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1 Introduction

A large class of PDEs, such as the KdV equation, the Klein-Gordon equation, the linear and
nonlinear Schrédinger equation, ete, can be written as the following PDEs form

Mz + Kz, = V.,S5(z2), z€R", (x,t) € R? (1.1)

where M and K are skew-symmetric matrices on R, n > 3 and S : R® — R is a smooth
function. Eq.(1.1) is called as multi-symplectic Hamiltonian system, since it satisfies a multi-
symplectic conservation law [ 2 511, 13-18]

%w —+ %ﬁ =0, (1.2)
where w = %dz/\M dz, k = %dz/\K dz are two form, A is the standard product of the differential
form.

Recently, the multi-symplectic integrators, such as the multi-symplectic Preissman box
scheme (MSBS), the multi-symplectic Runge-Kutta method, the multi-symplectic leapfrog
scheme, etc, which can preserve the multi-symplectic geometric structure under appropriate dis-
cretizations, have been proposed [% 10 11, 15,17, 19, 20 The MSBS for the nonlinear Schrodinger
(NLS) equations was presented (19] " The multi-symplectic integrators have displayed much bet-
ter numerical behaviors for long time computation. As it is well known, dispersion and group
velocity analysis are essential tools in understanding the behavior of discretization of linear
and nonlinear wave equation. McLachlan, Frank, Schober, etc analyzed dispersion and group
velocity of these multi-symplectic schemes. Theories and numerical results showed the MSBS
can well preserve the sign of the group velocity 2% 217231 We find that the numerical group
velocities of the schemes are related to the choice of Az and At for the linear wave and sine-
Gordon equations "2, In this paper, we investigate the dispersive properties of multi-symplectic
discretizations for the NLS equations.
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The rest of the paper is arranged as follows: In Section 2, the numerical dispersion relation
and group velocity of the MSBS for the NLS equation is obtained. In section 3, the numerical
dispersion relation and group velocity of the MSBS for the coupled nonlinear Schrédinger (C-
NLS) equations is obtained. In section 4,we investigate the numerical dispersion effect of the
MSBS for the NLS equations.

2 Dispersion of Multi-symplectic Scheme for the NLS Equation

We consider the NLS equation
ity 4 Uge + AMu?u =0 (2.1)

with the initial condition u(z,0) = wp(x), * € R and A > 0 is a constant parameter. This
equation is one of the most important completely integrable models in the theory of solitons.
Its application can be found in many areas of physics , including nonlinear optics and plasma
physics. Eq.(2.1) can be expressed in the Hamiltonian system

Mz + Kz =V, 5(2) (2.2)

where 2 = (p,¢,v,w)", S(2) = 5(v* + w® + 5(p* +¢*)?), and

0 1 00 00 -1 0
1 _
M= 0 00 ’ K- 0 0 O 1
0 0 0 O 10 0 O
0O 0 0 O 01 0 0
Eq.(2.2) satisfies the multi-symplectic conservation law
Oi(—dp N dq) + O (dp A dv + dg A dw) = 0. (2.3)
Letting
AT =] j Z1j+1 — ] +3 _ 1 g1
i 1 1 ; ji+1 1 . i1 . L
Zf+% = 5(23 + qu+1)v ZZJ+%2 = Z(Zf + Zer + qu+1 + Zi-tl ),
the MSBS for Eq.(1.1) is
Ko, Lot tE = v s(0te). (2.4)
i+ T it+3

The MSBS (2.4) has the discrete multi-symplectic conservation law
. ipl
5t+“’f-+é +oim 2 =0, (2.5)

_ R B
Wherew+1—dz+1/\Kdz+1, K; =dz ALdz; " *.

