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Abstract A proper edge coloring of a graph G is acyclic if there is no 2-colored cycle in G. The acyclic

chromatic index of G is the least number of colors such that G has an acyclic edge coloring and denoted by

χ′
a(G). An IC-plane graph is a topological graph where every edge is crossed at most once and no two crossed

edges share a vertex. In this paper, it is proved that χ′
a(G) ≤ ∆(G) + 10, if G is an IC-planar graph without

adjacent triangles and χ′
a(G) ≤ ∆(G) + 8, if G is a triangle-free IC-planar graph.
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1 Introduction

All graphs considered are finite, simple and undirected. Let G be a graph. We use V (G),
E(G), ∆(G) and δ(G) to denote its vertex set, edge set, maximum degree and minimum degree,
respectively. For a planar graph G, F (G) denotes its face set, d(v) denotes the degree of a vertex
v in G. The length or degree of a face f , denoted by d(f), is the length of the boundary walk
of f in G. We call v a k-vertex, or a k+-vertex, or a k−-vertex if d(v) = k, or d(v) ≥ k, or
d(v) ≤ k, respectively and call f a k-face, or a k+-face, or a k−-face if d(f) = k, or d(f) ≥ k,
or d(f) ≤ k, respectively. Any undefined notation follows that of Bondy and Murty[6].

A proper edge k-coloring of a graph G is a mapping ϕ : E(G) → {1, 2, · · · , k} such that no
pair of adjacent edges are colored with the same color. A proper edge coloring of a graph G is
acyclic if there is no 2-colored cycle in G. The acyclic chromatic index of G is the least number
of colors such that G has an acyclic edge coloring and denoted by χ′

a(G). Fiamčik[9] and later
Alon et al.[3] proposed the following conjecture:

Conjecture 1. For any graph G, χ′
a(G) ≤ ∆(G) + 2.

Alon et al.[2] proved that χ′
a(G) ≤ 64∆(G) for any graph G. Molloy and Reed[18] im-

proved this bound to that χ′
a(G) ≤ 16∆(G). Něsetřil and Wormald[20] proved that χ′

a(G) ≤
∆(G) + 1 for a random ∆(G)-regular graph G. The acyclic edge coloring of some special class-
es of graphs has been studied widely, including graphs with maximum degree 4 (Basavaraju
and Chandran[4]), graphs with large girths (Lin et al.[17]), subcubic graphs (Basavaraju and
Chandran[5]; Fiamčik[9]; Skulrattanakulchai[23]), series-parallel graphs (Hou et al.[13]; Wang and
Shu[26]), outerplanar graphs (Hou et al.[14]; Muthu et al.[19]), planar graphs (Cohen et al.[7];
Dong and Xu[8]; Fiedorowicz et al.[10]; Guan et al.[11]; Hou et al.[12]; Shu and Wang[21, 22];
Wang et al.[27]; Yu et al.[29]) and 1-planar graphs (Chen et al.[32]; Song and Miao[24]; Zhang et
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al.[30]). In this paper, we prove that χ′
a(G) ≤ ∆(G) + 10, if G is an IC-planar graph without

adjacent triangles and χ′
a(G) ≤ ∆(G) + 8, if G is a triangle-free IC-planar graph.

An IC-plane graph is a topological graph where every edge is crossed at most once and
no two crossed edges share a vertex, i.e., two distinct crossings are independent that is the
end-vertices of the crossed pair of edges are mutually different. If a graph G has a drawing
on the plane in which every two crossings are independent, then we call G a plane graph with
independent crossings or IC-planar graph for short. The definition of IC-planar graph was
introduced by Alberson[1] in 2008. Making a conjecture of Alberson[1], Král and Stacho[16]

proved that every IC-planar graph is 5-colorable. Obviously, every IC-planar graph also is a
1-planar graphs. A graph is 1-planar if it can be drawn on the plane so that each edge is crossed
by at most one other edges.

Every IC-planar graph G in this paper has been embedded on a plane such that every edge
is crossed by at most one other edge and the number of crossings is as small as possible. In
other words, we call G an IC-plane graph. The associated plane graph G× of G is obtained by
turning all crossings of G into new 4-vertices on a plane. For convenience, a vertex in G× is
called false if it is not a vertex of G and real otherwise. A false face means a face f in G× that
is incident with one false vertex; otherwise, f is a normal face. For a vertex v ∈ V (G), we call
fi(v) the number of i-faces which are incident with v. We use ni(v) to denote the number of
i-vertices which are adjacent to v in G. One can see that every real vertex in G× is adjacent
to at most one false vertex and incident with at most two false 3-faces in G×.

