
Acta Mathematicae Applicatae Sinica, English Series

Vol. 36, No. 3 (2020) 753–770

https://doi.org/10.1007/s10255-020-0955-y
http://www.ApplMath.com.cn & www.SpringerLink.com

Acta Mathema�cae Applicatae Sinica,

English Series

© The Editorial Office of  AMAS & 
     Springer-Verlag GmbH Germany 2020

An Efficient Parameterized Logarithmic Kernel Function

for Semidefinite Optimization

Louiza DERBAL†, Zakia KEBBICHE

University of Ferhat Abbas Setif 1, Algeria (†E-mail: louiza.derbal@univ-setif.dz)

Abstract In this paper, we present a primal-dual interior point algorithm for semidefinite optimization prob-

lems based on a new class of kernel functions. These functions constitute a combination of the classic kernel

function and a barrier term.

We derive the complexity bounds for large and small-update methods respectively. We show that the best

result of iteration bounds for large and small-update methods can be achieved, namely O(q
√
n(log

√
n)

q+1
q log n

ε
)

for large-update methods and O(q
3
2 (log

√
q)

q+1
q

√
n log n

ε
) for small-update methods.

We test the efficiency and the validity of our algorithm by running some computational tests, then we

compare our numerical results with results obtained by algorithms based on different kernel functions.
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dual methods
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1 Introduction

Primal-dual interior-point methods (IPMs) have been well known as the most effective meth-
ods for solving wide classes of optimization problems, for example, linear optimization (LO),
quadratic optimization problem (QOP), semidefinite optimization (SDO), second-order cone
optimization (SOCO) and symmetric optimization (SO).

SDO has wide applications in continuous and combinatorial optimization [1]. It has become
a popular research area in mathematical programming when it is clear that the IPMs for LO
can often be extended to the more general SDO case. Many researchers have studied SDO and
achieved plentiful and beautiful results. For an overview of these results we refer to the book
[27] and its references. Among them, IPMs based on kernel functions have been designed.

Recently, a new variant of primal-dual IPM for LO and SDO based on the so-called self-
regular (SR) barrier functions was presented by Peng et al. [16] and aforementioned gap was
narrowed. Each such barrier function is determined by its (univariate) self-regular kernel func-
tion. They obtained so far the best iteration bound, namely, O(

√
n log n log n

ϵ ), for large-update
IPMs for LO and SDO. Subsequently, Bai et al. [3, 4] developed a class of primal-dual IPMs
for LO based on non-self-regular barrier functions and obtained the same favorable iteration
bounds for the algorithms with large-update strategy as [16]. Similar algorithms for SDO also
were presented (see [7, 26]).
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Table 1. Complexity Results for the Eligible Kernel Functions
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In this paper, we define a new familly of kernel functions for the SDO defined by:

ψ(t) =
t2 − 1− log(t)

2
+
e

1
tq −1 − 1

2q
for t > 0, q ≥ 1. (1)

This kernel function is a combination of the classic kernel function and a barrier term. This
work constitute an extension of the work presented for LO by the same authors L. Derbal et
al. in [9]. We show that the best result of iteration bounds for large and small-update methods

based on this new kernel function can be achieved, namely O(q
√
n(log

√
n)

q+1
q log n

ε ) for large-

update methods and O(q
3
2 (log

√
q)

q+1
q
√
n log n

ε ) for small-update methods. Moreover, we report
some numerical results to confirm the validity of this approach and to compare our obtained
results with those obtained by methods based on different kernel functions.

The paper is organized as follows. In Section 2, the SDO problem is presented and the
primal-dual IPM is described, we also define the new kernel function and its properties. In
section 3, we establish the complexity analysis and the iteration complexity bounds for large
and small-update methods. We provide our numerical resuls in Section 4. Finally, concluding
remarks and future work are presented in Section 5.

Throughout this paper. Rn, Rn
+ and Rn

++ denote the set of vectors with n components,
the set of nonnegative vectors and the set of positive vectors, respectively. ∥.∥ denotes the
Frobenius norm for matrices, and the 2-norm for vectors. Sn, Sn

+ and Sn
++ denote the cone of

symmetric, symmetric positive semidefinite and symmetric positive definite n × n matrices,
respectively. Furthermore, A ≽ 0 ( A ≻ 0 ) means that A ∈ Sn

+ ( A ∈ Sn
++). We use the matrix

inner product, i.e., A · B := tr(ATB) =
∑

i,j AijBij . For any Q ∈ Sn
++, the expression Q

1
2

denotes its symmetric square root. For any V ∈ Sn
++ , we assume that the eigenvalues of V are

arranged in non-increasing order, that is, λ1(V ) ≥ λ2(V ) ≥ · · · ≥ λn(V ). If g(x) ≥ 0 is a real
valued function of real nonnegative variable, the notation g(x) = O(x) means that g(x) ≤ c̄x
for some positive constant c̄ and g(x) = Θ(x) that c1x ≤ g(x) ≤ c2x for two positive constants
c1 and c2.
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2 The SDO Problem

In this section, we first introduce some useful results regarding the properties of the symmetric
matrices.Then some concepts of central path for SDO problems are briefly recalled. The struc-
ture of generic primal-dual IPMs based on kernel function is also given in this section. Now, we
recall some well known facts from linear algebra which are essential in our analysis. Consider
the SDO problem as:

(SDO)

{
min tr(CX)

subject to tr (AiX) = bi, i = 1, 2, · · · ,m, X ≽ 0,

and its dual problem:

