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1 Introduction

A large class of PDEs, such as the KdV equation, the Klein-Gordon equation, the linear and
nonlinear Schrödinger equation, etc, can be written as the following PDEs form

Mzt +Kzx = ∇zS(z), z ∈ Rn, (x, t) ∈ R2, (1.1)

where M and K are skew-symmetric matrices on Rn, n ≥ 3 and S : Rn −→ R is a smooth
function. Eq.(1.1) is called as multi-symplectic Hamiltonian system, since it satisfies a multi-
symplectic conservation law [1, 2, 5–11, 13–18]

∂

∂t
ω +

∂

∂x
κ = 0, (1.2)

where ω = 1
2dz∧Mdz, κ = 1

2dz∧Kdz are two form, ∧ is the standard product of the differential
form.

Recently, the multi-symplectic integrators, such as the multi-symplectic Preissman box
scheme (MSBS), the multi-symplectic Runge-Kutta method, the multi-symplectic leapfrog
scheme, etc, which can preserve the multi-symplectic geometric structure under appropriate dis-
cretizations, have been proposed [5, 10, 11, 15, 17, 19, 20]. The MSBS for the nonlinear Schrödinger
(NLS) equations was presented [10]. The multi-symplectic integrators have displayed much bet-
ter numerical behaviors for long time computation. As it is well known, dispersion and group
velocity analysis are essential tools in understanding the behavior of discretization of linear
and nonlinear wave equation. McLachlan, Frank, Schober, etc analyzed dispersion and group
velocity of these multi-symplectic schemes. Theories and numerical results showed the MSBS
can well preserve the sign of the group velocity [2–4, 21–23]. We find that the numerical group
velocities of the schemes are related to the choice of △x and △t for the linear wave and sine-
Gordon equations [12]. In this paper, we investigate the dispersive properties of multi-symplectic
discretizations for the NLS equations.
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The rest of the paper is arranged as follows: In Section 2, the numerical dispersion relation
and group velocity of the MSBS for the NLS equation is obtained. In section 3, the numerical
dispersion relation and group velocity of the MSBS for the coupled nonlinear Schrödinger (C-
NLS) equations is obtained. In section 4,we investigate the numerical dispersion effect of the
MSBS for the NLS equations.

2 Dispersion of Multi-symplectic Scheme for the NLS Equation

We consider the NLS equation
iut + uxx + λ|u|2u = 0 (2.1)

with the initial condition u(x, 0) = u0(x), x ∈ R and λ > 0 is a constant parameter. This
equation is one of the most important completely integrable models in the theory of solitons.
Its application can be found in many areas of physics , including nonlinear optics and plasma
physics. Eq.(2.1) can be expressed in the Hamiltonian system

Mzt +Kzx = ∇zS(z) (2.2)

where z = (p, q, v, w)T , S(z) = 1
2 (v

2 + w2 + λ
2 (p

2 + q2)2), and

M =


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 , K =


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

 .

Eq.(2.2) satisfies the multi-symplectic conservation law

∂t(−dp ∧ dq) + ∂x(dp ∧ dv + dq ∧ dw) = 0. (2.3)

Letting

δ+t z
j
i =

zj+1
i − zji
△t

, δ+x z
j
i =

zji+1 − zji
△x

, z
j+ 1

2
i =

1

2
(zji + zj+1

i ),

zj
i+ 1

2

=
1

2
(zji + zji+1), z

j+ 1
2

i+ 1
2

=
1

4
(zji + zj+1

i + zji+1 + zj+1
i+1 ),

the MSBS for Eq.(1.1) is

Kδ+t z
j

i+ 1
2

+ Lδ+x z
j+ 1

2
i = ∇zS(z

j+ 1
2

i+ 1
2

). (2.4)

The MSBS (2.4) has the discrete multi-symplectic conservation law

δ+t ω
j

i+ 1
2

+ δ+x κ
j+ 1

2
i = 0, (2.5)

where ωj

i+ 1
2

= dzj
i+ 1

2

∧Kdzj
i+ 1

2

, κ
j+ 1

2
i = dz

j+ 1
2

i ∧ Ldz
j+ 1

2
i .