In this paper, we prove the following results.

Theorem 1. Let G be an IC-planar graph without adjacent triangles. Then χ′
a(G) ≤ ∆(G)+10.

Theorem 2. Let G be a triangle-free IC-planar graph. Then χ′
a(G) ≤ ∆(G) + 8.

2 Notations and Lemmas

Before proving our main results, we introduce some notations on acyclic edge coloring and
structural properties on IC-planar graphs.

In this paper, we use C to denote the set of colors under an acyclic edge coloring c. For
e ∈ E(G), the color α of C is said to be candidate for e with respect to a partial acyclic edge
coloring c of G if none of the adjacent edges of e is colored with α.

An (α, β)-maximal bichromatic path with respect to a partial coloring c in G is a maximal
path whose edges are colored by the colors α and β alternatingly. An (α, β, u, v)-maximal
bichromatic path is an (α, β)-maximal bichromatic path which starts out from the vertex u
and ends at the vertex v. An (α, β, uv)-critical path for an edge uv is an (α, β, u, v)-maximal
bichromatic path which starts at the vertex u with an edge colored α and ends at the vertex v
with an edge colored α.

A graph G with ∆(G) ≤ k is k-deletion-minimal if χ′
a(G) > k and χ′

a(H) ≤ k for every
proper subgraph H of G. Under an acyclic edge coloring c of G, we denote C(v) by the set of
colors which are assigned to the edges incident to v. We use c(uv) to denote the color of edge
uv with respect to the coloring c. Let Cuv = C(v)− c(uv).

A multiset is a generalized set where each member can appear multiple in the set. If an
element x appears t times in the multiset S, then we say the multiplicity of x in S is t, denoted
by DS(x). We use ∥ S ∥=

∑
x∈S

DS(x) to denote the cardinality of finite multiset. Let S and

S′ be two multisets. A multiset, denoted by S ⊎ S′, is said to be the union of S and S′ if
the multiset S ⊎ S′ has all the members of S and S′ and DS⊎S′(x) = DS(x) +DS′(x) for any
member x ∈ S ⊎ S′.

Lemma 1 [5]. Given a pair of colors α and β of a proper coloring c of G, there can be at most
one (α, β)-maximal bichromatic path containing a particular vertex v, with respect to c.
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Lemma 2 [28]. If G be a k-deletion-minimal graph, then G is 2-connected.

Lemma 3 [28]. Let G be a k-deletion-minimal graph. If v is adjacent to a 2-vertex v0 and
NG(v0) = {w, v}, then v is adjacent to at least k−d(w)+1 vertices of degree at least k−d(v)+2.
Moreover, if k ≥ ∆(G) + 2 and v is adjacent to precisely k − ∆(G) + 1 vertices of degree at
least k−∆(G)+2, then v is adjacent to at most d(v)+∆(G)− k− 3 vertices of degree two and
d(v) ≥ k −∆(G) + 4.

Lemma 4 [31]. Let G be a 1-plane graph and G× be its associated plane graph. If dG(u) = 3
and v is a false vertex in G×, then either uv /∈ E(G×) or uv is not incident with two 3-faces.

Lemma 5 [25]. Let G be an IC-plane graph without adjacent triangles and G× be its associated
plane graph. If dG(v) = 3 and v is incident with two 3-faces in G×, then v must be incident
with a 5+-face.

Lemma 6. Let G be an IC-plane graph without adjacent triangles and G× be its associated

plane graph. If dG(v) ≥ 4, then v is incident with at most ⌈dG(v)
2 ⌉ 3-faces in G×.

Proof. Let v be a d-vertex in G, where d ≥ 4, and let v1, v2, · · · , vd be its d neighbors in G×

that occur around v in a clockwise order. By fi denote the face incident with vvi and vvi+1 in
G×, where the addition on subscripts are taken modulo d.