We obtam a MSBS for the NLS equatlon
(U;H_ll + 2un+1 + U?.:ll) (ui'y + 2u]" +upyy)
' 2/t
ufy + = 20 ) b+
Ax?
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n n n+1 n+1 n n n+1 n+1
)\(‘ul—l'i_ul +u ) ‘2> u_y tup +uy )y

1 1
A(‘ up +uyy +u ‘2) up +ufyy +u
4 4 N

The NLS equation supports plane wave solutions of the form
u(z,t) = ae’ Tl
where k denotes the wave number and w denotes the wave frequency. We obtain
wae (PP 2qeir=et) 4 )| q[2gisewt) — g,
We can get the dispersion relation of the NLS equation
w— K2+ Na*> =0.
We take the numerical solution of Eq.(2.1) to be

uln — aez(Krcl—Qtn)’

(2.9)

(2.10)

where x; = [Ax, t, = n/t and K is the numerical wave number, {2 is the numerical frequency

such that
—r < AzK <, -1 < AtQ <, r; = lAx,t, = nAt.
So we have
u?—l — aei(Kzl—Qtn)e—iKAm — ulne—iKAz7
u;’L_Jrll _ aei(K:m7Qtn)67i(KAm+QAt) — uinefi(KA:rFQAt)’
u;H‘l _ aei(Kzl—Qt,,,)e—iQAt — ulne—iQAt’
uiﬂJrl _ aei(lefﬁt”)eiKAw _ u?@iKA$,
U?J:_ll _ aei(Krl—Qtn)ei(KAz—QAt) — ,U/?ei(KA:c—QAt).
We can get
ur . . . B . )
l ((6 (K Az+QAL) + 2 QAL + ez(KA:v QAt)) . (6 iIKAz +24+ ezKAac))
2/t
u ) ) _ . . w
+ lz(ezKAac +61(KA1 QAL) —2(1+6 zQAt) +e iKAx +e z(KAaa—i—QAt))
Ax
" e KAz +1 _|_efz(KAw+QAt) _|_eszAt 2
+ Aluy']

4
—iKAw | | 4 o—i(KA+QAL) | o—iQAt

e
i )
4
14+ et Az + e AL + ei(KAzfﬂAt) ’2

4
1 +eiKAw +67iQAt _’_ei(KAwfﬂAt)

“?( 4 ):O'

We can get the numerical dispersion relation of the MSBS for the NLS equation

+ Aluf

1 iKAz iKAx 1

_Y o —iant -5 )2
2At(e Dlews e ) JrAxQ(e

7iQAt+1)(e T e 3

iKOw KOs o

(2.16)

(2.17)

(2.18)
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n )\|a\2E(e_iKA‘T 4 1) (et 1)‘2i(e—iKAm F1)(emi8 4 1)
n )\|a‘2‘i(eiKAm 1 1)(em 100t 4 1)‘2%(67;KA:E T 1)(e7 198t 4 1) = 0. (2.19)
So we can conclude that €2 is a function of K
0 =Q(K). (2.20)

We give the dispersion properties of the MSBS for the NLS equation by numerical simula-
tions. Figs.(1,2) show the dispersion curves Q(K) and the group velocity Q' (K) for A = 2 with
three different values of At and Ax. The exact relation is given by Q = K2 — \|a|?. Each plot
is shown only for 0 < Az K < 7.
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Fig.1. The dispersion relation for the MSBS discretizations of the NLS equation with (a)Az = 0.03, At =
0.0025 (b)Az = 0.05, At = 0.0025 (c)Az = 0.03, At = 0.0015.
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Fig.2. Group velocities for the MSBS of the NLS equation with (a) Az = 0.03,0.05 and At = 0.0025 (b)
Az = 0.03 and At = 0.015,0.0025.

From Fig.1, we can see that the dispersion curves for the MSBS of the NLS equation appear
very close for small wave number K with different values of At and Az. And the dispersion
curve for the MSBS is monotonically increasing of K given by its numerical group velocities
(see Fig.2) So we can conclude that for the NLS equation, higher frequency indicates higher
wave number for the MSBS and the exact solution, and the numerical results and the analytical
ones will be the same for small wave number.
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Fig.2 shows the group velocity for the MSBS for different Az and At respectively. We can
get the relationship between the propagation speed for the MSBS and Az or At. From Fig.2, we
can see that with the increasing of the Az (At), the max group velocity increases (decreases).
So we can conclude that the max numerical propagation speed for the MSBS is a increasing
(decreasing) function of Az (At). Further more, Fig.2 also shows that the group velocities of
the MSBS is positive, which shows that the direction of energy transport is preserved.

