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Abstract In this paper, we introduce for the first time a new eligible kernel function with a hyperbolic

barrier term for semidefinite programming (SDP). This add a new type of functions to the class of eligible kernel

functions. We prove that the interior-point algorithm based on the new kernel function meets O(n
3
4 log n

ε
)

iterations as the worst case complexity bound for the large-update method. This coincides with the complexity

bound obtained by the first kernel function with a trigonometric barrier term proposed by El Ghami et al. in

2012, and improves with a factor n
1
4 the obtained iteration bound based on the classic kernel function. We

present some numerical simulations which show the effectiveness of the algorithm developed in this paper.
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1 Introduction

The study of semidefinite programming (SDP) is currently one of the most active research
areas in optimization since many practical problems in operations research, stastistics, struc-
tural design and combinatorial optimization can be modeled or approximated as semidefinite
programming problems.

SDP is a subfield of convex optimization concerned with the optimization of a linear objec-
tive function over the intersection of the cone of positive semidefinite matrices with an affine
space.

For solving SDP problems, a basic scheme of the primal-dual interior point methods (IPMs)
(proposed by Karmarkar in his famous paper for linear programming (LP)[17]) is to follow the
central path to reach an optimal solution. IPMs provide a powerful tool to solve optimization
problems and are now among the most effective methods from computational point of view.

Most IPMs for LP and SDP are based on the logarithmic barrier function[11, 31] with com-
plexity O(n log n

ε ) for large-update methods, where n is the size of the problem and ε is the
accuracy parameter. Peng et al. in [24] were the first to propose new variants of IPMs for
LP and SDP problems based on a class of self-regular kernel functions with a nonlogarithmic
barrier term (see also [25, 26]). They obtained O(

√
n log n

ε ) for small-update methods, and
improves significantly the iteration bound for large-update methods, obtaining the currently
best known iteration bound for these types of methods, namely, O(

√
n log n log n

ε ).

At present, the best known theoretical iteration bound for small-update method is better
than the one for large-update method by a factor of log n. However, in practice, large-update
methods are much more efficient than small-update methods for which the theoretical iteration
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bound is only O(
√
n log n

ε )
[31, 38, 39]. In 2005, Wang et al.[36] presented a primal-dual interior

point algorithm for SDP problems based on a simple non self-regular kernel function which was
first introduced in [1] for LP. They established that the complexity bound for large- and small-
update methods are O (qn log n

ε ) and O(q2
√
n log n

ε ) respectively, which are as good as those

in linear case. Later on, Qian et al.[30] proposed a new kernel function with simple algebraic
expression and derived the iteration complexity as O(n

3
4 log n

ε ) for large-update method for

SDP. In 2004, Bai et al[3] introduced the first kernel function with a trigonometric barrier term.
The evaluation of this function has been done furthermore by El Ghami et al[12] in 2012. They
established the worst case iteration complexity as O (n

3
4 log n

ε ).
Since then, a number of various kernel functions with a trigonometric barrier term has been

proposed and analyzed. For these, we refer the reader for example to Kheirfam[18], Li et al.[19],
Bouafia et al.[5] and Peyghami et al[28]. The authors in [5, 28] are the first to reach the best
known complexity bound for large-update methods for trigonometric kernel function. In 2014,
Peyghami et al [29] and Cai et al[9] proposed new kernel functions with trigonometric-logarithmic
barrier term for LP. In the same year, Peyghami et al[27] presented an other kernel function with
an exponential-trigonometric barrier term which has O(

√
n(log n)2 log n

ε ) complexity bounds for

large-update method. The complexity bound derived in [29], namely O(n
2
3 log n

ε ), improves the

complexity bounds obtained in [9, 12, 27]. Note that the kernel function proposed in [9] yields
the same complexity derived in [12].

We end this overview by mentioning the works of Bai et al.[2, 4], Zhang[40], Bouafia et al.[6]

and Fathi-Hafshejani et al.[13], where the authors proposed kernel functions with exponential
barrier term.

In view of the precedent, most of the kernel functions used in IPMs can be classified into
four types : logarithmic, simple algebraic, exponential and trigonometric. The remaining kernel
functions are just a binary combination of these types, see [7, 8, 14, 20, 22, 35] for recent
proposed kernel functions.

In this paper, we propose a new kernel function (neither logarithmic, neither simple alge-
braic, neither trigonometric nor exponential). This function has the following simple expression

ψ(t) =
t2 − 1

2 sinh2(1)
+ coth(t)− coth(1), ∀ t > 0. (1.1)

To our knowledge it’s the first kernel function with a hyperbolic barrier term. Furthermore,
this kernel function is a member of the class of eligible kernel functions introduced by Bai et
al. in [3].

We show that the iteration bounds for large- and small-update methods are O
(
n

3
4 log n

ε

)
,

and O
(√
n log n

ε

)
, respectively. This coincides with the complexity bound obtained by the first

kernel function with a trigonometric barrier term[12].
The reminder of this paper is organized as follows. In Section 2, we first describe special

matrix functions used in later sections. Then, we briefly recall the basic concepts of IPMs for
SDP, such as central path, Nesterov and Todd (NT) search directions, etc. In Section 3, we
present the properties of our hyperbolic kernel function ψ(t) and study the matrix functions
ψ(V ) and Ψ(V ). In section 4, we describe a primal-dual interior point algorithm based on Ψ(V )
for SDP. We analyze the algorithm to derive the complexity bound with large and small-update
methods in Section 5. In Section 6, we present numerical tests on two different examples
to illustrate the effectiveness of the proposed algorithm and compare the results with other
available kernel functions. In the final section we conclude with some remarks.

Let us finish this introduction with some notations used in the whole paper: The set of
all (n × n) matrices with real entries is denoted by Rn×n. Given M ∈ Rn×n, MT denotes
the transpose of M. Sn+ (Sn++) denotes the cone of positive semidefinite (positive definite)
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matrices in the real space of (n × n) symmetrical matrices Sn. The scalar product of two

matrices A and B in Sn is the trace of their product i.e., ⟨A,B⟩ = tr(AB) =
n∑

i,j=1

aijbij . For an

M ∈ Sn, we denote by λi(M), i = 1, · · · , n, λmax(M) and λmin(M) the eigenvalues, the largest
eigenvalue and the smallest eigenvalue of the matrix M. The diagonal matrix with diagonal
entries λi(M), i = 1, · · · , n, is denoted by diag(λ1(M), · · · , λn(M)). The Frobenius norm of

M ∈ Sn is ∥M∥ = ⟨M,M⟩ 1
2 =

√
n∑

i=1

λ2i (M). For M ∈ Sn, M ≽ 0 (M ≻ 0) means that M

belongs to Sn+ (Sn++), respectively. For any M ∈≻ 0, the expression M
1
2 (or

√
M) denotes

its symmetric square root. Finally, if f(x) ≥ 0 is a real valued function of a real nonnegative
variable, the notation f(x) = O(x) means that f(x) ≤ Cx for some positive constant C and
f(x) = Θ(x) means that C1x ≤ f(x) ≤ C2x for two positive constants C1 and C2.

