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Abstract A spanning subgraph F of a graph G is called a path factor of G if each component of F is a path.

A P≥k-factor means a path factor with each component having at least k vertices, where k ≥ 2 is an integer.

Bazgan, Benhamdine, Li and Wozniak [C. Bazgan, A. H. Benhamdine, H. Li, M. Wozniak, Partitioning vertices

of 1-tough graph into paths, Theoret. Comput. Sci. 263(2001)255–261.] obtained a toughness condition for a

graph to have a P≥3-factor. We introduce the concept of a P≥k-factor deleted graph, that is, if a graph G has

a P≥k-factor excluding e for every e ∈ E(G), then we say that G is a P≥k-factor deleted graph. In this paper,

we show four sufficient conditions for a graph to be a P≥3-factor deleted graph. Furthermore, it is shown that

four results are best possible in some sense.
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1 Introduction

In this paper, all graphs considered are finite, undirected and simple. We refer the readers to
[2] for the terminology and notation not given here. For a graph G, its vertex set and edge
set are denoted by V (G) and E(G), respectively. For a vertex subset S of G, G[S] denotes
the subgraph of G induced by S, and write G[V (G) \ S] for G − S. When S = {x}, we write
G− x = G− {x}. For an edge subset E′ of G, G− E′ denotes the subgraph obtained from G
by deleting E′. When E′ = {e}, let G − e = G − {e}. For any x ∈ V (G), the degree of x in
G is denoted by dG(x), and δ(G) = min{dG(x) : x ∈ V (G)}. We use κ(G) and λ(G) to denote
the connectivity and the edge-connectivity of G, respectively.

A spanning subgraph F of G is called a path factor of G if each component of F is a path.
A P≥k-factor means a path factor with each component having at least k vertices, where k ≥ 2
is an integer. If a graph G has a P≥k-factor excluding e for every e ∈ E(G), then we say that
G is a P≥k-factor deleted graph.

A graph R is factor-critical if R − x contains a perfect matching for any x ∈ V (R). For a
graph H, we say that H is a sun if H = K1, H = K2 or H is the corona of a factor-critical
graph R of order n with n ≥ 3, i.e., H is obtained from R by adding a new vertex w = w(v)
together with a new edge vw for every v ∈ V (R). A big sun is a sun with at least six vertices.
A component of G is called a sun component if it is isomorphic to a sun. The number of sun
components of G is denoted by sun (G).

Kaneko[8] presented a necessary and sufficient condition for a graph to have a P≥3-factor.
Kano, Katona and Király[9] showed a simpler proof.
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Theorem 1.1[8, 9]. A graph G admits a P≥3-factor if and only if for every vertex subset S of
G,

sun (G− S) ≤ 2|S|.
For a graph G, its toughness t(G) was first introduced by Chvátal[4]: if G is not complete,

t(G) = min
{ |S|
ω(G− S)

: S ⊆ V (G), ω(G− S) ≥ 2
}
,

where ω(G−S) denotes the number of connected components of G−S; otherwise, t(G) = +∞.
A variation of toughness, introduced by Enomoto[5], was defined as

τ(G) = min
{ |S|
ω(G− S)− 1

: S ⊆ V (G), ω(G− S) ≥ 2
}

if G is not complete; otherwise, τ(G) = +∞.
Yang, Ma and Liu[17] introduced the isolated toughness I(G), which was defined as

I(G) = min
{ |S|
i(G− S)

: S ⊆ V (G), i(G− S) ≥ 2
}

if G is not complete, where i(G−S) denotes the number of isolated vertices of G−S; otherwise,
I(G) = +∞. A variation of isolated toughness, introduced by Ma and Liu[10], was defined as

I ′(G) = min
{ |S|
i(G− S)− 1

: S ⊆ V (G), i(G− S) ≥ 2
}

if G is not complete; otherwise, I ′(G) = +∞.
Some results on toughness, isolated toughness and graph factors see [6, 7, 12]. Other some

results on graph factors see [3, 11, 14–16, 18–27]. Bazgan, Benhamdine, Li and Wozniakup[1]
presented a toughness condition for a graph to have a P≥3-factor.

Theorem 1.2[1]. Let G be a graph with at least three vertices. If t(G) ≥ 1, then G admits a
P≥3-factor.

