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Abstract In this paper, nonconforming finite element methods (FEMs) are proposed for the constrained

optimal control problems (OCPs) governed by the nonsmooth elliptic equations, in which the popular EQrot
1

element is employed to approximate the state and adjoint state, and the piecewise constant element is used to

approximate the control. Firstly, the convergence and superconvergence properties for the nonsmooth elliptic

equation are obtained by introducing an auxiliary problem. Secondly, the goal-oriented error estimates are

obtained for the objective function through establishing the negative norm error estimate. Lastly, the methods

are extended to some other well-known nonconforming elements.
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1 Introduction

The constrained OCPs play a crucial role in many science and engineering applications (cf.
[2, 3]). But the exact solution is always difficult to be obtained, so researching the corresponding
numerical algorithms becomes very meaningful. For instance, [5] firstly provided the optimality
conditions and an important theoretical analysis for OCPs. Based on this research, [6] proved
convergence of finite element approximations to OCPs for semi-linear elliptic equations with
finitely many state constraints. Later, [7] extended these results to a less regular setting for the
states, and gave the convergence analysis of FEMs for semi-linear distributed and boundary
control problems. On the other hand, [17] proposed a discretization concept which utilizes for
the discretization of the control variable the relation between adjoint state and control. The
key feature is not to discretize the space of admissible control, but to implicitly utilize the
first order optimality conditions and the discretization of the state and adjoint equations for
the discretization of the control. Moreover, the linear element was used to discretize the state
equation and the error estimate of L2-norm was obtained in [12]. Recently, there appeared a
lot of studies focusing on the conforming FEMs for OCPs governed by elliptic equations, Stokes
equations, convection-dominated diffusion equations, and so on (cf. [22, 23, 37]).

In this paper, we consider the following OCPs with state constrained: find (y, u) ∈ Y ×K∗,
such that

J(y, u) = min
u∈Uad

{1

2

∫
Ω

(y − y0)
2dx+

α

2

∫
Ω

u2dx
}
, (1.1)
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subject to {
−∆y + βmax(0, y) = u, in Ω,

y = 0, on ∂Ω,
(1.2)

and
Uad = {v ∈ L2(Ω) : v ≤ φ, a.e. in Ω}, (1.3)

where Ω is a bounded convex polygon inR2, x = (x1, x2) ∈ Ω, φ ∈ L∞(Ω), Y = H1
0 (Ω)∩H3(Ω).

α and β are positive constant parameters, φ|∂Ω > 0 and y0 are given functions. Throughout
this paper, the Sobolev spaces and norms are both standard (see [4]).

As we know, the above state equations have been applied in many practical problems, such as
equilibrium analysis of confined magnetohydrodynamics plasmas[11], thin stretched membranes
partially covered with water[19], reaction-diffusion problems[1], and so on. For the nonsmooth
elliptic equations (1.2), [8] investigated a conforming linear FEM and derived the optimal order
error estimates both in L2-norm andH1-norm by introducing an auxiliary problem. [10] studied
the first order conditions, which can be used to verify that a point satisfying the so-called first
order conditions is a global or local optimal solution of the OCP(1.1) governed by (1.2). But
since the problem is nonsmooth and globally nonconvex, the solution may not be unique in many
cases and the first order condition is neither sufficient nor necessary for the original problem.
Therefore the H1-norm and L2-norm finite element error estimates are not proper for it is not
clear that which specific solution is approximated by the numerical solution. Fortunately, [38]
gave a conforming FEM motivated by the analysis of [8], and obtained the goal-oriented error
estimates, which also indicated that the finite element solution tended to an exact solution in
the sense of goal function.

However, the works mentioned above are mainly restricted to the conforming FEMs. In fac-
t, nonconforming elements have attracted much more attentions of the engineers and scholars.
Roughly speaking, nonconforming elements have at least two remarkable advantages comparing
with the conforming ones. The first aspect is that they are usually easier to be constructed
to satisfy the celebrated discrete Babuska-Brezzi, or inf-sup stability condition, which is usu-
ally required in the mixed FEMs[4]. The second aspect comes from the domain decomposition
point of view. For some Crouzeix-Raviart type elements with the degrees of freedom defined
on the edges (or faces) of element, since the unknowns are associated with the element edges
or faces, each degree of freedom belongs to at most two elements, the use of the nonconforming
elements facilitates the exchange of information across each subdomain and provides spectral
radius estimates for the iterative domain decomposition operator[13]. Especially, the noncon-
forming EQrot