2 Preliminaries

2.1 Matrices and Matrix Functions

To introduce matrix functions which will be useful for designing primal-dual interior point
algorithm, first of all, let us recall some known facts from linear algebra. For more details we
refer to the books[16, 21, 37].

The next definition shows how a matrix function can be obtained from ψ(t), where ψ(t) is
a real function on [0,+∞).

Definition 2.1. Let V ≻ 0 and

V = QTdiag(λ1(V), λ2(V), · · · , λn(V))Q,

where Q is an orthonormal matrix (QT = Q−1) that diagonalizes V.
Then, for given real function ψ(t) defined for t > 0, the matrix function ψ(V ) : Sn++ → Sn is
defined by

ψ(V ) = QTdiag(ψ(λ1(V)), ψ(λ2(V)), · · · , ψ(λn(V)))Q. (2.1)

Furthermore, the proximity function (measure) for SDP is defined from Sn++ to R+ as follows

Φ(X,S;µ) := Ψ (V ) := tr (ψ (V)) =
n∑

i=1

ψ (λi (V)) . (2.2)

Remark 2.2. If the function ψ(t) is differentiable on the interval (0,+∞) such that ψ′(t) > 0,
∀t > 0, we can obtain the matrix function ψ′(V ) by replacing ψ (λi(V )) in (2.1) by ψ′(λi(V ))
for each i.

Definition 2.3. A matrix M(t) is said to be a matrix of functions if each entry of M(t) is a
function of t, i.e., M(t) = [Mij(t)].

The usual concepts of continuity, differentiability and integrability can be naturally extended
to matrices of functions, by interpreting them entry-wise. Then, it can easily be understood
that

d

dt
(M(t)) :=

[ d
dt
Mij(t)

]
=M ′(t).

Suppose that the matrix-valued functions M(t), N(t) are differentiable with respect to t. Then
we have

d

dt
(tr(M(t))) = tr

( d
dt
M(t)

)
= tr(M ′(t)), (2.3)
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d

dt
tr(ψ(M(t))) = tr[ψ′(M(t))(M ′(t))], (2.4)

d

dt
(M(t)N(t)) =

( d
dt
M(t)

)
N(t) +M(t)

( d
dt
N(t)

)
=M ′(t)N(t) +M(t)N ′(t). (2.5)

2.2 Primal-Dual Central Trajectory Methods

We consider the standard form for SDP problems

(P )


min⟨C,X⟩
AX = b,

X ∈ Sn+,

where b ∈ Rm, C ∈ Sn and A is a linear operator from Sn to Rm defined by

AX = (⟨A1, X⟩, ⟨A2, X⟩, · · · , ⟨Am, X⟩)T , (2.6)

with Ai, i = 1, · · · ,m, in Sn.
Its dual is written as follows

(D)


max bT y

A∗y + S = C,

S ∈ Sn+,

where A∗ is the adjoint of A defined from Rm to Sn by A∗y =
m∑
i=1

yiAi.

The sets of strictly feasible solutions of (P ) and (D) are

0

F(P ) =
{
X ∈ Sn++ : AX = b

}
,

0

F(D) =
{
(y, S) ∈ Rm × Sn++ : A∗y + S = C

}
,

respectively. Throughout this paper, we assume that both problems (P ) and (D) satisfy the

interior point condition (IPC), i.e.,
0

F(P )×
0

F(D) ̸= ∅. Under this assumption, it is well known
that (P ) and (D) have optimal solutions X and (S, y) such that ⟨C,X⟩ = bT y (that is, the
optimal values of (P ) and (D) are equal). This last condition, called strong duality, can be
alternatively expressed as ⟨X,S⟩ = 0 or X S = 0. For simplicity, we also assume that the
matrices Ai, i = 1, · · · ,m, are linearly independent.

If the IPC holds, then the optimality conditions for (P ) and (D) can be written as follows
AX = b,X ≻ 0,

A∗y + S = C,S ≻ 0,

XS = 0.

(2.7)

The core idea of primal-dual IPMs is to replace the last equation in (2.7), the so-called comple-
mentarity condition by the parameterized equation XS = µI, where µ > 0. Thus the modified
system is given by 

AX = b,X ≻ 0,

A∗y + S = C,S ≻ 0,

XS = µI, µ > 0.

(2.8)
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Under the IPC, the system (2.8) has a unique solution denoted by (X(µ), y(µ), S(µ)), for each
µ > 0. The set of all solutions (X(µ), y(µ), S(µ)), with µ > 0 is known as the central path or
central trajectory.

Since for X,S ∈ Sn, the product XS is generally not in Sn, so, the left-hand side of (2.8) is a
map from Sn×Rm×Sn to Rn×n×Rm×Sn. Thus, the system (2.8) is not a square system when
X and S are restricted to Sn, which is needed for applying Newton’s method. A remedy for this
is to make the system (2.8) square by modifying the left-hand side to a map from Sn×Rm×Sn
to itself. To this end, we use the so-called similar symmetrization operator HP : Rn×n → Sn
introduced by Zhang[41] defined as

HP (M) =
1

2
[PMP−1 + (PMP−1)T ], ∀M ∈ Rn×n,

P ∈ Rn×n is some nonsingular matrix. Zhang also observed that if P is invertible and M is
similar to a (symmetric) positive definite matrix, then

HP (M) = µI ⇔M = µI.

Thus, for any given nonsingular matrix, system (2.8) is equivalent to
AX = b,X ≻ 0,

A∗y + S = C, S ≻ 0,

HP (XS) = µI, µ > 0.

(2.9)

Applying Newton method to system (2.9) generates the following linear system
A∆X = 0,

A∗∆y +∆S = 0,

HP (X∆S +∆XS) = µI −HP (XS),

(2.10)

where (∆X,∆y,∆S) = ∆W ∈ Sn × Rm × Sn is the search direction and µ = ⟨X,S⟩
n is the

normalized duality gap corresponding to (X, y, S).
The search direction obtained by the above system is called Monteiro-Zhang (MZ) family.

