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Abstract Let a, b, k be nonnegative integers with 2 ≤ a < b. A graph G is called a k-Hamiltonian graph if

G − U contains a Hamiltonian cycle for any subset U ⊆ V (G) with |U | = k. An [a, b]-factor F of G is called

a Hamiltonian [a, b]-factor if F contains a Hamiltonian cycle. If G − U admits a Hamiltonian [a, b]-factor for

any subset U ⊆ V (G) with |U | = k, then we say that G has a k-Hamiltonian [a, b]-factor. Suppose that G

is a k-Hamiltonian graph of order n with n ≥ (a+b−4)(2a+b+k−6)
b−2

+ k and δ(G) ≥ a + k. In this paper, it is

proved that G admits a k-Hamiltonian [a, b]-factor if max{dG(x), dG(y)} ≥ (a−2)n+(b−2)k
a+b−4

+ 2 for each pair of

nonadjacent vertices x and y in G.
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1 Introduction

We consider finite undirected graphs which have neither loops nor multiple edges. Let G be
a graph. We use V (G) and E(G) to denote its vertex set and edge set, respectively. For any
x ∈ V (G), we denote by dG(x) the degree of x in G, and by δ(G) the minimum degree of G.
For any X ⊆ V (G), we use G[X] to denote the subgraph of G induced by X, and write G−X
for G[V (G) \X]. For disjoint vertex subsets S and T of G, we write EG(S, T ) = {xy ∈ E(G) :
x ∈ S, y ∈ T} and set eG(S, T ) = |EG(S, T )|. Let λ be a real number. Recall that ⌈λ⌉ is the
least integer such that ⌈λ⌉ ≥ λ.

Let a and b be two positive integers with a ≤ b. Then a spanning subgraph F of G satisfying
a ≤ dF (x) ≤ b for any x ∈ V (G) is called an [a, b]-factor of G. An r-factor is an [r, r]-factor.
A graph G is called a k-Hamiltonian graph if G − U contains a Hamiltonian cycle for every
subset U ⊆ V (G) with |U | = k. An [a, b]-factor F of G is called a Hamiltonian [a, b]-factor if F
contains a Hamiltonian cycle. If G−U has a Hamiltonian [a, b]-factor for any subset U ⊆ V (G)
with |U | = k, then we say that G admits a k-Hamiltonian [a, b]-factor. A k-Hamiltonian r-
factor is a k-Hamiltonian [r, r]-factor. In particular, a 0-Hamiltonian graph is said to be a
Hamiltonian graph; a 0-Hamiltonian [a, b]-factor is a Hamiltonian [a, b]-factor.

Ore[11] obtained a classic sufficient degree condition for a graph to have a Hamiltonian cycle.

Theorem 1.1[11]. Let G be a graph of order n. If G satisfies

dG(x) + dG(y) ≥ n

for each pair of nonadjacent vertices x, y ∈ V (G), then G has a Hamiltonian cycle.

Manuscript received May 18, 2015. Accepted on April 2, 2018.
This paper is supported by the National Natural Science Foundation of China (Grant No. 11371009) and the
National Social Science Foundation of China (Grant No. 14AGL001), and sponsored by Six Big Talent Peak of
Jiangsu Province (Grant No. JY–022) and 333 Project of Jiangsu Province.
†Corresponding author.



Degree Conditions for k-Hamiltonian [a, b]-factors 233

Cai, Li and Kano[2] presented a result on the existence of Hamiltonian [k, k+ 1]-factor in a
graph.

Theorem 1.2[2]. Let k ≥ 2 be an integer and let G be a graph of order n ≥ 3 with n ≥ 8k− 16
for even n and n ≥ 6k − 13 for odd n. If G satisfies

dG(x) + dG(y) ≥ n

for each pair of nonadjacent vertices x and y in G, then G contains a Hamiltonian [k, k + 1]-
factor.

Matsuda[10] obtained a sufficient condition for a 2-connected graph to have a Hamiltonian
[k, k + 1]-factor.

Theorem 1.3[10]. Let k ≥ 2 be an integer and G a 2-connected graph of order n ≥ 3 with
n ≥ 8k − 16 for even n and with n ≥ 6k − 13 for odd n. If G satisfies

max{dG(x), dG(y)} ≥ n

2

for each pair of nonadjacent vertices x and y in G, then G has a Hamiltonian [k, k+1]-factor.

Matsuda[9] proved the following result on the existence of Hamiltonian [a, b]-factor in a
graph, which is an extension of Theorem 1.3.