(SDD)

 max bT y

subject to
m∑
i=1

yiAi + S = C, S ≽ 0,

where each Ai ∈ Sn, b = (b1, b2, · · · , bm)T ∈ Rm and C ∈ Sn. Moreover, the matrices Ai are
linearly independent, with y ∈ Rm and S ∈ Sn. Also, we assume that every point (X, y, S) is
strictly feasible, that is, SDO and SDD satisfy the interior-point condition (IPC). We have the
following lemma which is well known:

Lemma 2.1 ([8]). The following statements are equivalent:
(i) X ≥ 0, S ≥ 0 and tr (XS) = 0;

(ii) X ≥ 0, S ≥ 0 and ∥X 1
2S

1
2 ∥2 = 0;

(iii) X ≥ 0, S ≥ 0 and XS = 0.

Using lemma 2.1, we can easily check that a pair of optimal solution of SDO and SDD is
equivalent to solving the following Newton system

tr(AiX) = bi , i = 1, 2, · · · ,m,
m∑
i=1

yiAi + S = C,

XS = 0, X, S ≽ 0.

In a similar way to the LO case, we can rewrite the above system as
tr(AiX) = bi , i = 1, 2, · · · ,m,
m∑
i=1

yiAi + S = C,

XS = µE, X, S ≽ 0.

(2)

where E denotes the n × n identity matrix and µ > 0 is a parameter. If both SDO and SDD
satisfy IPC, then for each µ the system (2) has a unique solution (X(µ), y(µ), S(µ)). The set
of µ centers gives an homotopy path, which is called the central path of (P) and (D). The
basic idea of IPMs is to follow this path, if µ→ 0 then the limit of the central path exists (see
[13, 15] ) .

In general, IPMs for the SDO consist of two strategies: The first one, which is called the
inner iteration scheme, is to keep the iterative sequence in a certain neighborhood of the central
path or to keep the iterative sequence in a certain neighborhood of the center and the second
one is called the outer iteration scheme, is to decrease the parameter µ to µ+ = (1− θ)µ, for
some θ ∈ (0, 1).
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2.1 Proximity Functions and Search Directions

Newton’s method is a well-known procedure to solve a system of nonlinear equations. Suppose
that the point (X, y, S) is strictly feasible. Newton method amounts to linearizing the system
(2), thus yielding the following system:

tr (Ai∆X) = 0, i = 1, 2, · · · ,m,
m∑
i=1

∆yiAi +∆S = 0 ,

X∆S +∆XS = µE −XS, X, S ≽ 0.

(3)

A decisive observation for SDO is that the above Newton system might have no symmetric
solution ∆X. Several ways for symmetrizing the third equation in the Newton system are
proposed, such that the resulting new system has a unique symmetric solution [22, 23]. Y.
Zhang [29] proposed the symmetrization scheme

Hp(XS) =
1

2
(PXSP−1 + P−TXSPT )

where P is a general nonsingular matrix. We use the Nesterov-Tood [NT] direction [22], so

P := X
1
2 (X

1
2SX

1
2 )−

1
2X

1
2 = S− 1

2 (S
1
2XS

1
2 )S, we can derive a new linearized Newton equation

as follows 
tr(Ai∆X) = 0, i = 1, 2, · · · ,m,
m∑
i=1

∆yiAi +∆S = 0 ,

∆X + P∆SPT = µS−1 −X, X, S ≽ 0.

(4)

Now ∆X is automatically a symmetric matrix. Let D = P
1
2 witch can be used to scale X

and S to the same matrix V , namely [8, 21]

V :=
1
√
µ
D−1XD−1 =

1
√
µ
DSD. (5)

Obviously the matrices D and V are symmetric and positive definite. Let us further define

Ai :=
1
√
µ
DAiD, i = 1, 2, · · · ,m,

DX :=
1
√
µ
D−1∆XD−1, DS :=

1
√
µ
D∆SD. (6)

Then it follows from (4) that the [NT] search direction (DX,∆y,DS) (See [17]) is obtained
from the system


tr(AiDX) = 0, i = 1, 2, · · · ,m
n∑

i=1

∆yiAi +DS = 0

DX +DS = V −1 − V.

(7)

We can say that tr (DX DS) = 0, which is coming from the first and second equations of
(7) or from the orthogonality of ∆X and ∆S.

Let us recall some basics notions of linear algebra.
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Theorem 2.2. (Spectral theorem for symmetric matrices[27]). The real n × n matrix A is
symmetric if and only if there exists a matrix Q ∈ Rn×n such that QTQ = E and QTAQ = Λ
where Λ is a diagonal matrix.

Now we are ready to show how a matrix function can be obtained from ψ(t) as defined by
(1).

Definition 2.3. Let V ∈ Sn and V = QT
V diag (λ(V ))QV where QV is any orthonormal matrix

that diagonalizes V . Let ψ(t) be defined in (1). Then the matrix function ψ(V ) : Sn → Sn is
defined by

ψ(V ) = QT
V diag (ψ(λ1(V )), ψ(λ2(V )), · · · , ψ(λn(V )))QV . (8)

Note that ψ(V ) depends only on the restriction of ψ(t) to the set of eigenvalues of V . Since
ψ(t) is differentiable, the derivative ψ(t) is well defined for t > 0. Hence, replacing ψ(λi(V ))
in (8) by ψ′(λi(V )), we obtain that the matrix function ψ′(V ) is defined as well. Using ψ, we
define the barrier function.