Several search directions are presented in the literature [15, 23, 33, 34]. One among the most
popular, the Nesterov and Todd (NT) direction. One important reason for this choice is that
the NT scaling technique transfers the primal variable X and the dual variable S into the same
space: the so-called V -space. Let us define the matrix

P =
[
X

1
2 (X

1
2SX

1
2 )−

1
2X

1
2

]− 1
2 =

[
S− 1

2

(
S

1
2XS

1
2

) 1
2S− 1

2

]− 1
2 .

The matrix P can be used to scale X and S to the same matrix V because

V =
1
√
µ
PXP =

1
√
µ
P−1SP−1. (2.11)

Note that the matrices P and V are symmetric and positive definite. Furthermore, we have

V 2 =
(PXP

√
µ

)(P−1SP−1

√
µ

)
=

(PXSP−1

µ

)
.

Let us further define

Ai =
1
√
µ
P−1AiP

−1, i = 1, · · · ,m,
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and

DX =
1
√
µ
P∆XP, DS =

1
√
µ
P−1∆SP−1. (2.12)

Using the above notations, the system (2.10) is equivalent to the following system
ADX = 0,

A∗
∆y +DS = 0,

DX +DS = V −1 − V,

(2.13)

where A is the operator defined in (2.6), replacing the matrices Ai by Ai for i = 1, · · · ,m, and
A∗

is its adjoint.
The solution of (2.13) defines the (scaled) NT search direction (DX ,∆y,DS). Now, following

[10] we replace the right-hand side in the last equation of (2.13) by −ψ′(V ), where ψ(V ) and
ψ′(V ) are defined in Definition 2.1 and Remark 2.2 for our given kernel function ψ(t) in (1.1).
Thus we consider the following system

ADX = 0,

A∗
∆y +DS = 0,

DX +DS = −ψ′(V ).

(2.14)

It is easy to verify that this system has a unique solution (DX ,∆y,DS). From (2.12), having
DX and DS , we can compute ∆X and ∆S.

Due to the first two equations of the system (2.14), DX and DS are orthogonal, i.e.,
tr(DXDS) = tr(DSDX) = 0. Then, we can easily verify that the matrix function ψ(V ) de-
termines in a natural way an interior point algorithm.

DX = DS = 0n×n ⇔ ψ′(V ) = 0n×n ⇔ V = I ⇔ Ψ(V ) = 0 ⇔ XS = µI,

i.e., if and only if X = X(µ) and S = S(µ), as it should. Otherwise Ψ (V ) > 0. Hence, if
(X, y, S) ̸= (X(µ), y(µ), S(µ)), then (∆X,∆y,∆S) ̸= (0n×n, 0m, 0n×n). By taking a step-size α
along the search direction, the new iterate (X, y, S) is constructed according to

X+ = X + α∆X, y+ = y + α∆y, S+ = S + α∆S. (2.15)

In what follows, we also often use the norm-based proximity measure, namely,

σ(V ) :=
1

2
∥DX +DS∥ =

1

2
∥ψ′ (V )∥ =

1

2

√
tr(ψ′(V )2), (2.16)

where the matrices DX and DS are defined in (2.12).

3 The New Parameterized Kernel Function and Its Properties

3.1 Properties of ψ(V )

Definition 3.1. We call ψ : (0,+∞) −→ [0,+∞) a kernel function if ψ is twice differentiable
and the following conditions are satisfied:

(i) ψ′ (1) = ψ (1) = 0.

(ii) ψ′′ (t) > 0, ∀t > 0.

(iii) lim
t→0+

ψ (t) = lim
t→+∞

ψ (t) = +∞.
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The first two conditions implies that ψ(t) is completely determined by its second derivative:

ψ (t) =

∫ t

1

∫ ξ

1

ψ′′ (ζ) dζdξ. (3.1)

In this section, we recall our new kernel function

ψ (t) =
t2 − 1

2 sinh2(1)
+ coth(t)− coth(1), t > 0,

and develop some useful properties, which are essential to study the complexity analysis. For
ease of reference, we give the first three derivatives of ψ(t) for all t > 0.

ψ′(t) =
t

sinh2(1)
− 1

sinh2(t)
, (3.2)

ψ′′(t) =
1

sinh2(1)
+ 2

coth(t)

sinh2(t)
>

1

sinh2(1)
, (3.3)

and

ψ′′′(t) = − 2

sinh2(t)

(
2 coth2(t) +

1

sinh2(t)

)
< 0, (3.4)

where
coth(t) > 1, ∀ t > 0.

We can easily verify that ψ is a kernel function according to Definition 3.1.

Lemma 3.2. Let ψ(t) be the function defined in (1.1). Then, we have

2t coth(t)− 1 > 0, ∀ t > 0, (3.5)

ψ′(t) =
t

sinh2(1)
− 1

sinh2(t)
> 0, ∀ t > 1. (3.6)

Proof. For (3.5), we have

2t coth(t)− 1 =
(2t− 1)e2t + (2t+ 1)

e2t − 1
.

Since e2t − 1 > 0, ∀t > 0, it suffices to study the sign of the function

l(t) = (2t− 1)e2t + (2t+ 1).

We have
l′(t) = 4te2t + 2 > 0, ∀ t > 0,

this implies that the function l(t) is increasing in the interval (0,+∞) and since

lim
t→0+

l(t) = 0, lim
t→+∞

l(t) = +∞,

we conclude that l(t) > 0, ∀t > 0, which proves (3.5).
For the inequality (3.6), we know that sinh is positive and increasing in (0,+∞) then in

(1,+∞), this implies that
t

sinh2(t)
<

t

sinh2(1)
, ∀ t > 1.

From this last, the inequality (3.6) is a direct consequence, which completes the proof.



Novel Kernel Function with a Hyperbolic Barrier Term to IPA for SDP Problems 51

Lemma 3.3. Let ψ (t) be our new kernel function, then we have

(i) ψ (t) is convex exponentially for all t > 0 ; that is

ψ(
√
t1t2) ≤

1

2
(ψ(t1) + ψ(t2)), ∀ t1, t2 > 0.

(ii) ψ′′(t) is monotonically decreasing, ∀ t > 0.

(iii) tψ′′(t)− ψ′(t) > 0, ∀ t > 0.

(iv) ψ′′ (t)ψ′ (βt)− βψ′ (t)ψ′′ (βt) > 0, ∀ t > 1, β > 1.

(v) 2ψ′′ (t)
2 − ψ′ (t)ψ′′′ (t) > 0, ∀ t < 1.

Proof. For (i), by Lemma 2.1 in [10], it suffices to show that tψ′′(t)+ψ′(t) ≥ 0, ∀ t > 0. Indeed,
using (3.2), (3.3) and (3.5) of Lemma 3.2, we have for all t > 0

tψ′′(t) + ψ′(t) =
2t

sinh2(1)
+

2t coth(t)− 1

sinh2(t)
> 0.