If v is not adjacent to any false vertex in G×, then we claim that v is incident with at most

⌊d(v)
2 ⌋ 3-faces. Otherwise, we may easily find adjacent triangles. If v is adjacent to a false vertex

in G×, say v2, then we consider two cases. If v is incident with two false 3-faces in G×, without
loss of generality, we assume that f1 and f2 are false 3-faces. Then neither f3 nor fd is a 3-face

in G× since vv1v3v is a 3-face in G. Thus, v is incident with at most ⌊d(v)−3
2 ⌋ + 2 = ⌈d(v)

2 ⌉
3-faces in G×. Otherwise, v is incident with exactly one false 3-faces in G×, without loss of
generality, we assume that f1 is a false 3-faces. Then f2 must be a 4+-face. Moreover, f3 and

fd may be 3-faces in G×. Therefore, v is incident with at most ⌊d(v)−1
2 ⌋+1 = ⌈d(v)

2 ⌉ 3-faces in
G×.

Lemma 7. Let G be an IC-planar graph without adjacent triangles and δ(G) ≥ 2, then there
is a vertex v ∈ V (G) with d neighbors v1, · · · , vd, where d(v1) ≤ · · · ≤ d(vd) such that one of
the followings holds:

(A1) d = 3, d(v1) ≤ 9;
(A2) d = 4, d(v1) ≤ 6, d(v2) ≤ 8;
(A3) d = 5, d(v1) ≤ d(v2) ≤ d(v3) ≤ 5;
(A4) d = 2.

Proof. We apply the discharging method on associated plane graph G× of G and complete the
proof by contradiction. Since G× is a plane graph, we have∑

v∈V (G×)

(d (v)− 4) +
∑

f∈F (G×)

(d (f)− 4) = −8.

Now we define the initial charge function ch (x) of x ∈ V (G×)∪F (G×). Let ch (v) = d(v)− 4
if v ∈ V (G×) and ch (f) = d(f)−4 if f ∈ F (G×). Note that any discharging procedure retains
the total charge of G. If we can define suitable discharging rules to shift the initial charge
function ch (x) such that the final charge function ch′(x) ≥ 0 for all x ∈ V (G×)∪F (G×), then
0 ≤

∑
x∈V (G×)∪F (G×)

ch′(x) =
∑

x∈V (G×)∪F (G×)

ch (x) = −8, a contradiction.

For v ∈ V (G×) and f ∈ F (G×), we define the discharging rules as follows. Note that
dG(v) = dG×(v) for each real vertex, so we denote d(v) by the degree of each real vertex in the
following.
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(R1) Let f be a false 3-face in G×. Then f receives 1
2 from each incident real vertex.

(R2) Let f be a normal 3-face in G×. Then f receives 1
3 from each incident vertex.

(R3) Let f be a 5+-face in G×. Then f sends d(f)−4
t(f) to each 3-vertex incident with it, where

t(f) denotes the number of 3-vertices incident with f .
(R4) Let v be a 3-vertex. Then v receives 1

2 from each of its real neighbors in G.
(R5) Let v be a 6+-vertex. Then v sends 1

9 to each 5-vertex adjacent to it in G.
(R6) Let v be a d-vertex, where 7 ≤ d ≤ 8. Then v sends 1

4 to each 4-vertex adjacent to it
in G.

(R7) Let v be a 9+-vertex. Then v sends 1
3 to each 4-vertex adjacent to it in G.

Now we prove that ch′(x) ≥ 0 for each x ∈ V (G×) ∪ F (G×).
Let f be a face of G×. Clearly, if d(f) = 4, then ch′(f) = ch (f) = d(f) − 4 = 0 and if

d(f) ≥ 5, then ch′(f) ≥ ch (f) − d(f)−4
t(f) × t(f) = 0 by (R2). Now we check the final charge of

3-faces in G×. If f is a false 3-face, then f receives 1
2 from each real vertex incident with it by

(R1). Thus, we have ch′(f) = ch (f) + 1
2 × 2 = 0. If f is a normal 3-face, then f receives 1

3
from each real vertex incident with it by (R2). Thus, we have ch′(f) = ch (f) + 1

3 × 3 = 0.
We next check the final charge of the vertex v ∈ V (G×). Since G has no (A4), it follows

d(v) ≥ 3.
Suppose d(v) = 3. Since G has no (A1), each neighbor of v is a 10+-vertex. By (R4), v

receives 1
2 ×3 = 3

2 from its neighbors. Since G does not contain adjacent triangles, v is incident
with at most two 3-faces in G×. If v is incident with at most one 3-faces, then v sends at most
1
2 to the false 3-face incident with it in G× by (R1). So we have ch′(f) = ch (f) + 3

2 − 1
2 = 0.

