
Acta Mathematicae Applicatae Sinica, English Series

Vol. 35, No. 4 (2019) 820–829

https://doi.org/10.1007/s10255-019-0855-1
http://www.ApplMath.com.cn & www.SpringerLink.com

Acta Mathema�cae Applicatae Sinica,
English Series
© The Editorial Office of  AMAS & 
     Springer-Verlag GmbH Germany 2019

Regularity of Global Attractor for Atmospheric
Circulation Equations with Humidity Effect
Jiao-jiao PAN, Qian JIANG, Ting-wei RUAN, Hong LUO†

School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, China

(†E-mail: lhscnu@163.com)

Abstract In this article, regularity of the global attractor for atmospheric circulation equations with humidity

effect is considered. It is proved that atmospheric circulation equations with humidity effect possess a global

attractor in Hk(Ω,R4) for any k ≥ 0, which attracts any bounded set of Hk(Ω, R4) in the Hk−norm. The

result is established by means of an iteration technique and regularity estimates for the linear semigroup of

operator, together with a classical existence theorem of global attractor.
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1 Introduction

In this article, we concern the following the atmospheric circulation equations

∂u

∂t
= Pr(Δu −∇p − σu) + Pr(RT − ˜Rq)�κ − (u · ∇)u, t > 0, x ∈ Ω, (1.1)

∂T

∂t
= ΔT + u2 − (u · ∇)T + Q, t > 0, x ∈ Ω, (1.2)

∂q

∂t
= LeΔq + u2 − (u · ∇)q + G, t > 0, x ∈ Ω, (1.3)

div u = 0, t > 0, x ∈ Ω, (1.4)

where the unknown functions u = (u1, u2), T , q and p denote velocity field, temperature,
humidity and pressure, respectively, and �κ = (0, 1). Here (x, t) = (x1, x2, t) ∈ Ω × (0,∞)
(Ω = (0, 2π) × (0, 1) is a period of C∞ field (−∞, +∞) × (0, 1)), and Q(x), G(x) are given
functions. Besides, Pr > 0, R > 0, ˜R and Le > 0 are constants, and σ is a matrix

σ =

(

σ0 −ω

ω σ1

)

,

where σ0, σ1 and ω are positive constants.
The Problems (1.1)–(1.4) are supplemented with the following Dirichlet boundary condition

at x2 = 0, 1 and periodic condition for x1,

(u, T, q) = 0, x2 = 0, 1; (u, T, q)(0, x2) = (u, T, q)(2π, x2), (1.5)

and initial value condition
(u, T, q) = (u0, T0, q0), t = 0. (1.6)
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The partial differential Eqs.(1.1)–(1.6) were presented in atmospheric circulation with hu-
midity effect. The atmosphere and ocean around the earth are rotating geophysical fluids,
which are also two important components of the climate system. The phenomena of the at-
mosphere and ocean are extremely rich in their organization and complexity, therefore a lot
of them can not be produced by laboratory experiments. The atmosphere, the ocean or the
atmosphere-ocean coupling can be viewed as an initial and boundary value problem[8,9,13,14],
or an infinite dimensional dynamical system[1−3]. We deduce atmospheric circulation models
(1.1)–(1.6) which are able to show the features of atmospheric circulation and are easy to be
studied from the very complex atmospheric circulation model based on the actual background
and meteorological data, furthermore, we present global solutions of atmospheric circulation
equations in Hk spaces in [4]. In [5], the steady state solution to atmospheric circulation
Eqs.(1.1)–(1.6) with humidity effect is studied and a sufficient condition of existence of steady
state solution to atmospheric circulation equations is obtained, and regularity of steady state
solution is verified. In [6], by C-condition, it is obtained that atmospheric circulation equations
have a global attractor in L2(Ω,R4). In this article, we investigate regularity of attractor to
the atmospheric circulation equations by an iteration procedure[7,9,15,17].

The paper is organized as follows. In Section 2 we present preliminary results, especially
some properties of semigroups and several lemmas which will be used later. In Section 3, we
obtain regularity of the global attractor for the Eqs.(1.1)–(1.6).

