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Abstract A graph G is said to be p-factor-critical if G − u1 − u2 − · · · − up has a perfect matching for any

u1, u2, · · · , up ∈ V (G). The concept of p-factor-critical is a generalization of the concepts of factor-critical and

bicritical for p = 1 and p = 2, respectively. Heping Zhang and Fuji Zhang[Construction for bicritical graphs and

k-extendable bipartite graphs, Discrete Math., 306(2006) 1415–1423] gave a concise structure characterization of

bicritical graphs. In this paper, we present the characterizations of p-factor-critical graphs and minimal p-factor-

critical graphs for p ≥ 2. As an application, we also obtain a class of graphs which are minimal p-factor-critical

for p ≥ 1.
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1 Introduction

All graphs considered in this paper are finite, connected, loopless and have no multiple edges.
Our notation and terminology in graph theory follows Bondy and Murty[3] and Lovász and
Plummer[10].

Let G be a graph. The vertex set and edge set of G are denoted by V (G) and E(G),
respectively. A matching M in G is a subset of E(G) in which no two edges have a vertex in
common. A vertex v is covered by M if some edge of M is incident to v, otherwise, it is said
to be uncovered (or missed) by M . A matching M is perfect if it covers every vertex of G and
near perfect if it covers all but one vertex of G. Denote ΓG(v) the neighbor set of v in G. Let
A and B be two sets, then A \B denotes A minus B. If M is a matching and P is a path in G
such that the edges on P appear in M and E(G) \M alternately, then P is an M -alternating
path.

Let G be a graph. Denote D(G) the set of all vertices in G which are not covered by at
least one maximum matching of G. Let A(G) be the set of vertices in V (G)−D(G) which are
adjacent to at least one vertex in D(G). Finally, let C(G) = V (G)−D(G)−A(G).

A graph G of order n is p-factor-critical, where n and p are positive integers with the same
parity, if the deletion of any set of p vertices results in a graph with a perfect matching. The
concept of p-factor-critical is a generalization of the concepts of factor-critical and bicritical
for p = 1 and p = 2, respectively. Let G be a p-factor-critical graph, G is called minimal if
G− e is not p-factor-critical for any e ∈ E(G). An edge e ∈ E(G) is called deletable if G− e is
still p-factor-critical. Favaron[4, 5] and Favaron et al.[6] gave some properties of p-factor-critical
graphs. Favaron and Shi[7, 8] obtained some properties of minimally p-factor-critical graphs and
characterized (n−4)-factor-critical graphs and minimally (n−4)-factor-critical graphs, where n
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is the order of the graph. Aldred et al.[1], and Wen and Lou[12] characterized 2k-factor-critical
graphs and (2k + 1)-factor-critical graphs using M -alternating path theory, respectively.

Let X be a finite set and F a family of non-empty subsets of X. A subset S ⊆ X is called
a transversal of F if S ∩ Fi ̸= ∅ for each Fi ∈F . A transversal S of F is minimal if it does not
exist S′ ⊂ S such that S′ is also a transversal of F .

Heping Zhang and Fuji Zhang[13] gave the following theorem and characterized the structure
of bicritical graphs.

Theorem 1.1[13]. A graph G is bicritical if and only if for any vertex w of G, H = G − w is
factor-critical and ΓG(w) ⊆ V (H) is a transversal of D2(H), where D2(H)=

{
D(H−u1−u2) :

u1, u2 ∈ V (H)
}
.

In this paper, we present the characterizations of p-factor-critical graphs and minimal p-
factor-critical graphs for p ≥ 2. As an application, we also obtain a class of graphs which are
minimal p-factor-critical for p ≥ 1.

In order to obtain the main results in this paper, we need to recall the Gallai-Edmonds
Structure Theorem.

Theorem 1.2 (The Gallai-Edmonds Structure Theorem[10]). If G is a graph and D(G), A(G),
C(G) are defined as above, then
(1) the components of the subgraph induced by D(G) are factor-critical,
(2) the subgraph induced by C(G) has a perfect matching,
(3) the bipartite graph, say B(G), obtained from G by deleting the vertices of C(G) and the
edges spanned by A(G) and contracting each component of D(G) to a single vertex has positive
surplus (as viewed from A(G)),
(4) if M is any maximum matching of G, then it contains a near perfect matching of each
component of D(G), a perfect matching of each component of C(G) and a maximum matching
of B(G).