3 Dispersion of Multi-symplectic Scheme for the CNLS Equations

The following CNLS equations
g 4 Uge + (Jul? + Blv*)u = 0,
vy +UII+(|U‘2+ﬁ|U|2)U =0, (32)
is equal to the following forms by u(x,t) = p(z,t) + q(z,t)i and v(z,t) = u(z,t) + ((z, t)i:
i(pe + 4t0) + Pow + doat + (07 + ¢%) + B(u® + C*))(p + ¢i) = 0, (3.3)
ipe + o) + Haa + Caot + (17 +¢*) + B + %) (1 + i) = 0.
Egs.(3.1,3.2) can be rewritten as
Pet oo+ (P B+ Na=0, @ —pew — (0F + ¢+ B+ P)p =0,
et Gow + (12 +CHBP°+¢))C =0, G~ pow — (0P +C+ B0° + %)= 0.

The CNLS equations can be expressed in the Hamiltonian system

Mz + Kz, = V,5(z) (3.5)

0O 1.0 0 O O OO 0O 0 -1 0 0O0 O 0

-1 0 00 0 0 O O 00 0 -1 00 O 0

0O 00 0O O O OO0 1 0 0 0 0 0 O 0

M= 0O 00 0O O O OO0 K= 0 1 0 0O 0 0 O 0

0O 00 0O O 1 00 0 0 O 0O 00 -1 0

0O 000 -1 0 00O 0 0 O 0O 00 0 -1

0O 00 0O O O OO0 0 0 O 0 1 0 O 0

0O 00 0O O O OO0 0 0 O 0 01 0 0

Eq.(3.5) satisfies the multi-symplectic conservation law

Oi(—dp Ndg — dp N d§) + O (dp A dv + dg A dw + dp A dd + d€ A de) = 0, (3.6)

Then we can obtain a MSBS for the CNLS equations

z( utt + 2u) T+ u?fll) — (upy +2up +upyy) N upyy + u;’j‘ll —2(u +upthy Fa |+t

2Nt YAN/ 2
ul L + ul + un-‘rl + un—i—l Ul . + vl + vn—i—l + vn—i—l ul . + Uz + un-{-l + un+1
+ (‘ 1 ‘ +6 1 ‘ ) 1
up +upy +upt '+ Uﬁrﬁl 2 o +opy ot Lt Uznjf up oy + uptt 4 u;fll
* 4 +4 4 4
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=0, (3.7)
(I 20 o) — (0 200 o) | v o — 200 o) oty )
2\t Azx?
+(‘vl Lo o +v”+1‘2+5‘u1 1+ +U”+1+u”+1‘2)vl /A A S
4 4 4
n n n+1 n n n+1 n+1 n n n+1 n+1
+(‘vl+vl+1+vl +vl:1‘ +B‘“l+ul+1+“l+ +ulf1 ‘2>vl+vl+1+vl+ +Ul++1
4 4 4
=0. (3.8)
The CNLS equations supports plane wave solutions of the form
u(z,t) = apeltre—wit) v(x,t) = agel(m2r—wat) (3.9)

where K1, ko denote the wave number and wy, we denote the wave frequency. We can obtain
wiape'Femert) g2 ellme=wit) 4 (16,12 4 Blag|?)age’Fre et = 0, (3.10)
waageth2rwet) _ 2g pilker—wat) 4 (g2 4 Bla;|?)agel(F2rTw2t) = 0, (3.11)
So we can get the dispersion relation of the CNLS equations

w1 — K7 + (Jar|* + Blazf*) = (3.12)
wa — K3 + (|az|? + Blas|*) = (3.13)
We take the numerical solutions of Egs.(3.1,3.2) to be

U? _ alei(Kllz*QItn), (314)
VP = agetHem—atn) (3.15)
where z; = Az, t, = n/At and K;, K5 are the numerical wave number and Qi, € is the

numerical frequency such that
—nm < AzxK,, AzKs<wm, —7w<AtQ, AtQy<m, x;=IAx, t,=nAt.
From Egs.(3.14,3.15), we can get

