Acta Mathematicae Applicatae Sinica, English Series Vol. 38, No. 1 (2022) 154–158 https://doi.org/10.1007/s10255-022-1064-x http://www.ApplMath.com.cn & www.SpringerLink.com

Acta Mathemacae Applicatae Sinica, English Series © The Editorial Office of AMAS & Springer-Verlag GmbH Germany 2022

The Characterization of *p***-factor-critical Graphs**

Shao-hui ZHAI¹ **, Er-ling WEI**²*,†* **, Fu-ji ZHANG**³

¹School of Applied Mathematics, Xiamen University of Technology, Xiamen 361024, China (E-mail: shzhai@xmut.edu.cn)

²School of Mathematics, Renmin University of China, Beijing 100872, China (E-mail: werling@ruc.edu.cn)

³School of Mathematical Sciences, Xiamen University, Xiamen 361005, China (E-mail: fjzhang@xmu.edu.cn)

Abstract A graph *G* is said to be *p*-factor-critical if $G - u_1 - u_2 - \cdots - u_p$ has a perfect matching for any $u_1, u_2, \dots, u_p \in V(G)$. The concept of *p*-factor-critical is a generalization of the concepts of factor-critical and bicritical for *p* = 1 and *p* = 2, respectively. Heping Zhang and Fuji Zhang[*Construction for bicritical graphs and k-extendable bipartite graphs*, Discrete Math., 306(2006) 1415–1423] gave a concise structure characterization of bicritical graphs. In this paper, we present the characterizations of *p*-factor-critical graphs and minimal *p*-factorcritical graphs for $p \geq 2$. As an application, we also obtain a class of graphs which are minimal *p*-factor-critical for $p \geq 1$.

Keywords perfect matching, *p*-factor-critical graph; transversal **2000 MR Subject Classification** 05C76

1 Introduction

All graphs considered in this paper are finite, connected, loopless and have no multiple edges. Our notation and terminology in graph theory follows Bondy and Murty^{[[3\]](#page-4-0)} and Lovász and $Plummer^{[10]}.$ $Plummer^{[10]}.$ $Plummer^{[10]}.$

Let *G* be a graph. The vertex set and edge set of *G* are denoted by $V(G)$ and $E(G)$, respectively. A *matching* M in G is a subset of $E(G)$ in which no two edges have a vertex in common. A vertex *v* is *covered* by *M* if some edge of *M* is incident to *v*, otherwise, it is said to be *uncovered* (or *missed*) by *M*. A matching *M* is *perfect* if it covers every vertex of *G* and near perfect if it covers all but one vertex of *G*. Denote $\Gamma_G(v)$ the neighbor set of *v* in *G*. Let *A* and *B* be two sets, then $A \setminus B$ denotes *A* minus *B*. If *M* is a matching and *P* is a path in *G* such that the edges on *P* appear in *M* and $E(G) \setminus M$ alternately, then *P* is an *M*-alternating *path*.

Let *G* be a graph. Denote *D*(*G*) the set of all vertices in *G* which are not covered by at least one maximum matching of *G*. Let $A(G)$ be the set of vertices in $V(G) - D(G)$ which are adjacent to at least one vertex in $D(G)$. Finally, let $C(G) = V(G) - D(G) - A(G)$.

A graph *G* of order *n* is *p-factor-critical*, where *n* and *p* are positive integers with the same parity, if the deletion of any set of *p* vertices results in a graph with a perfect matching. The concept of *p*-factor-critical is a generalization of the concepts of factor-critical and bicritical for $p = 1$ and $p = 2$, respectively. Let *G* be a *p*-factor-critical graph, *G* is called minimal if *G* − *e* is not *p*-factor-critical for any $e \in E(G)$. An edge $e \in E(G)$ is called deletable if $G - e$ is still *p*-factor-critical. Favaron^{[[4,](#page-4-2) [5\]](#page-4-3)} and Favaron et al.^{[[6\]](#page-4-4)} gave some properties of *p*-factor-critical graphs. Favaron and Shi[[7,](#page-4-5) [8\]](#page-4-6) obtained some properties of minimally *p*-factor-critical graphs and characterized (*n−*4)-factor-critical graphs and minimally (*n−*4)-factor-critical graphs, where *n*

Manuscript is received on June 29, 2018. Accepted on November 5, 2021.