In this paper, we first investigate the relationship between toughness and a P≥3-factor
deleted graph, and obtain a toughness condition for a graph to be a P≥3-factor deleted graph
which is an extension of Theorem 1.2.

Theorem 1.3. Let G be a 2-edge connected graph. If t(G) > 1
2 , then G is a P≥3-factor deleted

graph.

Furthermore, we present three new sufficient conditions for the existence of P≥3-factor
deleted graphs by using variation of toughness, isolated toughness and variation of isolated
toughness which are shown in the following.

Theorem 1.4. Let G be a graph with at least three vertices. If τ(G) > 1, then G is a P≥3-factor
deleted graph.

Theorem 1.5. Let G be a 2-edge connected graph. If I(G) > 3
2 , then G is a P≥3-factor deleted

graph.

Theorem 1.6. Let G be a 2-edge connected graph. If I ′(G) > 3, then G is a P≥3-factor deleted
graph.

We now show some lemmas which are useful in the proofs of our main results.

Lemma 1.7[5]. Let G be a non-complete graph. Then τ(G) ≤ κ(G). Especially, G is connected
if and only if τ(G) > 0.

Lemma 1.8[13]. Let G be a graph. Then κ(G) ≤ λ(G) ≤ δ(G).
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2 The Proofs of Theorems 1.3 and 1.4

The proof of Theorem 1.3 is similar to that of Theorem 1.4. In the following, we only prove
Theorem 1.4, and the proof of Theorem 1.3 is omitted.

Proof of Theorem 1.4. If G is a complete graph, then it is obvious that G is a P≥3-factor
deleted graph. In the following, we assume that G is a non-complete graph.

For any e ∈ E(G), we write H = G − e. In order to prove Theorem 1.4, we only need to
verify that H admits a P≥3-factor. By contradiction, we assume that H has no P≥3-factor.
Then it follows from Theorem 1 that there exists some subset S ⊆ V (H) = V (G) satisfying

sun (H − S) > 2|S|. (2.1)

Claim 1. S ̸= ∅.
Proof. Assume that S = ∅. Then by (2.1), we have

sun (H) > 0.

In view of the integrity of sun (H), we obtain

sun (H) ≥ 1. (2.2)

On the other hand, since G is a non-complete graph, it follows from Lemmas 1.7 and 1.8
that

λ(G) ≥ κ(G) ≥ τ(G) > 1.

According to the integrity of λ(G) and κ(G), we have

λ(G) ≥ κ(G) ≥ 2,

which implies that H = G− e is connected, and so

sun (H) ≤ ω(H) = 1. (2.3)

It follows from (2.2) and (2.3) that

sun (H) = ω(H) = 1. (2.4)

Note that |V (H)| = |V (G)| ≥ 3. Combining this with (2.4) and the definition of a big sun,
H = G − e is a big sun. According to the definition of a big sun, there exists a factor-critical

graph R in H = G− e such that dH(x) = 1 for any x ∈ V (H) \ V (R) and |V (R)| = |V (H)|
2 ≥ 3.

Thus, it is easy to see that there exists a vertex v ∈ V (R) such that G− v has two connected
components. Combining this with the definition of τ(G), we obtain

τ(G) ≤ |{v}|
ω(G− v)− 1

=
1

2− 1
= 1,

which contradicts that τ(G) > 1. This completes the proof of Claim 1. �
We shall consider two cases by the value of sun (H − S).

Case 1. sun (H − S) ≤ 2.
It follows from Claim 1, (2.1) and sun (H − S) ≤ 2 that

1 ≤ |S| < sun (H − S)

2
≤ 1,
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which is a contradiction.

Case 2. sun (H − S) ≥ 3.

It is obvious that

3 ≤ sun (H − S) ≤ ω(H − S) = ω(G− S − e) ≤ ω(G− S) + 1, (2.5)

and so

ω(G− S) ≥ 2. (2.6)

In terms of Claim 1, (2.1) and (2.5), we obtain

1

2
=

|S|
2|S|

>
|S|

sun (H − S)
≥ |S|

ω(G− S) + 1
,

that is,

ω(G− S) > 2|S| − 1.