We obtain a MSBS for the NLS equation

i
(un+1

l−1 + 2un+1
l + un+1

l+1 )− (un
l−1 + 2un

l + un
l+1)

2△t

+
un
l+1 + un+1

l+1 − 2(un
l + un+1

l ) + un
l−1 + un+1

l−1

△x2
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+ λ
(∣∣∣un

l−1 + un
l + un+1

l−1 + un+1
l

4

∣∣∣2)un
l−1 + un

l + un+1
l−1 + un+1

l

4
(2.6)

+ λ
(∣∣∣un

l + un
l+1 + un+1

l + un+1
l+1

4

∣∣∣2)un
l + un

l+1 + un+1
l + un+1

l+1

4
= 0.

The NLS equation supports plane wave solutions of the form

u(x, t) = aei(κx−ωt), (2.7)

where k denotes the wave number and ω denotes the wave frequency. We obtain

ωaei(κx−ωt) − k2aei(κx−ωt) + λ|a|2aei(κx−ωt) = 0. (2.8)

We can get the dispersion relation of the NLS equation

ω − κ2 + λ|a|2 = 0. (2.9)

We take the numerical solution of Eq.(2.1) to be

un
l = aei(Kxl−Ωtn), (2.10)

where xl = l△x, tn = n△t and K is the numerical wave number, Ω is the numerical frequency
such that

−π ≤ △xK ≤ π, −π ≤ △tΩ ≤ π, xl = l△x, tn = n△t.

So we have

un
l−1 = aei(Kxl−Ωtn)e−iK△x = un

l e
−iK△x, (2.11)

un+1
l−1 = aei(Kxl−Ωtn)e−i(K△x+Ω△t) = un

l e
−i(K△x+Ω△t), (2.12)

un+1
l = aei(Kxl−Ωtn)e−iΩ△t = un

l e
−iΩ△t, (2.13)

un
l+1 = aei(Kxl−Ωtn)eiK△x = un

l e
iK△x, (2.14)

un+1
l+1 = aei(Kxl−Ωtn)ei(K△x−Ω△t) = un

l e
i(K△x−Ω△t). (2.15)

We can get

iun
l

2△t
((e−i(K△x+Ω△t) + 2e−iΩ△t + ei(K△x−Ω△t))− (e−iK△x + 2 + eiK△x))

+
un
l

△x2
(eiK△x + ei(K△x−Ω△t) − 2(1 + e−iΩ△t) + e−iK△x + e−i(K△x+Ω△t)) (2.16)

+ λ|un
l |2

∣∣∣e−iK△x + 1 + e−i(K△x+Ω△t) + e−iΩ△t

4

∣∣∣2
· un

l

(e−iK△x + 1 + e−i(K△x+Ω△t) + e−iΩ△t

4

)
(2.17)

+ λ|un
l |2

∣∣∣1 + eiK△x + e−iΩ△t + ei(K△x−Ω△t)

4

∣∣∣2
· un

l

(1 + eiK△x + e−iΩ△t + ei(K△x−Ω△t)

4

)
= 0. (2.18)

We can get the numerical dispersion relation of the MSBS for the NLS equation

i

2△t
(e−iΩ△t − 1)(e

iK△x
2 + e−

iK△x
2 )2 +

1

△x2
(e−iΩ△t + 1)(e

iK△x
2 − e−

iK△x
2 )2
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+ λ|a|2
∣∣∣1
4
(e−iK△x + 1)(e−iΩ△t + 1)

∣∣∣2 1
4
(e−iK△x + 1)(e−iΩ△t + 1)

+ λ|a|2
∣∣∣1
4
(eiK△x + 1)(e−iΩ△t + 1)

∣∣∣2 1
4
(eiK△x + 1)(e−iΩ△t + 1) = 0. (2.19)

So we can conclude that Ω is a function of K

Ω = Ω(K). (2.20)

We give the dispersion properties of the MSBS for the NLS equation by numerical simula-
tions. Figs.(1,2) show the dispersion curves Ω(K) and the group velocity Ω′(K) for λ = 2 with
three different values of △t and △x. The exact relation is given by Ω = K2 − λ|a|2. Each plot
is shown only for 0 ≤ △xK ≤ π.
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Fig.1. The dispersion relation for the MSBS discretizations of the NLS equation with (a)△x = 0.03, △t =

0.0025 (b)△x = 0.05, △t = 0.0025 (c)△x = 0.03, △t = 0.0015.
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Fig.2. Group velocities for the MSBS of the NLS equation with (a) △x = 0.03, 0.05 and △t = 0.0025 (b)

△x = 0.03 and △t = 0.015, 0.0025.

