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Abstract Let a, b and k be nonnegative integers with a ≥ 2 and b ≥ a(k + 1) + 2. A graph G is called a

k-Hamiltonian graph if after deleting any k vertices of G the remaining graph of G has a Hamiltonian cycle. A

graph G is said to have a k-Hamiltonian [a, b]-factor if after deleting any k vertices of G the remaining graph of G

admits a Hamiltonian [a, b]-factor. Let G is a k-Hamiltonian graph of order n with n ≥ a+ k+2. In this paper,

it is proved that G contains a k-Hamiltonian [a, b]-factor if δ(G) ≥ a+ k and δ(G) ≥ I(G) ≥ a− 1 +
a(k+1)
b−2

.
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1 Introduction

We begin with notations and definitions. In this paper, we consider only finite undirected
graphs which do not contain loops and multiple edges. Let G be a graph. The vertex set and
edge set of a graph G are denoted by V (G) and E(G), respectively. For any x ∈ V (G), we
denote by dG(x) the degree of x in G, and by NG(x) the set of vertices adjacent to x in G. For
any X ⊆ V (G), NG(X) =

∪
x∈X

NG(x), G[X] denotes the subgraph of a graph G induced by

X and G−X denotes the subgraph of a graph G induced by V (G) \X. The minimum degree
and the maximum degree of a graph G are denoted by δ(G) and ∆(G), respectively. We use
i(G) to denote the number of isolated vertices in a graph G. The isolated toughness I(G) of a
graph G was first introduced by Ma and Liu[14],

I(G) = min
{ |X|
i(G−X)

: X ⊆ V (G), i(G−X) ≥ 2
}
,

if G is not a complete graph; otherwise, I(G) = +∞.
A subset X of V (G) is said to be an independent set (a covering set) of G if each edge of

G is incident with at most (at least) one vertex of X. It is easy to deduce that a subset X of
V (G) is an independent set of G if and only if V (G) \X is a covering set of G.

Let a ≤ b be two positive integers. A spanning subgraph F of a graph G with a ≤ dF (x) ≤ b
for each x ∈ V (G) is called an [a, b]-factor. Especially, an [r, r]-factor is simply called an r-
factor. An [a, b]-factor including a Hamiltonian cycle is called a Hamiltonian [a, b]-factor. A
graph G is a k-Hamiltonian graph if G − U contains a Hamiltonian cycle for any U ⊆ V (G)
with |U | = k. We say that a graph G includes a k-Hamiltonian [a, b]-factor if G − U admits
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a Hamiltonian [a, b]-factor for all U ⊆ V (G) with |U | = k. It is obvious that a 0-Hamiltonian
[a, b]-factor is simply called a Hamiltonian [a, b]-factor.

Many authors investigated factors and fractional factors [4–6, 8, 9, 11, 12, 17–19, 21–27] of graphs,
and Hamiltonian factors [1, 3, 15, 16, 20] in graphs. Some results on the relationship between
graph factors and isolated toughness see [2, 13, 14]. In this paper, we show a new result on the
relationship between graph factors and isolated toughness, which is the following theorem.

Theorem 1.1. Let a, b and k be three nonnegative integers with a ≥ 2 and b ≥ a(k + 1) + 2,
and let G be a k-Hamiltonian graph of order n with n ≥ a+k+2. Then G has a k-Hamiltonian

[a, b]-factor if δ(G) ≥ a+ k and δ(G) ≥ I(G) ≥ a− 1 + a(k+1)
b−2 .

If k = 0 in Theorem 1.1, then we obtain the following corollary.

Corollary 1.2. Let a and b be two nonnegative integers with b − 1 > a ≥ 2, and let G be
a Hamiltonian graph of order n with n ≥ a + 2. Then G has a Hamiltonian [a, b]-factor if
δ(G) ≥ I(G) ≥ a− 1 + a

b−2 .

2 The Proof of Theorem 1.1

We use the following lemmas to prove Theorem 1.1.

Lemma 2.1 ([10]). Let G be a graph, and let a and b be two nonnegative integers with a < b.
Then G contains an [a, b]-factor if and only if for each subset S of V (G),

a|T | − dG−S(T ) ≤ b|S|,

where T = {x : x ∈ V (G) \ S, dG−S(x) ≤ a− 1} and dG−S(T ) =
∑
x∈T

dG−S(x).

Lemma 2.2 ([7]). Let H be a graph, and let a be an integer with a ≥ 1. Let T1, T2, · · · , Ta−1

be a partition of V (H) satisfying dH(x) ≤ j for ∀x ∈ Tj (where Tj may be empty sets),
j = 1, 2, · · · , a− 1. Then there exist an independent set I and a covering set C of H satisfying

a−1∑
j=1

(a− j)cj ≤
a−1∑
j=1

(a− 1)(a− j)ij ,

where ij = |I ∩ Tj |, cj = |C ∩ Tj |, j = 1, 2, · · · , a− 1.