If v is incident with exactly two 3-faces, then v is incident with a 5+-face by Lemma 5. By

(R3), v receives at least ⌊d(f)−4
t(f) ⌋ ≥ 1

3 from the 5+-face incident with it. And v sends at

most 1
2 + 1

3 = 5
6 to the 3-faces incident with it in G× by (R1), (R2) and Lemma 2.4. Thus,

ch′(v) ≥ ch (v) + 3
2 + 1

3 − 5
6 = 0.

Suppose d(v) = 4. If v is false, then ch′(v) = ch (v) = 0. Otherwise, v is real in G. Since
G has no (A2), we have d(v1) ≥ 7, or d(v1) ≤ 6 and d(v2) ≥ 9. So v receives totally at least
min{ 1

4 × 4, 1
3 × 3} = 1 by (R6) and (R7). And by Lemma 6, v is incident with at most two

3-faces. So v sends at most 1
2 × 2 = 1 to the 3-faces incident with it in G× by (R1) and (R2).

Hence, ch′(v) ≥ ch (v) + 1− 2× 1
2 = 0.

Suppose d(v) = 5. Since G has no (A3), v is adjacent to at least three 6+-vertices. Hence v
receives at least 1

9 × 3 = 1
3 by (R5). By Lemma 6, v is incident with at most three 3-faces. So

v sends at most 1
2 × 2 + 1

3 = 4
3 to the 3-faces incident with it in G× by (R1) and (R2). Hence,

we have ch′(v) ≥ ch (v) + 1
3 − 4

3 = 0.
Suppose d(v) = 6. By Lemma 6, v is incident with at most three 3-faces. By (R1) and

(R2), v sends at most 1
2 × 2+ 1

3 = 4
3 to the 3-faces incident with it in G×. v also sends at most

1
9 × 6 = 2

3 to the 5-vertices adjacent to it in G by (R5). Hence, ch′(v) ≥ ch (v)− 4
3 − 2

3 = 0.
Suppose d(v) = 7. By Lemma 6, v is incident with at most four 3-faces.
If f3(v) = 4, then n4(v) ≤ 4 and n7+(v) ≥ n4(v) − 1 while n4(v) ≥ 2 in G since G

contains neither adjacent triangles nor (A2). Furthermore, n5(v) ≤ 8 − 2n4(v) in G by the
same argument. By (R1) and (R2), v sends at most 1

2 × 2 + 1
3 × 2 = 5

3 to the 3-faces incident
with it in G×. Thus, we have ch′(v) ≥ ch (v)− 5

3 −
1
4 −6× 1

9 > 0 by (R5) and (R6) if n4(v) = 1,

and ch′(v) ≥ ch (v)− 5
3 − n4(v)

4 − 8−2n4(v)
9 = 16−n4(v)

36 > 0 by (R5) and (R6) if n4(v) ≥ 2.
If f3(v) = 3, then n4(v) ≤ 5 since G contains neither adjacent triangles nor (A2). By (R1)

and (R2), v sends at most 1
2 × 2 + 1

3 = 4
3 to the 3-faces incident with it in G×. Thus, we have

ch′(v) ≥ ch (v)− 4
3 − n4(v)

4 − 7−n4(v)
9 = 32−5n4(v)

36 > 0 by (R5) and (R6).
If f3(v) ≤ 2, by (R1) and (R2), v sends at most 1

2 × 2 = 1 to the 3-faces incident with it
in G×. v also sends at most 1

4 × 7 = 7
4 to the 4-vertices adjacent to it in G by (R6). Hence,

ch′(v) ≥ ch (v)− 7
4 − 1 > 0.
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Suppose d(v) = 8. By Lemma 6, v is incident with at most four 3-faces. By (R1) and (R2),
v sends at most 1

2 × 2 + 1
3 × 2 = 5

3 to the 3-faces incident with it in G×. v also sends at most
1
4 × 8 = 2 to the 4-vertices adjacent to it in G by (R6). Hence, ch′(v) ≥ ch (v)− 5

3 − 2 > 0.