Theorem 1.4[9]. Let 2 ≤ a < b be integers and let G a Hamiltonian graph of order n with

n ≥ (a+b−4)(2a+b−6)
b−2 . If δ(G) ≥ a and

max{dG(x), dG(y)} ≥ (a− 2)n

a+ b− 4
+ 2

for each pair of nonadjacent vertices x and y in G, then G admits a Hamiltonian [a, b]-factor.

For the relationships between degree conditions and graph factors, we refer the reader to
[1, 3, 5, 8, 12, 14, 19, 22, 23, 25]. Some other results on factors of graphs see [4, 6, 13, 15–
18, 20, 21, 24]. We verify the following theorem, which is a generalization of Theorem 1.4.

Theorem 1.5. Let a, b, k be nonnegative integers with 2 ≤ a < b, and let G a k-Hamiltonian

graph of order n with n ≥ (a+b−4)(2a+b+k−6)
b−2 + k. If δ(G) ≥ a+ k and

max{dG(x), dG(y)} ≥ (a− 2)n+ (b− 2)k

a+ b− 4
+ 2

for each pair of nonadjacent vertices x and y in G, then G admits a k-Hamiltonian [a, b]-factor.

If k = 0 in Theorem 1.5, then Theorem 1.4 is obtained immediately. Hence, Theorem 1.4 is
a special case of Theorem 1.5. Unfortunately, the author does not know whether the result on
Theorem 1.5 is sharp or not.

2 The Proof of Theorem 1.5

The Proof of Theorem 1.5 relies on the following theorem, which is a special case of Lovász’s
(g, f)-factor theorem[7].

Theorem 2.1[7]. Let 1 ≤ a < b be integers and let G be a graph. Then G admits an [a, b]-factor
if and only if

δG(S, T ) = b|S|+ dG−S(T )− a|T | ≥ 0

for any disjoint subsets S and T of V (G).
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Proof of Theorem 1.5. According to the condition of Theorem 1.5, G admits a k-Hamiltonian
cycle C. It is easy to see that C is a k-Hamiltonian [2, b]-factor of G, and so Theorem 1.5 holds
for a = 2. So we may assume that a ≥ 3.

We write H = G − U , where U ⊆ V (G) with |U | = k. According to the assumption
of Theorem 1.5 and the definition of k-Hamiltonian graph, H has a Hamiltonian cycle C. Set
R = H−E(C). Note that V (R) = V (H) = V (G)\U and δ(R) = δ(H)−2 ≥ δ(G)−k−2 ≥ a−2.

Clearly, G has the desired property if and only if R has an [a − 2, b − 2]-factor. Suppose
that R has no [a− 2, b− 2]-factor. Then from Theorem 2.1, there exist disjoint subsets S and
T of V (R) such that

δR(S, T ) = (b− 2)|S|+ dR−S(T )− (a− 2)|T | ≤ −1. (2.1)

We choose subsets S and T such that |T | is minimum.

Claim 1. |T | ≥ b− 1.

Proof. Suppose |T | ≤ b− 2. Then by |S|+ dR−S(x) ≥ dR(x) ≥ δ(R) ≥ a− 2 for x ∈ V (G) \S,
we have

δR(S, T ) =(b− 2)|S|+ dR−S(T )− (a− 2)|T |
≥|T ||S|+ dR−S(T )− (a− 2)|T |

=
∑
x∈T

(|S|+ dR−S(x)− (a− 2)) ≥ 0,

which contradicts (2.1). �
Claim 2. dR−S(x) ≤ a− 3 for each x ∈ T .

Proof. Assume that dR−S(x) ≥ a− 2 for some x ∈ T . Then the subsets S and T \ {x} satisfy
(2.1), which contradicts the choice of S and T . �
Claim 3. S ̸= ∅.
Proof. Note that |S|+dR−S(x) ≥ a−2 for x ∈ V (G)\S. If S = ∅, then we obtain dR(x) ≥ a−2
for x ∈ V (G) \ S, and so dR(T ) ≥ (a− 2)|T |. Combining this with (2.1), we have

−1 ≥ δR(S, T ) = (b− 2)|S|+ dR−S(T )− (a− 2)|T | = dR(T )− (a− 2)|T | ≥ 0,

which is a contradiction. �
Write X = {x ∈ V (G) : dG(x) ≥ ⌈ (a−2)n+(b−2)k

a+b−4 ⌉ + 2} and Y = V (G) \ X, and set
TX = T ∩X and TY = T ∩ Y .

