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1 introduction

Entropy monotonicity and Harnack inequality are two powerful tools in the studies of both
intrinsic and extrinsic geometric flows. In the Ricci flow, the important W entropy and its
corresponding Harnack were introduced in the seminal work of Perelman[17]. These were con-
sidered in a general setting in [2, 6, 8]. In the Gaussian curvatue flow, Chow[3] first studied the
entropy and Harnack type inequalities by deriving a surprising and interesting identity along
the flow, see Eq.(1.2) below. The entropy and Harnack were studied deeply and systematically
in a series of articles of Li-Li[10–13] and Li[14, 15]. See also a survey article by Ni[16].

In the Gaussian curvature flow, a new entropy was defined in [7] based on Chow’s entropy
and inspired by Perelman’s idea, and this was discussed in [1]. Similar ideas appeared in [5, 9].
The ideas are to rewrite the formulas to fit the shrinkers’ equations. In this short note we work
out the Harnack expression modeled from the shrinking self similar solutions to the Gaussian
curvature flow. Since we rely heavily on some deep thoerems in [3], we invite the readers to
read the following together with [3].

We adapt the notations of [3]. Given a hypersurface M parameterized by a map F : Mn →
Rn+1, the Gaussian curvature flow is given by

∂F (x, t)

∂t
= −K(x, t)ν(x, t) (1.1)

for x ∈ M, t ≥ 0. Here K denotes the Gaussian curvature and ν denotes the outward unit
normal vector field. Let hij be the second fundamental form. Assume hij > 0. Define

Pij = ∇i∇jK − h−1
kl ∇khij∇lK +Kh2

ij

and

P = h−1
ij Pij = �K − 1

K
h−1
ij ∇iK∇jK +HK

where � = h−1
ij ∇i∇j .
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Theorem 1.1[3]. Along the Gaussian curvature flow (1.1) for convex hypersurface, there holds

∂P

∂t
= K�P + 2⟨∇K,∇P ⟩h + |Pij |2h + P 2 (1.2)

Eq. (1.2) is trivial only on the steady self similar solutions which satisfy Pij = 0. As in
other curvature flows, a natural question can be asked is whether there is a Harnack expression
which is trivial only on the shrinkers satisfying

Pij −
hij

(n+ 1)(T − t)
= 0

where T is the extinction time of the flow.
The purpose of this note is to illustrate the following: in the studies of curvature flows,

whenever there is a quantity associated to the steadier one can construct a quantity associated
to the shrinker.

Theorem 1.2. Let dτ
dt = −(n+1) and Q = τ2P − nτ . Along the Gaussian curvature flow one

has

∂Q

∂t
= K�Q+ 2⟨∇K,∇Q⟩h + τ2

∣∣∣Pij −
hij

τ

∣∣∣2
h
+ τ2

(
P − n

τ

)2

(1.3)

In the next section we will prove Eq. (1.3) and show two applications of it.

2 Proof of the Identity and Its Applications

Proof of Therem 1.2. Starting from (1.2) we have

∂P

∂t
= K�P + 2⟨∇K,∇P ⟩h + |Pij |2h + P 2

= K�P + 2⟨∇K,∇P ⟩h +
(∣∣∣Pij −

hij

τ

∣∣∣2
h
+ 2⟨Pij ,

hij

τ
⟩h − n

τ2

)
+

((
P − n

τ

)2

+
2n

τ
P − n2

τ2

)
= K�P + 2⟨∇K,∇P ⟩h +

∣∣∣Pij −
hij

τ

∣∣∣2
h
+
(
P − n

τ

)2

+
2(n+ 1)

τ
P − n(n+ 1)

τ2
.

Hence

∂Q

∂t
= τ2

∂P

∂t
− 2(n+ 1)τP + n(n+ 1)

= τ2K�P + 2τ2⟨∇K,∇P ⟩h + τ2
∣∣∣Pij −

hij

τ

∣∣∣2
h
+ τ2

(
P − n

τ

)2

.

Note that �Q = τ2�P,∇Q = τ2∇P and this completes the proof.

2.1 Application to the Harnack Inequality

As an application of Eq. (1.3) we give an alternate proof of Chow’s Harnack inequality[3].

Corollary 2.1. Along the Gaussian curvature flow on convex hypersurfaces there hold

∂K

∂t
+

nK

(n+ 1)t
− |∇K|2h ≥ 0. (2.1)



A Note on Harnack Type Inequality for the Gaussian Curvature Flow 3

Proof. Let τ = −(n+ 1)t. By Eq. (1.3) we have ∂Q
∂t ≥ K�Q+ 2⟨∇K,∇Q⟩h. Combining with

Q = 0 at t = 0 and applying the maximum principle we have Q(x, t) ≥ 0 for all t ≥ 0, namely
τ2P − nτ ≥ 0 or

P +
n

(n+ 1)t
≥ 0. (2.2)

Since along the Gaussian curvature flow (1.1) it holds

∂K

∂t
= K�K +HK2

Inequality (2.2) can be rewritten as

∂K

∂t
+

nK

(n+ 1)t
− |∇K|2h ≥ 0.

Remark 2.2. Chow’s original proof of Inequality (2.2) is based on the identity (1.2). Using
|Pij |2h ≥ P 2/n one gets

∂P

∂t
≥ K�P + 2⟨∇K,∇P ⟩h +

n+ 1

n
P 2.

Solving the corresponding ordinary differential equation to the partial differential inequality
above

dp

dt
=

n+ 1

n
p2

whose general solution satisfies p(t) ≥ −n+1
nt , and applying the maximum principle one gets

Inequality (2.2).

2.2 Revisit to the Entropy Estimate

In this subsection we let τ = (n+ 1)(T − t) with [0, T ) being the maximal time interval of the
Gaussian curvature flow. In [3] Chow first considered the entropy

N(t) =

∫
M

K logKdµ (2.3)

and he proved the entropy estimate that

N(t) ≤ N(0) +
nσn

n+ 1
log

T

T − t
(2.4)

with σn being volume of the unit sphere. His proof is based on Eq. (1.2). Now we revisit the
entropy estimate based on Eq. (1.3).

By (1.3) one has

d

dt

∫
M

(τ2P − nτ)Kdµ =

∫
M

τ2
(∣∣∣Pij −

hij

τ

∣∣∣2
h
+
(
P − n

τ

)2)
Kdµ.

In particular
∫
M
(τ2P − nτ)Kdµ is increasing for t ∈ [0, T ).

Since lim
τ→0

τ2
∫
M

PKdµ = 0 and thus

lim
t→T

∫
M

(
τ2P − nτ

)
Kdµ = 0
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we have
∫
M

(
τ2P − nτ

)
Kdµ ≤ 0, namely∫

M

(τP − n)Kdµ ≤ 0, t ∈ [0, T )

or ∫
M

PKdµ ≤ nσn

(n+ 1)(T − t)
.

Since dN
dt =

∫
M

PKdµ and thus

dN

dt
≤ nσn

(n+ 1)(T − t)
.

Integrating the above inequality on [0, t] gives

N(t) ≤ N(0) +
nσn

n+ 1
log

T

T − t

and this is the entropy estimate (2.4).
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