
Acta Mathematicae Applicatae Sinica, English Series

Vol. 37, No. 4 (2021) 758–772

https://doi.org/10.1007/s10255-021-1043-7
http://www.ApplMath.com.cn & www.SpringerLink.com

Acta Mathema�cae Applicatae Sinica,

English Series

© The Editorial Office of  AMAS & 
     Springer-Verlag GmbH Germany 2021

Statistical Inference for the Covariates-driven Binomial

AR(1) Process

De-hui WANG1,2,†, Shuai CUI1, Jian-hua CHENG1, Shu-hui WANG1

1School of Mathematics, Jilin University, Changchun, 130012, China (E-mail: wangdh@jlu.edu.cn)
2 School of Economics, Liaoning University, Shenyang 110036, China

Abstract The binomial autoregressive (BAR(1)) process is very useful to model the integer-valued time series

data defined on a finite range. It is commonly observed that the autoregressive coefficient is assumed to be a

constant. To make the BAR(1) model more practical, this paper introduces a new random coefficient binomial

autoregressive model, which is driven by covariates. Basic probabilistic and statistical properties of this model

are discussed. Conditional least squares and conditional maximum likelihood estimators of the model parameters

are derived, and the asymptotic properties are obtained. The performance of these estimators is compared via

a simulation study. An application to a real data example is also provided. The results show that the proposed

model and methods perform well for the simulations and application.
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1 Introduction

In recent years, the analysis and application of integer-valued time series data have become
a popular research field. In particular, non-negative integer-valued time series has received
growing attention due to the strong application value. Generally, time series of counts can
be broadly classified into two categories: count data with an infinite range {0, 1, · · · } and
count data on a finite range {0, 1, · · · , n}. Modelling count data without upper limit has been
studied intensively by researchers and many useful models have been proposed. Due to the
application background, count data on a finite range has been paid more attention recently.
For example, Weiß and Kim[15] considered the numbers of n = 22 companies in the securities
business being traded (per 5 min.) at the Korea stock market; Weiß and Kim[16] considered
n = 15 workstations and monitored (per min.) the number of occupied workstations among
them.

One of the main methods to fit count data is to establish the integer-valued autoregressive
model through the so-called thinning operator. The earliest thinning operator is binomial
thinning operator “ ◦ ” proposed by Steutal and van Harn[12], which is defined as

α ◦X =

X∑
i=1

Wi,

where α ∈ [0, 1), X is a non-negative integer-valued random variable, {Wi} is an independent
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and identically distributed (i.i.d.) Bernoulli random variable sequence and satisfies P (Wi =
1) = 1− P (Wi = 0) = α. Besides, Wi and X are independent of each other.

The most common way for fitting count data with upper limit is the binomial autoregressive
(BAR(1)) model proposed by McKenzie[10] based on binomial thinning operator. After the
model was put forward, it has become a hot research topic of scholars. Weiß[13, 14] extended
BAR(1) model to higher order, proposed BAR(p) model, and studied the control chart of
BAR(1) model. Cui and Lund[3] studied the statistical inference of BAR(1) model. On the
basis of previous studies, Weiß and Kim[15] studied the parameter estimation of BAR(1) model,
and applied it to financial and industrial fields. Meanwhile, Weiß and Kim[16] considered higher-
order moments and proposed a new estimation method. Kim and Weiß[7] conducted goodness
of fit tests on BAR(1) model. Kim et al.[8] constructed a test for the existence of zero inflation
in BAR(1) model. Yang et al.[17] used empirical likelihood method to estimate the parameters
of threshold BAR(1) model. Chen et al.[2] considered the BAR(1) model with outliers. Kang
et al.[5] proposed a hybrid BAR(1) model which can characterize zero inflation. Kang et al.[6]

proposed a generalized BAR(1) model based on generalized binomial thinning operators.
However, the BAR(1) model still has some limitations in explaining some practical phenom-