2 Preliminaries

Let X and X1 be two Banach spaces, X1 ⊂ X a compact and dense inclusion. Consider the
abstract nonlinear evolution equation defined on X , given by

⎧

⎨

⎩

du

dt
= Lu + G(u),

u(x, 0) = u0,
(2.1)

where u(t) is an unknown function, L : X1 → X a linear operator, and G : X1 → X a nonlinear
operator.

A family of operators S(t) : X → X (t ≥ 0) is called a semigroup generated by (2.1) if S(t)
satisfies the properties:

(1) S(t) : X → X is a continuous map for any t ≥ 0,

(2) S(0) = id : X → X is the identity,
(3) S(t + s) = S(t) · S(s), ∀ t, s ≥ 0.
Then the solution of (2.1) can be expressed by u(t, u0) = S(t)u0.

The following Lemma 2.1 is the classical existence theorem of global attractor.

Lemma 2.1[10,11,16]. Let S(t) : X → X be the semigroup generated by (2.1). Eq.(2.1) has a
global attractor, if the following conditions hold

(1) S(t) has a bounded absorbing set B ⊂ X, i.e., for any bounded set A ⊂ X there exists
a time tA ≥ 0 such that S(t)u0 ∈ B for ∀u0 ∈ A and t > tA,

(2) S(t) is uniformly compact, i.e., for any bounded set U ⊂ X and some T > 0 sufficiently
large, the set

⋃

t≥T

S(t)U is compact in X.

We assume that the linear operator L in (2.1) is a sectorial operator which generates an
analytic semigroup etL. It is known that there exists a constant λ ≥ 0 such that L − λI
generates the fractional power operators Lα and fractional order spaces Xα for α ∈ R1, where
L = −(L − λI). Without loss of generality, we assume that L generates the fractional power
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operators Lα and fractional order spaces Xα as follows:

Lα = (−L)α : Xα → X, α ∈ R1,

where Xα = D(Lα) is the domain of Lα. By the semigroup theory of linear operators[12], we
know that Xβ ⊂ Xα is a compact inclusion for any β > α.

Therefore, Lemma 2.1 can be equivalently expressed by the following Lemma.

Lemma 2.2[9,10,15,17]. Let u(t, u0) = S(t)u0(u0 ∈ X, t ≥ 0) be a solution of (2.1) and Xα be
the fractional order space generated by L. Assume

(1) for some α ≥ 0 there is a bounded set B ⊂ Xα, such that for any u0 ∈ Xα there exists
a tu0 > 0 such that

u(t, u0) ∈ B, ∀ t > tu0 ,

(2) there is a β > α, for any bounded set U ⊂ Xβ there are constants T > 0 and C > 0
such that

‖u(t, u0)‖Xβ
≤ C, ∀ t > T, u0 ∈ U.

Then Eq.(2.1) has a global attractor A ⊂ Xα attracting any bounded set of Xα in the Xα-norm.

Lemma 2.3. The eigenvalue equation
⎧

⎪

⎨

⎪

⎩

−ΔT (x1, x2) = λT (x1, x2), (x1, x2) ∈ (0, 2π) × (0, 1),
T = 0, x2 = 0, 1,

T (0, x2) = T (2π, x2),
(2.2)

has eigenvalue {λk}∞k=1, and 0 < λ1 ≤ λ2 ≤ · · · , λk → ∞, as k → ∞.
Let φ = (u, T, q), and

H = {(u, T, q) ∈ L2(Ω,R4)|(u, T, q) satisfies (1.4) − (1.5)},

H1 = {(u, T, q) ∈ H2(Ω,R4)|(u, T, q) satisfies (1.4) − (1.5)}.
We introduce the operators L : H1 → H and F : H1 → H defined by

L(φ) =

⎛

⎝

L1(φ)
L2(φ)
L3(φ)