Suppose d(v) = 9. By Lemma 6, v is incident with at most five 3-faces. By (R1) and (R2), v
sends at most 1

2×2+ 1
3×3 = 2 to the 3-faces incident with it inG×. v also sends at most 1

3×9 = 3
to the 4-vertices adjacent to it in G by (R5) and (R7). Hence, ch′(v) ≥ ch (v)− 3− 2 = 0.

Suppose d(v) ≥ 10. If f3(v) = 0, then v gives at most 1
2 × d(v) away by (R4)–(R7). Thus,

ch′(v) ≥ ch (v)− d(v)
2 = d(v)−8

2 > 0. If f3(v) = 1, then v sends at most 1
2 to the 3-faces incident

with it in G× by (R1) and (R2) and at most 1
2 × d(v) to the vertices adjacent to it in G by

(R4)–(R7). Thus, ch′(v) ≥ ch (v) − 1
2 − d(v)

2 = d(v)−9
2 > 0. If f3(v) ≥ 2, then we may assume

that the number of false 3-faces is t1 and the number of normal 3-faces is t2. Obviously, we

have t1+ t2 ≤ ⌈d(v)
2 ⌉ and t1 ≤ 2. Then v sends at most t1

2 + t2
3 to the 3-faces incident with it in

G× by (R1) and (R2). Moreover, we assume that the number of normal 3-faces each of which
is incident with a 3-vertex is t′2. If t′2 = 0, v is adjacent to at least 2t2 4+-vertices since G has

no (A1). Then v sends at most d(v)−2t2
2 + 2t2

3 to the vertices adjacent to it in G by (R4)-(R7).

Thus, ch′(v) ≥ ch (v) − t1
2 − t2

3 − d(v)−2t2
2 − 2t2

3 = d(v)−8−t1
2 ≥ 0. Otherwise, t′2 ≥ 1, then v

is adjacent to at least (t1 + t2 − 1) 4+-vertices since G has no (A1). Thus, v sends at most
d(v)+1−t1−t2

2 +
t1+(t2−t′2)−1

3 to the vertices adjacent to it in G by (R4)–(R7). Thus, ch′(v) ≥

ch (v)− t1
2 − t2

3 − d(v)+1−t1−t2
2 − t1+t2−1

3 +
t′2
3 =

3d(v)−25−⌈ d(v)
2 ⌉−t1+2t′2

6 ≥ 3d(v)−25−⌈ d(v)
2 ⌉

6 ≥ 0.

This completes the proof of Lemma 7.

Lemma 8. Let G be a triangle-free IC-planar graph and δ(G) ≥ 2, then there is a vertex
v ∈ V (G) with d neighbors v1, · · · , vd, where d(v1) ≤ · · · ≤ d(vd) such that one of the followings
holds:

(A1) d = 3, d(v1) ≤ 8;

(A2) d = 4, d(v1) ≤ d(v2) ≤ 5;

(A3) d = 2.

Proof. We apply the discharging method on associated plane graph G× of G and complete the
proof by contradiction. Since G× is a plane graph, we have∑

v∈V (G×)

(d (v)− 6) +
∑

f∈F (G×)

(2d (f)− 6) = −12.

Now we define the initial charge function ch (x) of x ∈ V (G×)∪F (G×). Let ch (v) = d(v)−6 if
v ∈ V (G×) and ch (f) = 2d(f)− 6 if f ∈ F (G×). Note that any discharging procedure retains
the total charge of G. If we can define suitable discharging rules to shift the initial charge
function ch (x) such that the final charge function ch′(x) ≥ 0 for all x ∈ V (G×)∪F (G×), then
0 ≤

∑
x∈V (G×)∪F (G×)

ch′(x) =
∑

x∈V (G×)∪F (G×)

ch (x) = −12, a contradiction.

For v ∈ V (G×) and f ∈ F (G×), we define the discharging rules as follows. Note that
dG(v) = dG×(v) for each real vertex, so we denote d(v) by the degree of each real vertex in the
following.

(R1) Let f be a 4+-face in G×. Then f sends 2d(f)−6
d(f) to each of vertex incident with it in

G×.

(R2) Let v be a false vertex in G×. Then v receives 1
4 from each of its neighbors in G×.

(R3) Every 3-vertex receives 3
4 from each of its neighbors in G.

(R4) Every 6+-vertex sends 1
4 to each 4-vertex adjacent to it in G.