ena, one of the most important problems lies in that the thinning probability is non-random,
which is only described by a constant parameter. In order to solve this shortcoming, some schol-
ars took the influence of observations on the thinning probability into account, and proposed a
dependent BAR(1) model. This kind of model introduces the influence of the internal factors
of the system on the thinning probability, which greatly enhances the ability of BAR(1) model
to explain many practical problems. However considering the influence of external factors on
thinning probability may be more common, and most of the external factors are observable,
for example, the number of different securities companies being traded for the stock at time t
could depend on the composite stock price index and other market characteristics varying over
time, in order to better fit the real data, the goal of this paper is to extend the BAR(1) model
to a covariates-driven BAR(1) model.

The rest of the paper is organized as follows. In Section 2, we introduce our model and
discuss its basic probabilistic and statistical properties. In Section 3, we propose two estimation
methods for the model parameters. Section 4 presents some simulation results for the estimation
methods. A real data example is given in Section 5.

2 The Covariates-driven BAR(1) Model

Definition 2.1. Let αt, βt ∈ (0, 1), for fixed n ∈ N, the covariates-driven BAR(1) (CDBAR(1))
process {Xt} is defined by the following recursive equation:

Xt = αt ◦Xt−1 + βt ◦ (n−Xt−1),

logit(αt) = θ
′
Zt,

logit(βt) = λ
′
Zt,

(2.1)

where Zt = (Zt1, · · · , Ztp)
′
is an observable p-dimensional covariate, θ = (θ1, · · · , θp)

′
and

λ = (λ1, · · · , λp)
′
are two p-dimensional unknown vectors. Zt and Xt−1 are independent.

Since the moments and conditional moments will be useful in obtaining the appropriate
estimating equations for parameter estimation, we first discuss some moment properties of
CDBAR(1) process.

Proposition 2.1. Let {Xt} be the process defined by (2.1), then we have

(i) E(Xt|Xt−1,Zt) =
( eθ

′
Zt

1 + eθ
′Zt

− eλ
′
Zt

1 + eλ
′Zt

)
Xt−1 + n

eλ
′
Zt

1 + eλ
′Zt

,
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(ii) Var(Xt|Xt−1,Zt) =
( eθ

′
Zt

1 + eθ
′Zt

− eλ
′
Zt

1 + eλ
′Zt

)(
1− eθ

′
Zt

1 + eθ
′Zt

− eλ
′
Zt

1 + eλ
′Zt

)
Xt−1

+ n
eλ

′
Zt

1 + eλ
′Zt

(
1− eλ

′
Zt

1 + eλ
′Zt

)
,

(iii) Corr(Xt, Xt−1) =
( eθ

′
Zt

1 + eθ
′Zt

− eλ
′
Zt

1 + eλ
′Zt

)
.

Proof. (i) By the definition, it is easy to obtain that

E(Xt|Xt−1,Zt) = E[αt ◦Xt−1 + βt ◦ (n−Xt−1)|Xt−1,Zt]

= E
[Xt−1∑

i=1

W
(αt)
i +

n−Xt−1∑
j=1

W
(βt)
j |Xt−1,Zt

]

=
eθ

′
Zt

1 + eθ
′Zt

Xt−1 +
eλ

′
Zt

1 + eλ
′Zt

(n−Xt−1)

=
( eθ

′
Zt

1 + eθ
′Zt

− eλ
′
Zt

1 + eλ
′Zt

)
Xt−1 + n

eλ
′
Zt

1 + eλ
′Zt

.