Definition 2.4. Ψ(V ) : Sn
+ → R such that:

Ψ(V ) := tr (ψ(V)) =
n∑

i=1

ψ(λi(V )), (9)

As in the linear case, we can call ψ(t) the kernel function for the matrix function ψ(V ) and
Ψ(V ). When the function ψ(t) is triple differentiable, the derivatives ψ′(t),ψ′′(t), and ψ′′′(t)
are well-defined, and we can define ψ′(V ),ψ′′(V ), and ψ′′′(V ) by replacing ψ(λi(V )) in (8) by
ψ′(λi(V )), ψ′′(λi(V )), and ψ′′′(λi(V )), respectively.

Definition 2.5. A matrix X(t) is said to be a matrix of function (or a matrix-valued function)
if each entry of X(t) is a function of t, i.e., X(t) = [Xij(t)].

The usual concepts of continuity, differentiability, integrability and some basic rules in
calculus can be extended to matrix-valued functions by interpreting them entry-wise. Suppose
that X(t), G(t), and H(t) are all matrices of functions. And we denote by X ′(t) the derivative
to t of the matrix of function X(t). Then, we have

X ′(t) =
d

dt
X(t) =

( d
dt
Xij(t)

)
, (10)

d

dt
tr(X(t)) = tr

( d
dt
X(t)

)
= tr(X ′(t)), (11)

d

dt
tr(ψ(X(t))) = tr(ψ′(X(t))X ′), (12)

d

dt
(X(t)G(t)) =

( d
dt
X(t)

)
G(t) +X(t)

( d
dt
G(t)

)
,

=X ′(t)G(t) +X(t)G′(t). (13)

In fact, the right-hand side of the third equation in (7) is the negative gradient of the matrix

function ψc (V ) with the classical kernel function ψc (t) =
t2−1
2 − log(t). However, in this paper

we consider the kernel function (1). As in the linear case we have the following lemma:

Lemma 2.6. Ψ(V ) is strictly convex with respect to V ≻ 0 and vanishes at its global minimal
point X = E, i.e., ψ(E) = ψ′(E) = 0n×n.
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We replace the right-hand side of the third equation in (7) by −ψ′(V ). Thus the above
system can be rewriten as 

Ai ·DX = 0, i = 1, 2, · · · ,m
n∑

i=1

∆yiAi+DS = 0,

DX+DS = −ψ′(V).

(14)

Since DX and DS are orthogonal due to the orthogonality of ∆X and ∆S, it is trivial to
verify that tr(DXDS) = tr(DXDS) = 0. Then we have

DX = DS = 0n×n ⇔ ψ′(V ) = 0n×n ⇔ V = E ⇔ Ψ(V ) = 0,

i.e., if and only if XS = µE, that is, if and only if X = X(µ) and S = S(µ) as it should.
Otherwise Ψ(V ) > 0, hence, if (X, y, S) ̸= (X(µ), y(µ), S(µ)), then (∆X,∆y,∆S) is nonzero.
By taking a step along the search direction, with the step size α defined by some line search
rules, one constructs a new triple (X+, y+, S+) according to

X+ = X + α∆X, y+ = y + α∆y, S+ = S + α∆S. (15)

We can now describe the algorithm in a more formal way. The generic form of this algorithm
is shown below

Generic Algorithm

Input:

a kernel function ψ(t);

a threshold parameter τ > 1;

an accuracy parameter ε > 0;

a fixed barrier update parameter θ, 0 < θ < 1;

begin

X := E;S := E;µ := 1;V := E

while nµ ≥ ε do

begin (outer iteration)

µ := (1− θ)µ;

V := V√
1−θ

while Ψ(V ) > τ do

begin (inner iteration)

Find search directions by solving system (14);

determine a step size α;

X := X + α∆X;

S := S + α∆S;

y := y + α∆y;

V :=
1
√
µ
D−1XD−1 =

1
√
µ
DSD;

end (inner iteration)

end (outer iteration)

end
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2.2 Generic Primal-dual IPMs for SDO

It is clear from this description that closeness of (X, y, S) to (X(µ), y(µ), S(µ)) is mesured by
the value of Ψ(V ), with τ as threshold value: if Ψ(V ) ≤ τ , then start a new outer iteration by
performing a µ-update, otherwise we enter an inner iteration relative to the current value of µ
and apply (15) to get new iterates. The parametrs τ, θ and the step size α should be chosen in
such a way that the number of iterations required by the algorithm is as small as possible.

2.3 Properties of the Kernel Function

We start by recalling some properties of ψ(t),

ψ(1) = 0, ψ′(1) = 0, ψ′′
c (t) > 0, lim

t→0+
ψ(t) = lim

t→+∞
ψ(t) = +∞,

ψ′(t) = t− 1

2t
− e

1
tq −1

2tq+1
,

ψ′′(t) = 1 +
1

2t2
+

1

2

( (q + 1)tq + q

t2q+2

)
e

1
tq −1 > 1, (16)

ψ′′′(t) =
−1

t3
− 1

2
(q2t−(3q+3) + 3q(q + 1)t−(2q+3) + (q + 1)(q + 2)t−(q+3))e

1
tq −1 < 0.

Moreover, from (16) ψ(t) is strictly convex and ψ′′(t) is monotonically decreasing in t ∈
(0,∞).