Supported by the National Natural Science Foundation of China (No. 11401576).

*[†]*Corresponding author.

is the order of the graph. Aldred et al.^{[\[1\]](#page-4-7)}, and Wen and $\text{Lou}^{[12]}$ $\text{Lou}^{[12]}$ $\text{Lou}^{[12]}$ characterized 2*k*-factor-critical graphs and $(2k + 1)$ -factor-critical graphs using *M*-alternating path theory, respectively.

Let *X* be a finite set and *F* a family of non-empty subsets of *X*. A subset $S \subseteq X$ is called a *transversal* of *F* if $S \cap F_i \neq \emptyset$ for each $F_i \in \mathcal{F}$. A transversal *S* of *F* is minimal if it does not exist $S' \subset S$ such that S' is also a transversal of \mathcal{F} .

Heping Zhang and Fuji Zhang^{[\[13](#page-4-9)]} gave the following theorem and characterized the structure of bicritical graphs.

Theorem 1.1^{[[13\]](#page-4-9)}. *A graph G is bicritical if and only if for any vertex w of G,* $H = G - w$ *is factor-critical and* $\Gamma_G(w) \subseteq V(H)$ *is a transversal of* $\mathcal{D}_2(H)$ *, where* $\mathcal{D}_2(H) = \{D(H - u_1 - u_2) :$ $u_1, u_2 \in V(H)$.

In this paper, we present the characterizations of *p*-factor-critical graphs and minimal *p*factor-critical graphs for $p \geq 2$. As an application, we also obtain a class of graphs which are minimal *p*-factor-critical for $p \geq 1$.

In order to obtain the main results in this paper, we need to recall the Gallai-Edmonds Structure Theorem.

Theorem 1.2 (The Gallai-Edmonds Structure Theorem^{[\[10](#page-4-1)]}). If *G* is a graph and $D(G)$, $A(G)$, *C*(*G*) *are defined as above, then*

(1) the components of the subgraph induced by $D(G)$ *are factor-critical,*

(2) the subgraph induced by C(*G*) *has a perfect matching,*

(3) the bipartite graph, say B(*G*)*, obtained from G by deleting the vertices of C*(*G*) *and the edges spanned by* $A(G)$ *and contracting each component of* $D(G)$ *to a single vertex has positive surplus (as viewed from A*(*G*)*),*

(4) if M is any maximum matching of G, then it contains a near perfect matching of each component of $D(G)$, a perfect matching of each component of $C(G)$ and a maximum matching *of* $B(G)$ *.*

2 Main Results

In this section, we will characterize *p*-factor-critical graphs and minimal *p*-factor-critical graphs for $p \geq 2$. In addition, we will also get a class of minimal *p*-factor-critical graphs for $p \geq 1$.

Theorem 2.1. *Let* $p \geq 2$ *be a positive integer. A graph G is p*-factor-critical if and only if for any vertex w of G, $H = G - w$ is $(p - 1)$ -factor-critical and $\Gamma_G(w) \subseteq V(H)$ is a transversal of $\mathcal{D}_p(H)$, where $\mathcal{D}_p(H) = \{D(H - u_1 - \cdots - u_p) : u_i \in V(H), i = 1, \cdots, p\}.$

Proof. Suppose that *G* is a *p*-factor-critical graph. Then, for any vertex $w \in V(G)$, we have $H = G - w$ is $(p - 1)$ -factor-critical. Let *M* be a perfect matching of $G - u_1 - \cdots - u_n$ where $u_1, \dots, u_n \in V(H)$ and *sw* be the edge covering vertex *w* in *M*. Obviously, $M - sw$ is a near perfect matching of $H - u_1 - \cdots - u_p$ and misses s. Then $s \in \Gamma_G(w) \cap D(H - u_1 - \cdots - u_p)$ and $\Gamma_G(w)$ is a transversal of $\mathcal{D}_p(H)$.