(ii) By direct calculation, we have

E(X2
t |Xt−1,Zt)

=E{[αt ◦Xt−1 + βt ◦ (n−Xt−1)]
2|Xt−1,Zt}

=E
[(Xt−1∑

i=1

W
(αt)
i

)2
+
( n−Xt−1∑

j=1

W
(βt)
j

)2
+ 2

Xt−1∑
i=1

W
(αt)
i

n−Xt−1∑
j=1

W
(βt)
j |Xt−1,Zt

]

=

Xt−1∑
i=1

E(W
(αt)
i )2 +Xt−1(Xt−1 − 1)E[(W

(αt)
1 )(W

(αt)
2 )]

+

n−Xt−1∑
j=1

E(W
(βt)
j )2 + (n−Xt−1)(n−Xt−1 − 1)E[(W

(βt)
1 )(W

(βt)
2 )]

+ 2Xt−1(n−Xt−1)E[W
(αt)
1 )(W

(βt)
1 )]

=
eθ

′
Zt

1 + eθ
′Zt

Xt−1 +
eλ

′
Zt

1 + eλ
′Zt

(n−Xt−1)

+ 2
eθ

′
Zt

1 + eθ
′Zt

eλ
′
Zt

1 + eλ
′Zt

Xt−1(n−Xt−1) +
( eθ

′
Zt

1 + eθ
′Zt

)2
Xt−1(Xt−1 − 1)

+
( eλ

′
Zt

1 + eλ
′Zt

)2
(n−Xt−1)(n−Xt−1 − 1),

from which it holds that

Var (Xt|Xt−1,Zt) = E(X2
t |Xt−1,Zt)− [E(Xt|Xt−1,Zt)]

2

= αtXt−1 + βt(n−Xt−1) + 2αtβtXt−1(n−Xt−1) + α2
tXt−1(Xt−1 − 1)

+ β2
t (n−Xt−1)(n−Xt−1 − 1)− [αtXt−1 + βt(n−Xt−1)]

2

= αtXt−1 + βtn− βtXt−1 + 2αtβtXt−1(n−Xt−1) + α2
tX

2
t−1 − α2

tXt−1
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+ β2
t (n−Xt−1)

2 − β2
t (n−Xt−1)− α2

t (Xt−1)
2 − β2

t (n−Xt−1)
2

− 2αtβtXt−1(n−Xt−1)

= αtXt−1 + nβt − βtXt−1 − α2
tXt−1 − β2

t n+ β2
tXt−1

= (αt − βt − α2
t + β2

t )Xt−1 + nβt(1− βt)

= (αt − βt)(1− αt − βt)Xt−1 + nβt(1− βt)

=
( eθ

′
Zt

1 + eθ
′Zt

− eλ
′
Zt

1 + eλ
′Zt

)(
1− eθ

′
Zt

1 + eθ
′Zt

− eλ
′
Zt

1 + eλ
′Zt

)
Xt−1

+ n
eλ

′
Zt

1 + eλ
′Zt

(
1− eλ

′
Zt

1 + eλ
′Zt

)
.

(iii) The covariance can be obtained as

Cov (Xt, Xt−1) = Cov [αt ◦Xt−1 + βt ◦ (n−Xt−1), Xt−1]

= Cov (αt ◦Xt−1, Xt−1) + Cov [βt ◦ (n−Xt−1), Xt−1]

= E[(αt ◦Xt−1)Xt−1]− E(αt ◦Xt−1)E(Xt−1)

+ E{[βt ◦ (n−Xt−1)]Xt−1} − E[βt ◦ (n−Xt−1)]E(Xt−1)

= E(αtX
2
t−1)− αt[E(Xt−1)]

2

+ E[βtXt−1(n−Xt−1)]− E[βt(n−Xt−1)]E(Xt−1)

= αtE(X2
t−1)− αt[E(Xt−1)]

2

+ βtE[Xt−1(n−Xt−1)]− βtE(n−Xt−1)E(Xt−1)

= αtE(X2
t−1)− αt[E(Xt−1)]

2 + βtnE(Xt−1)− βtE[X2
t−1]

− βtnE(Xt−1) + βt[E(Xt−1)]
2

= (αt − βt)E(X2
t−1)− (αt − βt)[E(Xt−1)]

2

= (αt − βt)Var (Xt−1)

=
( eθ

′
Zt

1 + eθ
′Zt

− eλ
′
Zt

1 + eλ
′Zt

)
Var (Xt−1),

then it follows that

Corr(Xt, Xt−1) =
Cov (Xt, Xt−1)

Var (Xt)
=
( eθ

′
Zt

1 + eθ
′Zt

− eλ
′
Zt

1 + eλ
′Zt

)
.