2 Main Results

In this section, we will characterize p-factor-critical graphs and minimal p-factor-critical graphs
for p ≥ 2. In addition, we will also get a class of minimal p-factor-critical graphs for p ≥ 1.

Theorem 2.1. Let p ≥ 2 be a positive integer. A graph G is p-factor-critical if and only if for
any vertex w of G, H = G−w is (p− 1)-factor-critical and ΓG(w) ⊆ V (H) is a transversal of
Dp(H), where Dp(H)=

{
D(H − u1 − · · · − up) : ui ∈ V (H), i = 1, · · · , p

}
.

Proof. Suppose that G is a p-factor-critical graph. Then, for any vertex w ∈ V (G), we have
H = G− w is (p− 1)-factor-critical. Let M be a perfect matching of G− u1 − · · · − up where
u1, · · · , up ∈ V (H) and sw be the edge covering vertex w in M . Obviously, M − sw is a near
perfect matching of H − u1 − · · · − up and misses s. Then s ∈ ΓG(w) ∩D(H − u1 − · · · − up)
and ΓG(w) is a transversal of Dp(H).

Conversely, suppose that H is a (p− 1)-factor-critical graph and S ⊆ V (H) is a transversal
of Dp(H). Let G be the graph obtained from H by adding a new vertex w and all the edges
connecting w to each vertex of S. Now, we shall prove that G is p-factor-critical, that is, for
any ui ∈ V (G), i = 1, · · · , p, we need to prove G− u1 − · · · − up has a perfect matching.

Case 1. w ∈
{
u1, · · · , up

}
.

Without loss of generality, let w = u1, then G − u1 − · · · − up = H − u2 − · · · − up has a
perfect matching.

Case 2. w /∈
{
u1, · · · , up

}
.
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Since H is (p− 1)-factor-critical, H − u1 − · · · − up has a near perfect matching and∣∣A(H − u1 − · · · − up)
∣∣ = c

(
D(H − u1 − · · · − up)

)
− 1.

Let k =
∣∣A(H−u1−· · ·−up)

∣∣. Then k ≥ 0, D(H−u1−· · ·−up) exactly has k+1 components,
denoted by D1, D2, · · · , Dk+1, and for i ∈ {1, 2, · · · , k + 1} each Di is factor-critical by Gallai-
Edmonds Structure Theorem.

Since S is a transversal of Dp(H), S ∩ D(H − u1 − · · · − up) ̸= ∅. Let w1 ∈ S ∩ D(H −
u1 − · · · − up). Without loss of generality, assume w1 ∈ D1. Let H ′ be the bipartite graph
obtained from H − u1 − · · · − up by deleting the vertices of C

(
H − u1 − · · · − up

)
, the edges

spanned by A
(
H − u1 − · · · − up

)
and contracting each component of D

(
H − u1 − · · · − up

)
to a single vertex. Then by Gallai-Edmonds Structure Theorem H ′ has positive surplus (as
viewed from A

(
H − u1 − · · · − up

)
). By Hall’s Theorem, the resultant bipartite graph from

H ′ by deleting the vertex corresponding to D1 has a perfect matching M∗ = {e1, · · · , ek}.
Let wi+1 ∈ V (M∗) ∩ Di+1 for i = 1, · · · , k. Let Mi be a perfect matching of Di − wi for
i = 1, · · · , k + 1 and M a perfect matching of C(H − u1 − · · · − up). Then

k+1∪
i=1

Mi ∪M ∪M∗ ∪ {ww1} (2.1)

is a perfect matching of G− u1 − · · · − up. Thus, G is p-factor-critical.

Actually Theorem 2.1 gives a method to construct p-factor-critical graphs for p ≥ 2. That
is to say, a p-factor-critical graph G can be constructed from a (p− 1)-factor-critical graph H
and a new vertex w, and connecting all vertices of a transversal of Dp(H) to w. A factor-critical
graph H has an ear construction and Dp(H) can be determined in polynomial times[10]. Some
approaches for computing all transversal of Dp(H) have been described in different ways for
p = 2: see [2], [11] and [9]. This method can be applied on minimal p-factor-critical graphs and
we can get the following corollary:

Corollary 2.2. Let p ≥ 2 be a positive integer. Let H be a minimal (p − 1)-factor-critical
graph and S ⊆ V (H) a minimal transversal of Dp(H). Adding a new vertex w and connecting
each vertex of S to w by edges, the resulting graph G is a minimal p-factor-critical graph.