From Fig.1, we can see that the dispersion curves for the MSBS of the NLS equation appear
very close for small wave number K with different values of △t and △x. And the dispersion
curve for the MSBS is monotonically increasing of K given by its numerical group velocities
(see Fig.2) So we can conclude that for the NLS equation, higher frequency indicates higher
wave number for the MSBS and the exact solution, and the numerical results and the analytical
ones will be the same for small wave number.
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Fig.2 shows the group velocity for the MSBS for different △x and △t respectively. We can
get the relationship between the propagation speed for the MSBS and△x or△t. From Fig.2, we
can see that with the increasing of the △x (△t), the max group velocity increases (decreases).
So we can conclude that the max numerical propagation speed for the MSBS is a increasing
(decreasing) function of △x (△t). Further more, Fig.2 also shows that the group velocities of
the MSBS is positive, which shows that the direction of energy transport is preserved.

3 Dispersion of Multi-symplectic Scheme for the CNLS Equations

The following CNLS equations

iut + uxx + (|u|2 + β|v|2)u = 0, (3.1)

ivt + vxx + (|v|2 + β|u|2)v = 0, (3.2)

is equal to the following forms by u(x, t) = p(x, t) + q(x, t)i and v(x, t) = µ(x, t) + ζ(x, t)i:

i(pt + qti) + pxx + qxxi+ ((p2 + q2) + β(µ2 + ζ2))(p+ qi) = 0, (3.3)

i(µt + ζti) + µxx + ζxxi+ ((µ2 + ζ2) + β(p2 + q2))(µ+ ζi) = 0. (3.4)

Eqs.(3.1,3.2) can be rewritten as

pt + qxx + (p2 + q2 + β(µ2 + ζ2))q = 0, qt − pxx − (p2 + q2 + β(µ2 + ζ2))p = 0,

µt + ζxx + (µ2 + ζ2 + β(p2 + q2))ζ = 0, ζt − µxx − (µ2 + ζ2 + β(p2 + q2))µ = 0.

The CNLS equations can be expressed in the Hamiltonian system

Mzt +Kzx = ∇zS(z) (3.5)

where z = (p, q, b, a, µ, ξ, d, c)T , S(z) = 1
2 (v

2 + w2 + α
2 (p

2 + q2)2), and

M =



0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


, K =



0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0


.

Eq.(3.5) satisfies the multi-symplectic conservation law

∂t(−dp ∧ dq − dµ ∧ dξ) + ∂x(dp ∧ dv + dq ∧ dw + dµ ∧ dd+ dξ ∧ dc) = 0, (3.6)

Then we can obtain a MSBS for the CNLS equations

i
(un+1

l−1 + 2un+1
l + un+1

l+1 )− (un
l−1 + 2un

l + un
l+1)

2△t
+

un
l+1 + un+1

l+1 − 2(un
l + un+1

l ) + un
l−1 + un+1

l−1

△x2

+
(∣∣∣un

l−1 + un
l + un+1

l−1 + un+1
l

4

∣∣∣2 + β
∣∣∣vnl−1 + vnl + vn+1

l−1 + vn+1
l

4

∣∣∣2)un
l−1 + un

l + un+1
l−1 + un+1

l

4

+
(∣∣∣un

l + un
l+1 + un+1

l + un+1
l+1

4

∣∣∣2 + β
∣∣∣vnl + vnl+1 + vn+1

l + vn+1
l+1

4

∣∣∣2)un
l + un

l+1 + un+1
l + un+1

l+1

4
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= 0, (3.7)

i
(vn+1

l−1 + 2vn+1
l + vn+1

l+1 )− (vnl−1 + 2vnl + vnl+1)

