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Abstract In this paper, we study the periodic solutions to a type of differential delay equations with 2k − 1

lags. The 4k-periodic solutions are obtained by using the variational method and the method of Kaplan-Yorke

coupling system. This is a new type of differential delay equations compared with all the previous researches.

And this paper provides a theoretical basis for the study of differential delay equations. An example is given to

demonstrate our main results.
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1 Introduction

The differential delay equations have useful applications in various fields such as age-structured
population growth, control theory, and the models involving responses with nonzero delays.

Given f ∈ C0(R,R) with f(−x) = −f(x), xf(x) > 0, x ̸= 0. Kaplan and Yorke[17] studied
the existence of 4-periodic and 6-periodic solutions to the differential delay equations

x′(t) = −f(x(t− 1)) (1.1)

and

x′(t) = −f(x(t− 1))− f(x(t− 2)) (1.2)

respectively. The method they applied is transforming the two equations into corresponding
ordinary differential equations by regarding the retarded functions x(t − 1) and x(t − 2) as
independent variables. They guessed that the existence of 2(n + 1)-periodic solutions to the
equation

x′(t) = −
n∑

i=1

f(x(t− i)) (1.3)

could be studied under the restriction

x(t− (n+ 1)) = −x(t), (1.4)

which was proved by Nussbaum[19] in 1978 by use of a fixed point theorem on cones.
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After then a lot of papers[3–17] discussed the existence and multiplicity of 2(n+ 1)-periodic
solutions to equation (1.3) and its extension

x′(t) = −
n∑

i=1

∇F (x(t− i)) (1.5)

where F ∈ C1(RN , R), ∇F (−x) = −∇F (x), F (0) = 0.
In this paper, we study the periodic orbits to a type of differential delay equations with

2k − 1 lags in the form

x′(t) = −
2k−1∑
i=1

(−1)i+1f(x(t− i)), (1.6)

which is different from (1.3) and can be regarded as a new extension of (1.3). The method
applied in this paper is the variational approach in the critical point theory[1, 2, 18].

We suppose that

f ∈ C0(R,R), f(−x) = −f(x) (1.7)

and there are α, β ∈ R such that

lim
x→0

f(x)

x
= α, lim

x→∞

f(x)

x
= β. (1.8)

Let F (x) =
∫ x

0
f(s)ds. Then F (−x) = F (x) and F (0) = 0. For convenience, we make the

following assumptions.
(S1) f satisfies (1.7) and (1.8),
(S2) |F (x)− 1

2βx
2| → ∞ as |x| → ∞,

(S±
3 ) ± [F (x)− 1

2βx
2] > 0, |x| → ∞,

(S±
4 ) ± [F (x)− 1

2αx
2] > 0, 0 < |x| ≪ 1.

In this paper, we need the following lemma as the basis of our discussion.
LetX be a Hilbert space, L : X → X be a linear operator, and Φ : X → R be a differentiable

functional. Besides, P−1 : X → X is a linear operator determined by the definition of the inner
product and A0, A∞ are defined by

∇F (x) = A0x+ ◦(|x|), |x| → 0, (1.9)

∇F (x) = A∞x+ ◦(|x|), |x| → ∞. (1.10)

Lemma 1.1 ([2], Theorem 2.4; [3], Lemma 2.4). Assume that there are two closed S1-invariant
linear subspaces, X+ and X−, and r > 0 such that

(a) X+ ∪X− is closed and of finite codimensions in X,

(b) L̂(X−) ⊂ X−, L̂ = L+ P−1A0 or L̂ = L+ P−1A∞,
(c) there exists c0 ∈ R such that

inf
x∈X+

Φ(x) ≥ c0,

(d) there is c∞ ∈ R such that
Φ(x) ≤ c∞ < Φ(0) = 0, ∀x ∈ X− ∩ Sr = {x ∈ X− : ∥x∥ = r},

(e) Φ satisfies (P.S)c-condition, c0 < c < c∞. Then Φ has at least 1
2 [dim(X+ ∩ X−) −

codimX(X
+ ∪X−)] geometrically different critical orbits in Φ−1([c0, c∞]) if

[dim(X+ ∩X−)− codimX(X
+ ∪X−)] > 0.

