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Abstract A graph G is said to be p-factor-critical if G — u1 — u2 — - -+ — up has a perfect matching for any
u,u2,- - ,up € V(G). The concept of p-factor-critical is a generalization of the concepts of factor-critical and
bicritical for p = 1 and p = 2, respectively. Heping Zhang and Fuji Zhang[Construction for bicritical graphs and
k-extendable bipartite graphs, Discrete Math., 306(2006) 1415-1423] gave a concise structure characterization of
bicritical graphs. In this paper, we present the characterizations of p-factor-critical graphs and minimal p-factor-
critical graphs for p > 2. As an application, we also obtain a class of graphs which are minimal p-factor-critical
for p > 1.
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1 Introduction

All graphs considered in this paper are finite, connected, loopless and have no multiple edges.
Our notation and terminology in graph theory follows Bondy and Murty!®! and Lovész and
Plummer%,

Let G be a graph. The vertex set and edge set of G are denoted by V(G) and E(G),
respectively. A matching M in G is a subset of E(G) in which no two edges have a vertex in
common. A vertex v is covered by M if some edge of M is incident to v, otherwise, it is said
to be uncovered (or missed) by M. A matching M is perfect if it covers every vertex of G and
near perfect if it covers all but one vertex of G. Denote I'¢(v) the neighbor set of v in G. Let
A and B be two sets, then A\ B denotes A minus B. If M is a matching and P is a path in G
such that the edges on P appear in M and E(G) \ M alternately, then P is an M -alternating
path.

Let G be a graph. Denote D(G) the set of all vertices in G which are not covered by at
least one maximum matching of G. Let A(G) be the set of vertices in V(G) — D(G) which are
adjacent to at least one vertex in D(G). Finally, let C(G) = V(G) — D(G) — A(G).

A graph G of order n is p-factor-critical, where n and p are positive integers with the same
parity, if the deletion of any set of p vertices results in a graph with a perfect matching. The
concept of p-factor-critical is a generalization of the concepts of factor-critical and bicritical
for p = 1 and p = 2, respectively. Let G be a p-factor-critical graph, G is called minimal if
G — e is not p-factor-critical for any e € E(G). An edge e € E(G) is called deletable if G — e is
still p-factor-critical. Favaron!® 9 and Favaron et al.[l gave some properties of p-factor-critical
graphs. Favaron and Shil™> 8 obtained some properties of minimally p-factor-critical graphs and
characterized (n — 4)-factor-critical graphs and minimally (n —4)-factor-critical graphs, where n

Manuscript is received on June 29, 2018. Accepted on November 5, 2021.
Supported by the National Natural Science Foundation of China (No. 11401576).
TCorresponding author.



The Characterization of p-factor-critical Graphs 155

is the order of the graph. Aldred et al.lll, and Wen and Loul'?! characterized 2k-factor-critical
graphs and (2k 4 1)-factor-critical graphs using M-alternating path theory, respectively.

Let X be a finite set and F a family of non-empty subsets of X. A subset S C X is called
a transversal of F if SN F; # () for each F; € F. A transversal S of F is minimal if it does not
exist S’ C S such that S’ is also a transversal of F.

Heping Zhang and Fuji Zhang['®! gave the following theorem and characterized the structure
of bicritical graphs.

Theorem 1.1, A graph G is bicritical if and only if for any vertex w of G, H = G — w is
factor-critical and T'(w) C V(H) is a transversal of Da(H), where Do(H)= {D(H —uy —us) :
Uy, Uz € V(H)}

In this paper, we present the characterizations of p-factor-critical graphs and minimal p-
factor-critical graphs for p > 2. As an application, we also obtain a class of graphs which are
minimal p-factor-critical for p > 1.

In order to obtain the main results in this paper, we need to recall the Gallai-Edmonds
Structure Theorem.