In view of the integrity of |S| and ω(G− S), we have

ω(G− S) ≥ 2|S|. (2.7)

According to (2.6), (2.7), τ(G) > 1, Claim 1 and the definition of τ(G), we obtain

1 < τ(G) ≤ |S|
ω(G− S)− 1

≤ |S|
2|S| − 1

≤ |S|
|S|

= 1,

which is a contradiction. Theorem 1.4 is proved. �

Remark 2.1. The condition t(G) > 1
2 in Theorem 1.3 cannot be replaced by t(G) ≥ 1

2 , which
is shown as follows.

We construct a graph G = K1 ∨ (K2 ∪H), where H is a sun. Let S = V (K1). It is obvious

that ω(G − S) = 2 and t(G) = |S|
ω(G−S) = 1

2 . We choose e ∈ E(K2) and H = G − e. Thus, we

have

sun (H − S) = 3 > 2 = 2|S|.

In terms of Theorem 1.1, H has no P≥3-factor, and so, G is not a P≥3-factor deleted graph.

Remark 2.2. In Theorem 1.4, the bound in the condition

τ(G) > 1

is best possible. Let H1,H2, H3 be three suns. Consider a graph H constructed from H2 and
H3 as follows: set V (H) = V (H2) ∪ V (H3) and E(H) = E(H2) ∪ E(H3) ∪ {e}, where e = uv
with u ∈ V (H2) and v ∈ V (H3). Let G = K1 ∨ (H1 ∪ H). We choose S = V (K1). Clearly,

ω(G− S) = 2 and τ(G) = |S|
ω(G−S)−1 = 1

2−1 = 1. We write Q = G− e. Thus, we obtain

sun (Q− S) = 3 > 2 = 2|S|.

According to Theorem 1.1, Q has no P≥3-factor, that is, G is not a P≥3-factor deleted graph.
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3 The Proofs of Theorems 1.5 and 1.6

The proof of Theorem 1.6 is similar to that of Theorem 1.5. Hence, we only prove Theorem
1.5, and the proof of Theorem 1.6 is omitted.

Proof of Theorem 1.5. If G is a complete graph, then it is easy to see that G is a P≥3-factor
deleted graph. In the following, we assume that G is a non-complete graph.

We write H = G − e for every e = uv ∈ E(G). To verify Theorem 1.5, we only need to
prove that H contains a P≥3-factor. By contradiction, we assume that H has no P≥3-factor.
Then by Theorem 1.1, we have

sun (H − S) > 2|S| (3.1)

for some S ⊆ V (H) = V (G).

Claim 2. S ̸= ∅.
Proof. Assume that S = ∅. Then by (3.1), we obtain

sun (H) > 0.

In terms of the integrity of sun (H), we have

sun (H) ≥ 1. (3.2)

On the other hand, since G is 2-edge connected, we have H = G − e is an edge connected
graph. Thus, we have

sun (H) ≤ ω(H) = 1.

Combining this with (3.2), we obtain

sun (H) = ω(H) = 1.

Note that |V (H)| = |V (G)| > 2. And so, H = G− e is a big sun. We use R to denote the

factor-critical subgraph of H = G− e, and |V (R)| = |V (H)|
2 ≥ 3.

If u, v ∈ V (R) or u ∈ V (R), v ∈ V (H) \ V (R), then we choose Y = V (R). It is obvious
that i(G− Y ) = |V (H) \ V (R)| = |V (R)| = |Y | ≥ 3. By the condition of Theorem 1.5 and the
definition of I(G), we have

3

2
< I(G) ≤ |Y |

i(G− Y )
=

|Y |
|Y |

= 1,

which is a contradiction. If u, v ∈ V (H) \ V (R), then there exists w ∈ V (R) with uw ∈ E(G).
We choose Y = (V (R) \ {w}) ∪ {u}. Clearly, i(G − Y ) = |V (H) \ Y | = |V (H)| − |Y | =
2|V (R)| − |V (R)| = |V (R)| ≥ 3. Thus, we obtain

3

2
< I(G) ≤ |Y |

i(G− Y )
=

|V (R)|
|V (R)|

= 1,

which is a contradiction. This completes the proof of Claim 2. �
Assume that there exist a isolated vertices, b K2’s and c big sun componentsH1,H2, · · · ,Hc,

where |V (Hi)| ≥ 6 for 1 ≤ i ≤ c, in H − S. Clearly, sun (H − S) = a + b + c. We choose one
vertex from each K2 component of H−S, and denote by X the set of such vertices. We denote
by Ri the factor-critical subgraph of Hi and write Yi = V (Ri), 1 ≤ i ≤ c. It is easy to see that
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|X| = b and i(Hi − Yi) = |Yi| = |V (Hi)|
2 for 1 ≤ i ≤ c. Set Y =