ul | = apelFrm—htn) gmilade _ g no—ikaba (3.16)
u7+11 = qqetErei=itn) o —i(KaAat Qi At) u) ne K hethi At (3.17)
Ut = gy elFrm ) =i AL _ yno—iAt (3.18)
u?_t,-l _ alez(Klmlfﬁltn)eiKlAa: u;lelKlAI (3]_9)
Uﬁql = aq et E1m=Qutn) Gi(K Aa—1 1) ule i(i’ﬁAm—QlN)7 (3.20)
vl_l = age (szlfﬂzt”)efiKgA:r u?e*ZKzﬁai (32]_)
U;Lj_ll — qpeiKem—=Qatn) o—i(K2 Azt Q2 A1) _ ulne—i(KzAHQz‘Af)’ (3.22)
ln—i—l = aye’ i(Kax— ta”)efmzm _ Uln 72‘92&, (3_23)
Ul+1 _a2ev(K2Tl Qatn) giKa Az _ ufe”(?m”, (3_24)
vln_:-ll = qpet(K2mi—atn) pi( K2 Az —QaAt) _ u?ei(KzAmezAt). (3.25)

From Egs.(3.7,3.8), we can get

Sy TV
;'Xt((eﬂ(xlawmm) 19— iudt | ez(KlA%QlAt)) B (eﬂKlAz 124 ezKlAa:))
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n Au;( iK\AT | (K0 As=AY) | g1 | o~iAY) 4 —iKida | o=i(KibetAl)

(‘ |2 7iK1AI + 1 _’_efi(KlAZLUFQlAt) + efiﬂlAt
Uy
4
| |2 efiK2A$+1+67i(K2AI+Q2At) _’_efiQQAt 2
+ Blv ’ )
4
e*iKlﬂw + 1 + e*i(KlAIJrQlAt) _’_efinAt
X u”( )
! 4
5 1 + eiKle + e*iﬂlﬂt + ei(KIA:I/’leAt) 2
+ (Juf| .
| |2 1+ eiKZAE + e*iﬂzAt + ei(KzAz—QzAt) 9
+ Blof )
4
1+ ezKlAz + 671Q1At 4 et (K1 Axz—Q1 At)

;Zlnt((e_l(KZAerngt) + Qe—iﬂzAt + ei(KzAZD—QzAt)) _ (e—iK2A$ + 2 + eiKQAI))

+ Ale2 (engAx + ez(KgAx—QgAt) _ 2(1 =+ e—zﬂgAt) + e—ngAx + e—z(KgAx+QgAt)) (327)
( ’ —ngAI +14+ e—i(K2A7;+§22At) + e—ngAt ‘

4
—zKlA;E +1 +e—i(K1Ax+QlAt) +e—iﬂlAt

2
+ B i )
N e—iKZAm+1+€—i(K2Ax+QzAt) +e—iﬂzAt
xup )
4
(‘ | 1 + eZKQAw + e—ngAt + e’L(KQAw QzAt) 2
il |

4
" 1+61K1Aw+e—lﬂlAt+el(K1A$ QlAt) 2
+ﬁWﬁﬂ 1 ‘)
1 + eiKgALE + e—inAt + ei(KzAI—QzAt)
<o 1 )

(3.26)

=0.

So we can get

e R

+ (|a1|2 i(e—mlax n 1)(e—mlm n 1)‘2

+ Blas|? i(e—mgmc F1)(em A 4 1)\2)3((3_”{1&“ F1)(em A 4 )

+ (|a1|2 i(eiKlAm F1)(emi At 1)‘2
+m@FE@Mﬁz+U@%%Atmﬂﬁi@mﬁf+n@ﬁmﬂuq):Q (3.28)
I e e [ e

4 <|a2|2 i(eﬂ‘KzAz F1)(emi RO 4 1)’2




510 H.C. LI, J.Q. SUN, H. YE, X.J. HE

1 ; ; 2\ 1
+ﬁ|a1|2‘1(e—1K1Az+1)(e—291At+1)‘ )Z

(e—iKQAZE + 1)(e—iQQAt + 1)
2|1 ik,na —iQa AL 2
+ (Jaaf? | (€257 4+ (7221 1 1)
1 . . 2y 1 . .

+ 5|a1|2]1(e”<1m F1)(em At 1)] )i(elem 1) (e At 1) =0, (3.29)

Considering u(—=x,t) = v(x,t), we have
Ky = —Ko, 0 =y, la1| = |az| = |al.