Lemma 2.7 ([9]). For ψ(t), we have the following

ψ(t) is exponentially convex for all t > 0; that is

ψ(
√
t1t2) ≤

1

2
(ψ(t1) + ψ(t2)), (a)

ψ′′(t) is monotonically decreasing for all t > 0, (b)

tψ′′(t)− ψ′(t) > 0 for all t > 0, (c)

ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt) > 0, t > 1, β > 1. (d)

Lemma 2.8 ([9]). For ψ(t), we have

1

2
(t− 1)2 ≤ ψ(t) ≤ 1

2
[ψ′(t)]2, t > 0 (17)

ψ(t) ≤ 2 + q

2
(t− 1)2, t > 1. (18)

Let ψ(t) be as defined in (1), one has

tψ′(t) ≥ ψ(t), t > 1.

Let ϱ : [0,∞) → [1,∞) be the inverse function of ψ(t) for t ≥ 1 and ρ : [0,+∞[→]0, 1] be the
inverse function of −1

2ψ
′(t) for all t ∈ [0, 1]. In the next lemma we use the so-called barrier

term ψb(t) of ψ(t), which is defined by ψ(t) = t2−1
2 + ψb(t), t > 0. ρ : [0,∞) → (0, 1] be the

inverse function of the restriction of −ψ′
b(t) in the interval (0, 1] and sb = −ψ′

b(t). Then one
has
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Lemma 2.9. for ψ(t), we have

1 +

√
2s

q + 2
≤ ϱ(s) ≤ 1 +

√
2s, (19)

ρ(s) ≥ ρ(1 + 2s), (20)

ρ(sb) ≥
1

(log(2sb) + 1)
1
q

.sb >
1

2
.

At some place below we apply the function Ψ to a positive vector v. The interpretation of
Ψ(v) is compatible with definition 2.3, when identifying the vector v with its diagonal matrix
V = diag (v). when applying Ψ to this matrix we obtain

Ψ(V ) =
n∑

i=1

ψ(vi), v ∈ Rn
+.

2.4 Properties of Ψ(V ) and δ(V )

In the analysis of the algorithm, we also use the norm- based proximity measure δ(V ) defined
by

δ(V ) :=
1

2
∥Ψ′(V )∥ =

1

2

√√√√ n∑
i=1

ψ′(λi(V ))2 =
1

2
∥DX +DS∥ . (21)

Now we will derive a bound of δ(V ) in term of Ψ(V ). Since Ψ(V ) is strictly convex and
attains its minimal value zero at V = E, we have Ψ′(V ) = 0 ⇔ δ(V ) = 0 ⇔ V = E.

Theorem 2.10 (Theorem 5 in [10]). Let σ be the inverse function of ψ(t) for t ≥ 1. Then

δ(V ) ≥ 1

2
ψ′(σ(Ψ(V ))).

Lemma 2.11. Let δ(V ) be as defined in (21). Then we have

δ(V ) ≥
√

1

2
Ψ(V ). (22)

Proof. Using (17), we have

Ψ(V ) =
n∑

i=1

ψ(λi(V )) ≤
n∑

i=1

1

2
ψ′(λi(V ))2 =

1

2
∥∇Ψ(V )∥2 = 2δ(V )2,

so δ(V ) ≥
√

1
2Ψ(V ).

This proves the lemma.

Remark 2.12. Throughout the paper, we assume that τ ≥ 1. Using lemma 2.11 and the

assumption that Ψ(V ) ≥ τ , we have δ(V ) ≥
√

1
2 .

3 Complexity Analysis and the Iteration Complexity Bounds

We derive an estimate for effect of µ-update on the value of Ψ(V ).
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3.1 Three Technical Lemmas

The next lemma is cited from [12, Lemma 3.3.14 (c)].

Lemma 3.1. Let A, B ∈ Sn be two nonsingular matrices and f(t) be a given real-valued
function such that f(et) is a convex function. One has

n∑
i=1

f(ηi(AB)) ≤
n∑

i=1

f(ηi(A)ηi(B)),

where ηi(A), and ηi(B), i = 1, 2, · · · , n denote the singular values of A and B respectively.

Lemma 3.2. Let A, A+B ∈ Sn
+, then one has

λi(A+B) ≥ λn(A)− |λ1(B)| , i = 1, 2, · · · , n.

A consequence of lemma 2.7, is that any eligible kernel function is exponentially convex.
This implies the following lemma, which is crucial for our purpose.

Lemma 3.3 (Lemma 9 in [10]). Let V1 and V2 be two symmetric positive definite matrices,
then

Ψ((V
1
2
1 V2V

1
2
1 )

1
2 ) ≤ 1

2
(Ψ(V1) + Ψ(V2)), ∀ V1 > 0, V2 > 0.

Proof. For any nonsingular matrix U ∈ Sn, we have

ηi(U) = (λi(U
TU))

1
2 = (λi(UU

1
2 ))

1
2 , i = 1, 2, · · · , n.

Taking U=V
1
2
1 V

1
2
2 , we may write

ηi(V
1
2
1 V

1
2
2 ) = (λi(V

1
2
1 V2V

1
2
1 ))

1
2 = (λi(V

1
2
2 V1V

1
2
2 ))

1
2 , i = 1, 2, · · · , n.

Since V1 and V2 are symmetric positive definite, using lemma 3.1 one has

Ψ((V
1
2
1 V2V

1
2
1 )

1
2 ) =

n∑
i=1

ψ(ηi(V
1
2
1 V

1
2
2 )) ≤

n∑
i=1

ψ(ηi(V
1
2
1 )ηi(V

1
2
2 )).