∪c
i=1 Yi. It follows from (3.1),

|V (Hi)| ≥ 6, Claim 2 and sun (H − S) = a+ b+ c that

i(H − S ∪X ∪ Y ) = a+ b+

c∑
i=1

|V (Hi)|
2

≥ a+ b+ 3c ≥ sun (H − S) ≥ 2|S|+ 1 ≥ 3. (3.3)

We shall consider three cases.

Case 1. u, v ∈ V (aK1).
In this case, a ≥ 2. We write T = S ∪X ∪ Y ∪ {u}. Then it is easy to see that

i(G− T ) = (a− 1) + b+
c∑

i=1

|V (Hi)|
2

. (3.4)

In view of (3.1), (3.4), |V (Hi)| ≥ 6, Claim 2 and sun (H − S) = a+ b+ c, we obtain

i(G− T ) ≥ a+ b+ 3c− 1 ≥ a+ b+ c− 1 = sun (H − S)− 1 ≥ 2|S| ≥ 2.

By (3.4), the condition of Theorem 1.5 and the definition of I(G), we obtain

3

2
< I(G) ≤ |T |

i(G− T )
=

|S|+ b+
c∑

i=1

|V (Hi)|
2 + 1

(a− 1) + b+
c∑

i=1

|V (Hi)|
2

,

that is,

2|S| > 3a+ b+
c∑

i=1

|V (Hi)|
2

− 5. (3.5)

It follows from (3.1) and (3.5) that

2|S| > 3a+ b+
c∑

i=1

|V (Hi)|
2

− 5 ≥ 3a+ b+ 3c− 5 ≥ a+ b+ c− 1 = sun (H − S)− 1 ≥ 2|S|,

which is a contradiction.

Case 2. one vertex in {u, v} belongs to V (aK1).
Without loss of generality, let u ∈ V (aK1) and v /∈ V (aK1). In this case, a ≥ 1.

Claim 3. I(G) ≤
|S|+b+

c∑
i=1

|V (Hi)|
2

a+b+
c∑

i=1

|V (Hi)|
2 −1

.

Proof. We consider four subcases.

Subcase 2.1. v ∈ V (G) \ (S ∪ V (aK1) ∪ V (bK2) ∪ V (H1) ∪ · · · ∪ V (Hc)).
Obviously, i(G−S ∪X ∪ Y ) = i(H −S ∪X ∪ Y )− 1. According to (3.3) and the definition

of I(G), we obtain

I(G) ≤ |S ∪X ∪ Y |
i(G− S ∪X ∪ Y )

=

|S|+ b+
c∑

i=1

|V (Hi)|
2

i(H − S ∪X ∪ Y )− 1
=

|S|+ b+
c∑

i=1

|V (Hi)|
2

a+ b+
c∑

i=1

|V (Hi)|
2 − 1

.

Subcase 2.2. v ∈ S.
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It is easy to see that i(G − S ∪ X ∪ Y ) = i(H − S ∪ X ∪ Y ). In terms of (3.3) and the
definition of I(G), we have

I(G) ≤ |S ∪X ∪ Y |
i(G− S ∪X ∪ Y )

=

|S|+ b+
c∑

i=1

|V (Hi)|
2

a+ b+
c∑

i=1

|V (Hi)|
2

<

|S|+ b+
c∑

i=1

|V (Hi)|
2

a+ b+
c∑

i=1

|V (Hi)|
2 − 1

.

Subcase 2.3. v ∈ V (bK2).
We choose such X with v ∈ X. Thus, we have i(G − S ∪X ∪ Y ) = i(H − S ∪X ∪ Y ). It

follows from (3.3) and the definition of I(G) that

I(G) ≤ |S ∪X ∪ Y |
i(G− S ∪X ∪ Y )

=

|S|+ b+
c∑

i=1

|V (Hi)|
2

a+ b+
c∑

i=1

|V (Hi)|
2

<

|S|+ b+
c∑

i=1

|V (Hi)|
2

a+ b+
c∑

i=1

|V (Hi)|
2 − 1

.