So we can get the numerical dispersion relation of the MSBS for the CNLS equations
; 1

2ZAt (e—iQAt B 1)(61‘K2Az i e_iK2Aa:)2 " — (e—iQAt n 1)(eiK2A.7: B e_iKzAa: )2
1 ) .
+ |a|2(‘1(6_ZKAI + 1)(e—zQAt + 1)‘2

1, . ) 2\ 1 ) )
+ﬂ‘1 ezKAm+1)(eszAt+1)’ )Z(efzKAz+1)(eszAt+1)

(
2|1, ikn —iQAt 2
a2 (| 3547 + 1) (e 4 1))
1 : . 2\ 1 . )
+ B‘Z(e—zKAw + 1)(6—1QAt + 1)‘ )Z(e’LKAx + 1)(6—19At + 1) =0. (330)
In the same way as section 2, we can also conclude that €2 is a function of K
Q= Q(K). (3.31)

We give the dispersion properties of the MSBS for the CNLS equations by numerical sim-
ulations. Figs.(3,4) show the dispersion curves Q(K) and the group velocity ' (K) for g =1
and three different values of At and Az. The exact relation is given by Q = K2 — (1 + )lal?.
Each plot is shown only for 0 < AzK < 7.
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Fig.3. The dispersion relation for the MSBS discretizations of the CNLS equations with (a)Az = 0.03,
At = 0.0025 (b)Az = 0.05, At = 0.0025 (c)Az = 0.03, At = 0.0015.

From Fig.3, we can see that the dispersion curves for the MSBS of the CNLS equations
appear very close for small wave number K with different values of At and Az. And the
dispersion curve for the MSBS is monotonically increasing of K given by its numerical group
velocities (see Fig.2) So we can conclude that for the CNLS equations, higher frequency indicates
higher wave number for the MSBS and the exact solution, and the numerical results and the
analytical ones will be the same for small wave number.



Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrodinger Equations 511

Q(K) Q(K)
a5 501

—ax=003] 07 SN —— At=0.0025
40F|---Ax=005| ,/ % 451 ) N - - -At=0.0015
’ ’ \
s A L ' \
asl g " 40 ; |
\
N s 35" J K
301 . * . \
/ \ b \
' N 30l
1, AY A
25 /) N '
y N 25 X
20+ y \ N
L \
20 N
151 N
X 15 *
N
L N
° 10f .
5 ~ ~ < 5 N -~
S~ S~
0 : . 0
(] 10 20 30 40 50 60 (] 20 40 60 80 100
K K

(a) (b)

Fig.4. Group velocities for the MSBS of the CNLS equations with (a) Az = 0.03,0.05 and At = 0.0025 (b)
Az = 0.03 and At = 0.015,0.0025.

Fig.4 shows the group velocity for the MSBS for different Az and At respectively. We can
get the relationship between the propagation speed for the MSBS and Ax or At. From Fig.4, we
can see that with the increasing of the Az (At), the max group velocity increases (decreases).
So we can conclude that the max numerical propagation speed for the MSBS is a increasing
(decreasing) function of Az (At). Further more, Fig.4 also shows that the group velocities of
the MSBS is positive, which shows that the direction of energy transport is preserved.

4 Numerical Examples

4.1 The NLS Equation

First we consider the NLS equation for initial condition with A = 2
u(x,0) = 1.5sech(1.52 4+ 30) exp(2ix). (4.1)

The computation is done for 0 < ¢ < 0.9, —30 < x < 30, with different Az and At. Fig.5 shows
the numerical result with Az = 0.03 and At = 0.0025. Fig.5.c shows the propagation of the
numerical solution in 0 < |u| < 1 x 107!, Fig.6 shows the propagation of the numerical solu-
tion with Az = 0.05 and At = 0.0025. Fig.7 shows the propagation of the numerical solution
with Az = 0.03 and At = 0.0015. Fig.8 shows the comparison of the dispersion effects with
above three different Ax and At. From Figs.(5-7), we can see that with Axz(At) increases, the
propagation speed of the fast mode increases(decreases), because the max numerical propaga-
tion speed for the MSBS is a increasing (decreasing) function of Az (At). From Fig.8, we can
see that though the propagation of the small wave number modes appear very close, there is a
apparent difference within higher ones as predicted by the analysis (see Fig.2). And we can see

V(0.03,0.0025) < V(0.05,0.0025) < V/(0.03,0.0015), (4.2)

where V(Az, At) is the propagation speed of the fast mode. Eq.(4.2) can also be get from
Fig.2.