1 element has been applied to many problems. For example, [21] studied its
superconvergence properties for the second order elliptic problems, [25] applied this element to
solve diffusion-convection-reaction equation, [29] considered its superconvergence behaviors on
anisotropic meshes, and [36] used it to deal with the Signorini problem and obtained the global
superconvergence results. Furthermore, this element was also employed to solve the Maxwell’s
equations[30], nonlinear Sobolev equation[33] and some other different problems[26, 27]. Recently,
we also researched the NFEM and mixed FEM for stationary OCPs, and obtained the supercon-
vergence results and optimal order error estimates in [14–16], respectively. But unfortunately,
the method does not work in this kind of nonsmooth OCPs.

The aim of this paper is to investigate the nonconforming FEMs for the constrained OCPs
governed by the nonlinear elliptic equations and derive the error estimates. The rest of this
paper is organized as follows. In Section 2, we present the constructions of the elements and
some special properties. In Section 3, by introducing an auxiliary problem, we establish the
convergence and superconvergence analysis of the nonsmooth elliptic problem (1.2). In Section
4, we provide the goal-oriented error estimates for the objective function. In the last section,
we will extend the results to some other popular nonconforming elements.
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2 The Discrete Formulation

Let Th be a family of rectangular subdivision of Ω, h be the mesh size. For any given K ∈ Th,
let li be the four edges of K (i = 1, 2, 3, 4). We define the following FE spaces Uh and Vh as

Uh = {v ∈ L2(Ω), v|K ∈ span(1), ∀K ∈ Th}, (2.1)

Vh =
{
v ∈ L2(Ω), v|K ∈ span(1, x1, x2, x

2
1, x

2
2),

∫
F

[v]ds = 0, F ⊂ ∂K, ∀K ∈ Th

}
, (2.2)

where [v] denotes the jump of v across the edge F if F is an internal edge, and it is equal to v
itself if F is a boundary edge. Let Kh = Uad ∩ Uh, Πh and Πh be the associated interpolation
operators over Uh and Vh, respectively, where Πh|K = ΠK and Πh|K = ΠK satisfy

∫
K

(v −ΠKv)dx = 0, ∀ v ∈ L2(Ω),∫
K

(v −ΠKv)dx = 0, ∀ v ∈ H1(Ω),∫
li

(v −ΠKv)ds = 0, i = 1, 2, 3, 4, ∀ v ∈ H1(Ω).

(2.3)

By the interpolation theory, we have

∥u−Πhu∥0 ≤ ch∥u∥1, ∀u ∈ H1(Ω) (2.4)

and

∥y −Πhy∥0 + h∥y −Πhy∥h ≤ ch2|y|2, ∀ y ∈ H2(Ω), (2.5)

here and later, ∥ · ∥h = (
∑
K

| · |1,K)1/2 is a broken energy norm on Vh.

It is easy to check that if we set ah(y, v) =
∑
K

∫
K
∇y∇vdx, there holds the following property:

ah(y −Πhy, vh) = 0, ∀ vh ∈ Vh. (2.6)

In fact, because ∆vh is a constant on K and
∫
K
(y − Πhy)dx =

∫
∂K

(y − Πhy)ds = 0, we can
derive that

ah(y −Πhy, vh) =
∑
K

∫
∂K

∂vh
∂n

(y −Πhy)ds−
∑
K

∫
K

∆vh(y −Πhy)dx = 0.

Lemma 2.1[29]. Let y ∈ H2(Ω) ∩H1
0 (Ω), then for all vh ∈ Vh, we have∣∣∣∑

K

∫
∂K

∂y

∂n
vhds

∣∣∣ ≤ ch∥y∥2∥vh∥h. (2.7)

Furthermore, assume that y ∈ H3(Ω) ∩H1
0 (Ω), there holds∣∣∣∑

K

∫
∂K

∂y

∂n
vhds

∣∣∣ ≤ ch2∥y∥3∥vh∥h. (2.8)
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3 Convergence and Superconvergence Analysis of the Nonsmooth

Elliptic Problem

The standard weak variational form of (1.2) reads as: find y ∈ Y , such that

a(y, v) + β(max(0, y), v) = (u, v), ∀ v ∈ H1
0 (Ω), (3.1)

where a(y, v) =
∫
Ω
∇y∇vdx, (u, v) =

∫
Ω
uvdx.