Conversely, suppose that *H* is a $(p-1)$ -factor-critical graph and $S \subseteq V(H)$ is a transversal of $\mathcal{D}_p(H)$. Let *G* be the graph obtained from *H* by adding a new vertex *w* and all the edges connecting *w* to each vertex of *S*. Now, we shall prove that *G* is *p*-factor-critical, that is, for any $u_i \in V(G)$, $i = 1, \dots, p$, we need to prove $G - u_1 - \dots - u_p$ has a perfect matching.

Case 1. $w \in \{u_1, \dots, u_p\}.$

Without loss of generality, let $w = u_1$, then $G - u_1 - \cdots - u_p = H - u_2 - \cdots - u_p$ has a perfect matching.

Case 2. $w \notin \{u_1, \dots, u_p\}.$

Since *H* is $(p-1)$ -factor-critical, $H - u_1 - \cdots - u_p$ has a near perfect matching and

$$
|A(H - u_1 - \cdots - u_p)| = c(D(H - u_1 - \cdots - u_p)) - 1.
$$

Let $k = |A(H - u_1 - \cdots - u_p)|$. Then $k \ge 0$, $D(H - u_1 - \cdots - u_p)$ exactly has $k + 1$ components, denoted by $D_1, D_2, \cdots, D_{k+1}$, and for $i \in \{1, 2, \cdots, k+1\}$ each D_i is factor-critical by Gallai-Edmonds Structure Theorem.

Since S is a transversal of $\mathcal{D}_p(H)$, $S \cap D(H - u_1 - \cdots - u_p) \neq \emptyset$. Let $w_1 \in S \cap D(H$ $u_1 - \cdots - u_p$). Without loss of generality, assume $w_1 \in D_1$. Let *H'* be the bipartite graph obtained from $H - u_1 - \cdots - u_p$ by deleting the vertices of $C(H - u_1 - \cdots - u_p)$, the edges spanned by $A(H - u_1 - \cdots - u_p)$ and contracting each component of $D(H - u_1 - \cdots - u_p)$ to a single vertex. Then by Gallai-Edmonds Structure Theorem *H′* has positive surplus (as viewed from $A(H - u_1 - \cdots - u_p)$. By Hall's Theorem, the resultant bipartite graph from *H*^{*′*} by deleting the vertex corresponding to *D*₁ has a perfect matching $M^* = \{e_1, \dots, e_k\}$. Let $w_{i+1} \in V(M^*) \cap D_{i+1}$ for $i = 1, \dots, k$. Let M_i be a perfect matching of $D_i - w_i$ for $i = 1, \dots, k + 1$ and *M* a perfect matching of $C(H - u_1 - \dots - u_p)$. Then

$$
\bigcup_{i=1}^{k+1} M_i \cup M \cup M^* \cup \{ww_1\} \tag{2.1}
$$

is a perfect matching of $G - u_1 - \cdots - u_p$. Thus, *G* is *p*-factor-critical.

$$
\Box
$$

Actually Theorem 2.1 gives a method to construct *p*-factor-critical graphs for $p \geq 2$. That is to say, a *p*-factor-critical graph *G* can be constructed from a $(p-1)$ -factor-critical graph *H* and a new vertex *w*, and connecting all vertices of a transversal of $\mathcal{D}_p(H)$ to *w*. A factor-critical graph *H* has an ear construction and $\mathcal{D}_p(H)$ can be determined in polynomial times^{[[10\]](#page-4-1)}. Some approaches for computing all transversal of $\mathcal{D}_p(H)$ have been described in different ways for $p = 2$ $p = 2$ $p = 2$: see [[2\]](#page-4-10), [\[11](#page-4-11)] and [[9\]](#page-4-12). This method can be applied on minimal *p*-factor-critical graphs and we can get the following corollary:

Corollary 2.2. *Let* $p \geq 2$ *be a positive integer. Let H be a minimal* $(p-1)$ *-factor-critical graph and* $S \subseteq V(H)$ *a minimal transversal of* $\mathcal{D}_p(H)$ *. Adding a new vertex w and connecting each vertex of S to w by edges, the resulting graph G is a minimal p-factor-critical graph.*