512 H.C. LI, J.Q. SUN, H. YE, X.J. HE

15 T T T - . o 1o
ul ul
0.8
1
06
0.4
05
0.2
—%0 -20 -10 0 10 20 30 7%0 -20 -10 0 10 20 30
X X
(0) (c)

Fig.5. Dispersion effects in the numerical solutions of the MSBS for the NLS equation with Az = 0.03, At =
0.0025,0<t<0.9, (a) 0< |u| <1.5,and t = 0.9, (b) 0 < |u| < 1.5,(c) 0 < |u| <1 x 10711,
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Fig.7. Dispersion effects in the numerical solutions of the MSBS for the NLS equation with Az = 0.03,
At =0.0015,¢t=0.9, 0 < |u| <1 x 10711,
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Fig.8. Comparison of the dispersion effects with three different Az and At,(a) 0 < |u| < 1.5, (b) 0 < |u| <
1x 1071

4.2 The CNLS Equations

Then we consider the CNLS equations for the initial condition with 8 =1

u(z,0) = v2sech(z + 15) exp(iz/4), (4.3)
v(z,0) = V2sech(x — 15) exp(—iz/4). (4.4)

The computation is done for 0 < ¢t < 1.2, —30 < x < 30, with different Az and At. Fig.9
shows the numerical result with Az = 0.03 and At = 0.0025. Fig.10 shows the propagation of
the numerical solution in 0 < |u| < 1 x 1077, Fig.11 shows the propagation of the numerical
solution with Az = 0.05 and At = 0.0025. Fig.12 shows the propagation of the numerical
solution with Az = 0.03 and At = 0.0015. From Figs. 10-12, we can see that as Az(At)
increases, the propagation speed of the fast mode increases(decreases), because the max nu-
merical propagation speed for the MSBS scheme is a increasing (decreasing) function of Ax
(At). Though the propagation of the small wave number modes appear very close, there is a
apparent difference within higher ones as predicted by the analysis (see Fig.2). And we can see

V(0.03,0.0025) < V(0.05,0.0025) < V/(0.03,0.0015), (4.5)

where V(Ax, At) is the propagation speed of the fast mode. Eq.(4.5) can also be get from
Fig.4. And the modes with higher or lower wave number all travel slower than the fast one,
because the group velocity of the MSBS is not a monotonic function of K (see Fig.4).

15 1.5

lul
Ivl

1 1

0.5 0.5

—%0 -20 -10 0 10 20 30 —%0 -20 -10 0 10 20 30
X

Fig.9. Numerical result of the MSBS for the CNLS equations with Az = 0.03 and At = 0.0025, 0 < ¢t < 1.2,
(a) lu| + [v], and t = 1.2, (b) |u], (c) |v].
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Fig.10. Dispersion effects in the numerical solutions of the MSBS for the CNLS equations with Az = 0.03,
At =0.0025,t=1.2,(a) 0< |u| <1x1077, (b) 0< |v| <1 x 1077,
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Fig.11. Dispersion effects in the numerical solutions of the MSBS for the CNLS equations with Az = 0.05,
At =0.0025, t=1.2,(a) 0<|u|<1x10~7, (b)0< |v| <1x1077,
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Fig.12. Dispersion effects in the numerical solutions of the MSBS for the CNLS equations with Az = 0.03,
At =0.0015,t=1.2, (a) 0 < Ju] <1x1077,(b) 0 < |v| <1 x 1077,

5 Conclusions

In this paper, we study the dispersive properties of multi-symplectic discretizations for the NLS
equations. The numerical dispersion relation and group velocity are investigated. We find that
the numerical group velocities of the schemes are related to the choice of Az and At for the
NLS equations, and the numerical results confirm it. Numerical results also show that the
propagation of the numerical solutions of the MSBS for the NLS equations are dependent on
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the choice of Az and At. The numerical dispersion relation is relevant when resolving the NLS
equations.
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