Proof. The proof is by contradiction. Suppose that G is not minimal p-factor-critical. Then
there exists an edge e ∈ E(G) such that G − e is still p-factor-critical. If e = wu ∈ E(w, S),
then S − u is not a transversal of Dp(H) because of the minimal property of S, where E(w, S)
denotes the set of edges connecting {w} to S in G. By Theorem 2.1, G−e is not p-factor-critical
which is a contradiction. If e ∈ E(H), then H − e is not (p − 1)-factor-critical because of the
minimal property of H. By Theorem 2.1, G− e is not p-factor-critical and thus a contradiction
is obtained again. Thus, G is p-factor-critical.

Now it is worthy to give a class of minimal p-factor-critical graphs. The join G ∨ H of
disjoint graphs G and H is the graph obtained from G∪H by joining each vertex of G to each
vertex of H. By Theorem 2.1 and Corollary 2.2, we obtain the following result.

Theorem 2.3. Let Ck be a cycle of length k and Np an independent vertex set with order p,
where k ≥ 3 is odd and k ≥ 2p+ 1. Then Ck ∨Np is minimal (p+ 1)-factor-critical.

Proof. For convenience, denote Gp = Ck ∨Np. Firstly, we shall prove that Gp is (p+1)-factor-
critical by induction on p. When p = 0, then G0 = Ck. Clearly, Ck is an odd cycle and also
factor-critical. When p = 1, then G1 is a wheel. It is easy to see that G1 is bicritical. Suppose
that Gl is (l + 1)-factor-critical for l < p. Now, we will prove Gp is (p+ 1)-factor-critical.
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By induction, Gp−1 = Ck ∨ Np−1 is p-factor-critical. Let Ck = v1v2 · · · vi−1vivi+1 · · · vkv1
and Np−1 = {u1, · · · , up−1}.

Claim. The set {v1, · · · , vk} is a transversal of Dp+1(Gp−1), where Dp+1(Gp−1) =
{
D(Gp−1

−w1 − · · · − wp+1) : w1, · · · , wp+1 ∈ V (Gp−1)
}
.

Case 1. {u1, · · · , up−1} ⊂ {w1, · · · , wp+1}.
In this case, D(Gp−1 − w1 − · · · − wp+1) ⊆ {v1, · · · , vk}. Then {v1, · · · , vk} ∩ D(Gp−1 −

w1 − · · · − wp+1) ̸= ∅. Thus, set {v1, · · · , vk} is a transversal of Dp+1(Gp−1).

Case 2. {u1, · · · , up−1} ∩ {w1, · · · , wp+1} = ∅.
In this case, {w1, · · · , wp+1} ⊂ {v1, · · · , vk}. If Gp−1 − w1 · · · − wp+1 is bipartite, then any

maximum perfect matching of Gp−1−w1 · · ·−wp+1 covers all vertices of {u1, · · · , up−1}. Then
{u1, · · · , ut}∩D(Gp−1−w1−· · ·−wk) = ∅, that is, {v1, · · · , vk}∩D(Gp−1−w1−· · ·−wp+1) ̸= ∅.
Thus, set {v1, · · · , vk} is a transversal of Dp+1(Gp−1).

Case 3. 1 ≤
∣∣{u1, · · · , up−1} ∩ {w1, · · · , wp+1}

∣∣ ≤ p− 2.
Without loss of generality, suppose that u1, · · · , ut /∈ {w1, · · · , wp+1} and ut+1, · · · , up−1 ∈

{w1, · · · , wp+1}, where 1 ≤ t ≤ p − 2. If every maximum matching of Gp−1 − w1 − · · · − wp+1

covers all the vertices in {u1, · · · , ut}, then {u1, · · · , ut} ∩D(Gp−1 −w1 − · · · −wk) = ∅. Thus,
{v1, · · · , vk} ∩D(Gp−1 − w1 − · · · − wp+1) ̸= ∅.