Now we prove that ch′(x) ≥ 0 for each x ∈ V (G×) ∪ F (G×).
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Let f be a face of G×. Clearly, if d(f) = 3, then ch′(f) = ch (f) = 2d(f) − 6 = 0 and if

d(f) ≥ 4, then ch′(f) ≥ ch (f)− 2d(f)−6
d(f) × d(f) = 0 by (R1).

We next check the final charge of the vertex v ∈ V (G×). Since G has no (A3), it follows
d(v) ≥ 3.

Suppose d(v) = 3. Since G has no (A1), each neighbor of v is a 9+-vertex. By (R3), v
receives 3

4 × 3 = 9
4 from its neighbors in G. And v is incident with at most one 3-faces in G×

since G has no triangles. So v is incident with at least two 4+-faces. By (R1), v receives at
least 1

2 from each of 4+-face incident with it in G×. And v sends at most 1
4 to the false vertex

adjacent to it in G× by (R2). So ch′(v) ≥ ch (v) + 9
4 + 2× 1

2 − 1
4 = 0.

Suppose d(v) = 4. If v is false, then v is incident with at least two 4+-faces in G× since G
has no triangles. Hence, ch′(v) ≥ ch (v) + 2× 1

2 + 1
4 × 4 = 0 by (R1) and (R2).

If v is real in G. Since G has no (A2), then v is adjacent to at least three 6+-vertices. So
v receives totally at least 1

4 × 3 = 3
4 by (R4). v is also incident with at least three 4+-faces in

G× since G has no triangles. So v receives at least 1
2 × 3 = 3

2 by (R1). And v sends at most 1
4

to the false vertex adjacent to it in G× by (R2). Hence, ch′(v) ≥ ch (v) + 3
4 + 3

2 − 1
4 = 0.

Suppose d(v) = 5. v is incident with at least four 4+-faces in G× since G has no triangles.
Hence, ch′(v) ≥ ch (v) + 4× 1

2 − 1
4 > 0 by (R1)and (R2).

Suppose 6 ≤ d(v) ≤ 8. v is incident with at least (d(v)− 1) 4+-faces in G× since G has no
triangles. By (R1), v receives at least 1

2 from each of 4+-face incident with it. v sends at most
1
4 to the false vertex adjacent to it and 1

4 to each 4-vertex adjacent to it in G× by (R2) and

(R4). Hence, ch′(v) ≥ ch (v) + (d(v)− 1)× 1
2 − d(v)× 1

4 − 1
4 ≥ 5d(v)−27

4 > 0.

Suppose d(v) ≥ 9. v is incident with at least (d(v) − 1) 4+-faces since G has no triangles.
By (R1), v receives at least 1

2 from each of 4+-face incident with it. v sends at most 1
4 to the

false vertex adjacent to it by (R2). By (R3) and (R4), v sends 3
4 to each 3-vertex adjacent to

it and 1
4 to each real 4-vertex adjacent to it in G×. Hence, ch′(v) ≥ ch (v) + (d(v) − 1) × 1

2 −
n3(v)× 3

4 − n4(v)× 1
4 − 1

4 ≥ 3d(v)−27
4 ≥ 0 since d(v) ≥ 9.

This completes the proof of Lemma 8.

3 Proof of Theorem 1 and Theorem 2

Proof of Theorem 1. Let G be a k-deletion-minimal graph with k = ∆(G) + 10. Then G is
2-connected by Lemma 2 . By Lemma 7, there exists a vertex v ∈ V (G) and d(v) = d such
that v admits one of configurations (A1)–(A4). Let H = G− vv1. By the minimality of G, H
has an acyclic edge k-coloring c with the color set C={1, 2, · · · , k}. Moreover, among all the
acyclic edge coloring of H, we choose the coloring c such that the value of |C(v) ∩ C(v1)| = m
is minimum.

Suppose m = 0. Since

|C(v) ∪ C(v1)| ≤ 4 + ∆(G)− 1 = ∆(G) + 3 < ∆(G) + 10 = |C|,

we have at least one available colors for the edge uv1 such that no bichromatic cycles are created.
So we consider that m ≥ 1.

Case 1. d(v) = 3. The proof of this case is similar to that of Lemma 4 in[15], we omit it here.