Remark 1.1. We may use (P.S)-condition (Palais-Smale condition) to replace condition (e)
in Lemma 1.1 since (P.S)-condition implies that (P.S)c-condition holds for each c ∈ R.
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2 Space X, Functional Φ and Its Differential Φ′

We are concerned with the 4k-periodic solutions to (1.6) and suppose

x(t− 2k) = −x(t), k ≥ 1. (2.1)

Let

X̂ ={x ∈ CT : x(t− 2k) = −x(t)}

=
{ ∞∑

i=0

(ai cos
(2i+ 1)πt

2k
+ bi sin

(2i+ 1)πt

2k
) : ai, bi ∈ R

}
,

X =cl
{ ∞∑

i=0

(
ai cos

(2i+ 1)πt

2k
+ bi sin

(2i+ 1)πt

2k

)
: ai, bi ∈ R,

∞∑
i=0

(2i+ 1)(a2i + b2i ) < ∞
}
,

and define P : X → L2 by

Px(t) =P
( ∞∑

i=0

(ai cos
(2i+ 1)πt

2k
+ bi sin

(2i+ 1)πt

2k
)
)

=
∞∑
i=0

(2i+ 1)
(
ai cos

(2i+ 1)πt

2k
+ bi sin

(2i+ 1)πt

2k

)
. (2.2)

Then the inverse P−1 of P exists and

P−1x(t) =
∞∑
i=0

1

2i+ 1

(
ai cos

(2i+ 1)πt

2k
+ bi sin

(2i+ 1)πt

2k

)
.

For x ∈ X, define

⟨x, y⟩ =
∫ 4k

0

(Px(t), y(t))dt, ∥x∥ =
√
⟨x, x⟩,

⟨x, y⟩2 =

∫ 4k

0

(x(t), y(t))dt, ∥x∥2 =
√
⟨x, x⟩2.

Therefore (X, ∥ · ∥) is an H
1
2 space.

Define functional Φ : X → R by

Φ(x) =
1

2
⟨Lx, x⟩+

∫ 4k

0

F (x(t))dt (2.3)

where

Lx = −P−1
2k−1∑
i=1

x′(t− i). (2.4)

Let

X(i) =
{
x(t) = ai cos

(2i+ 1)πt

2k
+ bi sin

(2i+ 1)πt

2k
: ai, bi ∈ R

}
.

Then we have

X =
∞∑
l=0

[ k−1∑
i=0

(
X(2lk + i) +X(2lk + 2k − i− 1)

)]
. (2.5)



Multiple Periodic Solutions of Differential Delay Equations with 2k − 1 Lags 393

If xi(t) = ai cos
(2i+1)πt

2k + bi sin
(2i+1)πt

2k ∈ X(i), i ∈ N, we have

Lx = − π

2k

( ∞∑
i=0

xi cot
(2i+ 1)π

4k

)
. (2.6)

Obviously L|X(i) : X(i) → X(i) is invertible.
Based on the theorem given by Mawhen and Willem (see [18], Theorem 1.4) the functional

Φ is differentiable, and its differential is

Φ′(x) = Lx+K(x) (2.7)

where K(x) = P−1f(x). It is easy to prove that K : (X, ∥ • ∥2) → (X, ∥ • ∥22) is compact.
Therefore, from (2.6) we have that if

x(t) =

∞∑
i=0

(
ai cos

(2i+ 1)πt

2k
+ bi sin

(2i+ 1)πt

2k

)
,

then

⟨Lx, x⟩ =−
∞∑
i=0

(2i+ 1)π(a2i + b2i ) cot
(2i+ 1)π

4k

=

∞∑
l=0

[
−

k−1∑
i=0

(4lk + 2i+ 1)π(a22lk+i + b22lk+i) cot
(2i+ 1)π

4k

+

k−1∑
i=0

(4lk + 4k − 2i− 1)π(a22lk+2k−i−1 + b22lk+2k−i−1) cot
(2i+ 1)π

4k

]
.