Since ηi(V
1
2
1 ), ηi(V

1
2
2 ) > 0, using lemma 2.7(a), we obtain

Ψ((V
1
2
1 V2V

1
2
1 )

1
2 ) ≤1

2

n∑
i=1

(ψ(η2i (V
1
2
1 )) + ψ(ηi(V

1
2
2 )))

=
1

2

n∑
i=1

(ψ(λi(V1)) + ψ(λi(V2))) =
1

2
(Ψ(V1) + Ψ(V2)).

This completes the proof of lemma 3.3.
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3.2 Decrease the Value of Ψ(V ) in the Inner Iteration

In each inner iteration the search directions ∆X,∆y and ∆S are obtained by solving the system
(14), and using (6). After a step with size α, the new iterate is given by

X+ = X + α∆X, y+ = y + α∆y, S+ = S + α∆S.

Due to (6), we may write

X+ = X + α∆X = X + α
√
µDDXD =

√
µD(V + αDX)D

and
S+ = S + α∆S = S + α

√
µD−1DSD

−1 =
√
µD−1(V + αDS)D

−1.

Denoting the matrix V after the step as V+, we have

V+ =
1
√
µ
(D−1X+S+D)

1
2 .

We can verify that V 2
+ is unitarily similar to the matrix 1

µX
1
2
+S+X

1
2
+ and thus to

(V + αDX)
1
2 (V + αDS)(V + αDX)

1
2 .

Consequently, the eigenvalues of the matrix V+ are precisely the same as those of

Ṽ+ = ((V + αDX)
1
2 (V + αDS)(V + αDX)

1
2 )

1
2 .

By the definition of Ψ(V ), we obtain

Ψ(V+) = Ψ(Ṽ+).

Let us denote the difference between the proximity before and after one step by a function
of the step size, that is,

f(α) = Ψ(V+)−Ψ(V ) = Ψ(Ṽ+)−Ψ(V ), (23)

we find α such that f(α) is as small as possible. Hence, by Lemma 3.3,

Ψ(Ṽ+) =Ψ(((V + αDX)
1
2 (V + αDS)(V + αDX)

1
2 )

1
2 )

≤1

2
(Ψ(V + αDX) + Ψ(V + αDS)).

We have f(α) ≤ f1(α), where

f1(α) =
1

2
(Ψ(V + αDX) + Ψ(V + αDS))−Ψ(V )

which means that f1(α) gives an upper bound for the decrease of the barrier function Ψ(V ).
Furthermore, we can easily verify that

f(0) = f1(0) = 0.

It follows from (11), (12) and (13) that

f ′1(α) =
1

2
tr (ψ′(V + αDX)DX + ψ′(V + αDS)DS)
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and

f ′′1 (α) =
1

2
tr (ψ′′(V + αDX)D2

X + ψ′′(V + αDS)D
2
S), (24)

hence, using (21) and the last equation of (14), we obtain

f ′1(0) =
1

2
tr(ψ′(V )(DX +DS)) =

1

2
tr(−ψ′(V )2) = −2δ(V )2.

In what follows, we use the short notation: δ := δ(V ), and state some important results.

Lemma 3.4 (Lemma 5.19 in [26]). One has

f ′′1 (α) ≤ 2δ2ψ′′(λn(V )− 2αδ)

Proof. Since DX +DS = −ψ′(V ) and (21) imply that ∥DX +DS∥2 = ∥DX∥2+∥DS∥2 = 4λ2.
Thus we have |λ1(DX)| ≤ 2δ and |λ1(DS)| ≤ 2δ. Using lemma 3.2 and V + αDX ≥ 0, we have
, for each i,

λi(V + αDX) ≥ λn(V )− α |λ1(DX)| ≥ λn(V )− 2αδ,

λi(V + αDS) ≥ λn(V )− α |λ1(DS)| ≥ λn(V )− 2αδ.

Since ψ′′ is monotonically decreasing in t ∈ (0,+∞), we obtain

ψ′′(λi(V + αDX)) ≤ ψ′′(λn − 2αδ), ψ′′(λi(V + αDS)) ≤ ψ′′(λn − 2αδ).

Substitution into (24) gives

f ′′(α) ≤ 1

2
ψ′′(λn − 2αδ)tr(D2

X +D2
S) =

1

2
ψ′′(λn − 2αδ)(∥DX∥2 + ∥DS∥2).

Now, using that DX ⊥ DS and ∥DX +DS∥ = 2δ, we obtain

f ′′(α) ≤ 2ψ′′(λn(V )− 2αδ).

This proves the lemma.

Next we will choose a suitable step size for the algorithm. This should be chosen such
that X+ and S+ are feasible and another one is to make Ψ(V+) − Ψ(V ) decreases sufficiently.
Putting vi = λi(V ), 0 ≤ i ≤ n, and v1 := min(v) , we have:

f ′′1 (α) ≤ 2δ2ψ′′(v1 − 2αδ)

which is the same inequality as in Lemma 4.1 in [4]. From this stage on we can apply similar
arguments as in [4] for the LO case to obtain the following results which require no further
proof.

