we use the condition (C2). This also implies

||xi−xj ||√
2tr(Σ)

converges to one

in probability. Therefore, by Taylor’s Theorem, we have
( ||xi−xj ||√

2tr(Σ)
+ 1

)−1
= 1

2 + Op{
√

tr(Σ2)
tr2(Σ)}

Consequently, it follows that

||xi − xj || −
√

2tr(Σ) =
1

2
√
2tr(Σ)

{||xi − xj ||2 − 2tr(Σ)}

+
1√

2tr(Σ)
{||xi − xj ||2 − 2tr(Σ)}Op

{√ tr(Σ2)

tr2(Σ)

}
=

1

2
√
2tr(Σ)

{||xi − xj ||2 − 2tr(Σ)}+Op

{ tr(Σ2)

tr3/2(Σ)

}
.

Similarly, we have that under H0,

||xi + xj || −
√
2tr(Σ) =

1

2
√

2tr(Σ)
{||xi + xj ||2 − 2tr(Σ)}+Op

{ tr(Σ2)

tr3/2(Σ)

}
.

Therefore,

Tn =
2

n(n− 1)

∑
1≤i<j≤n

[
{||xi + xj || −

√
2tr(Σ)} − {||xi − xj || −

√
2tr(Σ)}

]
=

4

n(n− 1)
√
2tr(Σ)

∑
1≤i<j≤n

xT

i xj +Op

{ tr(Σ2)

tr3/2(Σ)

}
.

Due to martingale central limit theorem[9] and exactly similar to the proof of (5.12) in [20], it
follows that under Model (2.2) and conditions (C1)–(C3), as n, p → ∞,

1√
n(n− 1)tr(Σ2)/2

∑
1≤i<j≤n

xT

i xj
d−→ N(0, 1). (5.1)

Recall that√
n(n− 1)tr(Σ)

2
√
tr(Σ2)

Tn =

√
2√

n(n− 1)tr(Σ2)

∑
1≤i<j≤n

xT

i xj +Op

{n
√
tr(Σ2)

tr(Σ)

}
. (5.2)

Therefore, due to Slutsky’s theorem and condition (C3), we get the desired result.
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Appendix B: Proof of Theorem 2

If (D1)–(D3) hold, using the results (a) and (b) stated in Section 2.2, for fixed n and p → ∞,

Tn/
√
p = γ01 − γ02

def
= γ0 in probability, where γ01 =

√
2σ2 + 4v2 and γ02 =

√
2σ. Next, let us

consider the permutation distribution of Tn.
Let ♯(·) be the counting measure. For the pooled sample {z1, · · · , zn, zn+1, · · · , z2n} with

zi = xi and zn+i = x∗
i , suppose that s = ♯(I) observations (s = 1, · · · , n) from {z1, · · · , zn}

and s observations from {zn+1, · · · , z2n} are exchanged according to the step (S1) described in
Section 2.2. This gives the bootstrap sample {zb1, · · · , zbn, zbn+1, · · · , zb2n}. Letting xi = zbi and
x∗
i = zbn+i for i = 1, · · · , n, we have that

∑
1≤i<j≤n

||xi+x∗
j || = {C(s, 2)+C(n−s, 2)}γ02+s(n−

s)γ01 and
∑

1≤i<j≤n

||xi − x∗
j || = {C(s, 2) + C(n − s, 2)}γ01 + s(n − s)γ02 in probability. Thus,

we can show that the value of the test statistic converges to

γs
def
=

{C(s, 2) + C(n− s, 2)}γ01 + s(n− s)γ02
C(n, 2)

− {C(s, 2) + C(n− s, 2)}γ02 + s(n− s)γ01
C(n, 2)

.

After simple calculations, we further have

γs =
{
1− 2s(n− s)

C(n, 2)

}
(γ01 − γ02) =

{
1− 2s(n− s)

C(n, 2)

}
γ0.

Note that under H1, γ0 > 0 and 1 − 2s(n−s)
C(n,2) ≤ 1 for all choices of s, where the equality holds

if and only if s = 0 and s = n. That is, γs ≤ γ0 for all choices of s and the equality holds
if and only if s = 0 and s = n. On the other hand, as p → ∞, the permutation distribution

tend to have n + 1 mass points γ0, γ1, · · · , γn with probabilities C(n,0)
C(2n,n) ,

C(n,1)
C(2n,n) , · · · ,

C(n,n)
C(2n,n)

respectively. Therefore, as p → ∞, under the permutation distribution, the test statistic takes
the value γ0 or higher with probability tending to 2/C(2n, n).

Acknowledgments. The authors thank the editor, the AE, and the reviewers for their
constructive comments, which have led to a dramatic improvement of the earlier version of this
article.

References

[1] Andrews, D. Laws of large numbers for dependent non-identically distributed random variables. Econo-
metric Theory, 4: 458–467 (1988).

[2] Bai, Z., Sarandasa, H. Effect of high dimension: by an example of a two sample problem. Statistica
Sinica, 6: 311–329 (1996)

[3] Biswas, M., Mukhopadhyay, M., Ghosh, A. A distribution-free two-sample run test applicable to high-
dimensional data. Biometrika, 101: 913–926 (2014)

[4] Buja, A., Logan, B., Reeds, J. Inequalities and positive definite functions arising from a problem in multi
dimensional scaling. Annals of Statistics, 22: 406–438 (1994)

[5] Cai, T., Liu, W. and Xia, Y. Two-sample test of high dimensional means under dependence. Journal of
the Royal Statistical Society, Series B, 76: 349–372 (2014)

[6] Chang, J., Zheng, C., Zhou, W. X., Zhou, W. Simulation-based hypothesis testing of high dimensional
means under covariance heterogeneity. Biometrics, 73: 1300–1310 (2017)

[7] Chen, S., Qin, Y. A two sample test for high dimensional data with applications to gene-set testing.
Annals of Statistics, 38: 808–835 (2010)

[8] Chen, S., Li, J., Zhong, P. Two-Sample and ANOVA Tests for High Dimensional Means. Annals of
Statistics, 47: 1443–1474

[9] Hall, P., Heyde, C. Martingale Limit Theory and Its Application. Academic Press, New York, 1980
[10] Hall, P., Marron, J., Neeman, A. Geometric representation of high dimension, low sample size data.

Journal of the Royal Statistical Society, Series B, 67: 427–444 (2005)
[11] Ilmonen, P., Paindaveine, D. Semiparametrically efficient inference based on signed ranks in symmetric

independent component models. Annals of Statistics, 39: 2448–2476 (2011)



86 B. CHEN, H.M. WANG

[12] Park, J., Nag Ayyala, D. A test for the mean vector in large dimension and small samples. Journal of
Statistical Planning and Inference, 143: 929–943 (2013)
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