On the other hand,

⟨P−1βx, x⟩=
∞∑
i=0

2kβ(a2i + b2i )

=
∞∑
l=0

[ k−1∑
i=0

2kβ(a22lk+i + b22lk+i) +
k−1∑
i=0

2kβ(a22lk+2k−i−1 + b22lk+2k−i−1)
]
.

Therefore, we have

⟨(L+ P−1β)x, x⟩

=2k

∞∑
l=0

[ k−1∑
i=0

(
− (4lk + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
+ β

)
(a22lk+i + b22lk+i)

+
k−1∑
i=0

( (4lk + 4k − 2i− 1)π

2k
cot

(2i+ 1)π

4k
+ β

)
(a22lk+2k−i−1 + b22lk+2k−i−1)

]
. (2.8)

Lemma 2.1. Each critical point of the functional Φ is a 4k-periodic solution of equation (1.6)
satisfying (2.1).

Proof. Let x be a critical point of the functional Φ. Then x(t) satisfies

−
2k−1∑
i=1

x′(t− i) + f(x(t)) = 0. (2.9)
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Consequently,

−
2k−1∑
i=1

x′(t− i− 1) + f(x(t− 1)) = 0, (2.9.1)

−
2k−1∑
i=1

x′(t− i− 2) + f(x(t− 2)) = 0, (2.9.2)

−
2k−1∑
i=1

x′(t− i− 3) + f(x(t− 3)) = 0, (2.9.3)

...

−
2k−1∑
i=0

x′(t− i− (2k − 1)) + f(x(t− (2k − 1))) = 0. (2.9.(2k-1))

Calculating (2.9.1)− (2.9.2) + (2.9.3)− · · ·+ (2.9.(2k − 1)), we can get

x′(t) +
2k−1∑
i=1

(−1)i+1f(x(t− i)) = 0,

namely,

x′(t) = −
2k−1∑
i=1

(−1)i+1f(x(t− i)),

which implies that x is a solution to (1.6).

3 Partition of Space X and Symbols

Let

X+
∞ =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ k − 1,− (4lk + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
+ β > 0

}
∪
{
X(2lk + 2k − i− 1) : l ≥ 0, 0 ≤ i ≤ k − 1,

(4lk + 4k − 2i− 1)π

2k
cot

(2i+ 1)π

4k
+ β > 0

}
,

X−
∞ =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ k − 1,− (4lk + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
+ β < 0

}
∪
{
X(2lk + 2k − i− 1) : l ≥ 0, 0 ≤ i ≤ k − 1,

(4lk + 4k − 2i− 1)π

2k
cot

(2i+ 1)π

4k
+ β < 0

}
,

X+
0 =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ k − 1,− (4lk + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
+ α > 0

}
∪
{
X(2lk + 2k − i− 1) : l ≥ 0, 0 ≤ i ≤ k − 1,

(4lk + 4k − 2i− 1)π

2k
cot

(2i+ 1)π

4k
+ α > 0

}
,

X−
0 =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ k − 1,− (4lk + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
+ α < 0

}
∪
{
X(2lk + 2k − i− 1) : l ≥ 0, 0 ≤ i ≤ k − 1,

(4lk + 4k − 2i− 1)π

2k
cot

(2i+ 1)π

4k
+ α < 0

}
.

On the other hand,

X0
∞ =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ k − 1,− (4lk + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
+ β = 0

}
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∪
{
X(2lk + 2k − i− 1) : l ≥ 0, 0 ≤ i ≤ k − 1,

(4lk + 4k − 2i− 1)π

2k
cot

(2i+ 1)π

4k
+ β = 0

}
,

X0
0 =

{
X(2lk + i) : l ≥ 0, 0 ≤ i ≤ k − 1,− (4lk + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
+ α = 0

}
∪
{
X(2lk + 2k − i− 1) : l ≥ 0, 0 ≤ i ≤ k − 1,

(4lk + 4k − 2i− 1)π

2k
cot

(2i+ 1)π

4k
+ α = 0

}
,

Obviously, dimX0
∞ < ∞ and dimX0

0 < ∞.