2△t
+

vnl+1 + vn+1
l+1 − 2(vnl + vn+1

l ) + vnl−1 + vn+1
l−1

△x2

+
(∣∣∣vnl−1 + vnl + vn+1

l−1 + vn+1
l

4

∣∣∣2 + β
∣∣∣un

l−1 + un
l + un+1

l−1 + un+1
l

4

∣∣∣2)vnl−1 + vnl + vn+1
l−1 + vn+1

l

4

+
(∣∣∣vnl + vnl+1 + vn+1

l + vn+1
l+1

4

∣∣∣2 + β
∣∣∣un

l + un
l+1 + un+1

l + un+1
l+1

4

∣∣∣2)vnl + vnl+1 + vn+1
l + vn+1

l+1

4
= 0. (3.8)

The CNLS equations supports plane wave solutions of the form

u(x, t) = a1e
i(κ1x−ω1t), v(x, t) = a2e

i(κ2x−ω2t). (3.9)

where κ1, κ2 denote the wave number and ω1, ω2 denote the wave frequency. We can obtain

ω1a1e
i(κ1x−ω1t) − k21a1e

i(κ1x−ω1t) + (|a1|2 + β|a2|2)a1ei(κ1x−ω1t) = 0, (3.10)

ω2a2e
i(κ2x−ω2t) − k22a2e

i(κ2x−ω2t) + (|a2|2 + β|a1|2)a2ei(κ2x−ω2t) = 0. (3.11)

So we can get the dispersion relation of the CNLS equations

ω1 − κ2
1 + (|a1|2 + β|a2|2) = 0, (3.12)

ω2 − κ2
2 + (|a2|2 + β|a1|2) = 0. (3.13)

We take the numerical solutions of Eqs.(3.1,3.2) to be

un
l = a1e

i(K1xl−Ω1tn), (3.14)

vnl = a2e
i(K2xl−Ω2tn), (3.15)

where xl = l△x, tn = n△t and K1, K2 are the numerical wave number and Ω1, Ω2 is the
numerical frequency such that

−π ≤ △xK1, △xK2 ≤ π, −π ≤ △tΩ1, △tΩ2 ≤ π, xl = l△x, tn = n△t.

From Eqs.(3.14,3.15), we can get

un
l−1 = a1e

i(K1xl−Ω1tn)e−iK1△x = un
l e

−iK1△x, (3.16)

un+1
l−1 = a1e

i(K1xl−Ω1tn)e−i(K1△x+Ω1△t) = un
l e

−i(K1△x+Ω1△t), (3.17)

un+1
l = a1e

i(K1xl−Ω1tn)e−iΩ1△t = un
l e

−iΩ1△t, (3.18)

un
l+1 = a1e

i(K1xl−Ω1tn)eiK1△x = un
l e

iK1△x, (3.19)

un+1
l+1 = a1e

i(K1xl−Ω1tn)ei(K1△x−Ω1△t) = un
l e

i(K1△x−Ω1△t), (3.20)

vnl−1 = a2e
i(K2xl−Ω2tn)e−iK2△x = un

l e
−iK2△x, (3.21)

vn+1
l−1 = a2e

i(K2xl−Ω2tn)e−i(K2△x+Ω2△t) = un
l e

−i(K2△x+Ω2△t), (3.22)

vn+1
l = a2e

i(K2xl−Ω2tn)e−iΩ2△t = un
l e

−iΩ2△t, (3.23)

vnl+1 = a2e
i(K2xl−Ω2tn)eiK2△x = un

l e
iK2△x, (3.24)

vn+1
l+1 = a2e

i(K2xl−Ω2tn)ei(K2△x−Ω2△t) = un
l e

i(K2△x−Ω2△t). (3.25)

From Eqs.(3.7,3.8), we can get

iun
l

2△t
((e−i(K1△x+Ω1△t) + 2e−iΩ1△t + ei(K1△x−Ω1△t))− (e−iK1△x + 2 + eiK1△x))
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+
un
l

△x2
(eiK1△x + ei(K1△x−Ω1△t) − 2(1 + e−iΩ1△t) + e−iK1△x + e−i(K1△x+Ω1△t))