Claim 4. G[Y ] is a complete graph.

Proof. Assume that G[Y ] is not a complete graph. Then there exist x, y ∈ Y satisfying
xy /∈ E(G). In terms of the condition of Theorem 1.5, we obtain

max{dG(x), dG(y)} ≥
⌈ (a− 2)n+ (b− 2)k

a+ b− 4

⌉
+ 2. (2.2)

On the other hand, it follows from the definition of Y that

max{dG(x), dG(y)} ≤
⌈ (a− 2)n+ (b− 2)k

a+ b− 4

⌉
+ 1,

which contradicts (2.2). �

Claim 5. |S| ≤ ⌈ (a−2)n−(a−2)k
a+b−4 ⌉ − 2.
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Proof. Assume that |S| ≥ ⌈ (a−2)n−(a−2)k
a+b−4 ⌉ − 1. In the following, we consider two cases.

Case 1. |S| ≥ ⌈ (a−2)n−(a−2)k
a+b−4 ⌉.

In terms of |S|+ |T |+ k ≤ n, we have

δR(S, T ) =(b− 2)|S|+ dR−S(T )− (a− 2)|T |
≥(b− 2)|S|+ dR−S(T )− (a− 2)(n− k − |S|)
=(a+ b− 4)|S|+ dR−S(T )− (a− 2)n+ (a− 2)k

≥(a+ b− 4) ·
⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
+ dR−S(T )− (a− 2)n+ (a− 2)k

≥(a+ b− 4) · (a− 2)n− (a− 2)k

a+ b− 4
+ dR−S(T )− (a− 2)n+ (a− 2)k

=dR−S(T ) ≥ 0,

which contradicts (2.1).

Case 2. |S| = ⌈ (a−2)n−(a−2)k
a+b−4 ⌉ − 1.

In this case, we first verify
dR−S(T ) ≥ |T | − 2. (2.3)

For each x ∈ TX , we have

dR−S(x) ≥dR(x)− |S| = dH(x)− 2− |S| ≥ dG(x)− k − 2− |S|

≥
⌈ (a− 2)n+ (b− 2)k

a+ b− 4

⌉
+ 2− k − 2−

(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
− 1

)
≥ (a− 2)n+ (b− 2)k

a+ b− 4
− k −

⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
+ 1

>
(a− 2)n+ (b− 2)k

a+ b− 4
− k −

( (a− 2)n− (a− 2)k

a+ b− 4
+ 1

)
+ 1

=0.

According to the integrity of dR−S(x), we obtain

dR−S(x) ≥ 1

for each x ∈ TX , and so
dR−S(TX) ≥ |TX |. (2.4)

If TY = ∅, i.e., T = TX , then (2.3) holds by (2.4). Thus, we may assume that TY ̸= ∅.
Then we have |E(G[TY ])| ≥ |TY |(|TY |−1)

2 by Claim 4. Since C is a Hamiltonian cycle of H,
|E(G[TY ]) ∩ E(C)| ≤ |TY | − 1 holds. Thus, we obtain

dR−S(TY ) =
∑
x∈TY

dR−S(x) ≥ 2|E(G[TY ]) \ E(C)|

≥|TY |(|TY | − 1)− 2(|TY | − 1) = (|TY | − 1)(|TY | − 2) ≥ |TY | − 2.

Combining this with (2.4), we have

dR−S(T ) = dR−S(TX) + dR−S(TY ) ≥ |TX |+ |TY | − 2 = |T | − 2.

According to this inequality, (2.1), |S|+ |T |+ k ≤ n and n ≥ (a+b−4)(2a+b+k−6)
b−2 + k, we obtain

−1 ≥δR(S, T ) = (b− 2)|S|+ dR−S(T )− (a− 2)|T |
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≥(b− 2)|S|+ |T | − 2− (a− 2)|T |
=(b− 2)|S| − (a− 3)|T | − 2

≥(b− 2)|S| − (a− 3)(n− k − |S|)− 2

=(a+ b− 5)|S| − (a− 3)n+ (a− 3)k − 2

=(a+ b− 5)
(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
− 1

)
− (a− 3)n+ (a− 3)k − 2

≥(a+ b− 5)
( (a− 2)n− (a− 2)k

a+ b− 4
− 1

)
− (a− 3)n+ (a− 3)k − 2

=
(b− 2)n− (b− 2)k

a+ b− 4
− (a+ b− 3) ≥ (2a+ b+ k − 6)− (a+ b− 3)

=a+ k − 3 ≥ 0,

which is a contradiction. �
Claim 6. |TX | ≥ 1.