This completes the proof. �
According to the Definition 2.1, it is easy to see that {Xt} is a Markov chain on the state

space S = {1, 2, · · · , n}, and the transition probabilities are given by

pk|l = p(Xt = k|Xt−1 = l,Zt)

=

min{k,l}∑
m=max{0,k+l−n}

(
l

m

)(
n− l

k −m

)( eθ
′
Zt

1 + eθ
′Zt

)m( 1

1 + eθ
′Zt

)l−m

×
( eλ

′
Zt

1 + eλ
′Zt

)k−m( 1

1 + eλ
′Zt

)n−l+m−k

, (2.2)

in which αt and βt can be rewritten through a linear transformation as:

αt =
eθ

′
Zt

1 + eθ
′Zt

, βt =
eλ

′
Zt

1 + eλ
′Zt

.
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For the strict stationarity and ergodicity of CDBAR(1) process, we state the following result.

Proposition 2.2. Let {Xt} be the process defined by (2.1), then it is an irreducible, aperiodic
and positive recurrent (and hence ergodic) Markov chain. Therefore, there exists a strictly
stationary process satisfying (2.1).

Proof. Note that 0 < αt < 1 and 0 < βt < 1, it holds that

pk|l = p(Xt = k|Xt−1 = l,Zt) > 0, for all i, j ∈ S,

then it is known that the Markov chain {Xt} is irreducible. The transition probabilities (2.2)
imply that {Xt} is aperiodic. Furthermore, {Xt} is positive recurrent because of the finite state
space. Thus the conclusion follows from Theorem 4.3.3 in Ross[11]. �

3 Parameters Estimation

For the CDBAR(1) model, our primary interest lies in estimating the parameters θ = (θ1, · · · , θp)
′

and λ = (λ1, · · · , λp)
′
. We mainly consider two methods, i.e., the conditional least squares

(CLS) and the conditional maximum likelihood (CML) estimation.

3.1 CLS Estimators of the CDBAR(1) Model

CLS estimation is one of the most commonly used methods in integer-valued time series analysis.
The CLS estimators of the CDBAR(1) model can be obtained by minimizing the conditional
sum of squares function

Q(θ,λ) =

T∑
t=2

[Xt − E(Xt|Xt−1,Zt)]
2

=
T∑

t=2

[
Xt −

( eθ
′
Zt

1 + eθ
′Zt

− eλ
′
Zt

1 + eλ
′Zt

)
Xt−1 − n

eλ
′
Zt

1 + eλ
′Zt

]2
.

Let the partial derivatives of Q(θ,λ) equal to zero, we obtain for i = 1, · · · , p, that

∂Q(θ,λ)

∂θi
= −2

T∑
t=2

[
Xt −

( eθ
′
Zt

1 + eθ
′Zt

− eλ
′
Zt

1 + eλ
′Zt

)
Xt−1 − n

eλ
′
Zt

1 + eλ
′Zt

]
× Ztie

θ
′
Zt

(1 + eθ
′Zt)2

Xt−1 = 0,

∂Q(θ,λ)

∂λi
= −2

T∑
t=2

[
Xt −

( eθ
′
Zt

1 + eθ
′Zt

− eλ
′
Zt

1 + eλ
′Zt

)
Xt−1 − n

eλ
′
Zt

1 + eλ
′Zt

]
×
( nZtie

λ
′
Zt

(1 + eλ
′Zt)2

− Ztie
λ

′
Zt

(1 + eλ
′Zt)2

Xt−1

)
= 0,

By solving the above equations, we can get the CLS estimators θ̂CLS and λ̂CLS.
Rewrite the parameters of the model as η = (θ′,λ′)′, and denote their true values by