Lemma 3.1. Under assumptions (S1) and (S2), there is σ > 0 such that⟨
(L+ P−1β)x, x

⟩
> σ∥x∥2, x ∈ X+

∞ and
⟨
(L+ P−1β)x, x

⟩
< −σ∥x∥2, x ∈ X−

∞ . (3.1)

Proof. First, we have that, for β ≥ 0, i ∈ {0, 1, · · · , k − 1},

− (4lk + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
+ β > − (4l+(i)k + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
+ β > 0

where l+(i) = max
{
l ∈ N : − (4lk+2i+1)π

2k cot (2i+1)π
4k + β > 0

}
and

− (4lk + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
+ β < − (4l−(i)k + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
+ β < 0,

where l−(i) = min
{
l ∈ N : − (4lk+2i+1)π

2k cot (2i+1)π
4k + β < 0

}
.

In this case, we may choose

σi = min
{
− π

2k
cot

(2i+ 1)π

4k
+

β

4l+(i)k + 2i+ 1
,

π

2k
cot

(2i+ 1)π

4k
− β

4l−(i)k + 2i+ 1

}
> 0,

and let σ = min{σ0, σ1, · · · , σk−1} > 0. The proof for the case β < 0 is similar. We omit it.
The inequalities in (3.1) are proved.

Lemma 3.2. Under conditions (S1) and (S2), the functional Φ defined by (2.3) satisfies (P.S)-
condition.

Proof. Let Π, N, Z be the orthogonal projections fromX ontoX+
∞, X−

∞, X0
∞, respectively. From

the second condition in (1.8) it follows that∣∣⟨P−1(f(x)− βx), x
⟩
| < σ

2
∥x∥2 +M, x ∈ X (3.2)

for some M > 0.
Assume that {xn} ⊂ X is a subsequence such that Φ′(xn) → 0 and Φ(xn) is bounded. Let

wn = Πxn, yn = Nxn, zn = Zxn . Then we have

Π(L+ P−1β) = (L+ P−1β)Π, N(L+ P−1β) = (L+ P−1β)N. (3.3)

From⟨
Φ′(xn), xn

⟩
=

⟨
Lxn + P−1f(xn), xn

⟩
=

⟨
(L+ P−1β)xn, xn

⟩
+

⟨
P−1(f(xn)− βxn), xn

⟩
,

and (3.3), we have⟨
ΠΦ′(xn), xn

⟩
=
⟨
Π(L+ P−1β)xn, xn

⟩
+
⟨
ΠP−1(f(xn)− βxn), xn

⟩
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=
⟨
(L+ P−1β)wn, wn

⟩
+

⟨
ΠP−1(f(xn)− βxn), wn

⟩
,

and then, by (3.1), we have⟨
(L+ P−1β)wn, wn

⟩
+
⟨
ΠP−1(f(xn)− βxn), wn

⟩
>

σ

2
∥wn∥2 −M∥wn∥,

which, together with ΠΦ′(xn) → 0, implies the boundedness of wn. Similarly we have the
boundedness of yn. At the same time, (S2) yields

Φ(xn) =
1

2

⟨
(L+ P−1β)xn, xn

⟩
+

∫ 4k

0

F (xn)dt−
β

2
∥xn∥22

=
1

2

⟨
(L+ P−1β)wn, wn

⟩
+

1

2

⟨
(L+ P−1β)yn, yn

⟩
+

∫ 4k

0

F (xn)dt−
β

2

(
∥wn∥22 + ∥yn∥22 + ∥zn∥22

)
.