Lemma 3.5 (Lemma 4.2 in [4]). One has f ′1(α) ≤ 0, certainly holds if α satisfies the inequality

− ψ′(v1 − 2αδ) + ψ′(v1) ≤ 2δ. (25)

Lemma 3.6 (Lemma 4.3 in [4]). The largest step size α that satisfies (25) is given by

ᾱ :=
1

2δ
(ρ(δ)− ρ(2δ)).
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Lemma 3.7 (Lemma 4.4 in [4]). Let ᾱ is defined in Lemma 3.6. Then

ᾱ ≥ 1

ψ′′(ρ(2δ))
.

As in the LO case, we use a default step size α̃ that is the lower bound of the ᾱ and consists
of δ.

α̃ :=
1

ψ′′(ρ(2δ))
. (26)

Lemma 3.8. Let ρ and ᾱ be the same as defined in Lemma 3.7. Then if Ψ(V ) ≥ τ ≥ 1, then
we have

ᾱ ≥ 1

1 + (2q + 1)(1 + 4δ)[log(2 + 8δ) + 1]
q+1
q

.

Proof. Using (16), (20) and lemma 3.7, we have

ᾱ ≥ 1

ψ′′(ρ(2δ))
≥ 1

ψ′′(ρ(1 + 4δ))

by setting t = ρ(1 + 4δ), (0 < t ≤ 1), it follows that

ᾱ ≥ 1

ψ′′(t)
=

1

1 + 1
2t2 + [ 12 (q + 1)t−(q+2) + 1

2qt
−(2q+2)]et−q−1

>
1

1 + (2q + 1)t−(q+1)(−ψ′
b(t))

>
1

1 + (2q + 1)(1 + 4δ)[log(2 + 8δ) + 1]
q+1
q

, (put t = ρ(1 +
√
Ψ(v))).

This completes the proof.

By lemma 3.8, we have

α̃ :=
1

1 + (2q + 1)(1 + 4δ)[log(2 + 8δ) + 1]
q+1
q

(27)

Lemma 3.9 (Lemma. 4.5 in [4]). If the step size α satisfies α ≤ ᾱ, then

f(α) ≤ −αδ2.

Lemma 3.10. Let α̃ be the default step size as defined in (27) and Ψ(V ) ≥ 1, then

f(α̃) ≤ −
√
Ψ(v)

2 + (2q + 1)(1 + 4
√
2)[log(2 + 4

√
2Ψ0) + 1]

q+1
q

.

Proof. Since Ψ(V ) ≥ 1, then from (22), we have

δ ≥
√

1

2
Ψ(V ) ≥

√
1

2
.
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Using lemma 3.9 with α = α̃, we have

f(α̃) ≤ −α̃δ2,

f(α̃) ≤ − δ
√
2 + (2q + 1)(

√
2 + 4)[log(2 + 8δ) + 1]

q+1
q

.

Since the decrease depends monotonically on δ, subtitution yields

f(α̃) ≤ −
√
Ψ(v)

2 + (2q + 1)(2 + 4
√
2)[log(2 + 4

√
2Ψ0)) + 1]

q+1
q

.

Where the last inequality follows from Ψ0 ≥ Ψ ≥ τ ≥ 1.

This completes the proof.

3.2.1 A Lower Bound of Ψ

The next theorem is an extension of Theorem 3.2 in [4] to positive definite matrices.

Theorem 3.11 (Theorem 3 in [24]). Let ϱ be as defined in lemma 2.9. Then for any positive

definite matrix V , and any β > 1 we have: Ψ(βV ) ≤ nψ(βϱ(Ψ(V )
n )).

Corollary 3.12. Let 0 ≤ θ < 1 and V+ = V√
1−θ

. If Ψ(V ) ≤ τ , then

Ψ(V+) ≤ nψ
( ϱ(

τ)

n
)

√
1− θ

)
≤ nθ + 2τ + 2

√
2τn

2(1− θ)
.

Proof. Since 1√
1−θ

≥ 1 and ϱ(Ψ(V )
n ) ≥ 1, we have 1√

1−θ
ϱ(Ψ(V )

n ) ≥ 1. Using Theorem 3.11 with

β = 1√
1−θ

and the function ϱ is monotonically increasing since ψ(t) is that for t ≥ 1, we have

Ψ(V+) ≤ nψ
(ϱ(Ψ(V )

n
)

√
1− θ

)
≤ nψ

( ϱ(
τ

n
)

√
1− θ

)
.

This prove the first inequality. The second inequality follows from: for t ≥ 1, we have

ψ(t) ≤ t2−1
2 .

Then

Ψ(V+) ≤nψ
( σ( τn )√

1− θ

)
≤ n

2

(σ2(
τ)

n
)

1− θ
− 1

)
=

n

2(1− θ)

(
σ2

( τ
n

)
− (1− θ)

)
≤ n

2(1− θ)

((
1 +

√
2τ

n

)2

− (1− θ)
)

=
(nθ + 2τ + 2

√
2τn)

2(1− θ)
.
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3.3 Complexity of the Algorithm

We denote the value of Ψ(V ) after µ-update by Ψ0

Ψ(V+) ≤ Ψ0 =
nθ + 2τ + 2

√
2τn

2(1− θ)
= L(n, θ, τ).

We need to count how many inner iterations are required to return to the situation where
Ψ(V ) ≤ τ . the subsequent values in the same outer iteration are denoted as Ψk , k =
1, 2, · · · ,K, where K denotes the total number of inner iterations in the outer iteration. Ac-
cording to decrease of f(α̃), for k = 1, 2, · · · ,K−1, we obtain K ≤ (4+(2q+1)(4+8

√
2)[log(2+

4
√
2Ψ0) + 1]

q+1
q )Ψ

1
2
0 .