Proof. Assume that |TX | = 0. Then T = TY . Combining this with Claim 4, we obtain

|E(G[T ])| = |T |(|T | − 1)

2
.

Since C is a Hamiltonian cycle of H, |E(G[T ]) ∩ C| ≤ |T | − 1 holds. Thus, we have

dR−S(T ) ≥ 2|E(G[T ]) \ E(C)| ≥ |T |(|T | − 1)− 2(|T | − 1) = (|T | − 1)(|T | − 2). (2.5)

Using (2.1), (2.5), Claims 1 and 3, we obtain

−1 ≥δR(S, T ) = (b− 2)|S|+ dR−S(T )− (a− 2)|T |
≥(b− 2)|S|+ (|T | − 1)(|T | − 2)− (a− 2)|T | = (b− 2)|S|+ |T |2 − (a+ 1)|T |+ 2

≥(b− 2) + |T |2 − (a+ 1)|T |+ 2 > |T |2 − (a+ 1)|T |+ a = (|T | − 1)(|T | − a) ≥ 0,

which is a contradiction. �
Claim 7. |TY | ≥ 1.

Proof. Assume that |TY | = 0, i.e., T = TX . According to Claim 2 and the definition of TX ,
we have

(a− 2)n+ (b− 2)k

a+ b− 4
+ 2 ≤

⌈ (a− 2)n+ (b− 2)k

a+ b− 4

⌉
+ 2 ≤ dG(x)

≤dH(x) + k = dR(x) + 2 + k ≤ dR−S(x) + |S|+ 2 + k ≤ |S|+ k + a− 1

for any x ∈ T , which implies

dR−S(x) ≥
(a− 2)n+ (b− 2)k

a+ b− 4
− |S| − k (2.6)

for any x ∈ T , and
(a− 2)n+ (b− 2)k

a+ b− 4
− |S| − k − a+ 2 ≤ −1. (2.7)

It follows from (2.6), (2.7) and |S|+ |T |+ k ≤ n that

δR(S, T ) =(b− 2)|S|+ dR−S(T )− (a− 2)|T |
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≥(b− 2)|S|+
( (a− 2)n+ (b− 2)k

a+ b− 4
− |S| − k

)
|T | − (a− 2)|T |

=(b− 2)|S|+
( (a− 2)n+ (b− 2)k

a+ b− 4
− |S| − k − a+ 2

)
|T |

≥(b− 2)|S|+
( (a− 2)n+ (b− 2)k

a+ b− 4
− |S| − k − a+ 2

)
(n− |S| − k)

=(b− 2)|S|+
( (a− 2)n− (a− 2)k

a+ b− 4
− |S| − a+ 2

)
(n− |S| − k).

Let f(|S|) = (b−2)|S|+( (a−2)n−(a−2)k
a+b−4 −|S|−a+2)(n−|S|−k). Using n ≥ (a+b−4)(2a+b+k−6)

b−2 +
k and Claim 5, we obtain

f ′(|S|) =a+ b− 4 + k − n− (a− 2)n− (a− 2)k

a+ b− 4
+ 2|S|

≤a+ b− 4 + k − n− (a− 2)n− (a− 2)k

a+ b− 4
+ 2

(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
− 2

)
<a+ b− 4 + k − n− (a− 2)n− (a− 2)k

a+ b− 4
+ 2

( (a− 2)n− (a− 2)k

a+ b− 4
− 1

)
=
−(b− 2)n+ (b− 2)k

a+ b− 4
+ a+ b− 6

≤− (2a+ b+ k − 6) + a+ b− 6 = −(a+ k) < 0,

and so

f(|S|) ≥f
(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
− 2

)
> f

( (a− 2)n− (a− 2)k

a+ b− 4
− 1

)
=(b− 2)

( (a− 2)n− (a− 2)k

a+ b− 4
− 1

)
+ (3− a)

( (b− 2)n− (b− 2)k

a+ b− 4
+ 1

)
=
(b− 2)n− (b− 2)k

a+ b− 4
− a− b+ 5

≥(2a+ b+ k − 6)− a− b+ 5 = a+ k − 1 > 0,

which contradicts (2.1). �
Claim 8. |TY | ≤ a+ k.