For (ii), using (3.4), we have ψ′′′(t) < 0, ∀ t > 0, then ψ′′(t) decreases monotonically.
For (iii), using (3.2) and (3.3), we have

tψ′′(t)− ψ′(t) =
2t coth(t) + 1

sinh2(t)
≥ 0.

For the next-to-last item and from Lemma 2.4 in [3], if ψ(t) satisfies (3.4) and (iii) of this
Lemma, then ψ(t) satisfies (iv).

For the last item, using (3.2), (3.3) and (3.4), simple calculation leads to

2ψ′′(t)2 − ψ′(t)ψ′′′(t) =2

(
1

sinh4(1)
+ 2

coth2(t)

sinh4(t)
+ 4

coth(t)

sinh2(1) sinh2(t)

)

+ 2

(
2t coth2(t)

sinh2(1) sinh2(t)
+

t

sinh2(1) sinh4(t)
− 1

sinh6(t)

)

>
2

sinh6(t)

(
2 coth2(t) sinh2(t)− 1

)
=

2

sinh6(t)

(
2 cosh2(t)− 1

)
> 0,

since cosh(t) > 1 for all t > 0. This completes the proof.

Note that any kernel function that satisfies the four conditions of Lemma 3.3 is an eligible
function according to [3]. Thus, our kernel function is eligible.

From the exponential convexity property of the kernel function ψ, we can deduce the fol-
lowing result for the proximity function Ψ.

Proposition 3.4[10]. For any X1 ≻ 0 and X2 ≻ 0, we have

Ψ
(
(X

1
2
1 X2X

1
2
1 )

1
2

)
≤ 1

2

(
Ψ(X1) + Ψ(X2)

)
.
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Lemma 3.5. For ψ(t), we have

(i) (t−1)2

2 sinh2(1)
≤ ψ(t) ≤ sinh2(1)

2 (ψ′(t))2, ∀ t > 0.

(ii) ψ(t) ≤
( 2 coth(1)+1

2 sinh2(1)

)
(t− 1)2, ∀ t ≥ 1.

Proof. For (i), using (3.1) and (3.3), we have

ψ(t) =

∫ T

1

∫ ξ

1

ψ′′(ζ)dζdξ ≥ 1

sinh2(1)

∫ T

1

∫ ξ

1

dζdξ =
(t− 1)2

2 sinh2(1)
,

and

ψ(t) =

∫ T

1

∫ ξ

1

ψ′′(ζ)dζdξ ≤ sinh2(1)

∫ T

1

∫ ξ

1

ψ′′(ξ)ψ′′(ζ)dζdξ =
sinh2(1)

2
(ψ′(t))2, t > 0.

For (ii), since ψ(1) = ψ′(1) = 0, ψ′′′(t) < 0, ψ′′(1) = 2 coth(1)+1
sinh2(1)

, and by using Taylor’s theorem,

we have for 1 ≤ ξ ≤ t,

ψ(t) = ψ(1) + ψ′(1)(t− 1) +
(t− 1)2ψ′′(1)

2!
+

(t− 1)3ψ′′′(ξ)

3!

=
1

2
ψ′′(1)(t− 1)2 +

ψ′′′(ξ)

3!
(t− 1)3

≤ 1
2ψ

′′(1)(t− 1)2

=
(2 coth(1) + 1

2 sinh2(1)

)
(t− 1)2.

This completes the proof.

Lemma 3.6. Let ϱ : [0,+∞) −→ [1,+∞) be the inverse function of ψ (t) for t ≥ 1 and

ρ : [0,+∞) −→ (0, 1] be the inverse function of −1

2
ψ′ (t) for 0 < t ≤ 1, then

(i) 1 + sinh(1)
√

2z
2 coth(1)+1 ≤ ϱ (z) ≤ 1 + sinh(1)

√
2z, ∀ z ∈ [0,+∞).

(ii) coth(t) ≤
(
2z + 1 + 1

sinh2(1)

) 1
2 , z = − 1

2ψ
′ (t) ≥ 0, ∀ t ∈ (0, 1].

Proof. For (i), let z ≥ 0 and let t ∈ [1,+∞) such that z = ψ(t), then ϱ (z) = t, by (ii) of Lemma
3.5, we have

z ≤
(2 coth(1) + 1

2 sinh2(1)

)
(t− 1)

2
,

this implies that

t− 1 ≥

√
2 sinh2(1)z

2 coth(1) + 1
.

Hence, we have

t ≥ 1 +

√
2 sinh2(1)z

2 coth(1) + 1
= 1 + sinh(1)

√
2z

2 coth(1) + 1
.

For the second hand, we use (i) of Lemma 3.5, we have z = ψ (t) ≥ (t−1)2

2 sinh2(1)
, then we obtain

t ≤ 1 + sinh(1)
√
2z.
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For (ii), let z ≥ 0 and let t ∈ (0, 1] such that z = −1
2ψ

′ (t) , for t ∈ (0, 1], then ρ (z) = t, so, by
(3.2), we have

2z = −ψ′(t) =
1

sinh2(t)
− t

sinh2(1)
,

which is equivalent to

2z = coth2(t)− 1− t

sinh2(1)
,

this implies

coth2(t) ≤ 2z + 1 +
1

sinh2(1)
, ∀ t ∈ (0, 1],

which gives (ii).

3.2 Properties of Ψ(V )

We have Ψ (V ) ≤ τ just before the update of µ with the factor (1− θ), at the start of each
outer iteration. After updating µ in an outer iteration, the matrix V is divided by the factor√
1− θ, with 0 < θ < 1, which leads the proximity to be increased, in general. Then during the

inner iteration, the value of Ψ (V ) decreases until it passes the threshold value τ again. The
following Lemma gives an upper bound of Ψ(βV ) = Ψ( V√

1−θ
) in terms of Ψ(V ).

Lemma 3.7[36]. Let ϱ : [0,+∞) → [1,+∞) be the inverse function of ψ(t) for t ≥ 1. Then, for
any V ≻ 0 and β > 1, we have

Ψ(βV ) ≤ nψ
(
βϱ

(Ψ(V )

n

))
.

Corollary 3.8. Let θ be such that 0 < θ < 1. If Ψ(V ) ≤ τ, then

Ψ(βV ) ≤
( 2 coth(1) + 1

2(1− θ) sinh2(1)

)(
θ
√
n+ sinh(1)

√
2τ

)2

, β =
1√
1− θ

> 1.