Lemma 3.13 (Lemma 14 in [24]). Suppose t0, t1, · · · , tk be a sequence of positive numbers such

that tk+1 ≤ tk − βt1−γ
k , k = 0, 1, · · · ,K − 1, where β > 0 and 0 < γ ≤ 1. Then K ≤ [

tγ0
βγ ],

letting tk = Ψk, β = 1

2+(2q+1)(2+4
√
2)[log(2+4

√
2Ψ0)+1]

q+1
q

and γ = 1
2 .

Theorem 3.14. Let K be the total number of inner iterations in the outer iterations. Then
we have

K ≤ (4 + (2q + 1)(4 + 8
√
2)[log(2 + 4

√
2Ψ0) + 1]

q+1
q )Ψ

1
2
0 .

Proof. By lemma 3.13, we have

K ≤
[ tγ0
βγ

]
= (4 + (2q + 1)(4 + 8

√
2)[log(2 + 4

√
2Ψ0) + 1]

q+1
q )Ψ

1
2
0 .

This completes the proof.

The number of outer iterations is bounded above by 1
θ log

n
ε (cf. [20], II. 17, page 116). By

multiplying the number of outer iterations and the number of inner iterations we get an upper
bound for the total number of iterations, namely,

(4 + (2q + 1)(4 + 8
√
2)[log(2 + 4

√
2Ψ0) + 1]

q+1
q )Ψ

1
2
0

log
n

ε
θ

.

For large-update methods with τ = O(
√
n) and θ = Θ(1), we have Ψ0 = O(n) and

O(q
√
n(log

√
n)

q+1
q log n

ε ) iterations complexity.

In the case of small-update methods, τ = O(1) , θ = Θ( 1√
n
) and ψ(t) ≤ 2+q

2 (t− 1)2, t > 1.

We then obtain

Ψ(V+) ≤nψ
( 1√

1− θ
ϱ(

Ψ(V )

n
)
)
≤ n

q + 2

2

( 1√
1− θ

ϱ
(Ψ(V )

n

)
− 1

)2

=
n(q + 2)

2(1− θ)

(
ϱ
(Ψ(V )

n

)
−

√
1− θ

)2

Using (19), we have

n(q + 2)

2(1− θ)

(
ϱ
(Ψ(V )

n

)
−

√
1− θ

)2

≤n(q + 2)

2(1− θ)

(
1 +

√
2
Ψ(V )

n
−

√
1− θ

)2

=
n(q + 2)

2(1− θ)

(
(1−

√
1− θ) +

√
2
Ψ(V )

n

)2

≤n(q + 2)

2(1− θ)

(
θ +

√
2
τ

n

)2

=
(q + 2)

2(1− θ)
(θ
√
n+

√
2τ)2 = Ψ0,

where we also used that 1 −
√
1− θ = θ

1+
√
1−θ

≤ θ and Ψ(V ) ≤ τ , using this upper for Ψ0,

we get in this case Ψ0 = O(q) and the iteration bound becomes O(q
3
2 (log

√
q)

q+1
q
√
n log n

ε )
iteration complexity.
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4 Numerical Results

In this section, we present some numerical results, where the Algorithm is coded in MATLAB
(R2014a) and our experiments were performed on PC with Processeur Genuine Intel (R) CPR
T2080 @ 1,73GHZ installed memory (RAM) 2,00GO.

We consider the SDO problems in [26], whose primal-dual pair of (SDO) and (SDD) have
the following data:

A1 =


0 1 0 0 0

1 2 0 0 −1

0 0 0 0 1

0 0 0 −2 −1

0 −1 1 −1 −2

 , A2 =


0 0 −2 2 0

0 2 1 0 2

−2 1 −2 0 1

2 0 0 0 0

0 2 1 0 2

 ,

A3 =


2 2 −1 −1 1

2 0 2 1 1

−1 2 0 1 0

−1 1 1 −2 0

1 1 0 0 −2

 , C =


3 3 −3 1 1

3 5 3 1 2

−3 3 −1 1 2

1 1 1 −3 −1

1 2 2 −1 −1

 , b =

 −2

2

−2



One may easily verify that X = E is feasible for the primal problem, and that y = (1; 1; 1)
and S = E is feasible for the dual problem. An optimal solution of the primal problem is given

by

X∗ =


0.0714 −0.0718 0.0169 0.0649 −0.1583

−0.0718 0.0724 −0.0183 −0.0602 0.1676

0.0169 −0.0183 0.0103 −0.0084 −0.0772

0.0649 −0.0602 −0.0084 0.1481 0.0056

−0.1583 0.1676 −0.0772 0.0056 0.6022


and for the dual problem an optimal solution is given by

Z∗ =


1.4338 0.5754 −0.0295 −0.4043 0.2169

0.5754 1.0956 0.3401 0.2169 −0.1120

−0.0295 0.3401 1.1874 0.2169 0.0478

−0.4043 0.2169 0.2169 0.2831 −0.1415

0.2169 −0.1120 0.0478 −0.1415 0.0957



y∗ =

 0.8585

1.0937

0.7831

 .