Proof. The proof is by contradiction. Suppose that *G* is not minimal *p*-factor-critical. Then there exists an edge $e \in E(G)$ such that $G - e$ is still *p*-factor-critical. If $e = wu \in E(w, S)$, then *S* − *u* is not a transversal of $\mathcal{D}_p(H)$ because of the minimal property of *S*, where $E(w, S)$ denotes the set of edges connecting $\{w\}$ to *S* in *G*. By Theorem 2.1, *G−e* is not *p*-factor-critical which is a contradiction. If $e \in E(H)$, then $H - e$ is not $(p - 1)$ -factor-critical because of the minimal property of *H*. By Theorem 2.1, $G - e$ is not *p*-factor-critical and thus a contradiction is obtained again. Thus, *G* is *p*-factor-critical. \Box

Now it is worthy to give a class of minimal *p*-factor-critical graphs. The join $G \vee H$ of disjoint graphs *G* and *H* is the graph obtained from $G \cup H$ by joining each vertex of *G* to each vertex of *H*. By Theorem 2.1 and Corollary 2.2, we obtain the following result.

Theorem 2.3. Let C_k be a cycle of length k and N_p an independent vertex set with order p , *where* $k \geq 3$ *is odd and* $k \geq 2p + 1$ *. Then* $C_k \vee N_p$ *is minimal* $(p + 1)$ *-factor-critical.*

Proof. For convenience, denote $G_p = C_k \vee N_p$. Firstly, we shall prove that G_p is $(p+1)$ -factorcritical by induction on *p*. When $p = 0$, then $G_0 = C_k$. Clearly, C_k is an odd cycle and also factor-critical. When $p = 1$, then G_1 is a wheel. It is easy to see that G_1 is bicritical. Suppose that G_l is $(l + 1)$ -factor-critical for $l < p$. Now, we will prove G_p is $(p + 1)$ -factor-critical.

The Characterization of p-factor-critical Graphs 157

By induction, $G_{p-1} = C_k \vee N_{p-1}$ is p-factor-critical. Let $C_k = v_1v_2\cdots v_{i-1}v_iv_{i+1}\cdots v_kv_1$ and $N_{p-1} = \{u_1, \cdots, u_{p-1}\}.$

Claim. The set $\{v_1, \dots, v_k\}$ is a transversal of $\mathcal{D}_{p+1}(G_{p-1})$, where $\mathcal{D}_{p+1}(G_{p-1}) = \{D(G_{p-1})\}$ *−w*₁ − *··· − w*_{*p*+1}) : *w*₁*, ···, <i>w*_{*p*+1} ∈ *V*(*G*_{*p*-1})}.

Case 1. $\{u_1, \cdots, u_{p-1}\}$ ⊂ $\{w_1, \cdots, w_{p+1}\}.$

In this case, $D(G_{p-1} - w_1 - \cdots - w_{p+1}) \subseteq \{v_1, \cdots, v_k\}$. Then $\{v_1, \cdots, v_k\} \cap D(G_{p-1}$ *w*₁ − · · · − *w*_{*p*+1}) $\neq \emptyset$. Thus, set $\{v_1, \dots, v_k\}$ is a transversal of $\mathcal{D}_{p+1}(G_{p-1})$.

Case 2. $\{u_1, \cdots, u_{p-1}\} ∩ \{w_1, \cdots, w_{p+1}\} = ∅.$

In this case, $\{w_1, \dots, w_{p+1}\} \subset \{v_1, \dots, v_k\}$. If $G_{p-1} - w_1 \dots - w_{p+1}$ is bipartite, then any maximum perfect matching of $G_{p-1} - w_1 \cdots - w_{p+1}$ covers all vertices of $\{u_1, \dots, u_{p-1}\}$. Then ${u_1, \dots, u_t} \cap D(G_{p-1} - w_1 - \dots - w_k) = \emptyset$, that is, ${v_1, \dots, v_k} \cap D(G_{p-1} - w_1 - \dots - w_{p+1}) \neq \emptyset$. Thus, set $\{v_1, \dots, v_k\}$ is a transversal of $\mathcal{D}_{p+1}(G_{p-1})$.

Case 3. $1 \leq |\{u_1, \cdots, u_{p-1}\} \cap \{w_1, \cdots, w_{p+1}\}| \leq p-2$.