+
(
|un

l |2
∣∣∣e−iK1△x + 1 + e−i(K1△x+Ω1△t) + e−iΩ1△t

4

∣∣∣
+ β|vnl |2

∣∣∣e−iK2△x + 1 + e−i(K2△x+Ω2△t) + e−iΩ2△t

4

∣∣∣2)
× un

l

(e−iK1△x + 1 + e−i(K1△x+Ω1△t) + e−iΩ1△t

4

)
+
(
|un

l |2
∣∣∣1 + eiK1△x + e−iΩ1△t + ei(K1△x−Ω1△t)

4

∣∣∣2
+ β|vnl |2

∣∣∣1 + eiK2△x + e−iΩ2△t + ei(K2△x−Ω2△t)

4

∣∣∣2)
× un

l

(1 + eiK1△x + e−iΩ1△t + ei(K1△x−Ω1△t)

4

)
= 0, (3.26)

ivnl
2△t

((e−i(K2△x+Ω2△t) + 2e−iΩ2△t + ei(K2△x−Ω2△t))− (e−iK2△x + 2 + eiK2△x))

+
vnl
△x2

(eiK2△x + ei(K2△x−Ω2△t) − 2(1 + e−iΩ2△t) + e−iK2△x + e−i(K2△x+Ω2△t)) (3.27)

+
(
|vnl |2

∣∣∣e−iK2△x + 1 + e−i(K2△x+Ω2△t) + e−iΩ2△t

4

∣∣∣
+ β|un

l |2
∣∣∣e−iK1△x + 1 + e−i(K1△x+Ω1△t) + e−iΩ1△t

4

∣∣∣2)
× vnl

(e−iK2△x + 1 + e−i(K2△x+Ω2△t) + e−iΩ2△t

4

)
+
(
|vnl |2

∣∣∣1 + eiK2△x + e−iΩ2△t + ei(K2△x−Ω2△t)

4

∣∣∣2
+ β|un

l |2
∣∣∣1 + eiK1△x + e−iΩ1△t + ei(K1△x−Ω1△t)

4

∣∣∣2)
× vnl

(1 + eiK2△x + e−iΩ2△t + ei(K2△x−Ω2△t)

4

)
= 0.

So we can get

i

2△t
(e−iΩ1△t − 1)(e

iK1△x
2 + e−

iK1△x
2 )2 +

1

△x2
(e−iΩ1△t + 1)(e

iK1△x
2 − e−

iK1△x
2 )2

+
(
|a1|2

∣∣∣1
4
(e−iK1△x + 1)(e−iΩ1△t + 1)

∣∣∣2
+ β|a2|2

∣∣∣1
4
(e−iK2△x + 1)(e−iΩ2△t + 1)|2

)1
4
(e−iK1△x + 1)(e−iΩ1△t + 1)

+
(
|a1|2

∣∣∣1
4
(eiK1△x + 1)(e−iΩ1△t + 1)

∣∣∣2
+ β|a2|2

∣∣∣1
4
(eiK2△x + 1)(e−iΩ2△t + 1)

∣∣∣2)1
4
(eiK1△x + 1)(e−iΩ1△t + 1) = 0, (3.28)

i

2△t
(e−iΩ2△t − 1)(e

iK2△x
2 + e−

iK2△x
2 )2 +

1

△x2
(e−iΩ2△t + 1)(e

iK2△x
2 − e−

iK2△x
2 )2

+
(
|a2|2

∣∣∣1
4
(e−iK2△x + 1)(e−iΩ2△t + 1)

∣∣∣2
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+ β|a1|2
∣∣∣1
4
(e−iK1△x + 1)(e−iΩ1△t + 1)

∣∣∣2)1
4
(e−iK2△x + 1)(e−iΩ2△t + 1)

+
(
|a2|2

∣∣∣1
4
(eiK2△x + 1)(e−iΩ2△t + 1)

∣∣∣2
+ β|a1|2

∣∣∣1
4
(eiK1△x + 1)(e−iΩ1△t + 1)

∣∣∣2)1
4
(eiK2△x + 1)(e−iΩ2△t + 1) = 0. (3.29)

Considering u(−x, t) = v(x, t), we have

K1 = −K2, Ω1 = Ω2, |a1| = |a2| = |a|.