Proof. Using (ii) of Lemma 3.5 for t ≥ 1, we have

ψ(t) ≤
(2 coth(1) + 1

2 sinh2(1)

)
(t− 1)2.

Consequently, by the above Lemma, we get

Ψ (βV ) ≤ n

2

(2 coth(1) + 1

sinh2(1)

)(
βϱ

(Ψ(V )

n

)
− 1

)2

.

Hence, from (i) of Lemma 3.6, we have

Ψ(βV ) ≤ n

2

(2 coth(1) + 1

sinh2(1)

)(
β
(
1 + sinh(1)

√
2Ψ(V )

n

)
− 1

)2

.

Since β = 1√
1−θ

, then

Ψ (βV ) ≤ n

2(1− θ)

(2 coth(1) + 1

sinh2(1)

)(
sinh(1)

√
2Ψ(V )

n + 1−
√
1− θ

)2

≤
( 2 coth(1) + 1

2(1− θ) sinh2(1)

)(
θ
√
n+ sinh(1)

√
2Ψ(V )

)2
.
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The last inequality is obtained from the fact that 1−
√
1− θ = θ

1+
√
1−θ

≤ θ.

By the assumption Ψ (V ) ≤ τ just before the µ−update, we have

Ψ (βV ) ≤
( 2 coth(1) + 1

2(1− θ) sinh2(1)

)(
θ
√
n+ sinh(1)

√
2τ

)2
:= Ψ0, (3.7)

then Ψ0 is an upper bound for Ψ (βV ) during the process of the algorithm.

The following Lemma gives a lower bound of σ(V ) in terms of the proximity function Ψ (V ) .

Lemma 3.9. Let σ(V ) be defined by (2.16). Then, for any V ≻ 0, we have

σ(V ) ≥ 1

sinh(1)

√
Ψ(V )

2
.

Proof. From (i) of Lemma 3.5, we have for all t > 0

ψ (t) ≤ sinh2(1)

2
ψ′ (t)

2
,

using (2.16) and (2.2), we obtain

σ(V )2 =
1

4
tr
(
ψ′ (V )

2 )
=

1

4

n∑
i=1

ψ′ (λi (V ))
2 ≥ 1

2 sinh2(1)

n∑
i=1

ψ (λi (V )) =
Ψ (V )

2 sinh2(1)
.

This proves the Lemma.

4 The Generic Primal-dual Interior Point Algorithm for SDP

Algorithm 1. Primal-dual algorithm for SDP

1: Input
2: a threshold parameter τ ≥ 1;
3: an accuracy parameter ε > 0;
4: a fixed barrier update parameter θ ∈]0, 1[;
5: (X0, y0, S0) satisfy the IPC and µ0 = 1 such that Φ

(
X0, S0;µ0

)
≤ τ.

6: begin
7: X := X0; y := y0;S := S0;µ := µ0;
8: while nµ ≥ ε do
9: begin (outer iteration)

10: µ := (1− θ)µ;
11: while Φ(X,S;µ) = Ψ(V ) > τ do
12: begin (inner iteration)
13: Solve system (2.14) and use (2.12) to obtain (∆X,∆y,∆S);
14: Choose a suitable step-size α;

15: X := X + α∆X; y := y + α∆y;S := S + α∆S;V :=
√

PXSP−1

µ ;

16: end while (inner iteration)
17: end while (outer iteration)

In general each kernel function gives rise to a primal-dual interior point algorithm. For
the description of our algorithm, it is clear that closeness of (X, y, S) to (X(µ), y(µ), S(µ)) is
measured by the value of Ψ(V ) with τ as a threshold value: if Ψ(V ) ≤ τ, then we start a new
outer iteration by decreasing µ to µ := (1− θ)µ, for fixed θ ∈ (0, 1), otherwise enter an inner
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iteration by computing the search direction (∆X,∆y,∆S) at the current iterate with respect
to the current value of µ and apply (2.15) to get the new iterate. This process is repeated until
µ is small enough, say until nµ < ε for a certain accuracy parameter ε, at this stage we have
found an ε−optimal solution of (P ) and (D). The algorithm of primal-dual IPM based on our
kernel function is given in Algorithm 1.

5 Complexity Result

5.1 Computation of Displacement Step

The choice of the step-size α is another crucial issue in the analysis of the algorithm. In this
section, we compute a default step-size α, the decrease of the proximity function during an
inner iteration and give the complexity results of the algorithm.
From (2.15), (2.12) and (2.11) for fixed µ, one has

X+ = X + α∆X = X + α
√
µP−1DXP

−1 =
√
µP−1(V + αDX)P−1,

S+ = S + α∆S = S + α
√
µPDSP =

√
µP (V + αDS)P,

So, by (2.11), we have V+ = V +αDX = V +αDS . This implies that the eigenvalues of V+ are

the same as those of the matrix ((V + αDX)
1
2 (V + αDS)(V + αDX)

1
2 )

1
2 .

The difference of proximities between a new iterate and a current iterate for fixed µ, called
the function of the step-size α, is denoted by

f(α) = Ψ (V+)−Ψ(V ) .

Throughout the paper, we assume that the step-size α satisfied

V + αDX ≽ 0 and V + αDS ≽ 0.

Then, by (2.2) and Proposition 3.4, we have

Ψ(V+) =Ψ
((
(V + αDX)

1
2 (V + αDS)(V + αDX)

1
2

) 1
2 )

≤1

2

(
Ψ(V + αDX) + Ψ(V + αDS)

)
.

Therefore, f(α) ≤ f1(α), where

f1 (α) =
1

2
(Ψ(V + αDX) + Ψ(V + αDS))−Ψ(V ) .

One can easily see that
f (0) = f1 (0) = 0.

Taking the first two derivatives of f1(α) with respect to α, and using (2.3)–(2.5), we get

f ′1 (α) =
1

2
tr (ψ′(V + αDX)DX + ψ′(V + αDS)DS) .

f ′′1 (α) =
1

2
tr
(
ψ′′(V + αDX)D2

X + ψ′′(V + αDS)D
2
S

)
.

Due to the third equality of (2.14), we have

f ′1(0) = −1

2
tr
((
ψ′(V )

)2)
= −2σ(V )2, (5.1)

where σ(V ) is the norm-based proximity measure defined in (2.16). For notational convenience,
we put σ(V ) := σ.

In the following, we cite Lemmas 4.1–4.4 in [3] without proof (see also [1, 10, 36]).
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Lemma 5.1. We have
f ′′1 (α) ≤ 2σ2ψ′′(λmin(V )− 2ασ).