η0 = (θ′
0,λ

′
0)

′. The following theorem states the asymptotic properties of the CLS estimators.
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Theorem 3.1. Let {Xt} be a strictly stationary and ergodic CDBAR(1) process, then the CLS
estimators η̂CLS are strongly consistent and asymptotically normal, i.e.,

√
T (η̂CLS − η0)

L−→ N(0,V −1(η0)W (η0)V
−1(η0)), T → +∞, (3.1)

where

W (η0) = E

(
u2
t (η0)

∂gt(η0)

∂η

∂gt(η0)

∂η′

)
, V (η0) = E

(
∂gt(η0)

∂η

∂gt(η0)

∂η′ − ut(η0)
∂2gt(η0)

∂η∂η′

)
,

with
gt(η) = E(Xt|Xt−1,Zt), ut(η) = Xt − gt(η).

Proof. Note that

gt(η) =
eθ

′
Zt

1 + eθ
′Zt

Xt−1 +
eλ

′
Zt

1 + eλ
′Zt

(n−Xt−1),

we can prove (3.1) by three steps.

(i) For 1 ≤ i, j, k ≤ 2p, it is easy to check that ∂gt(η)
∂ηi

, ∂2gt(η)
∂ηi∂ηj

and ∂3gt(η)
∂ηi∂ηj∂ηk

exist and are

continuous.
(ii) Denote φ1(η) = θ′Zt and φ2(η) = λ′Zt, and define

H(0)(X0, · · · , Xt−1) = n, H
(1)
i (X0, · · · , Xt−1) = |Zti|Xt−1,

H
(2)
ij (X0, · · · , Xt−1) = |ZtiZtj |Xt−1, H

(3)
ijk(X0, · · · , Xt−1) = 7|ZtiZtjZtk|Xt−1,

then for any 1 ≤ i, j, k ≤ p, we can verify that

|gt(η)| < H(0)(X0, · · · , Xt−1),∣∣∣∣∂gt(η)∂ηi

∣∣∣∣ = ∣∣∣∣Xt−1h
′(φ1)

∂φ1(η)

∂ηi

∣∣∣∣ ≤ ∣∣∣∣∂φ1(η)

∂ηi

∣∣∣∣Xt−1 = H
(1)
i (X0, · · · , Xt−1),∣∣∣∣∂2gt(η)

∂ηi∂ηj

∣∣∣∣ = Xt−1

∣∣∣∣h′′(φ1)
∂φ1(η)

∂ηi

∂φ1(η)

∂ηj
+ h′(φ1)

∂2φ1(η)

∂ηi∂ηj

∣∣∣∣
< Xt−1

(∣∣∣∣∂φ1(η)

∂ηi

∂φ1(η)

∂ηj

∣∣∣∣+ ∣∣∣∣∂2φ1(η)

∂ηi∂ηj

∣∣∣∣) = H
(2)
ij (X0, · · · , Xt−1),∣∣∣∣ ∂3gt(η)

∂ηi∂ηj∂ηk

∣∣∣∣ < Xt−1

(
7

∣∣∣∣∂φ1(η)

∂ηi

∂φ1(η)

∂ηj

∂φ1(η)

∂ηk

∣∣∣∣+ ∣∣∣∣∂2φ1(η)

∂ηi∂ηj

∂φ1(η)

∂ηk

∣∣∣∣+ ∣∣∣∣∂2φ1(η)

∂ηi∂ηk

∂φ1(η)

∂ηj

∣∣∣∣)
+Xt−1

(∣∣∣∣∂2φ1(η)

∂ηj∂ηk

∂φ1(η)

∂ηi

∣∣∣∣+ ∣∣∣∣ ∂3φ1(η)

∂ηi∂ηj∂ηk

∣∣∣∣) = H
(3)
ijk(X0, · · · , Xt−1).