So we can get the numerical dispersion relation of the MSBS for the CNLS equations

i

2△t
(e−iΩ△t − 1)(e

iK△x
2 + e−

iK△x
2 )2 +

1

△x2
(e−iΩ△t + 1)(e

iK△x
2 − e−

iK△x
2 )2

+ |a|2
(∣∣∣1

4
(e−iK△x + 1)(e−iΩ△t + 1)|2

+ β
∣∣∣1
4
(eiK△x + 1)(e−iΩ△t + 1)

∣∣∣2)1
4
(e−iK△x + 1)(e−iΩ△t + 1)

+ |a|2
(∣∣∣1

4
(eiK△x + 1)(e−iΩ△t + 1)

∣∣∣2
+ β

∣∣∣1
4
(e−iK△x + 1)(e−iΩ△t + 1)

∣∣∣2)1
4
(eiK△x + 1)(e−iΩ△t + 1) = 0. (3.30)

In the same way as section 2, we can also conclude that Ω is a function of K

Ω = Ω(K). (3.31)

We give the dispersion properties of the MSBS for the CNLS equations by numerical sim-
ulations. Figs.(3,4) show the dispersion curves Ω(K) and the group velocity Ω′(K) for β = 1
and three different values of △t and △x. The exact relation is given by Ω = K2 − (1 + β)|a|2.
Each plot is shown only for 0 ≤ △xK ≤ π.
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Fig.3. The dispersion relation for the MSBS discretizations of the CNLS equations with (a)△x = 0.03,

△t = 0.0025 (b)△x = 0.05, △t = 0.0025 (c)△x = 0.03, △t = 0.0015.

From Fig.3, we can see that the dispersion curves for the MSBS of the CNLS equations
appear very close for small wave number K with different values of △t and △x. And the
dispersion curve for the MSBS is monotonically increasing of K given by its numerical group
velocities (see Fig.2) So we can conclude that for the CNLS equations, higher frequency indicates
higher wave number for the MSBS and the exact solution, and the numerical results and the
analytical ones will be the same for small wave number.
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Fig.4. Group velocities for the MSBS of the CNLS equations with (a) △x = 0.03, 0.05 and △t = 0.0025 (b)

△x = 0.03 and △t = 0.015, 0.0025.

Fig.4 shows the group velocity for the MSBS for different △x and △t respectively. We can
get the relationship between the propagation speed for the MSBS and△x or△t. From Fig.4, we
can see that with the increasing of the △x (△t), the max group velocity increases (decreases).
So we can conclude that the max numerical propagation speed for the MSBS is a increasing
(decreasing) function of △x (△t). Further more, Fig.4 also shows that the group velocities of
the MSBS is positive, which shows that the direction of energy transport is preserved.

4 Numerical Examples

4.1 The NLS Equation

First we consider the NLS equation for initial condition with λ = 2

u(x, 0) = 1.5sech(1.5x+ 30) exp(2ix). (4.1)

The computation is done for 0 ≤ t ≤ 0.9, −30 ≤ x ≤ 30, with different △x and △t. Fig.5 shows
the numerical result with △x = 0.03 and △t = 0.0025. Fig.5.c shows the propagation of the
numerical solution in 0 ≤ |u| ≤ 1× 10−11. Fig.6 shows the propagation of the numerical solu-
tion with △x = 0.05 and △t = 0.0025. Fig.7 shows the propagation of the numerical solution
with △x = 0.03 and △t = 0.0015. Fig.8 shows the comparison of the dispersion effects with
above three different △x and △t. From Figs.(5-7), we can see that with △x(△t) increases, the
propagation speed of the fast mode increases(decreases), because the max numerical propaga-
tion speed for the MSBS is a increasing (decreasing) function of △x (△t). From Fig.8, we can
see that though the propagation of the small wave number modes appear very close, there is a
apparent difference within higher ones as predicted by the analysis (see Fig.2). And we can see

V (0.03, 0.0025) < V (0.05, 0.0025) < V (0.03, 0.0015), (4.2)

where V (△x,△t) is the propagation speed of the fast mode. Eq.(4.2) can also be get from
Fig.2.
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Fig.5. Dispersion effects in the numerical solutions of the MSBS for the NLS equation with △x = 0.03, △t =