Then the boundedness of Φ(x) implies that ∥zn∥2 is bounded. Consequently, ∥zn∥ is bounded
since X0

∞ is finite-dimensional. Therefore, ∥xn∥ is bounded.
It follows from (2.7) that

(Π +N)Φ′(xn) = (Π +N)Lxn + (Π +N)Kxn

= L(wn + yn) + (Π +N)Kxn.

From the compactness of operator K and the boundedness of xn we have that K(xn) → u.
Then

L|x+
∞+x−

∞
(wn + yn) → −(Π +N)u. (3.4)

The finite-dimensionality of X0
∞ and the boundedness of zn = Zxn imply zn → φ ∈ X0

∞.
Therefore,

xn = zn + wn + yn → φ− (L|x+
∞+x−

∞
)−1(Π +N)u,

which implies (P.S)-condition.

4 Notations and Main Results of This Paper

We first give some notation.
Denote

N(α) =


−

k−1∑
i=0

card
{
l ≥ 0 : 0 <

(4lk + 4k − 2i− 1)π

2k
cot

(2i+ 1)π

4k
< −α

}
, α < 0,

k−1∑
i=0

card
{
l ≥ 0 : 0 <

(4lk + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
< α

}
, α ≥ 0.

N(β) =


−

k−1∑
i=0

card
{
l ≥ 0 : 0 <

(4lk + 4k − 2i− 1)π

2k
cot

(2i+ 1)π

4k
< −β

}
, β < 0,

k−1∑
i=0

card
{
l ≥ 0 : 0 <

(4lk + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
< β

}
, β ≥ 0,

and

N0(α−) =
k−1∑
i=0

card
{
l ≥ 0 : 0 <

(4lk + 4k − 2i− 1)π

2k
cot

(2i+ 1)π

4k
= −α

}
, α < 0,
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N0(α+) =

k−1∑
i=0

card
{
l ≥ 0 : 0 <

(4lk + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
= α

}
, α ≥ 0,

N0(β−) =
k−1∑
i=0

card
{
l ≥ 0 : 0 <

(4lk + 4k − 2i− 1)π

2k
cot

(2i+ 1)π

4k
= −β

}
, β < 0,

N0(β+) =
k−1∑
i=0

card
{
l ≥ 0 : 0 <

(4lk + 2i+ 1)π

2k
cot

(2i+ 1)π

4k
= β

}
, β ≥ 0.

Now we give the main results of this paper.

Theorem 4.1. Suppose that (S1) and (S2) hold. Then equation (1.6) possesses at least

n = max
{
N(β)−N(α)−N0(β−)−N0(α+), N(α)−N(β)−N0(α−)−N0(β+)

}
,

4k-periodic solutions satisfying x(t− 2k) = −x(t) provided that n > 0.

Theorem 4.2. Suppose that (S1), (S2), (S
+
3 ), and (S−

4 ) hold. Then equation (1.6) possesses at
least

n = N(β)−N(α) +N0(β+) +N0(α−)

4k-periodic solutions satisfying x(t− 2k) = −x(t) provided that n > 0.

Theorem 4.3. Suppose that (S1), (S2), (S
−
3 ), and (S+

4 ) hold. Then equation (1.6) possesses at
least

n = N(α)−N(β) +N0(α+) +N0(β−)

4k-periodic solutions satisfying x(t− 2k) = −x(t) provided that n > 0.

5 Proof of Main Results of This Paper

Proof of Theorem 4.1. Suppose without loss of generality that

n = N(β)−N(α)−N0(β−)−N0(α+).

Let X+ = X+
∞ and X− = X−

0 . Then

X \ (X+ ∪X−) = X \ (X+
∞ ∪X−

0 ) ⊆ X0
∞ ∪X0

0 ∪ (X+
∞ ∩X−

0 ).

Obviously
codimX(X

+ +X−) ≤ dimX0
∞ + dimX0

0 + dim(X+
∞ ∩X−

0 ) < ∞,

which implies that condition (a) in Lemma 1.1 holds. Let A∞ = β. Then condition (b) in
Lemma 1.1 holds since for each j ∈ N , we have that x ∈ X(j) yields (L+ P−1β)x ∈ X(j).