Lemma 2.3 ([20]). Let a and b be two integers with 2 ≤ a < b, and let G be a graph of order
n with n ≥ a+ 2. If G is complete, then G includes a Hamiltonian [a, b]-factor.

Proof of Theorem 1.1. For any U ⊆ V (G) with |U | = k, G′ = G− U . Obviously, G′ includes
a Hamiltonian cycle C. Set H = G′ − E(C). It is easy to see that V (H) = V (G′) = V (G) \ U
and δ(H) = δ(G′)− 2 ≥ δ(G)− k − 2.

Assume that G is a complete graph. Then G′ also is a complete graph. It follows from
Lemma 2.3 that G′ has a Hamiltonian [a, b]-factor, and so G has a k-Hamiltonian [a, b]-factor.
In the following, we assume that G is not a complete graph. Clearly, G includes the desired
factor if and only if H has an [a − 2, b − 2]-factor. By way of contradiction, suppose that H
has no [a − 2, b − 2]-factor. Then from Lemma 2.1, there exists some vertex subset S′ of H
satisfying

(a− 2)|T | − dH−S′(T ) > (b− 2)|S′|, (2.1)

where T = {x : x ∈ V (H)\S′, dH−S′(x) ≤ a−3}. According toH = G′−E(C) = G−U−E(C),
we have

dH−S′(x) ≥ dG′−S′(x)− 2 = dG−U−S′(x)− 2
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for each x ∈ T . We write S = S′ ∪ U . Then we obtain

dG−S(x) ≤ dH−S′(x) + 2 ≤ (a− 3) + 2 = a− 1, (2.2)

for each x ∈ T . It follows from (2.1), (2.2), |U | = k and S = S′ ∪ U that

a|T | − dG−S(T ) > (b− 2)|S| − (b− 2)k. (2.3)

Claim 1. |S| ≥ k + 1.
Proof. Note that S = S′ ∪ U and |U | = k. Hence, we have |S| ≥ k. Assume that |S| = k. In
terms of δ(G) ≥ a+ k, we obtain

dG−S(x) ≥ dG(x)− |S| ≥ δ(G)− |S| ≥ a

for any x ∈ T , which contradicts (2.2). Thus, we have |S| ≥ k + 1. Claim 1 is proved. �
Claim 2. (b− 2)|S| − (b− 2)k ≥ (b−2)|S|

k+1 .
Proof. It follows from Claim 1 that

(b− 2)(k + 1)|S| − (b− 2)k(k + 1)− (b− 2)|S| = (b− 2)k|S| − (b− 2)k(k + 1)

=(b− 2)k(|S| − (k + 1)) ≥ 0,

that is,

(b− 2)|S| − (b− 2)k ≥ (b− 2)|S|
k + 1

The proof of Claim 2 is complete. �
According to (2.3) and Claim 2, we obtain

a|T | − dG−S(T ) >
(b− 2)|S|
k + 1

. (2.4)

We write Tj = {x : x ∈ T, dG−S(x) = j}, and |Tj | = tj , j = 0, 1, · · · , a − 1. Let
H = G[T1 ∪ T2 ∪ · · · ∪ Ta−1]. Apparently, dH(x) ≤ j for any x ∈ Tj . In terms of Lemma 2.2,
there exist an independent set I of H and a covering set C satisfying

a−1∑
j=1

(a− j)cj ≤
a−1∑
j=1

(a− 1)(a− j)ij , (2.5)

where ij = |I ∩ Tj |, cj = |C ∩ Tj |, j = 1, 2, · · · , a− 1. We may assume that I is a maximum
independent set of H. Then C = V (H) − I, and so tj = ij + cj . Set W = G − (S ∪ T ) and

Q = S ∪ C ∪ (NG(I) ∩ V (W )). Note that |C|+ |NG(I) ∩ V (W )| ≤
a−1∑
j=1

jij . Thus, we obtain

|Q| ≤ |S|+
a−1∑
j=1

jij (2.6)

and

i(G−Q) ≥ t0 +
a−1∑
j=1

ij , (2.7)

where t0 = |T0|. In the following, we consider two cases.
Case 1. i(G−Q) ≥ 2 or i(G−Q) = 0.
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In this case, the following inequality obviously holds

|Q| ≥ I(G)i(G−Q). (2.8)

Note that a|T | − dG−S(T ) = at0 +
a−1∑
j=1

(a− j)tj and tj = ij + cj . It follows from (2.4) that

at0 +
a−1∑
j=1

(a− j)ij +
a−1∑
j=1

(a− j)cj >
(b− 2)|S|
k + 1

. (2.9)

According to (2.6), (2.7) and (2.8), we have

|S| ≥ I(G)
(
t0 +

a−1∑
j=1

ij

)
−

a−1∑
j=1

jij .