Theorem 1.2 (The Gallai-Edmonds Structure Theorem!'?)). If G is a graph and D(G), A(G),
C(G) are defined as above, then

(1) the components of the subgraph induced by D(G) are factor-critical,

(2) the subgraph induced by C(G) has a perfect matching,

(3) the bipartite graph, say B(G), obtained from G by deleting the vertices of C(G) and the
edges spanned by A(G) and contracting each component of D(G) to a single vertex has positive
surplus (as viewed from A(QG)),

(4) if M is any mazimum matching of G, then it contains a near perfect matching of each
component of D(G), a perfect matching of each component of C(G) and a mazimum matching

of B(G).

2 Main Results

In this section, we will characterize p-factor-critical graphs and minimal p-factor-critical graphs
for p > 2. In addition, we will also get a class of minimal p-factor-critical graphs for p > 1.

Theorem 2.1. Let p > 2 be a positive integer. A graph G is p-factor-critical if and only if for
any vertez w of G, H =G —w is (p — 1)-factor-critical and I'c(w) C V(H) is a transversal of
Dy (H), where Dy(H)={D(H —uy — - —up) :u; € V(H), i=1,--- ,p}.

Proof. Suppose that G is a p-factor-critical graph. Then, for any vertex w € V(G), we have
H =G —wis (p — 1)-factor-critical. Let M be a perfect matching of G — w3 — - - — u,, where
ur, - ,up € V(H) and sw be the edge covering vertex w in M. Obviously, M — sw is a near
perfect matching of H —u; — -+ — u, and misses s. Then s € T'g(w) N D(H —uy — -+ — up)
and I'g(w) is a transversal of D, (H).

Conversely, suppose that H is a (p — 1)-factor-critical graph and S C V(H) is a transversal
of D,(H). Let G be the graph obtained from H by adding a new vertex w and all the edges
connecting w to each vertex of S. Now, we shall prove that G is p-factor-critical, that is, for

any u; € V(G), i=1,---,p, we need to prove G — u; — --- — u, has a perfect matching.
Case 1. we {u1,--- ,up}.
Without loss of generality, let w = vy, then G —uy — -+ —up, = H —us —--- — up has a

perfect matching.

Case 2. w ¢ {u1,~- ,up}.
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Since H is (p — 1)-factor-critical, H — uj — - - - — u, has a near perfect matching and
|AH —uy — -+ —wp)| = ¢(D(H —uy — -+ —up)) — 1.
Let k = |A(H —uy — -+ —uy)|. Then k > 0, D(H —uy — - - - —u,) exactly has k+ 1 components,

denoted by Dy, Do, -+, Dgy1, and for i € {1,2,--- ,k+ 1} each D; is factor-critical by Gallai-
Edmonds Structure Theorem.

Since S is a transversal of D,(H), SND(H —uy — -+ —up) # 0. Let w1 € SND(H —
up — -+ — up). Without loss of generality, assume wq € D;. Let H' be the bipartite graph
obtained from H — u; — -+ — u, by deleting the vertices of C’(H —up — - — up), the edges
spanned by A(H —u; — -+ — u,) and contracting each component of D(H — uy — -+ — u,)
to a single vertex. Then by Gallai-Edmonds Structure Theorem H’ has positive surplus (as
viewed from A(H —Uy — o — up)). By Hall’s Theorem, the resultant bipartite graph from
H' by deleting the vertex corresponding to D; has a perfect matching M* = {ey, - ,ex}.
Let wip1 € V(M*)N D;yq for @ = 1,--- k. Let M; be a perfect matching of D; — w; for
i=1,---,k+1and M a perfect matching of C(H —uq —--- — u,). Then

k+1
U MiuM UM U {ww} (2.1)
i=1

is a perfect matching of G —u; — -+ — u,. Thus, G is p-factor-critical. O

Actually Theorem 2.1 gives a method to construct p-factor-critical graphs for p > 2. That
is to say, a p-factor-critical graph G can be constructed from a (p — 1)-factor-critical graph H
and a new vertex w, and connecting all vertices of a transversal of D,(H) to w. A factor-critical
graph H has an ear construction and D, (H) can be determined in polynomial times!'%. Some
approaches for computing all transversal of D,(H) have been described in different ways for
p = 2: see [2], [11] and [9]. This method can be applied on minimal p-factor-critical graphs and
we can get the following corollary:

Corollary 2.2. Let p > 2 be a positive integer. Let H be a minimal (p — 1)-factor-critical
graph and S C V(H) a minimal transversal of D,(H). Adding a new vertex w and connecting
each vertex of S to w by edges, the resulting graph G is a minimal p-factor-critical graph.