At the same time, Lemma 3.2 gives the (P.S)-condition.
Now it suffices to show that conditions (c) and (d) in Lemma 1.1 hold under assumptions

(S1) and (S2).
In fact, condition (S1) implies that on X− we have Φ(x) < 0 if 0 < ∥x∥ ≪ 1, that is, there

are r > 0 and c∞ < 0 such that

Φ(x) ≤ c∞ < 0 = Φ(0),∀x ∈ X− ∩ Sr = {x ∈ X : ∥x∥ = r}.

On the other hand, we have shown in Lemma 3.1 that there is σ > 0 such that
⟨
(L +

P−1β)x, x
⟩
> σ∥x∥2, x ∈ X+

∞. On the other hand |F (x) − 1
2βx

2| < 1
4σ|x|

2 + M1, x ∈ R for
some M1 > 0.
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Then

Φ(x) =
1

2

⟨
(L+ P−1β)x, x

⟩
+

∫ 4k

0

[
F (x(t))− 1

2
β|x(t)|2

]
dt

≥ 1

2
σ∥x∥2 − 1

4
σ∥x∥2 − 4kM1 ≥ 1

4
σ∥x∥2 − 4kM1

if x ∈ X+. Clearly, there is c0 < c∞ such that Φ(x) ≥ c0, x ∈ X+.

Our last task is to compute the value of

n =
1

2

[
dim(X+ ∩X−)− codimX(X

+ +X−)
]

=
1

2

[
dim(X+

∞ ∩X−
0 )− codimX(X

+
∞ +X−

0 )
]

=
1

2

∞∑
j=0

[
dim(X+

∞(j) ∩X−
0 (j))− codimX(j)(X

+
∞(j) + X−

0 (j))
]
.

By computation we get that, for each i ∈ {0, 1, · · · , k − 1},

⟨
(L+ P−1β)x, x

⟩
=

(
− π

2k
cot

(2i+ 1)π

4k
+

β

4lk + 2i+ 1

)
∥x∥2,

x ∈ X(2lk + i), (5.1)⟨
(L+ P−1β)x, x

⟩
=

( π

2k
cot

(2i+ 1)π

4k
+

β

4lk + 4k − 2i− 1

)
∥x∥2,

x ∈ X(2lk + 2k − i− 1), (5.2)⟨
(L+ P−1α)x, x

⟩
=

(
− π

2k
cot

(2i+ 1)π

4k
+

α

4lk + 2i+ 1

)
∥x∥2,

x ∈ X(2lk + i), (5.3)⟨
(L+ P−1α)x, x

⟩
=

( π

2k
cot

(2i+ 1)π

4k
+

α

4lk + 4k − 2i− 1

)
∥x∥2,

x ∈ X(2lk + 2k − i− 1). (5.4)

Therefore,

X+
∞(2lk + i) = X+

∞ ∩X(2lk + i) = ∅,
X+

∞(2lk + 2k − i− 1) = X+
∞ ∩X(2lk + 2k − i− 1) = X(2lk + 2k − i− 1),

X−
0 (2lk + i) = X−

0 ∩X(2lk + i) = X(2lk + i),

X−
0 (2lk + 2k − i− 1) = X−

0 ∩X(2lk + 2k − i− 1) = ∅
if i ∈ {0, 1, · · · , k − 1} and l ≥ 0 is large enough, which means that there is M > 0 such

that dim(X+
∞(j) ∩X−

0 (j))− codimX(X
+
∞(j) + X−

0 (j)) = 0, j > M, from which it follows that

n =
1

2

M∑
j=0

[
dim(X+

∞(j) ∩X−
0 (j))− codimX(j)(X

+
∞(j) + X−

0 (j))
]