Lemma 5.2. If the step-size α satisfies the inequality

ψ′ (λmin (V ))− ψ′ (λmin (V )− 2ασ) ≤ 2σ, (5.2)

then
f ′1(α) ≤ 0.

Lemma 5.3. Let ρ be as defined in Lemma 3.6, then the largest possible value of the step-size
α∗ satisfying (5.2) is given by

α∗ =
ρ (σ)− ρ (2σ)

σ
.

Lemma 5.4. Let ρ and α∗ be as defined in Lemma 5.3. Then, we have

α∗ ≥ 1

ψ′′ (ρ (2σ))
.

Now, we give a suitable step-size α for our algorithm.

Lemma 5.5. Let ρ and α∗ be as defined in Lemma 5.4. If Ψ(V ) ≥ τ ≥ 1, then we have

α∗ ≥ sinh3(1)

sinh(1) + 2(1 + (4σ + 1) sinh2(1))
3
2

.

Proof. From (3.3) with t = ρ (2σ) ∈ (0, 1], we have

ψ′′(t) =
1

sinh2(1)
+

2 coth(t)

sinh2(t)

=
1

sinh2(1)
+ 2 coth(t)(coth2(t)− 1)

≤ 1

sinh2(1)
+ 2

(
4σ +

1

sinh2(1)

)(
4σ + 1 +

1

sinh2(1)

) 1
2

≤ 1

sinh2(1)
+ 2

(
4σ + 1 +

1

sinh2(1)

) 3
2

=
1

sinh2(1)
+

2

sinh3(1)

(
1 + (4σ + 1) sinh2(1)

) 3
2

=
sinh(1) + 2(1 + (4σ + 1) sinh2(1))

3
2

sinh3(1)
,

where the next-to-last inequality follows from (ii) of Lemma 3.6. From Lemma 5.4, we have

α∗ ≥ sinh3(1)

sinh(1) + 2(1 + (4σ + 1) sinh2(1))
3
2

,

which completes the proof.

Denoting

ᾱ =
sinh3(1)

sinh(1) + 2(1 + (4σ + 1) sinh2(1))
3
2

, (5.3)

we have that ᾱ is the default step-size in the algorithm and that ᾱ ≤ α∗.
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5.2 Decreasing of Ψ(V ) During an Inner Iteration

Lemma 5.6[36]. Let g (t) be a twice differentiable convex function with g(0) = 0, g′ (0) < 0 and
let g (t) attain its (global) minimum at t∗ > 0. If g′′ (t) is increasing for t ∈ [0, t∗], then

g (t) ≤ g′ (0)

2
t, 0 ≤ t ≤ t∗.

As a direct consequence, we get

Lemma 5.7. If the step-size α satisfies α ≤ α∗, then

f(α) ≤ −ασ2.

Proof. It’s easy to verify that f1 (α) satisfies the condition of the above Lemma, then

f (α) ≤ f1(α) ≤
f ′1 (0)

2
α, for all 0 ≤ α ≤ α∗.

The result follows from (5.1).

We can obtain the upper bound for the decreasing value of the proximity in the inner
iteration by the following theorem:

Theorem 5.8. If ᾱ is the default step-size as given by (5.3) and σ ≥ 1, then we have

f (ᾱ) ≤ − Ψ(V )
1
4 sinh

5
2 (1)

2 + 4
(√

2 sinh(1) + (4 +
√
2 sinh(1)) sinh2(1)

) 3
2

. (5.4)

Proof. Using (5.3) in Lemma 5.7 for ᾱ ∈ [0, α∗] , we get

f(ᾱ) ≤ −σ2ᾱ = − σ2 sinh3(1)

sinh(1) + 2(1 + (4σ + 1) sinh2(1))
3
2

= − σ2 sinh3(1)( sinh(1)
σ + 2

(
1
σ +

(
4 + 1

σ

)
sinh2(1)

) 3
2
)
σ

3
2

≤ − σ
1
2 sinh3(1)

√
2 + 2

(√
2 sinh(1) + (4 +

√
2 sinh(1)) sinh2(1)

) 3
2

.

Then, thanks to Lemma 3.9, we obtain

f(ᾱ) ≤ −

( Ψ(V )
2 sinh2(1)

) 1
4 sinh3(1)

√
2 + 2

(√
2 sinh(1) + (4 +

√
2 sinh(1)) sinh2(1)

) 3
2

≤ −
(Ψ(V )

2 )
1
4 sinh

5
2 (1)

√
2 + 2

(√
2 sinh(1) + (4 +

√
2 sinh(1)) sinh2(1)

) 3
2

= − Ψ(V )
1
4 sinh

5
2 (1)

2
1
4

(√
2 + 2

(√
2 sinh(1) + (4 +

√
2 sinh(1)) sinh2(1)

) 3
2
)

≤ − Ψ(V )
1
4 sinh

5
2 (1)

2 + 4
(√

2 sinh(1) + (4 +
√
2 sinh(1)) sinh2(1)

) 3
2

.

This result holds the Theorem.



58 I. TOUIL, W. CHIKOUCHE

5.3 Iteration Complexity

We need to compute how many inner iterations the algorithm requires to return to the situation
where Ψ (V ) ≤ τ after µ−update. We denote the value of Ψ (V ) after µ−update by Ψ0 and by
Ψk, k = 1, · · · ,K−1, the subsequent values in the same outer iteration, where K stands for the
total number of inner iterations in an outer iteration. By the definition of f(α) and according
to (5.4) , the decrease of Ψ in an inner iteration is given by

Ψk+1 ≤ Ψk −
Ψ

1
4

k sinh
5
2 (1)

2 + 4
(√

2 sinh(1) + (4 +
√
2 sinh(1)) sinh2(1)

) 3
2

, k = 0, 1, · · · ,K − 1.

Lemma 5.9[10]. Suppose t0, t1, · · · , tk be a sequence of positive numbers such that

tk+1 ≤ tk − βt1−γ
k , k = 0, 1, · · · ,K − 1,

where β > 0 and 0 < γ ≤ 1. Then K ≤
[
tγ0
βγ

]
.

As a consequence, by taking tk = Ψk, β = sinh
5
2 (1)

2+4(
√
2 sinh(1)+(4+

√
2 sinh(1)) sinh2(1))

3
2
and γ =

3

4
,

we can get the following lemma.

Lemma 5.10. Let K be the total number of inner iterations in the outer iteration. Then we
have

K ≤
[
KmaxΨ

3
4
0

]
,

where Kmax =
8+16

(√
2 sinh(1)+(4+

√
2 sinh(1)) sinh2(1)

) 3
2

3 sinh
5
2 (1)

and Ψ0 is the value of Ψ(V ) after the

µ−update in outer iteration.