Proof. The proof is by contradiction. Suppose that G is not minimal p-factor-critical. Then
there exists an edge e € E(G) such that G — e is still p-factor-critical. If e = wu € E(w, S),
then S — w is not a transversal of D,(H) because of the minimal property of S, where E(w, S)
denotes the set of edges connecting {w} to S in G. By Theorem 2.1, G —e is not p-factor-critical
which is a contradiction. If e € E(H), then H — e is not (p — 1)-factor-critical because of the
minimal property of H. By Theorem 2.1, G — e is not p-factor-critical and thus a contradiction
is obtained again. Thus, G is p-factor-critical. O

Now it is worthy to give a class of minimal p-factor-critical graphs. The join G V H of
disjoint graphs G and H is the graph obtained from G U H by joining each vertex of G to each
vertex of H. By Theorem 2.1 and Corollary 2.2, we obtain the following result.

Theorem 2.3. Let Cj be a cycle of length k and N, an independent vertex set with order p,
where k > 3 is odd and k > 2p+ 1. Then Cy V N, is minimal (p + 1)-factor-critical.

Proof. For convenience, denote G, = C, V N,,. Firstly, we shall prove that G, is (p+ 1)-factor-
critical by induction on p. When p = 0, then Gy = C). Clearly, C} is an odd cycle and also
factor-critical. When p = 1, then G is a wheel. It is easy to see that G is bicritical. Suppose
that G is (I + 1)-factor-critical for { < p. Now, we will prove G, is (p + 1)-factor-critical.
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By induction, Gp—1 = Cj V N,_; is p-factor-critical. Let Cp = viva -+ - v;210;V541 - - - Vg1
and Np—1 = {ug, -+ ,up_1}.

Claim. The set {v1,--- , v} is a transversal of Dyy1(Gp—1), where Dpi1(Gp—1) = {D(Gp-1
—wWyp — - — wp+1) Wy, Wyl € V(prl)}.

Case 1. {uq, - ,up_1} C {wi, -+, wpy1}.

In this case, D(Gp—1 — w1 — -+ — wpt1) € {v1, -+ ,vx}. Then {vy, -+, v} N D(Gp_1 —
wy — -+ — wpy1) # 0. Thus, set {v1,--- ,vx} is a transversal of Dpy1(Gp_1).
Case 2. {ul, s ,up,l} N {wl, s ,pr} = @

In this case, {w1,- - ,wpp1} C{v1, -+ ,vp}. If Gpo1 —wi -+ — wpyq is bipartite, then any
maximum perfect matching of G,_1 —wy - -- —wp41 covers all vertices of {u1,--- ,up_1}. Then
{ug, -+ ,u }ND(Gp_1—wy1—- - —wy) = 0, that is, {v1, -+ , v }ND(Gp_1—w1—+ - —wp41) # 0.
Thus, set {v1,--- , v} is a transversal of Dpi1(Gp—1).

Case 3. 1< [{u1, - ,up—1}N{wy, -, wppa}| <p—2.

Without loss of generality, suppose that uq,--- ,u; € {w1, -+ ,wpy1} and wpy1, - ,up_1 €
{w1, -+, wpt1}, where 1 <t < p— 2. If every maximum matching of Gp—1 — w1 — -+ — Wpt1
covers all the vertices in {uy,--- ,u:}, then {uy, -+ ,us} N D(Gp—1 —wy —--- —wy) = (. Thus,
{or, v} N D(Gpo1 — w1 — - —wpy1) # 0.