Combining this with (2.9), we obtain

at0 +
a−1∑
j=1

(a− j)ij +
a−1∑
j=1

(a− j)cj >
b− 2

k + 1

(
I(G)

(
t0 +

a−1∑
j=1

ij

)
−

a−1∑
j=1

jij

)
.

In view of I(G) ≥ a− 1 + a(k+1)
b−2 , a ≥ 2 and b ≥ a(k + 1) + 2, we have

b− 2

k + 1
I(G) ≥ b− 2

k + 1

(
a− 1 +

a(k + 1)

b− 2

)
=

(a− 1)(b− 2)

k + 1
+ a

≥a(a− 1)(k + 1)

k + 1
+ a = a2 > a.

Thus, we obtain

a−1∑
j=1

(a− j)ij +
a−1∑
j=1

(a− j)cj >
b− 2

k + 1

(
I(G)

a−1∑
j=1

ij −
a−1∑
j=1

jij

)
.

Combining this with (2.5), we have

a−1∑
j=1

(a− 1)(a− j)ij >
b− 2

k + 1

(
I(G)

a−1∑
j=1

ij −
a−1∑
j=1

jij

)
−

a−1∑
j=1

(a− j)ij ,

that is,
a−1∑
j=1

( (b− 2)I(G)

k + 1
− (b− 2)j

k + 1
− a(a− j)

)
ij < 0. (2.10)

Using (2.10), b ≥ a(k + 1) + 2, 0 ≤ j ≤ a− 1 and I(G) ≥ a− 1 + a(k+1)
b−2 , we obtain

0 >

a−1∑
j=1

( (b− 2)I(G)

k + 1
− (b− 2)j

k + 1
− a(a− j)

)
ij

=
a−1∑
j=1

( (b− 2)I(G)

k + 1
− a2 +

a(k + 1)− b+ 2

k + 1
j
)
ij
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≥
a−1∑
j=1

( (b− 2)I(G)

k + 1
− a2 +

a(k + 1)− b+ 2

k + 1
(a− 1)

)
ij

=
a−1∑
j=1

( (b− 2)I(G)

k + 1
− (a− 1)(b− 2)

k + 1
− a

)
ij

≥
a−1∑
j=1

( (b− 2)(a− 1 + a(k+1)
b−2 )

k + 1
− (a− 1)(b− 2)

k + 1
− a

)
ij

=0,

which is a contradiction.

Case 2. i(G−Q) = 1.

In terms of (2.7), we obtain

1 = i(G−Q) ≥ t0 +
a−1∑
j=1

ij .

Subcase 2.1. t0 = ij = 0 for all j = 1, 2, · · · , a− 1.

In this case, it is obvious that T = ∅. Combining this with (2.4), Claim 1 and b ≥ a(k +
1) + 2 ≥ a+ 2, we have

0 = a|T | − dG−S(T ) >
(b− 2)|S|
k + 1

≥ b− 2 ≥ a > 0,

which is a contradiction.

Subcase 2.2. t0 = 1 and ij = 0 for all j = 1, 2, · · · , a− 1.

Clearly, T is an isolated vertex, and so dG−S(T ) = 0. It follows from (2.4), b ≥ a(k+1)+2 ≥
a+ 2 and Claim 1 that

a = a|T | − dG−S(T ) >
(b− 2)|S|
k + 1

≥ b− 2 ≥ a,

which is a contradiction.

Subcase 2.3. There exists some j0 ∈ {1, 2, · · · , a− 1} satisfying ij0 = 1, and t0 = 0.

Obviously, T0 = ∅ and H is a complete graph. Thus, we may write I = {v}. Note that
C = V (H)− I is a covering set of H. Then we obtain

|Q| = |S ∪ C ∪ (NG(v) ∩ V (W ))| ≥ |S|+ dG−S(v) ≥ dG(v) ≥ δ(G) ≥ I(G). (2.11)

According to (2.11) and i(G−Q) = 1, (2.8) holds. Then we may obtain some contradictions
by using the same method as Case 1. This completes the proof of Theorem 1.1. �

Finally, we present the following problem.

Problem. Let a, b, k be three nonnegative integers with a ≥ 2 and b ≥ a(k + 1) + 2, and let
G a k-Hamiltonian graph of order n with n ≥ a + k + 2 and δ(G) ≥ a + k. For any little real

ϵ > 0, δ(G) ≥ I(G) ≥ a− 1 + a(k+1)
b−2 − ϵ. Does G include a k-Hamiltonian [a, b]-factor?
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