Otherwise, let u ∈ {u1, · · · , ut} be the vertex missed by some maximum matching, say M ,
of Gp−1 − w1 − · · · − wp+1. Since∣∣{v1, · · · , vk}∣∣− ∣∣{w1, · · · , wp+1} ∩ {v1, · · · , vk}

∣∣ ≥ k − p ≥ p+ 1, (2.2)

by the structure of Gp−1 − w1 − · · · − wp+1, there exists a triangle uvivi+1u in Gp−1 − w1 −
· · · − wp+1 such that vivi+1 ∈ M . Let M ′ = M \ {vivi+1} ∪ {uvi+1}. Then M ′ is also a
maximum matching of Gp−1 − w1 − · · · − wp+1 and does not cover vi. At this time, {u, vi} ⊂
D(Gp−1 − w1 − · · · − wp+1). Then {v1, · · · , vk} ∩ D(Gp−1 − w1 − · · · − wp+1) ̸= ∅. Thus, set
{v1, · · · , vk} is a transversal of Dp+1(Gp−1).

By the above cases, set {v1, · · · , vk} is a transversal of Dp+1(Gp−1), where Dp+1(Gp−1)={
D(Gp−1−w1−· · ·−wp+1) : w1, · · · , wp+1 ∈ V (Gp−1)

}
. Then, by Theorem 2.1, Gp is (p+1)-

factor-critical.
Now, we prove that Gp is minimal (p+1)-factor-critical by induction on p. Firstly, it is easy

to verify that G0 and G1 are minimal factor-critical and minimal bicritical, respectively. By the
above induction, Gp−1 is minimal p-factor-critical. On the other hand, {v1, · · · , vk} is minimal
transversal of Dp+1(Gp−1), where Dp+1(Gp−1)=

{
D(Gp−1 −w1 − · · · −wp+1) : w1, · · · , wp+1 ∈

V (Gp−1)
}
. In fact, if {w1, · · · , wp+1} = {u1, · · · , up, vi−1, vi+1} for each i ∈ {1, · · · , k}, then

{vi} = D(Gp−1 − w1 − · · · − wp+1). Thus, {v1, · · · , vk} is minimal transversal of Dp+1(Gp−1).
By Corolary 2.2, Gp is minimal (p+ 1)-factor-critical.

Corollary 2.2 gives a method to construct a minimal p-factor-critical graph from a minimal
(p − 1)-factor-critical graph and a minimal transversal. But any vertex deletion of minimal
p-factor-critical graph may not result in a minimal (p − 1)-factor-critical graph. By Theorem
2.3, for any u ∈ V (Np) we get Ck ∨Np − u is still minimal (p− 1)-factor-critical. However, for
any v ∈ V (Ck) we can easily prove that Ck ∨Np−v is not minimal (p−1)-factor-critical. Now,
we will give a characterization of minimal p-factor-critical graphs.

Theorem 2.4. Let p ≥ 2 be a positive integer. A graph G is minimal p-factor-critical if and
only if, for any w ∈ V (G), H = G− w is (p− 1)-factor-critical and S = Γ(w) satisfies that
(i) S is a minimal transversal of Dp(H), and
(ii) For each deletable edge e of H, S is not a transversal of Dp(H − e).
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Proof. Suppose G is minimal p-factor-critical. Clearly, for any vertex w ∈ V (G), H = G−w is
(p− 1)-factor-critical. In fact, both (i) and (ii) are right. Otherwise, if (i) does not hold, then
it exists a set S′ ⊂ S such that S′ is also a transversal of Dp(H). Let v1, · · · , vk ∈ S − S′. By
Theorem 2.1, G−wv1−· · ·−wvk is p-factor-critical which contracts that G is minimal. Similar
to prove that (ii) holds.

Conversely, suppose that H is a (p− 1)-factor-critical graph and S ⊆ V (H) satisfies (i) and
(ii). Let G be the graph from H by adding a new vertex w and all the edges connecting w to
each vertex of S. Then G is p-factor-critical by Theorem 2.1. Now, it is only needed to prove
that, for any e ∈ E(G), G− e is not p-factor-critical. In fact, if e = wu ∈ E(w, S), then S−u is
not transversal of Dp(H) because of the minimal property of S. By Theorem 2.1, G− e is not
p-factor-critical. If e ∈ E(H) and e is not deletable, then H − e is not (p − 1)-factor-critical.
By Theorem 2.1, G − e is not p-factor-critical either. Finally, if e ∈ E(H) and e is deletable,
then, by condition (ii), S is not transversal of Dp(H − e). By Theorem 2.1, G − e is not
p-factor-critical.
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