Subcase 2.4. v ∈ V (Hi), 1 ≤ i ≤ c.
Note that Ri is the factor-critical subgraph of Hi, i = 1, 2, · · · , c. If v ∈ V (Ri), where

1 ≤ i ≤ c, then we obtain i(G − S ∪X ∪ Y ) = i(H − S ∪X ∪ Y ). According to (3.3) and the
definition of I(G), we obtain

I(G) ≤ |S ∪X ∪ Y |
i(G− S ∪X ∪ Y )

=

|S|+ b+
c∑

i=1

|V (Hi)|
2

a+ b+
c∑

i=1

|V (Hi)|
2

<

|S|+ b+
c∑

i=1

|V (Hi)|
2

a+ b+
c∑

i=1

|V (Hi)|
2 − 1

.

If v ∈ V (Hi) \ V (Ri), where 1 ≤ i ≤ c, then there exists a vertex w ∈ V (Ri) such that
vw ∈ E(G). We choose Y ′ = Y1 ∪ · · ·Yi−1 ∪ Yi+1 ∪ (Yi \ {w}) ∪ {v}. Clearly, |Y ′| = |Y | and
i(G−S ∪X ∪Y ′) = i(H −S ∪X ∪Y ′) = a+ b+

c∑
i=1

|V (Hi)|
2 . By the definition of I(G), we have

I(G) ≤ |S ∪X ∪ Y ′|
i(G− S ∪X ∪ Y ′)

=

|S|+ b+
c∑

i=1

|V (Hi)|
2

a+ b+
c∑

i=1

|V (Hi)|
2

<

|S|+ b+
c∑

i=1

|V (Hi)|
2

a+ b+
c∑

i=1

|V (Hi)|
2 − 1

.

Claim 3 is proved. �
It follows from Claim 3 and the condition of Theorem 1.5 that

3

2
< I(G) ≤

|S|+ b+
c∑

i=1

|V (Hi)|
2

a+ b+
c∑

i=1

|V (Hi)|
2 − 1

,

which implies

2|S| > 3a+ b+

c∑
i=1

|V (Hi)|
2

− 3. (3.6)

Note that |V (Hi)| ≥ 6, a ≥ 1, c ≥ 0 and sun(H − S) = a + b + c. Combining these with
(3.6), we obtain

2|S| > 3a+ b+ 3c− 3 ≥ a+ b+ c− 1 = sun(H − S)− 1.



On P≥3-factor Deleted Graphs 185

By the integrity of |S| and sun(H − S), we have

2|S| ≥ sun(H − S),

which contradicts (3.1).

Case 3. u, v /∈ V (aK1).

Claim 4. I(G) ≤
|S|+b+

c∑
i=1

|V (Hi)|
2

a+b+
c∑

i=1

|V (Hi)|
2

.

Proof. The proof of Claim 4 is similar to that of Claim 3, and is omitted. �
In terms of Claim 4 and the condition of Theorem 1.5, we have

3

2
< I(G) ≤

|S|+ b+
c∑

i=1

|V (Hi)|
2

a+ b+
c∑

i=1

|V (Hi)|
2

,

which implies

2|S| > 3a+ b+
c∑

i=1

|V (Hi)|
2

.

Combining this with sun(H − S) = a+ b+ c, (3.1) and |V (Hi)| ≥ 6, we obtain

2|S| > 3a+ b+

c∑
i=1

|V (Hi)|
2

≥ 3a+ b+ 3c ≥ a+ b+ c = sun(H − S) > 2|S|,

which is a contradiction. The proof of Theorem 1.5 is complete. �
Remark 3.1. The condition I(G) > 3

2 in Theorem 1.5 cannot be replaced by I(G) ≥ 3
2 , which

is shown as follows.
We construct a graph G = K1 ∨ (K2 ∪ K2). It is easy to see that I(G) = 3

2 . We choose
e ∈ E(K2) and H = G− e. Thus, we have

sun(H − S) = 3 > 2 = 2|S|

for S = V (K1). According to Theorem 1.1, H has no P≥3-factor, and so, G is not a P≥3-factor
deleted graph.