Furthermore, from the fact that

E(Xm
t ) < +∞, for any m ≥ 1, t ≥ 1,

and the Hölder inequality, it follows that

E
∣∣∣XtH

(3)
ijk(X0, · · · , Xt−1)

∣∣∣ < +∞,

E
∣∣∣H(0)(X0, · · · , Xt−1)H

(3)
ijk(X0, · · · , Xt−1)

∣∣∣ < +∞,

E
∣∣∣H(1)

i (X0, · · · , Xt−1)H
(2)
ij (X0, · · · , Xt−1)

∣∣∣ < +∞.
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Similarly, these results can be extended to the case of 1 ≤ i, j, k ≤ 2p.
(iii) Applying Hölder inequality again, we have for any 1 ≤ i, j, k ≤ 2p that

E

∣∣∣∣ut(η)
∂gt(η)

∂ηi

∣∣∣∣ < +∞, E

∣∣∣∣ut(η)
∂2gt(η)

∂ηi∂ηj

∣∣∣∣ < +∞,

E

∣∣∣∣∂gt(η)∂ηi

∂gt(η)

∂ηj

∣∣∣∣ < +∞, E

∣∣∣∣u2
t (η)

∂gt(η)

∂ηi

∂gt(η)

∂ηj

∣∣∣∣ < +∞.

By Theorem 3.1 and 3.2 in Klimko and Nelson[9], we conclude that (3.1) holds. �

3.2 CML Estimators of the CDBAR(1) Model

We now consider the conditional maximum likelihood estimation for CDBAR(1) model. For
any fixed n ≥ 1, it is easy to get the conditional log-likelihood function from model (2.1) and
the conditional probability mass function of Xt as

lT (θ,λ) = log
[ T∏
t=2

p(Xt|Xt−1,Zt)
]
=

T∑
t=2

log[p(Xt|Xt−1,Zt)].

The CML estimators θ̂CML and λ̂CML are obtained by maximizing lT (θ,λ). To this end, let
the partial derivatives of lT (θ,λ) equal to zero, then the CML estimators are the solutions to
the score equations that for i = 1, · · · , p are given by

∂lT (θ,λ)

∂θi
=

T∑
t=2

1

p(Xt = k|Xt−1 = l,Zt)

[ min{k,l}∑
m=max{0,k+l−n}

(
l

m

)(
n− l

k −m

)( eλ
′
Zt

1 + eλ
′Zt

)k−m

( 1

1 + eλ
′Zt

)n−l+m−k Ztie
θ
′
Zt

(1 + eθ
′Zt)2

( eθ
′
Zt

1 + eθ
′Zt

)m−1( 1

1 + eθ
′Zt

)l−m−1

×
( m

1 + eθ
′Zt

− (l −m)eθ
′
Zt

1 + eθ
′Zt

)]
= 0,

∂lT (θ,λ)

∂λi
=

T∑
t=2

1

p(Xt = k|Xt−1 = l,Zt)

[ min{k,l}∑
m=max{0,k+l−n}

(
l

m

)(
n− l

k −m

)( eθ
′
Zt

1 + eθ
′Zt

)m
( 1

1 + eθ
′Zt

)l−m Ztie
λ

′
Zt

(1 + eλ
′Zt)2

( eλ
′
Zt

1 + eλ
′Zt

)k−m−1( 1

1 + eλ
′Zt

)n−l+m−k−1

×
( k −m

1 + eλ
′Zt

− (n− l +m− k)eλ
′
Zt

1 + eλ
′Zt

)]
= 0.

These estimators can be easily found by using numerical method in most statistical and data
analysis packages.

Let η̂CML = (θ̂′
CML, λ̂

′
CML)

′ denote the CML estimators of η̂, then the strong consistency
and the asymptotic normality of η̂CML are established by the following theorem.