The optimal value of both problem is equal to −1.0957.
The main goal of this section is to compare iteration numbers and calculation time of the

algorithm for the following four kernel functions:

ψ(t) = t2−1−log(t)
2 + e

1
tq

−1−1
2q for t > 0,q ≥ 1; ψ1(t) =

t2−1
2 − log(t) ; ψ2(t) =

t2−1
2 − (t −

1)e
1
t−1; ψ3(t) = (m + 1)t2 − (m + 2)t + 1

tm , t > 0, where m > 4 , where ψ1(t) is the clas-

sical logarithmic kernel function (see [20]), ψ2(t) is the non-self-regular kernel function (see
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[28]), and ψ3(t) is the non-self-regular kernel function (see [14]). We take the parameter
θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, the step size α ∈ {0.5, 0.6, 0.7, αmax}. A practical step size αmax

such that αmax = ρ min (αX , αZ) and ρ ∈ (0, 1), where

αX =

− 1

λmin(X−1∆X)
, if λmin(X

−1∆X) < 0,

1, if λmin(X
−1∆X) ≥ 0,

αZ =

− 1

λmin(Z−1∆Z)
, if λmin(Z

−1∆Z) < 0,

1, if λmin(Z
−1∆Z) ≥ 0.

The threshold parameter τ = 3, and the accuracy parameter ε = 10−8 in all experiments.
The iteration numbers and the calculation time of the algorithm based on the above kernel
functions are given in the following tables.

Table 1. Numerical Results for ψ(t) (q = 1, q = 2 Alternately)

θ/α

0.5

Int Cpu

0.6

Int Cpu

0.7

Int Cpu

αmax

Int Cpu

0.1

0.1

0.3

0.3

0.5

0.5

0.7

0.7

0.9

0.9

42 0.4532

42 0.5413

39 0.2695

40 0.2651

37 0.2804

39 0.2509

35 0.1456

36 0.3283

31 0.1133

31 0.1835

33 0.3095

33 0.3734

31 0.2231

32 0.2460

26 0.1961

27 0.2002

28 0.2336

31 0.2032

23 0.1592

23 0.1616

26 0.4330

28 0.3685

25 0.2083

25 0.2147

26 0.1286

26 0.1441

22 0.2672

23 0.1719

19 0.1446

19 0.1577

15 0.3103

15 0.2925

15 0.1737

15 0.2178

15 0.1381

15 0.1427

16 0.1373

16 0.1336

15 0.1796

15 0.1185

Table 2. Numerical Results for ψ1(t)

θ/α

0.5

Int Cpu

0.6

Int Cpu

0.7

Int Cpu

αmax

Int Cpu

0.1

0.3

0.5

0.7

0.9

39 0.4480

37 0.3298

35 0.2066

34 0.3439

30 0.2553

31 0.3727

30 0.2187

26 0.2687

27 0.0948

23 0.2868

25 0.3483

25 0.2083

26 0.2462

21 0.1918

18 0.2298

15 0.2871

15 0.2419

15 0.1313

16 0.1354

15 0.1132
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Table 3. Numerical Results for ψ2(t)

θ/α

0.5

Int Cpu

0.6

Int Cpu

0.7

Int Cpu

αmax

Int Cpu

0.1

0.3

0.5

0.7

0.9

41 0.3990

38 0.3449

36 0.3012

34 0.1812

31 0.1718

32 0.3406

30 0.3135

26 0.9552

28 0.2142

23 0.2442

26 0.4055

25 0.2774

26 0.2743

22 0.2342

18 0.1382

15 0.2871

15 0.1525

15 0.2216

16 0.1917

15 0.1031

Table 4. Numerical results for ψ3(t)

θ/α

0.5

Int Cpu

0.6

Int Cpu

0.7

Int Cpu

αmax

Int Cpu

0.1

0.3

0.5

0.7

0.9

98 0.5745

77 0.3306

67 0.4727

55 0.2651

40 0.2812

86 0.5279

52 0.2903

53 0.3989

47 0.2471

32 0.3669

69 0.5514

52 0.5573

40 0.3151

32 0.3329

24 0.1611

69 0.5514

48 0.4156

29 0.3111

52 0.2719

52 0.3636

The results in these four tables show that the algorithm based on our new kernel function
ψ(x) is efficient. The iteration numbers of the algorithm depend on the values of the parameter
θ and step size α. In fact, for each θ that considered, larger values of α give better iteration
numbers. However the step size α should have an upper bound in practical computation. For
each α, larger θ gives better iteration numbers for ψ(t), ψ1(t) and ψ2(t), while for ψ3(t), θ = 0.5
gives better results. But not better than α = αmax which gives better iteration numbers in all
cases.

5 Concluding Remarks

The method presented in this article shows an extension of a large-update primal–dual IPMs for
LO to SDO. This method is based on a new class of parametric kernel functions. It is shown that
the best result of iteration bounds of our algorithm for large-update and small-update methods

based on this new kernel function can be achieved, namely O(q
√
n(log

√
n)

q+1
q log n

ε ) for large-

update methods and O(q
3
2 (log

√
q)

q+1
q
√
n log n

ε ) for small-update methods. Moreover, we have
reported some numerical results to show the validity of our approach by made a comparaison
with methods based on different kernel functions. It is shown that our algorithm is efficient for
these preliminary.

Some interesting topics remain for further research. Firstly, the search directions used in
this paper are all based on the NT-symmetrization scheme. It may be possible to design simi-
lar algorithms using other symmetrization schemes and to obtain polynomial-time complexity
bound. Secondly, further research my extend this result to linear complementarity problems
(LCP) over symetric cones (SCLCP) and the Cartesian P∗(κ) SCLCP.
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