The corresponding nonconforming FE discrete form reads as: find (yh, uh) ∈ Vh ×Kh, such
that

Jh(yh, uh) = min
uh∈Kh

{1

2

∫
Ω

(yh − y0)
2dx+

α

2

∫
Ω

u2
hdx

}
, (3.2)

subject to
ah(yh, vh) + β(max(0, yh), vh) = (uh, vh), ∀ vh ∈ Vh. (3.3)

With the purpose of estimating the errors between the solutions of (1.1)–(1.2) and (3.2)–
(3.3), we consider the FE analysis of the following nonsmooth elliptic problem: find w ∈
H1

0 (Ω) ∩H2(Ω), such that {
−∆w + βmax(0, w) = f, in Ω,

w = 0, on ∂Ω,
(3.4)

where f ∈ L2(Ω) is the source term.
The variational form of (3.4) reads as: find w ∈ H1

0 (Ω), such that

a(w, v) + (βmax(0, w), v) = (f, v), ∀ v ∈ H1
0 (Ω). (3.5)

The nonconforming EQrot
1 FE discrete form of (3.5) reads as: find wh ∈ Vh, such that

ah(wh, vh) + (βmax(0, wh), vh) = (f, vh), ∀ vh ∈ Vh. (3.6)

To discuss the errors between w and wh, we introduce the following auxiliary problem: find
w̃h ∈ Vh, such that

ah(w̃h, vh) + (βmax(0, w), vh) = (f, vh), ∀ vh ∈ Vh. (3.7)

Lemma 3.1. Let w ∈ H1
0 (Ω) ∩H2(Ω), wh ∈ Vh and w̃h ∈ Vh be the solutions of (3.5), (3.6)

and (3.7), respectively, then we have

∥w̃h − wh∥h ≤
√
β∥w − w̃h∥0. (3.8)

Proof. Subtracting (3.6) from (3.7), we have

∥w̃h − wh∥2h + β∥max(0, w)−max(0, wh)∥20
=β(max(0, wh)−max(0, w), w̃h − wh)

+ β(max(0, w)−max(0, wh),max(0, w)−max(0, wh)). (3.9)

Noticing that

β(max(0, w)−max(0, wh),max(0, w)− w)

+ β(max(0, w)−max(0, wh), wh −max(0, wh))
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=


(w − wh, 0) + (w − wh, 0) = 0, if y ≥ 0 and yh ≥ 0;

(w, 0) + (w,wh) = (w,wh), if y ≥ 0 and yh ≤ 0;

(−wh,−w) + (−wh, 0) = (w,wh) ≤ 0, if y < 0 and yh ≥ 0;

(0,−w) + (0, wh) = 0, if y < 0 and yh < 0

≤0, (3.10)

we have

β(max(0, w)−max(0, wh),max(0, w)−max(0, wh)) (3.11)

≤β(max(0, w)−max(0, wh), w − wh). (3.12)

Substituting (3.11) to (3.9), we can derive that

∥w̃h − wh∥2h + β∥max(0, w)−max(0, wh)∥20
≤β(max(0, wh)−max(0, w), w̃h − wh) + β(max(0, w)−max(0, wh), w − wh)

=β(max(0, w)−max(0, wh), w − w̃h)

≤β∥max(0, w)−max(0, wh)∥0∥w − w̃h)∥0
≤β∥max(0, w)−max(0, wh)∥20 + β∥w − w̃h∥20, (3.13)

which completes the proof. �
Lemma 3.2. Under the assumptions of Lemma 3.1, we have

∥w − w̃h∥h ≤ ch|w|2 (3.14)

and
∥w − w̃h∥0 ≤ ch2|w|2. (3.15)

Proof. Subtracting (3.5) from (3.7), there yields

ah(w, vh)− ah(w̃h, vh) =
∑
K

∫
∂K

∂w

∂n
vhds, ∀ vh ∈ Vh. (3.16)

Noticing that (2.7), we have

∥w − w̃h∥2h =ah(w − w̃h, w − w̃h)

=
∑
K

∫
∂K

∂w

∂n
(Πhw − w̃h)ds ≤ ch|w|2∥Πhw − w̃h∥h, (3.17)

which leads to the result of (3.14).
Now we start to prove (3.15). Let φ ∈ H2(Ω) ∩ H1