Case 2. d(v) = 4. Let NG(v) = {v1, v2, v3, v4}, where d(v1) ≤ d(v2) ≤ d(v3) ≤ d(v4)
and d(v1) ≤ 6, d(v2) ≤ 8. Without loss of generality, assume that d(v1) = 6, d(v2) = 8. Let
x1, x2, x3, x4, x5 be the five neighbors of v1 other than v. Let Sv = Cvv2

⊎ Cvv3
⊎ Cvv4 .

Suppose m = 1, without loss of generality, assume that c(vv4) = c(v1x1) =1. Let U =
C(v) ∪ C(v1) in H. Therefore, |C\U| = ∆(G) + 3 and |C \ (U ∪ C(v4))| ̸= ∅. Thus we get an
acyclic edge k-coloring of G by coloring vv1 with a color in C \ (U ∪ C(v4)), a contradiction.
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When m ≥ 2, without loss of generality, assume that c(vvi+1) = c(v1xi) = i, for i ∈
{1, · · · ,m}. Let U = C(v) ∪ C(v1) in H. Therefore, |C\U| = ∆(G) + 2 +m. If there exists a
color α ∈ C\U such that the edge vv1 is colored by α and no bichromatic cycles are created
in G, then we get an acyclic edge k-coloring of G, a contradiction. Otherwise, for any color
γ ∈ C\U , there exists an (i, γ, vv1)-critical path for i ∈ {1, · · · ,m} under c. Since

∥Sv∥ = d(v3)− 1 + d(v4)− 1 + d(v2)− 1 ≤ 2∆(G) + 5 < 2(∆(G) + 2 +m),

then there must be a color β ∈ C\U such that DSv (β) ≤ 1 in Sv. Without loss of generality,
assume that β ∈ C(v2). There is no (1, β, vv3)-critical path through v2 under coloring c since
there exist a (1, β, vv1)-critical path through v2 under coloring c by Lemma 1. We recolor the
edge vv3 with β to obtain an acyclic edge coloring c′ of H, but the number of common colors
on the edges which are incident with v and v1 becomes smaller, a contradiction.
Case 3. d(v) = 5. Let NG(v) = {v1, v2, v3, v4, v5}, where d(v1) ≤ d(v2) ≤ d(v3) ≤ d(v4) ≤
d(v5) and d(v1) ≤ d(v2) ≤ d(v3) ≤ 5. Without loss of generality, assume that d(v1) = 5, d(v2) =
5, d(v3) = 5. Let x1, x2, x3, x4 be the four neighbors of v1 other than v. Let Sv = Cvv2 ⊎Cvv3 ⊎
Cvv4 ⊎ Cvv5 .

Suppose m = 1. Without loss of generality, assume that c(vv5) = c(v1x1) = 1. Let
U = C(v) ∪ C(v1) in H. Therefore, |C\U| = ∆(G) + 3 and |C \ (U ∪ C(v5))| ̸= ∅. Thus,
we can get an acyclic edge k-coloring of G by coloring vv1 with a color in C \ (U ∪ C(v5)), a
contradiction.

When m ≥ 2, without loss of generality, assume that c(vvi+1) = c(v1xi) = i, for i ∈
{1, · · · ,m}. Let U = C(v) ∪ C(v1) in H. Therefore, |C\U| = ∆(G) + 2 +m. If there exists a
color α ∈ C\U such that the edge vv1 is colored by α and no bichromatic cycles are created in
G, then we can get an acyclic edge k-coloring of G, a contradiction. Otherwise, for any color
γ ∈ C\U , there exists an (i, γ, vv1)-critical path for i ∈ {1, · · · ,m} under c. Since

∥Sv∥ = d(v5)− 1 + d(v4)− 1 + d(v3)− 1 + d(v2)− 1 ≤ 2∆(G) + 6 < 2(∆(G) + 2 +m),

then there must be a color β ∈ C\U such that DSv (β) ≤ 1 in Sv. Without loss of generality, we
assume that β ∈ C(v2). There is no (1, β, vv3)-critical path through v2 under coloring c since
there exists a (1, β, vv1)-critical path through v2 under coloring c by Lemma 1. So we recolor
the edge vv3 with β to obtain an acyclic edge coloring c′ of H, but the number of common
colors on the edges which are incident with v and v1 becomes smaller, a contradiction.