Theorem 3.2. Let {Xt} be a strictly stationary and ergodic CDBAR(1) process, then the CML
estimators η̂CML are strongly consistent and asymptotically normal, i.e.,

√
T (η̂CML − η0)

L−→ N(0, I−1(η0)), T → +∞, (3.2)

where I(η0) is the Fisher information matrix.
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Proof. We prove (3.2) by three steps.
(i) By (2.2), it holds that the set D of (k, l) such that pk|l(η) > 0 is independent of η, and

each pk|l(η) has continuous partial derivatives of third order with respect to η.
(ii) From Proposition 2.2, we know that there is only one ergodic set and there are no

transient states for each η.
(iii) Letting k = 0 in (2.2) leads to

pk|l =
( 1

1 + eθ
′Zt

)l( 1

1 + eλ
′Zt

)n−l

, l = 1, 2, · · · , n.

Without loss of generality, suppose that n > 2p, then we can get

∂pk|l

∂ηi
= lZti

(
1

1 + eθ
′Zt

)l (
1

1 + eλ
′Zt

)n−l
(

eθ
′
Zt

1 + eθ
′Zt

)
, 1 ≤ i ≤ p,

∂pk|l

∂ηi
= (n− l)Zti

(
1

1 + eθ
′Zt

)l(
1

1 + eλ
′Zt

)n−l
(

eλ
′
Zt

1 + eλ
′Zt

)
, p+ 1 ≤ i ≤ 2p,

from which it can be verified that
(∂p0|l

∂ηi

)
l,i=1,2,··· ,2p, and furthermore

(∂pk|l
∂ηi

)
(k,l)∈D, i=1,2,··· ,2p

has rank 2p.
(i), (ii) and (iii) show that Condition 5.1 of Billingsley[1] holds, then Theorems 2.1 and 2.2

of Billingsley[1] guarantee that there exists a consistent CML estimator being asymptotically
normally distributed. �

4 Simulation

In order to compare the performance of the proposed estimators described in the previous
section, for the CDBAR(1) process

Xt = αt ◦Xt−1 + βt ◦ (n−Xt−1),

logit(αt) = θ
′
Zt,

logit(βt) = λ
′
Zt,

we conduct simulation studies under the following two cases.
First, we consider the one-dimensional covariate {Zt}, and focus on the following models:
Model I: {Zt} is an i.i.d. sequence of random variables that follow uniform distribution

U(0, 1);
Model II: {Zt} is an i.i.d. sequence of random variables that follow normal distribution

N(0, 1);
Model III: {Zt} is an AR process as follow:

Zt = α · Zt−1 + εt, t ≥ 1,

where {εt} is an i.i.d. sequence of normal random variables with mean 0 and variance 1. α
takes 0.3, 0.5 and 0.7, denoted as AR(1)-I, AR(1)-II and AR(1)-III respectively.

For the above three models, the parameters are selected as
(a) (θ, λ) = (−1, 0.5); (b) (θ, λ) = (−0.5, 0.1);
(c) (θ, λ) = (−0.1,−0.5); (d) (θ, λ) = (1,−1).
Second, we consider the two-dimensional covariate {Zt}, and focus on the following models:
Model IV: {Zt} is an i.i.d. sequence of random vectors that follow bivariate normal distri-

bution N2(0, 1, 0, 1, 0.5). The parameters are selected as
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(a) (θ1, λ1, θ2, λ2)=(0.6,0.2,0.4,0.5); (b) (θ1, λ1, θ2, λ2)=(0.2,0.6,0.5,0.4);
(c) (θ1, λ1, θ2, λ2)=(0.2,−0.1,0.4,−0.5); (d) (θ1, λ1, θ2, λ2)=(0.2,−0.1,−0.4,0.9).
To report the performance of the CLS estimators and the CML estimators described in the

previous section, we conduct simulation studies using sample size n = 100, 200, 300 and 500.
Figure 1 shows the typical sample path, ACF plot and PACF plot of Model I with different

parameter combinations for a sample size 300 (the sample paths, ACF plots and PACF plots
of the other 3 models are not listed here because they are similar with Figure 1). We use mean
absolute deviation error (MADE) and mean square error (MSE) to compare the effects of the
two methods. Taking the parameter α for example, these two criteria are defined as

MADE =
1

m

m∑
j=1

|α̂j − α0|, MSE =
1

m

m∑
j=1

(α̂j − α0)
2,

where m is the replication times, and α̂j is the estimator of α at the jth replication. Here we
choose m = 1000. The results are showed in Tables 1-7.