Now, we derive the complexity bounds for large and small-update methods.

Theorem 5.11. Let Ψ0 be the value defined in (3.7) and let τ ≥ 1. Then, the total number of
iterations to obtain an approximation solution with nµ ≤ ε is bounded by

[
KmaxΨ

3
4
0

][1
θ
log

n

ε

]
.

Proof. Recall that Ψ0 is the upper bound according to (3.7). An upper bound for the total
number of iterations is derived by multiplying the upper bound K by the number of barrier
parameter updates, which is bounded above by 1

θ (log
n
ε ) (see

[10]), that gives the result thanks
to the above lemma.

For large-update method with τ = O (n) and θ = Θ(1) , the complexity of the primal-dual

IPM for SDP problem based on our new kernel function is O
(
n

3
4 log n

ε

)
iterations complexity.

These iterations bound coincide with the primal-dual IPM in [12] which is based on the first
proposed trigonometric kernel function.

For small-update method with τ = O (1) and θ = Θ
(

1√
n

)
, we get the currently best known

iteration bound, namely O
(√
n log n

ε

)
iterations.
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6 Numerical Tests

To prove the effectiveness of our new kernel function (denoted ψnew) and evaluate its effect on
the behavior of the algorithm, we conducted comparative numerical experiments on two test
problems (Problem 1 and Problem 2 below):
• In a first stage, with the following kernel functions:

1. The classic kernel function proposed by Roos et al. [31] defined as follows:

ψc(t) =
t2 − 1

2
− log t.

2. The exponential kernel function proposed by Bai et al. [3] defined as follows:

ψe(t) =
t2 − 1

2
+ e

1
t−1 − 1.

3. The trigonometric kernel function proposed by Bouafia et al. [5] defined as follows:

ψB(t) =
t2 − 1

2
+

4

πp

(
tanp

( π

2t+ 2

)
− 1

)
, p = 4.

• In a second stage, with a contemporary state of the art implementations, namely SeDuMi[32].

Problem 1[34]. C = −I, Ak, k = 1, · · · ,m, are defined as

Ak (i, j) =


1, if i = j = k,

1, if i = j and i = m+ k,

0, otherwise,

and b (i) = 2, i = 1, · · · ,m.
We start by an initial point (X0, y0, S0) such that X0 is defined as follows

X0 (i, j) =

{
1.5, if i ≤ j,

0.5, if i > j,

y0 (i) = −2, i = 1, · · · ,m and S0 = I.

Problem 2[5].

C (i, j) =

{
−1, if i = j ≤ m,

0, otherwise,

Ak, k = 1, · · · ,m, are defined as

Ak (i, j) =


1, if i = j = k,

1, if i = j and i = m+ k,

0, otherwise,

and b (i) = 2, i = 1, · · · ,m.
We start by an initial point (X0, y0, S0) such that X0 = I, y0 (i) = −2, i = 1, · · · ,m, and

S0 is defined as follows

S0 (i, j) =


1, if i = j ≤ m,

2, if i = j > m,

0, otherwise.
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The starting primal-dual point (X0, y0, S0) in each problem is feasible and so the IPC is
satisfied. We used this point to initialize problems 1 and 2 for Algorithm 1 but we have let
SeDuMi use its own initialization process.

To be solved, we used the Software MATLAB 7.7.0 (R2008b) on Intel Core i3 (1.80 GHz)
with 4.00 Go RAM. We select the following parameters for all experiments: ε = 1e− 008, µ =
1, θ ∈ {0.1, 0.95}, τ =

√
n, where n = 2m is the number of variables, m being the number of

constraints.

6.1 Comparison with other Kernel Functions

In this section, we show the results of the implementation of our algorithm for each of the kernel
functions ψc, ψe, ψB and ψnew tested on each problem. This numerical study is summarized
in Tables 1 and 2 (resp. Tables 3 and 4) for Problem 1 (resp. Problem 2), where we show
the average of the CPU time and the number of iterations required to reduce the duality gap
below 10−8 for θ = 0.1 and θ = 0.95 respectively.

Table 1. CPU Time and Number of Iterations for Problem 1. θ = 0.1.

size (m,n) ψc ψe ψB ψnew

(5,10)

Iter

CPU

gap

194

0.0169

9.3132e-9

192

0.0184

9.3132e-9

254

0.0193

2.7615e-9

190

0.0162

9.3132e-9

(10,20)

Iter

CPU

gap

206

0.1025

4.6566e-9

408

0.0881

9.3992e-9

325

0.0866

7.1835e-9

202

0.0817

4.4631e-9

(15,30)

Iter

CPU

gap

205

0.7879

6.9849e-9

1538

0.5616

9.4374e-9

363

0.7347

6.4231e-9

203

0.5596

7.5125e-9

(20,40)

Iter

CPU

gap

205

4.3212

9.3132e-9

1904

2.4098

4.5846e-9

674

2.4363

5.9208e-9

201

2.4290

9.5150e-9

(25,50)

Iter

CPU

gap

214

8.7237

4.9750e-9

1789

8.7600

9.4121e-9

867

8.8470

6.6742e-9

214

8.7044

2.9734e-9

Table 2. CPU Time and Number of Iterations for Problem 1. θ = 0.95.

size (m,n) ψc ψe ψB ψnew

(5,10)

Iter

CPU

gap

16

0.0221

8.6324e-9

18

0.0217

5.9311e-9

20

0.0293

9.5165e-9

18

0.0208

4.7714e-9

(10,20)

Iter

CPU

gap

23

0.1540

1.1571e-9

44

0.1150

6.6908e-10

25

0.0878

6.6016e-10

18

0.0851

9.5428e-9

(15,30)

Iter

CPU

gap

23

0.5686

1.7357e-9

59

0.5656

1.8326e-9

32

0.5937

1.9117e-9

20

0.5470

7.8748e-10

(20,40)

Iter

CPU

gap

23

2.8046

2.3142e-9

130

2.4605

2.4626e-9

101

2.4429

1.3112e-9

20

2.4338

1.0500e-9

(25,50)

Iter

CPU

gap

19

8.7256

2.8556e-9

135

8.7519

3.0526e-9

137

8.7197

1.7414e-9

21

8.6582

1.7099e-9
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In all tables, (Iter), (CPU) and (gap) stand for the number of iterations, CPU time (in
second) and the value of the duality gap, respectively. Each column on the table corresponds
to a kernel function and each row to a size (m,n).