Otherwise, let u € {uy,- - ,u;} be the vertex missed by some maximum matching, say M,
of Gp—1 — w1 — -+ — wp41. Since

’{vl,--- ,vk}‘ — ’{w1,~- sWpt1 N A{or, - - ,vk}’ >k—p>p+1, (2.2)
by the structure of G,—1 — w; — -+ — wpy1, there exists a triangle uv;v;1u in Gp—1 — wy —
.-+ — wpyq such that v;v;41 € M. Let M = M\ {vjviy1} U {uvip1}. Then M’ is also a
maximum matching of Gp,_1 — w1 — - -+ — wpy1 and does not cover v;. At this time, {u,v;} C
D(Gp—1 — w1 — -+ —wpy1). Then {v1, -, v} N D(Gpo1 — w1 — -+ — wpg1) # 0. Thus, set
{v1,--- , v} is a transversal of Dp11(Gp_1).

By the above cases, set {v1,--- , v} is a transversal of Dy 1(Gp—1), where Dpy1(Gp_1)=
{D(Gp-1—w1—++ —wpi1) w1, ,wps1 € V(Gp_1)}. Then, by Theorem 2.1, G, is (p+1)-

factor-critical.

Now, we prove that G), is minimal (p+ 1)-factor-critical by induction on p. Firstly, it is easy
to verify that Gy and G are minimal factor-critical and minimal bicritical, respectively. By the
above induction, G,_; is minimal p-factor-critical. On the other hand, {v1,--- , v} is minimal
transversal of Dy41(Gp—1), where Dy 1(Gp1)={D(Gp_1 — w1 — -+ —wpi1) 1 W1, ,Wps1 €
V(Gp_l)}. In fact, if {wy, -+, wpy1} = {uw1, -+ ,up,vi—1,v;41} for each i € {1,--- ,k}, then
{vi} = D(Gp—1 — w1 — -+ — wpt1). Thus, {v1,---, v} is minimal transversal of Dp41(Gp_1).
By Corolary 2.2, G, is minimal (p + 1)-factor-critical. O

Corollary 2.2 gives a method to construct a minimal p-factor-critical graph from a minimal
(p — 1)-factor-critical graph and a minimal transversal. But any vertex deletion of minimal
p-factor-critical graph may not result in a minimal (p — 1)-factor-critical graph. By Theorem
2.3, for any u € V(N,) we get C V N, — u is still minimal (p — 1)-factor-critical. However, for
any v € V(Cy) we can easily prove that Cj, vV N, — v is not minimal (p — 1)-factor-critical. Now,
we will give a characterization of minimal p-factor-critical graphs.

Theorem 2.4. Let p > 2 be a positive integer. A graph G is minimal p-factor-critical if and
only if, for any w € V(G), H =G — w is (p — 1)-factor-critical and S = T'(w) satisfies that

(1) S is @ minimal transversal of D,(H), and

(23) For each deletable edge e of H, S is not a transversal of Dp,(H — e).
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Proof. Suppose G is minimal p-factor-critical. Clearly, for any vertex w € V(G), H =G —w is
(p — 1)-factor-critical. In fact, both (i) and (ii) are right. Otherwise, if (i) does not hold, then
it exists a set S’ C S such that S’ is also a transversal of D,(H). Let v1,--- ,v, € S — S5’. By
Theorem 2.1, G —wvy — - - - —wwy, is p-factor-critical which contracts that G is minimal. Similar
to prove that (ii) holds.

Conversely, suppose that H is a (p — 1)-factor-critical graph and S C V(H) satisfies (i) and
(ii). Let G be the graph from H by adding a new vertex w and all the edges connecting w to
each vertex of S. Then G is p-factor-critical by Theorem 2.1. Now, it is only needed to prove
that, for any e € E(G), G — e is not p-factor-critical. In fact, if e = wu € E(w, S), then S —wu is
not transversal of D, (H) because of the minimal property of S. By Theorem 2.1, G — e is not
p-factor-critical. If e € E(H) and e is not deletable, then H — e is not (p — 1)-factor-critical.
By Theorem 2.1, G — e is not p-factor-critical either. Finally, if e € E(H) and e is deletable,
then, by condition (ii), S is not transversal of D,(H — e¢). By Theorem 2.1, G — e is not
p-factor-critical. O
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