Without loss of generality, suppose that $u_1, \dots, u_t \notin \{w_1, \dots, w_{p+1}\}\$ and $u_{t+1}, \dots, u_{p-1} \in$ $\{w_1, \dots, w_{p+1}\}\$, where $1 \le t \le p-2$. If every maximum matching of $G_{p-1} - w_1 - \dots - w_{p+1}$ covers all the vertices in $\{u_1, \dots, u_t\}$, then $\{u_1, \dots, u_t\} \cap D(G_{p-1} - w_1 - \dots - w_k) = \emptyset$. Thus, *{v*₁*,* \cdots *, v*_{*k*}} ∩ *D*(*G*_{*p*−1} − *w*₁ − \cdots − *w*_{*p*+1}) $\neq \emptyset$ *.*

Otherwise, let $u \in \{u_1, \dots, u_t\}$ be the vertex missed by some maximum matching, say M, of $G_{p-1} - w_1 - \cdots - w_{p+1}$. Since

$$
|\{v_1, \cdots, v_k\}| - |\{w_1, \cdots, w_{p+1}\} \cap \{v_1, \cdots, v_k\}| \ge k - p \ge p + 1,
$$
\n(2.2)

by the structure of $G_{p-1} - w_1 - \cdots - w_{p+1}$, there exists a triangle $uv_i v_{i+1} u$ in $G_{p-1} - w_1$ $\cdots - w_{p+1}$ such that $v_i v_{i+1} \in M$. Let $M' = M \setminus \{v_i v_{i+1}\} \cup \{u v_{i+1}\}\$. Then M' is also a maximum matching of $G_{p-1} - w_1 - \cdots - w_{p+1}$ and does not cover v_i . At this time, $\{u, v_i\} \subset$ $D(G_{p-1}-w_1-\cdots-w_{p+1}).$ Then $\{v_1,\cdots,v_k\}\cap D(G_{p-1}-w_1-\cdots-w_{p+1})\neq\emptyset.$ Thus, set $\{v_1, \dots, v_k\}$ is a transversal of $\mathcal{D}_{p+1}(G_{p-1})$.

By the above cases, set $\{v_1, \dots, v_k\}$ is a transversal of $\mathcal{D}_{p+1}(G_{p-1})$, where $\mathcal{D}_{p+1}(G_{p-1}) = \{D(G_{p-1} - w_1 - \cdots - w_{p+1}) : w_1, \dots, w_{p+1} \in V(G_{p-1})\}$. Then, by Theorem 2.1, G_p is $(p+1)$ factor-critical.

Now, we prove that G_p is minimal $(p+1)$ -factor-critical by induction on p. Firstly, it is easy to verify that *G*⁰ and *G*¹ are minimal factor-critical and minimal bicritical, respectively. By the above induction, G_{p-1} is minimal *p*-factor-critical. On the other hand, $\{v_1, \dots, v_k\}$ is minimal transversal of $\mathcal{D}_{p+1}(G_{p-1})$, where $\mathcal{D}_{p+1}(G_{p-1}) = \{D(G_{p-1} - w_1 - \cdots - w_{p+1}) : w_1, \cdots, w_{p+1} \in$ $V(G_{p-1})\}$. In fact, if $\{w_1, \dots, w_{p+1}\} = \{u_1, \dots, u_p, v_{i-1}, v_{i+1}\}$ for each $i \in \{1, \dots, k\}$, then $\{v_i\} = D(G_{p-1} - w_1 - \cdots - w_{p+1})$. Thus, $\{v_1, \dots, v_k\}$ is minimal transversal of $\mathcal{D}_{p+1}(G_{p-1})$.
By Corolary 2.2, G_n is minimal $(p+1)$ -factor-critical. By Corolary 2.2, G_p is minimal $(p+1)$ -factor-critical.

Corollary 2.2 gives a method to construct a minimal *p*-factor-critical graph from a minimal (*p −* 1)-factor-critical graph and a minimal transversal. But any vertex deletion of minimal *p*-factor-critical graph may not result in a minimal (*p −* 1)-factor-critical graph. By Theorem 2.3, for any $u \in V(N_p)$ we get $C_k \vee N_p - u$ is still minimal $(p-1)$ -factor-critical. However, for any $v \in V(C_k)$ we can easily prove that $C_k ∨ N_p - v$ is not minimal $(p-1)$ -factor-critical. Now, we will give a characterization of minimal *p*-factor-critical graphs.