0 (Ω) be the solution of the following
auxiliary problem:

a(φ, v) = (Πhw − w̃h, v), ∀ v ∈ H1
0 (Ω) (3.18)

satisfying
|φ|2 ≤ c∥Πhw − w̃h∥0. (3.19)

Then, using (2.6)–(2.7) and (3.16), there holds

∥Πhw − w̃h∥20 = (Πhw − w̃h,Πhw − w̃h)

=ah(φ,Πhw − w̃h) = ah(φ−Πhφ,Πhw − w̃h) + ah(Πhφ,Πhw − w̃h)
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=ah(Πhφ,w − w̃h) = ah(Πhφ− φ,w − w̃h) ≤ ch |w|2∥Πhφ− φ∥h ≤ ch2|w|2|φ|2
≤ch2|w|2∥Πhw − w̃h∥0, (3.20)

which together with (2.5) leads to (3.15). The proof is thus completed. �
Lemma 3.3. Let w ∈ Y , wh ∈ Vh and w̃h ∈ Vh be the solutions of (3.5), (3.6) and (3.7),
respectively, then we have

∥Πhw − w̃h∥h ≤ ch2|w|3. (3.21)

Proof. Subtracting (3.5) from (3.7), and using the results of (2.6) and (2.8), we can obtain that

∥Πhw − w̃h∥2h = ah(Πhw − w̃h,Πhw − w̃h)

=ah(w − w̃h,Πhw − w̃h) =
∑
K

∫
∂K

∂w

∂n
(Πhw − w̃h)ds

≤ch2|w|3∥Πhw − w̃h∥h, (3.22)

the desired result follows. �
Theorem 3.1. Under the assumptions of Lemma 3.1, there hold:

∥w − wh∥h ≤ c(h+
√
βh2)|w|2 (3.23)

and

∥w − wh∥0 ≤ c(h2 +
√
βh2)|w|2. (3.24)

Proof. By Lemmas 3.1–3.2, we have

∥w − wh∥h ≤∥w − w̃h∥h + ∥w̃h − wh∥h
≤ch |w|2 + c

√
β∥w − w̃h∥0 ≤ ch |w|2 + c

√
βh2|w|2 (3.25)

and

∥w − wh∥0 ≤∥w − w̃h∥0 + ∥w̃h − wh∥0
≤ch2|w|2 + c

√
β∥w − w̃h∥0 ≤ ch2|w|2 + c

√
βh2|w|2. (3.26)

The proof is thus completed. �
Theorem 3.2. Under the assumptions of Lemma 3.3, there holds the following superclose
result:

∥Πhw − wh∥h ≤ ch2|w|3. (3.27)

Proof. By Lemmas 3.1-3.3, and the triangle inequality, we have

∥Πhw − wh∥h ≤∥Πhw − w̃h∥h + ∥w̃h − wh∥h
≤∥Πhw − w̃h∥h +

√
β∥w − w̃h∥0 ≤ ch2|w|3. (3.28)

The proof is completed. �
In order to obtain the global superconvergence result, we combine four neighbouring ele-

ments K1, K2, K3, K4 ∈ Th into a big rectangular element K0 (see Figure 1). T2h respects the
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corresponding new partition[21]. We construct the interpolated postprocessing operator Π2h as
follows.

Π2hw|K0 ∈ P2(K0), ∀K0 ∈ T2h,∫
Li

(Π2hw − w)ds = 0, i = 1, 2, 3, 4,∫
K1∪K3

(Π2hw − w)dx = 0,

∫
K2∪K4

(Π2hw − w)dx = 0, ∀K0 ∈ T2h,

in which Li (i = 1, 2, 3, 4) are the four edges of K0, P2 denotes the set of polynomials of degree
2.

L1

L4 L2

L3

K4 K3

K2K1

Figure 1. Big element K0

It can be validated that Π2h is well-posed and has the following properties[33]:
Π2hΠhw = Π2hw, ∀w ∈ H2(Ω),

∥Π2hw − w∥h ≤ chr|w|r+1, ∀w ∈ Hr+1(Ω), 0 ≤ r ≤ 2,

∥Π2hvh∥h ≤ c∥vh∥h, ∀ vh ∈ Vh.

(3.29)

Theorem 3.3. Under the assumptions of Theorem 3.2, we have the following superconvergence
result

∥w −Π2hwh∥h ≤ ch2|w|3. (3.30)

Proof. By (3.29), we get

∥Π2hΠhw −Π2hwh∥h = ∥Π2h(Πhw − wh)∥h ≤ c∥Πhw − wh∥h ≤ ch2|w|3

and
∥w −Π2hΠhw∥h = ∥w −Π2hw∥h ≤ ch2|w|23.