⎞

⎠ = P

⎛

⎝

Pr(Δu −∇p)
ΔT

LeΔq

⎞

⎠ ,

F (φ) =

⎛

⎝

F1(φ)
F2(φ)
F3(φ)

⎞

⎠ = P

⎛

⎝

−Prσu + Pr(RT − ˜Rq)�κ − (u · ∇)u
u2 − (u · ∇)T + Q
u2 − (u · ∇)q + G

⎞

⎠ ,

where P : L2(Ω,R4) → H is a Leray projection. It is well known that the operator L : H1 → H
is a sectorial operator, and the associated space H 1

2
is H 1

2
= H1(Ω,R4) ∩ H . Then the

Eqs.(1.1)–(1.6) can be rewritten as an abstract equation

dφ

dt
= Lφ + F (φ).

Lemma 2.4[4]. If φ0 = (u0, T0, q0) ∈ H, and Q, G ∈ L2(Ω), then the global solution φ of the
Eqs.(1.1)–(1.6) can be read as

φ(x, t) = Φ(t)φ0 +
∫ t

0

Φ(t − τ)F (φ)dτ, (2.3)
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where Φ(t) is an analytic semigroup generated by L.
Suppose λ1 is the first eigenvalue of elliptic Eq.(2.2) and σ̃ = max{σ0, σ1, ω}. Assume

σ̃λ1 ≥ max
{

(R + 1)2,
( ˜R − 1)2

Le

}

. (2.4)

Lemma 2.5[6]. If (2.4) holds, then Eqs.(1.1)–(1.6) have an absorbing set in L2(Ω,R4), and

d

dt

∫

Ω

(u2 + T 2 + q2)dx

≤C1

∫

Ω

[−|∇u|2 − |∇T |2 − |∇q|2dx + C2

∫

Ω

(|Q|2 + |G|2)dx. (2.5)

Lemma 2.6[10−12]. Let Ω ⊂ Rn be a Lipschitz field, L : Wm,p → Lp(Ω) be a sectorial
operator, m ≥ 2 and 1 ≤ p < ∞. Then for 0 ≤ α ≤ 1, the fractional order spaces Hα = D(Lα)
satisfy the following relations

Hα ⊂ W k,q, if k − n

q
≤ mα − n

p
,

Hα ⊂ Ck,β , if 0 ≤ k + β < mα − n

p
,

and the inequalities

‖u‖W k,q ≤ C‖u‖Hα , if k − n

q
≤ mα − n

p
,

‖u‖Ck,β ≤ C‖u‖Hα , if 0 ≤ k + β < mα − n

p
.

For sectorial operators, we also have the following properties.

Lemma 2.7[9,10] Let L : H1 → H be a sectorial operator which generates an analytic semi-
group T (t) = etL. If all eigenvalues λ of L satisfy Reλ < −λ0 for some real number λ0 > 0,
then for Lα(L = −L) we have

(1) T (t) : H → Hα is bounded for all α ∈ R1 and t > 0,
(2) T (t)Lαx = LαT (t)x, ∀x ∈ Hα,
(3) for each t > 0,LαT (t) : H → H is bounded, and

‖LαT (t)‖ ≤ Cαt−αe−δt,

where some δ > 0, Cα > 0 is a constant only depending on α,
(4) the Hα−norm can be defined by

‖x‖Hα = ‖Lαx‖H , (2.6)

(5) if L is symmetric, for any α, β ∈ R1 we have 〈Lαu, v〉H = 〈Lα−βu,Lβv〉H .

3 Main Theorem

We present our main result of the article by the following theorem.

Theorem 3.1. If (2.4) holds and Q, G ∈ C∞(Ω̄), then there exists a global attractor A ∈
Hk(Ω,R4) ∩ H for Eqs.(1.1)–(1.6) and A attracts all bounded sets of A ∈ Hk(Ω,R4) ∩ H in
the Hk-norm.
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Proof. Firstly, we verify that the solutions of Eqs. (1.1)–(1.6) are bounded in H 1
2
.