Table 3. CPU Time and Number of Iterations for Problem 2. θ = 0.1.

size (m,n) ψc ψe ψB ψnew

(5,10)

Iter

CPU

gap

206

0.0221

2.5662e-9

200

0.0221

4.3388e-9

204

0.0258

2.7199e-9

190

0.0109

9.1855e-9

(10,20)

Iter

CPU

gap

206

0.1062

4.3864e-9

265

0.0845

7.4438e-9

263

0.0850

6.0232e-9

201

0.0785

7.5547e-9

(15,30)

Iter

CPU

gap

207

0.5434

5.6731e-9

267

0.5554

4.3826e-9

342

0.9274

8.2069e-9

204

0.5364

9.9190e-9

(20,40)

Iter

CPU

gap

216

3.3591

2.7778e-9

275

2.4619

5.2792e-9

485

2.4465

7.4000e-9

210

2.4340

6.0448e-9

(25,50)

Iter

CPU

gap

208

13.8561

7.5002e-9

293

8.6938

3.6691e-9

525

8.8756

8.9742e-9

215

8.7750

5.3219e-9

Table 4. CPU Time and Number of Iterations for Problem 2. θ = 0.95.

size (m,n) ψc ψe ψB ψnew

(5,10)

Iter

CPU

gap

26

0.0187

9.9899e-9

37

0.0237

4.1175e-10

29

0.0220

5.2381e-9

29

0.0153

8.4520e-9

(10,20)

Iter

CPU

gap

38

0.0859

1.5563e-9

31

0.0973

8.9886e-10

32

0.1028

1.1287e-9

34

0.0816

9.0337e-10

(15,30)

Iter

CPU

gap

39

0.5368

1.8297e-9

34

0.5399

7.7120e-10

32

0.5572

1.6931e-9

35

0.5422

1.6381e-9

(20,40)

Iter

CPU

gap

41

2.5094

2.7039e-9

30

2.4236

1.9767e-9

39

2.6641

1.9773e-9

36

2.4185

6.6331e-10

(25,50)

Iter

CPU

gap

41

8.7026

3.3798e-9

2733

8.9311

3.6691e-009

58

8.7098

2.6433e-9

36

8.6650

1.3601e-9

We now plot separately the average amount of CPU time and the number of iterations taken
by each kernel function to obtain the optimal solution below 10−8 in terms of the dimension n.

6.1.1 Comments

From tables and figures, it becomes clear that smaller values of the parameter θ influence the
iteration count negatively. Hence, it seems on the average, that the best number results occur
in the case of around θ = 1.

For each example, we used bold font to highlight the best, i.e., the smallest, iteration
number.
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Figure 6.1. Problem 1: Number of Iterations Until Duality Gap Below to 10−8. θ = 0.1.

Figure 6.2. Problem 1: Number of Iterations Until Duality Gap Below to 10−8. θ = 0.95.

Recall that the numerical results were obtained by performing Algorithm 1 with the pro-
posed kernel functions on two test problems for different sizes and in both cases θ = 0.1 and
θ = 0.95. This left us with 20 experiments.

From this information, we conclude that the new kernel function gives the best results for
65% of the realized experiments.

Note that the kernel function ψB gives the smallest iteration number only one time. This
confirm the effectiveness of the new kernel function ψnew, particularly knowing that ψB has
O
(
n

3
5 log n

ε

)
complexity bounds which is better than that of ψnew.

In summary, numerical results show that by using our new kernel function, with hyperbolic
barrier term, the best iteration complexity was achieved in most of the experiments. Their
practical performance seems quite promising for SDP.

6.2 Comparison with SeDuMi Solver

In this section, we solve problems 1 and 2 by SeDuMi and compare with the results obtained
by Algorithm 1 based on ψnew.

In order to verify the correctness of the proposed implementation, we start by checking that
the optimal solution is the same as the solution obtained by SeDuMi for each problem.

We compute the average of the CPU time of our algorithm and SeDuMi for both Problem
1 and Problem 2 with different sizes. The obtained results are shown in Table 5.
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Figure 6.3. Problem 2: Number of Iterations Until Duality Gap Below to 10−8. θ = 0.1.

Figure 6.4. Problem 2: Number of Iterations Until Duality Gap Below to 10−8. θ = 0.95.

Figure 6.5. Problem 1: CPU time of Per Iteration for θ = 0.1.
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Figure 6.6. Problem 1: CPU Time of Per Iteration for θ = 0.95.

Figure 6.7. Problem 2: CPU time of Per Iteration for θ = 0.1.

Figure 6.8. Problem 2: CPU Time of Per Iteration for θ = 0.95.
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Table 5. CPU to Obtain an Optimal Solution for Problems

Problem size (m,n) SeDuMi ψnew,1 ψnew,2

θ = 0.1 θ = 0.95

Problem 1

(5,10)

(10,20)

(15,30)

(20,40)

(25,50)

0.8424

0.9204

0.9672

1.0452

1.1232

0.0162

0.0817

0.5596

2.4290

8.7044

0.0208

0.0851

0.5470

2.4338

8.6582

Problem 2

(5,10)

(10,20)

(15,30)

(20,40)

(25,50)

2.1528

2.3088

2.4024

2.4185

2.7768

0.0109

0.0785

0.5364

2.4340

8.7750

0.0153

0.0816

0.5422

2.4960

8.6650

6.2.1 Comments

By the look of the solving times shown in Table 5, we can see that the SeDuMi solver accom-
plishes good results for large sizes of problems. Furthermore, the CPU time grows slowly with
the increasing size of the problem. However, our algorithm totally wins for problems sizes up
to thirty.

7 Conclusions and Future Works

In this paper, we have combined a growth term and a hyperbolic barrier term to obtain a
novel kernel function. We have analyzed a primal-dual algorithm for SDP based on this kernel
function for both large-update and small-update versions. We have proved that the iteration
bound for large-update methods is O

(
n

3
4 log n

ε

)
. Compared with the classical method, which

is based on the logarithmic barrier function, we see that complexity has been improved with
a factor n

1
4 . For small-update methods, we have obtained O

(√
n log n

ε

)
iteration bound which

matches the currently best known iteration bound for small-update methods. These results are
the first contribution where the proposed kernel function is of hyperbolic type. To consolidate
our theoretical results, we also provide some numerical performances of the proposed algorithm
comparing the results with some other kernel functions. The realized numerical experiments
show the effectiveness of our new kernel function.

Some interesting topics for further works remain. Firstly, we expect to find another hyper-
bolic kernel function to improve the complexity bound for large-update IPMs. Secondly, the
extension to symmetric cone programming (SCP) deserves to be investigated.
Acknowledgments. The authors are very grateful and would like to thank the Editor-in-Chief
and the anonymous referees for their suggestions and helpful comments which significantly
improved the presentation of this paper.
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