Now we consider the situation that there is no vertex v that belongs to configurations (A1),
(A2) and (A3).
Case 4. G contains a 2-vertex. We remove all the 2-vertices in G to get a graph G′. By
Lemma 3, if dG′(x) < dG(x), then dG′(x) ≥ 11. So G′ has no 2-vertices. Now we consider G′.
By Lemma 7, there exists a vertex in G′ such that at least one of (A1), (A2) and (A3) holds,
say the vertex is v, then 3 ≤ dG′(v) = dG(v) ≤ 5 and dG′(v1) ≤ 9. But by Lemma 3, we have
dG′(v1) ≥ 11, a contradiction.

Proof of Theorem 2. Let G be a k-deletion-minimal graph with k = ∆(G) + 8. Then G is
2-connected by Lemma 2 . By Lemma 8, there exists a vertex v ∈ V (G) and d(v) = d such
that v admits one of configurations (A1)–(A3). Let H = G− vv1. By the minimality of G, H
has an acyclic edge k-coloring c with the color set C={1, 2, · · · , k}. Moreover, among all the
acyclic edge coloring of H, we choose the coloring c such that the value of |C(v) ∩ C(v1)| = m
is minimum.

Suppose m = 0. Since

|C(v) ∪ C(v1)| ≤ 3 + ∆(G)− 1 = ∆(G) + 2 < ∆(G) + 8 = |C|,

we have at least one available colors for the edge uv1 such that no bichromatic cycles are created.
So we only consider that m ≥ 1.
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Case 1. d(v) = 3. The proof of this case is similar to that of Lemma 4 in [15], we omit it here.

Case 2. d(v) = 4. Let NG(v) = {v1, v2, v3, v4}, where d(v1) ≤ d(v2) ≤ d(v3) ≤ d(v4)
and d(v1) ≤ d(v2) ≤ 5. Without loss of generality, assume that d(v1) = 5, d(v2) = 5. Let
x1, x2, x3, x4 be the four neighbors of v1 other than v and Sv = Cvv2 ⊎ Cvv3 ⊎ Cvv4 .

Suppose m = 1, without loss of generality, assume that c(vv4) = c(v1x1) =1. Let U =
C(v) ∪ C(v1) in H. Therefore, |C\U| = ∆(G) + 2 and |C \ (U ∪ C(v4))| ̸= ∅. Thus, we can get
an acyclic edge k-coloring of G by coloring vv1 with a color in C \ (U ∪C(v4)), a contradiction.

When m ≥ 2, without loss of generality, assume that c(vvi+1) = c(v1xi) = i, for i ∈
{1, · · · ,m}. Let U = C(v) ∪ C(v1) in H. Therefore, |C\U| = ∆(G) + 1 +m. If there exists a
color α ∈ C\U such that the edge vv1 is colored by α and no bichromatic cycles are created
in G, then we get an acyclic edge k-coloring of G, a contradiction. Otherwise, for any color
γ ∈ C\U , there exists an (i, γ, vv1)-critical path for i ∈ {1, · · · ,m} under c. Since

∥Sv∥ = d(v3)− 1 + d(v4)− 1 + d(v2)− 1 ≤ 2∆(G) + 2 < 2(∆(G) + 1 +m),

then there must be a color β ∈ C\U such that DSv (β) ≤ 1 in Sv. Without loss of generality,
assume that β ∈ C(v2). There is no (1, β, vv3)-critical path through v2 under coloring c since
there exists a (1, β, vv1)-critical path through v2 under coloring c by Lemma 1. We recolor the
edge vv3 with β to obtain an acyclic edge coloring c′ of H, but the number of common colors
on the edges which are incident with v and v1 becomes smaller, a contradiction.

Now we consider the situation that there is no vertex v that belongs to configurations (A1)
or (A2).

Case 3. G contains a 2-vertex. We remove all the 2-vertices in G to get a graph G′. By
Lemma 3, if dG′(x) < dG(x), then dG′(x) ≥ 9. So G′ has no 2-vertices. Now we consider G′.
By Lemma 8, there exists a vertex in G′ such that at least one of (A1) and (A2) holds, say
the vertex is v, then 3 ≤ dG′(v) = dG(v) ≤ 4 and dG′(v1) ≤ 8. But by Lemma 3, we have
dG′(v1) ≥ 9, a contradiction.
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