Remark 3.2. For a graph G = K1∨ (K2∪K2), it is easy to see that I ′(G) = 3. From Remark
3.1, G = K1 ∨ (K2 ∪K2) is not a P≥3-factor deleted graph. Hence, the bound of the condition
I ′(G) > 3 in Theorem 1.6 is sharp.
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[4] Chvátal, V. Tough graphs and Hamiltonian Circuits. Discrete Mathematics, 5: 215–228 (1973)
[5] Eomoto, H. Toughness and the existence of k-factors III. Discrete Mathematics, 189: 277–282 (1998)



186 S.Z. ZHOU, Z.R. SUN, H.X. LIU

[6] Gao, W., Liang, L., Xu, T., Zhou, J. Tight toughness condition for fractional (g, f, n)-critical graphs.
Journal of the Korean Mathematical Society, 51: 55–65 (2014)

[7] Gao, W., Wang, W. Toughness and fractional critical deleted graph. Utilitas Mathematica, 98: 295–310
(2015)

[8] Kaneko, A. A necessary and sufficient condition for the existence of a path factor every component of
which is a path of length at least two. Journal of Combinatorial Theorey, Series B, 88: 195–218 (2003)

[9] Kano, M., Katona, G. Y., Király, Z. Packing paths of length at least two. Discrete Mathematics, 283:
129–135 (2004)

[10] Ma, Y., Liu, G. Isolated toughness and the existence of fractioanl factors. Acta Mathematicae Applicatae
Sinica, Chinese Series, 26: 133–140 (2003)

[11] Plummer, M. Graph factors and factorizations: 1985–2003: A survey. Discrete Mathematics, 307: 791–821
(2007)

[12] Sun, Z., Zhou, S. Isolated toughness and k-Hamiltonian [a, b]-factors. Acta Mathematicae Applicatae
Sinica-English Series, 36: 539–544 (2020)

[13] Wang, C. Graph Theory. Beijing Institute of Technology Press, Beijing, 1997
[14] Wang, S., Zhang, W. On k-orthogonal factorizations in networks. RAIRO-Operations Research, 55:

969–977 (2021)
[15] Wang, S., Zhang, W. Research on fractional critical covered graphs. Problems of Information Transmis-

sion, 56: 270–277 (2020)
[16] Xiong, L. Characterization of forbidden subgraphs for the existence of even factors in a graph. Discrete

Applied Mathematics, 223: 135–139 (2017)
[17] Yang, J., Ma, Y., Liu, G. Fractional (g, f)-factors in graphs. Applied Mathematics–A Journal of Chinese

Universities, Series A, 16: 385–390 (2001)
[18] Zhou, S. A neighborhood union condition for fractional (a, b, k)-critical covered graphs. Discrete Applied

Mathematics, DOI: 10.1016/j.dam.2021.05.022
[19] Zhou, S. A result on fractional (a, b, k)-critical covered graphs. Acta Mathematicae Applicatae Sinica-

English Series, 37: 657–664 (2021)
[20] Zhou, S. Binding numbers and restricted fractional (g, f)-factors in graphs. Discrete Applied Mathematics,

DOI: 10.1016/j.dam.2020.10.017
[21] Zhou, S. Remarks on path factors in graphs. RAIRO-Operations Research, 54: 1827–1834 (2020)
[22] Zhou, S., Bian, Q., Pan, Q. Path factors in subgraphs. Discrete Applied Mathematics, DOI:

10.1016/j.dam.2021.04.012
[23] Zhou, S., Bian, Q., Sun, Z. Two sufficient conditions for component factors in graphs. Discussiones

Mathematicae Graph Theory, DOI: 10.7151/dmgt.2401
[24] Zhou, S., Liu, H., Xu, Y. A note on fractional ID-[a, b]-factor-critical covered graphs. Discrete Applied

Mathematics, DOI: 10.1016/j.dam.2021.03.004
[25] Zhou, S., Sun, Z., Pan, Q. A sufficient condition for the existence of restricted fractional (g, f)-factors in

graphs. Problems of Information Transmission, 56: 332–344 (2020)
[26] Zhou, S., Xu, J., Xu, L. Component factors and binding number conditions in graphs. AIMS Mathematics,

6: 12460–12470 (2021)
[27] Zhou, S., Zhang, T., Xu, Z. Subgraphs with orthogonal factorizations in graphs. Discrete Applied Math-

ematics, 286: 29–34 (2020)


	Introduction
	The Proofs of Theorems 1.3 and 1.4
	The Proofs of Theorems 1.5 and 1.6