Theorem 2.4. Let $p \geq 2$ be a positive integer. A graph G is minimal p-factor-critical if and *only if, for any* $w \in V(G)$ *,* $H = G - w$ *is* $(p - 1)$ *-factor-critical and* $S = \Gamma(w)$ *satisfies that* (*i*) *S is a minimal transversal of* $\mathcal{D}_p(H)$ *, and*

(*ii*) *For each deletable edge <i>e of* H *, S is not a transversal of* $\mathcal{D}_p(H-e)$ *.*

Proof. Suppose *G* is minimal *p*-factor-critical. Clearly, for any vertex $w \in V(G)$, $H = G - w$ is (*p −* 1)-factor-critical. In fact, both (i) and (ii) are right. Otherwise, if (i) does not hold, then it exists a set $S' \subset S$ such that S' is also a transversal of $\mathcal{D}_p(H)$. Let $v_1, \dots, v_k \in S - S'$. By Theorem 2.1, $G - wv_1 - \cdots - wv_k$ is *p*-factor-critical which contracts that *G* is minimal. Similar to prove that (ii) holds.

Conversely, suppose that *H* is a $(p-1)$ -factor-critical graph and $S \subseteq V(H)$ satisfies (i) and (ii). Let *G* be the graph from *H* by adding a new vertex *w* and all the edges connecting *w* to each vertex of *S*. Then *G* is *p*-factor-critical by Theorem 2.1. Now, it is only needed to prove that, for any $e \in E(G)$, $G - e$ is not *p*-factor-critical. In fact, if $e = wu \in E(w, S)$, then $S - u$ is not transversal of $\mathcal{D}_p(H)$ because of the minimal property of *S*. By Theorem 2.1, $G - e$ is not *p*-factor-critical. If $e \in E(H)$ and e is not deletable, then $H - e$ is not $(p - 1)$ -factor-critical. By Theorem 2.1, $G - e$ is not *p*-factor-critical either. Finally, if $e \in E(H)$ and *e* is deletable, then, by condition (ii), *S* is not transversal of $\mathcal{D}_p(H - e)$. By Theorem 2.1, $G - e$ is not *p*-factor-critical. П

References

- [1] Aldred, R.E.L., Holton, D.A., Lou, D., Zhong, N. Characterizing 2*p*-critical graphs and *k*-extedable graphs. *Discrete Math.*, 287: 135–139 (2004)
- [2] Berge, C. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973
- [3] Bondy, J.A., Murty, U.S.R. Graph Theory. Springer, Verlag, New York, 2008
- [4] Favaron, O. On *k*-factor-critical graphs, Discuss. Math. *Graph Theory*, 16: 41–51 (1996)
- [5] Favaron, O. Extendability and factor-criticality. *Discrete Math.*, 213: 115–122 (2000)
- [6] Favaron, O., Flandrin, E., Ryjáček, Z. Factor-criticality and matching extension in DCT-graphs. *Discuss. Math. Graph Theory*, 17: 271–278 (1997)
- [7] Favaron, O., Shi, M. *k*-factor-critical graphs and induced subgraphs. *Congr. Numer.*, 122: 59–66 (1996)
- [8] Favaron, O.,Shi, M. Minimally *k*-factor-critical graphs. *Australas. J. Combin.*, 17: 89–97 (1998)
- [9] Lawler, E.L. Covering problems: duality relations and a new method of solutions. *SIAM J. Appl. Math.*, 14: 1115–1132 (1966)
- [10] Lovász, L., Plummer, M.D. Matching Theory. Ann. Discrete Math., Vol.29, North-Holland, Amsterdam, 1986
- [11] Maghout, K. Sur la det´ermination des nombres de stabilit´eet du nombre chromatique d'un graphe. *C.R. Acad. Sci. Paris*, 248: 3522–3523 (1959)
- [12] Wen, X., Lou, D. Characterizeing defect *p*-extendable graphs and (2*p*+ 1)-critical graphs. *Discrete Math.*, 308: 5064–5069 (2008)
- [13] Zhang, F., Zhang, H. Construction for bicritical graphs and *k*-extendable bipartite graphs. *Discrete Math.*, 306: 1415–1423 (2006)