So we have

∥w −Π2hwh∥h = ∥w −Π2hΠhw +Π2hΠhw −Π2hwh∥h
≤ ∥w −Π2hΠhw∥2h + ∥Π2hΠhw −Π2hwh∥h ≤ ch2|w|3.

�

4 Goal-oriented Error Estimates

As mentioned in the previous sections that analysis of the standard error estimate under H1-
norm or L2-norm is not proper, we resort to the goal-oriented error estimates with the form of
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|J(y, u)− Jh(yh, uh)| by studying J(y, u)− Jh(yh, uh) and Jh(yh, uh)− J(y, u) in the following
two lemmas.

Lemma 4.1. Let (y, u) and (yh, uh) be the solutions of (1.1) and (3.2), respectively, then we
have

J(y, u)− Jh(yh, uh) ≤ ch2. (4.1)

Proof. Noting the fact that (y, u) is the solution of (1.1), it is obviously right that

J(y, u) ≤ J(y(uh), uh), (4.2)

where y(uh) is the solution of

a(y(uh), v) + β(max(0, y(uh)), v) = (uh, v), ∀ v ∈ H1
0 (Ω). (4.3)

By Theorem 3.1, we have

∥y(uh)− yh∥0 ≤ ch2. (4.4)

Thus,

J(y, u)− Jh(yh, uh) ≤J(y(uh), uh)− Jh(yh, uh)

=
1

2

∫
Ω

(y(uh)− y0)
2dx− 1

2

∫
Ω

(yh − y0)
2dx

=
1

2

∫
Ω

(y(uh)− yh)(y(uh) + yh − 2y0)dx

≤1

2
∥y(uh)− yh∥0∥y(uh) + yh − 2y0∥0 ≤ ch2, (4.5)

where (4.4) has been used in the last step. The proof is thus completed. �
Lemma 4.2. Under the assumptions of Lemma 4.1, we have

Jh(yh, uh)− J(y, u) ≤ ch2. (4.6)

Proof. Let yh(u) and yh(Πhu) be the solutions of the following two auxiliary equations:

ah(yh(u), vh) + (βmax(0, yh(u)), vh) = (u, vh), ∀ vh ∈ Vh (4.7)

and
ah(yh(Πhu), vh) + (βmax(0, yh(Πhu)), vh) = (Πhu, vh), ∀ vh ∈ Vh, (4.8)

respectively. Then setting vh = yh(u) − yh(Πhu) in (4.7) and (4.8), we can get the following
error equation

∥yh(u)− yh(Πhu)∥2h + β(max(0, yh(u))−max(0, yh(Πhu)), yh(u)− yh(Πhu))

= (u−Πhu, yh(u)− yh(Πhu)). (4.9)

In fact,

β(max(0, yh(u))−max(0, yh(Πhu)), (yh(u)− yh(Πhu))

=


(yh(u)− yh(Πhu))

2 ≥ 0, if yh(u) ≥ 0 and yh(Πhu) ≥ 0;

yh(u)(yh(u)− yh(Πhu)) ≥ 0, if yh(u) ≥ 0 and yh(Πhu) ≤ 0;

−yh(Πhu)(yh(u)− yh(Πhu)) ≥ 0, if yh(u) < 0 and yh(Πhu) ≥ 0;

0, if yh(u) < 0 and yh(Πhu) < 0



Nonconforming FEMs for the Constrained OCPs Governed by Nonsmooth Elliptic Equations 479

≥0. (4.10)

So

∥yh(u)− yh(Πhu)∥2h ≤(u−Πhu, yh(u)− yh(Πhu))

≤c∥u−Πhu∥−1∥yh(u)− yh(Πhu)∥h. (4.11)

It is easy to check that

∥u−Πhu∥−1 = sup
Φ∈H1(Ω)

(u−Πhu,Φ)

∥Φ∥1
= sup

Φ∈H1(Ω)

(u−Πhu,Φ−ΠhΦ)

∥Φ∥1
≤ ch2|u|1. (4.12)

Thus, substituting (4.12) to (4.11) yields

∥yh(u)− yh(Πhu)∥h ≤ ch2|u|1. (4.13)