=
1

2

M∑
j=0

[
dimX+

∞(j) + dimX−
0 (j)− 2

]
=

1

2

M∑
j=0

[
dimX+

∞(j) + dimX−
0 (j)

]
− (M + 1).
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Then we have

M∑
j=0

dim(X+
∞(j))

=2

{
N(β) + card{2lk + 2k − i− 1 : 0 ≤ 2lk + 2k − i− 1 ≤ M}, β ≥ 0,

N(β)−N0(β−) + card{2lk + 2k − i− 1 : 0 ≤ 2lk + 2k − i− 1 ≤ M}, β < 0,
(5.5)

M∑
j=0

dim(X−
0 (j))

=2

{
−N(α)−N0(α+) + card{2lk + i : 0 ≤ 2lk + i ≤ M}, α ≥ 0,

−N(α) + card{2lk + i : 0 ≤ 2lk + i ≤ M}, α < 0,
(5.6)

and

M∑
j=0

[
dimX+

∞(j) + dimX−
0 (j)

]
= 2

[
N(β)−N(α)−N0(β−)−N0(α+)

]
+ 2(M + 1). (5.7)

Therefore
n = N(β)−N(α)−N0(β−)−N0(α+).

Theorem 4.1 is proved. �
Proof of Theorem 4.2 and Theorem 4.3. Since the proof for the two theorems is similar, we
prove only Theorem 4.2.

Let X+ = X+
∞ +X0

∞, X− = X0
− +X0

0 . Then as in the proof of Theorem 4.1, we check the
conditions (a), (b), (c), (d), and (e). In the present case, we may suppose that (5.7) still holds
for some M > 0. Let X0

∞(i) = X0
∞ ∩X(i), X0

0 (i) = X0
0 ∩X(i). Then

n =
1

2

M∑
i=0

[
dim(X+

∞(i) ∩X−
0 (i))− codimX(i)(X

+
∞(i) + X−

0 (i))
]
+
(
dimX0

∞ + dimX0
0

)
=

1

2

M∑
i=0

[
dimX+

∞(i) + dimX−
0 (i)− 2

]
+
(
dimX0

∞ + dimX0
0

)
=

1

2

M∑
i=0

[
dimX+

∞(i) + dimX−
0 (i)

]
− (M + 1) +

(
dimX0

∞ + dimX0
0

)
= N(β)−N(α)−N0(β−)−N0(α+) +

(
N0(β+) +N0(β−) +N0(α+) +N0(α−)

)
= N(β)−N(α) +N0(β+) +N0(α−).

Our proof is completed. �

6 Example

Suppose that f ∈ C0(R,R) satisfies

f(x) =

{
3πx+ x

1
3 , |x| ≫ 1,

πx− x3, |x| ≪ 1.

We are to discuss the multiplicity of 12-periodic solutions of the equation

x′(t) = −f(x(t− 1)) + f(x(t− 2))− f(x(t− 3)) + f(x(t− 4))− f(x(t− 5)). (6.1)



400 L. LI, H.F. SUN, W.G. GE

In this case, k = 3, α = π, β = 3π. This yields that

N(α) =card
{
l ≥ 0 : 0 <

(12l + 1)π

6
cot

π

12
< π

}
+ card

{
l ≥ 0 : 0 <

(12l + 3)π

6
cot

3π

12
< π

}
+ card

{
l ≥ 0 : 0 <

(12l + 5)π

6
cot

5π

12
< π

}
= 4,

N(β) =card
{
l ≥ 0 : 0 <

(12l + 1)π

6
cot

π

12
< 3π

}
+ card

{
l ≥ 0 : 0 <

(12l + 3)π

6
cot

3π

12
< 3π

}
+ card

{
l ≥ 0 : 0 <

(12l + 5)π

6
cot

5π

12
< 3π

}
= 9,

N0(α+) = N0(β−) = N0(α−) = N0(β+) = 0.

Applying Theorem 4.2, we conclude that equation (6.1) possesses at least 5 different 12-
periodic orbits satisfying x(t− 6) = −x(t).
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