Proof. Suppose that |TY | ≥ a+ k + 1. Note that TY ̸= ∅ by Claim 7 and G[TY ] is a complete
graph by Claim 4. Thus, we obtain

dR−S(x) ≥ dH−S(x)− 2 ≥ dG−S(x)− k − 2 ≥ (|TY | − 1)− k − 2 ≥ a− 2

for each x ∈ TY ⊆ T , which contradicts Claim 2. �
Note that dG(x) ≥ ⌈ (a−2)n+(b−2)k

a+b−4 ⌉+ 2 for any x ∈ TX . Hence, we have

dR−S(x) ≥dH−S(x)− 2 ≥ dG−S(x)− k − 2 ≥ dG(x)− |S| − k − 2

≥
⌈ (a− 2)n+ (b− 2)k

a+ b− 4

⌉
− |S| − k (2.8)

for any x ∈ TX . From (2.8) and Claim 2, we obtain⌈ (a− 2)n+ (b− 2)k

a+ b− 4

⌉
− |S| − k − a+ 2 ≤ −1. (2.9)
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In terms of (2.9) and Claim 5, we have a ≥ 5.
It follows from (2.1), (2.8), (2.9), Claims 5 and 8, |TX | ≤ n − k − |S| − |TY | and n ≥

(a+b−4)(2a+b+k−6)
b−2 + k that

−1 ≥δR(S, T ) = (b− 2)|S|+ dR−S(T )− (a− 2)|T |
=(b− 2)|S|+ dR−S(TX)− (a− 2)|TX |+ dR−S(TY )− (a− 2)|TY |

≥(b− 2)|S|+
(⌈ (a− 2)n+ (b− 2)k

a+ b− 4

⌉
− |S| − k − a+ 2

)
|TX | − (a− 2)|TY |

≥(b− 2)|S|+
(⌈ (a− 2)n+ (b− 2)k

a+ b− 4

⌉
− |S| − k − a+ 2

)
(n− k − |S| − |TY |)

− (a− 2)|TY |

≥(b− 2)|S|+
(⌈ (a− 2)n+ (b− 2)k

a+ b− 4

⌉
− |S| − k − a+ 2

)(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
+

(b− 2)n− (b− 2)k

a+ b− 4
− |S| − |TY |

)
− (a− 2)|TY |

≥(b− 2)|S|+
(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
− |S| − a+ 2

)(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
+

(b− 2)n− (b− 2)k

a+ b− 4
− |S| − |TY |

)
− (a− 2)|TY |

=(b− 2)|S|+
(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
− |S| − 2

)2

+
(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
− |S| − 2

)( (b− 2)n− (b− 2)k

a+ b− 4
− |TY | − a+ 6

)
− (a− 4)

( (b− 2)n− (b− 2)k

a+ b− 4
− |TY |+ 2

)
− (a− 2)|TY |

≥(b− 2)|S|+
(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
− |S| − 2

)( (b− 2)n− (b− 2)k

a+ b− 4
− |TY |

− a+ 6
)
− (a− 4)

( (b− 2)n− (b− 2)k

a+ b− 4
− |TY |+ 2

)
− (a− 2)|TY |

=
(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
− |S| − 2

)( (b− 2)n− (b− 2)k

a+ b− 4
− |TY | − a+ 6

)
− (b− 2)

( (a− 2)n− (a− 2)k

a+ b− 4
− |S| − 2

)
+ 2

( (b− 2)n− (b− 2)k

a+ b− 4
− a− b− |TY |+ 6

)
≥
(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
− |S| − 2

)( (b− 2)n− (b− 2)k

a+ b− 4
− |TY | − a+ 6

)
− (b− 2)

(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
− |S| − 2

)
+ 2

( (b− 2)n− (b− 2)k

a+ b− 4
− a− b− |TY |+ 6

)
=
(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
− |S| − 2

)( (b− 2)n− (b− 2)k

a+ b− 4
− |TY | − a− b+ 8

)
+ 2

( (b− 2)n− (b− 2)k

a+ b− 4
− a− b− |TY |+ 6

)
≥
(⌈ (a− 2)n− (a− 2)k

a+ b− 4

⌉
− |S| − 2

)( (b− 2)n− (b− 2)k

a+ b− 4
− 2a− b− k + 8

)
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+ 2
( (b− 2)n− (b− 2)k

a+ b− 4
− 2a− b− k + 6

)
≥0,

which is a contradiction. This completes the proof of Theorem 1.5. �
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