0.0025, 0 ≤ t ≤ 0.9, (a) 0 ≤ |u| ≤ 1.5, and t = 0.9, (b) 0 ≤ |u| ≤ 1.5,(c) 0 ≤ |u| ≤ 1× 10−11.
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Fig.6. Dispersion effects in the numerical solutions of the MSBS for the NLS equation with △x = 0.05,

△t = 0.0025, t = 0.9, 0 ≤ |u| ≤ 1× 10−11.
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Fig.7. Dispersion effects in the numerical solutions of the MSBS for the NLS equation with △x = 0.03,

△t = 0.0015, t = 0.9, 0 ≤ |u| ≤ 1× 10−11.
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Fig.8. Comparison of the dispersion effects with three different △x and △t,(a) 0 ≤ |u| ≤ 1.5, (b) 0 ≤ |u| ≤
1× 10−11.

4.2 The CNLS Equations

Then we consider the CNLS equations for the initial condition with β = 1

u(x, 0) =
√
2sech(x+ 15) exp(ix/4), (4.3)

v(x, 0) =
√
2sech(x− 15) exp(−ix/4). (4.4)

The computation is done for 0 ≤ t ≤ 1.2, −30 ≤ x ≤ 30, with different △x and △t. Fig.9
shows the numerical result with △x = 0.03 and △t = 0.0025. Fig.10 shows the propagation of
the numerical solution in 0 ≤ |u| ≤ 1 × 10−7. Fig.11 shows the propagation of the numerical
solution with △x = 0.05 and △t = 0.0025. Fig.12 shows the propagation of the numerical
solution with △x = 0.03 and △t = 0.0015. From Figs. 10–12, we can see that as △x(△t)
increases, the propagation speed of the fast mode increases(decreases), because the max nu-
merical propagation speed for the MSBS scheme is a increasing (decreasing) function of △x
(△t). Though the propagation of the small wave number modes appear very close, there is a
apparent difference within higher ones as predicted by the analysis (see Fig.2). And we can see

V (0.03, 0.0025) < V (0.05, 0.0025) < V (0.03, 0.0015), (4.5)

where V (△x,△t) is the propagation speed of the fast mode. Eq.(4.5) can also be get from
Fig.4. And the modes with higher or lower wave number all travel slower than the fast one,
because the group velocity of the MSBS is not a monotonic function of K (see Fig.4).
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Fig.9. Numerical result of the MSBS for the CNLS equations with △x = 0.03 and △t = 0.0025, 0 ≤ t ≤ 1.2,

(a) |u|+ |v|, and t = 1.2, (b) |u|, (c) |v|.
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Fig.10. Dispersion effects in the numerical solutions of the MSBS for the CNLS equations with △x = 0.03,

△t = 0.0025, t = 1.2,(a) 0 ≤ |u| ≤ 1× 10−7, (b) 0 ≤ |v| ≤ 1× 10−7.
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Fig.11. Dispersion effects in the numerical solutions of the MSBS for the CNLS equations with △x = 0.05,

△t = 0.0025, t = 1.2, (a) 0 ≤ |u| ≤ 1× 10−7, (b) 0 ≤ |v| ≤ 1× 10−7.

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1
x 10

−7

x

|u|

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1
x 10

−7

x

|v|

(a) (b)

Fig.12. Dispersion effects in the numerical solutions of the MSBS for the CNLS equations with △x = 0.03,

△t = 0.0015, t = 1.2, (a) 0 ≤ |u| ≤ 1× 10−7,(b) 0 ≤ |v| ≤ 1× 10−7.

5 Conclusions

In this paper, we study the dispersive properties of multi-symplectic discretizations for the NLS
equations. The numerical dispersion relation and group velocity are investigated. We find that
the numerical group velocities of the schemes are related to the choice of △x and △t for the
NLS equations, and the numerical results confirm it. Numerical results also show that the
propagation of the numerical solutions of the MSBS for the NLS equations are dependent on
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the choice of △x and △t. The numerical dispersion relation is relevant when resolving the NLS
equations.
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