Because (yh, uh) is the solution of (3.2), there holds

Jh(yh, uh) ≤ Jh(y(Πhu),Πhu). (4.14)

Thus,

Jh(yh, uh)− J(y, u) (4.15)

≤Jh(y(Πhu),Πhu)− J(y(uh), uh)

=
1

2

∫
Ω

(yh(Πhu)− y0)
2dx− 1

2

∫
Ω

(y − y0)
2 +

α

2

∫
Ω

(Πhu)
2dx− α

2

∫
Ω

u2dx

=
1

2

∫
Ω

(yh(Πhu)− y)(yh(Πhu) + y − 2y0)dx+
α

2

∫
Ω

(Πhu+ u)(Πhu− u)dx

=
1

2

∫
Ω

(yh(Πhu)− y)(yh(Πhu) + y − 2y0)dx

+
α

2

∫
Ω

(Πhu+ u−Πhu)(Πhu− u)dx

=
1

2

∫
Ω

(yh(Πhu)− y)(yh(Πhu) + y − 2y0)dx+
α

2

∫
Ω

(u−Πhu)(Πhu− u)dx

≤1

2

∫
Ω

(yh(Πhu)− y)(yh(Πhu) + y − 2y0)dx

≤∥yh(Πhu)− y∥0∥yh(Πhu) + y − 2y0∥0
≤(∥yh(Πhu)− yh(u)∥0 + ∥yh(u)− y∥0)∥yh(Πhu) + y − 2y0∥0
≤ch2(∥u∥1 + |y|2), (4.16)

where, (4.13) and (3.24) have been used in the last step. The proof is thus completed. �
Therefore, we have the following goal-oriented error estimate:

Theorem 4.1. Under the assumptions of Lemmas 4.1–4.2, respectively, it can be obtained
directly that

|Jh(yh, uh)− J(y, u)| ≤ ch2. (4.17)

Remark. Theorem 4.1 indicates that the FE solution tends to an exact solution in the sense
of goal function although the error estimates of uh − u and yh − y under H1-norm or L2-norm
can’t be obtained directly.
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4.1 Goal-oriented Error Estimates

It has been mentioned that the result of Theorem 4.1 follows the convergence result Theorem
3.1. In fact, for some other very popular nonconforming elements cases, the results also hold.
It can be checked that for vh ∈ Vh, if (2.6) is replaced by

ah(u−Πhu, vh) = O(h2)∥vh∥h, ∀ vh ∈ Vh, (4.18)

or the interpolation operator Πh in our paper is replaced by Riesz projection operator Rh define
by

ah(Rhu− u, vh) = 0, ∀ vh ∈ Vh, (4.19)

and (2.7) is satisfied, then Theorems 3.1–3.3 and Theorem 4.1 also hold true.
(a) Qrot

1 element on square meshes
It has been shown in [24] that (2.6) and Lemma 2.1 hold true. Thus Theorems 3.1-3.3 and

Theorem 4.1 are also valid for this element.
(b) Quasi-Wilson quadrilateral element[9], Quasi-Carey triangular element[28] and modified

quasi-Wilson quadrilateral element[31].
For any vh ∈ Vh, let vh = vh + v1h, where vh and v1h be the conforming and nonconforming

parts of vh, respectively. So if we replace Πhu by Πhu in the proof of our paper, Theorems
3.1–3.3 and Theorem 4.1 are also valid for these two elements.

(c) P1-nonconforming rectangular finite element[18].
It has been proved in [18] that P1-nonconforming rectangular finite element is identity to

the constrained rotated Q1 element (CNQrot
1 ), and there hold Lemma 2.1 and (4.18). Thus

Theorems 3.1–3.3 and Theorem 4.1 are valid for this element.
(d) Pmod

1 -nonconforming triangular element and modified Crouzeix-Raviart type rectangu-
lar elements[20].

In [20], it has been proved that the consistency error for Pmod
1 -nonconforming triangular

element is of order O(h3). So we can replace the interpolation operator Πh with Rh defined by
(4.19) to ensure Theorems 3.1–3.3 and Theorem 4.1 to be true.

(e) Wilson rectangular element, Carey triangular element and C-R type nonconforming
triangular element

As to these three elements, since their consistency error is of order O(h), i.e., (2.8) does not
hold, even if Πh is replaced by Rh as in above (d), whether the result of Theorems 3.2–3.3 are
true or not remains open. But Theorems 3.1 and Theorem 4.1 still hold.
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