Figure 1. Sample paths, ACF and PACF plots of Models I with different parameters

As we can see that, the values of MSE and MADE gradually decrease as n increases, which
implies that the estimators are consistent for all the parameters. Moreover, the CML estimators
have smaller MSE and MADE, which implies that the CML estimators perform better than the
CLS-estimators. Therefore, we recommend CML estimation as its main estimation method.

5 Real Data Analysis

In this section, we use the proposed model to fit a set of stock trading data, which has been
analyzed by Weiß and Kim[15], to illustrate the application of CDBAR(1) process. This data
set consists of the numbers of 22 securities companies being traded every 5 minutes in the Korea
stock market from 9:00 to 14:50 on February 8, 2011. There are totally 70 observations, and the
range of data is from 0 to 22. Figure 2 presents the original series, the autocorrelation function
(ACF) and partial autocorrelation function (PACF) of the data.

We use the proposed CDBAR(1) model and BAR(1) model to fit the data set, and compare
different models via the AIC criterion and BIC criterion. For the covariates of the CDBAR (1)
model, we consider the following five cases:
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(a) CDBAR(1)-I model: In KRX (the Korea Exchange), KOSPI (Korean Composite Stock
Price Index) is the flagship market. As a result, we consider KOSPI on February 8, 2011 as the
covariate. However, we only know the open value (2090.47), the close value (2069.70), the low
value (2066.71) and the high value (2092.43), so we fix KOSPI at 9:00 to be the open value, let
KOSPI at 14.50 be the close value, then select randomly two different points from the time per 5
minutes between 9:00 and 14:50, and assign them the low value and the high value, respectively.
The other KOSPI are generated from the uniform distribution U(2066.71, 2092.43).

(b) CDBAR(1)-II model: {Zt} is an i.i.d. sequence of random variables that follow uniform
distribution U(0, 1);

(c) CDBAR(1)-III model: {Zt} is an i.i.d. sequence of random variables that follow normal
distribution N(0, 1);

(d) CDBAR(1)-IV model: {Zt} is an AR(1) process:

Zt = 0.5 · Zt−1 + εt, t ≥ 1;

(e) CDBAR(1)-V model: Zt ∼ N2(0, 1, 0, 1, 0.5).

For each model, we use the CML method to estimate the parameters, and the AIC and BIC
values are summarized in Table 8. As can be seen that, CDBAR(1)-I only improves the classical
BAR(1) model slightly, one of the reasons could be that the KOSPI values of the whole day are
very close to each other. On the other hand, CDBAR(1)-II and CDBAR(1)-IV have the smaller
AIC value and BIC value, from which we can conclude these two models are competitive for
this data set, showing that it is necessary to extend the classical BAR(1) model, because some
appropriate covariates may be very useful.

Figure 2. Sample path, the ACF plot and PACF plot of the real data

6 Summary and Conclusion

In this paper, we first extend the classical BAR(1) model, and introduce a covariates-driven
BAR(1) (CDBAR(1)) process for count data of finite range by using logistic function. Next,
the probabilistic and statistical properties of the model are discussed, such as the conditional
expectation, conditional variance and correlation coefficient. CLS estimators and CML esti-
mators of the model parameters are derived, as well as their asymptotic results are obtained.
Then, we compare the performance of the CLS estimators and CML estimators by a simulation
study. It is found that these two estimators are satisfactory and the CML estimators perform
better than the CLS estimators. Finally, a real data example reveals that the CDBAR(1) model
is appropriate for the stock trading data.
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