From (1.1)–(1.6), we have

1
2

d

dt

∫

Ω

( 1
Pr

|∇u|2 + |∇T |2 + |∇q|2
)

dx

=
∫

Ω

[

− |�u|2 − |�T |2 − Le|�q|2 − σ∇u · ∇u + (R + 1)∇T∇u2

− ( ˜R − 1)∇q∇u2 − Q�T − G�q +
1
Pr

(u · ∇)u�u + (u · ∇)T�T + (u · ∇)q�q
]

dx

≤
∫

Ω

[

− |�u|2 − |�T |2 − Le|�q|2 − σ̃|∇u|2 + σ̃|∇u2|2 +
(R + 1)2

2σ̃
|∇T |2

+
( ˜R − 1)2

2σ̃
|∇q|2 + ε1|�T |2 + ε2|�q|2 + Cε1,ε2(|Q|2 + |G|2)

+
1
Pr

(u · ∇)u�u + (u · ∇)T�T + (u · ∇)q�q
]

dx

≤
∫

Ω

[

− |�u|2 − 1
2
|�T |2 − Le

2
|�q|2 + ε1|�T |2 + ε2|�q|2

+ Cε1,ε2(|Q|2 + |G|2) +
1
Pr

(u · ∇)u�u + (u · ∇)T�T + (u · ∇)q�q
]

dx.

Then,
1
2

d

dt

( 1
Pr

‖∇u‖2
L2 + ‖∇T ‖2

L2 + ‖∇q‖2
L2

)

≤− ‖�u‖2
L2 − 1

2
‖�T ‖2

L2 − Le

2
‖�q‖2

L2 + ε1‖�T ‖2
L2 + ε2‖�q‖2

L2

+ Cε1,ε2(‖Q‖2
L2 + ‖G‖2

L2) +
C

Pr
‖u‖ 1

2
L2‖∇u‖L2‖�u‖ 3

2
L2

+ C‖u‖ 1
2
L2‖�u‖ 1

2
L2‖∇T ‖L2‖�T ‖L2 + C‖u‖ 1

2
L2‖�u‖ 1

2
L2‖∇q‖L2‖�q‖L2

≤− ‖�u‖2
L2 − 1

2
‖�T ‖2

L2 − Le

2
‖�q‖2

L2 + ε1‖�T ‖2
L2 + ε2‖�q‖2

L2

+ Cε1,ε2(‖Q‖2
L2 + ‖G‖2

L2) +
C

Pr
‖u‖ 1

2
L2‖∇u‖L2‖�u‖ 3

2
L2 + C‖u‖ 1

2
L2‖�u‖ 3

2
L2‖∇T ‖L2

+ C‖u‖ 1
2
L2‖∇T ‖L2‖�T ‖ 3

2
L2 + C‖u‖ 1

2
L2‖�u‖ 3

2
L2‖∇q‖L2 + ‖u‖ 1

2
L2‖∇q‖L2‖�q‖ 3

2
L2

≤− ‖�u‖2
L2 − 1

2
‖�T ‖2

L2 − Le

2
‖�q‖2

L2 + ε3‖�u‖2
L2 + ε1‖�T ‖2

L2 + ε2‖�q‖2
L2

+ Cε1,ε2(‖Q‖2
L2 + ‖G‖2

L2) + Cε3(‖u‖2
L2‖∇u‖4

L2 + ‖u‖2
L2‖∇T ‖4

L2 + ‖u‖2
L2‖∇T ‖4

L2

+ ‖u‖2
L2‖∇q‖4

L2 + ‖u‖2
L2‖∇q‖4

L2).

Assuming ε1 = 1
2 , ε2 = Le

2 , ε3 = 1, we have

d

dt

(‖∇u‖2
L2 + ‖∇T ‖2

L2 + ‖∇q‖2
L2

)

≤C5(‖Q‖2
L2 + ‖G‖2

L2) + C6(‖u‖2
L2‖∇u‖4

L2 + ‖u‖2
L2‖∇T ‖4

L2 + ‖u‖2
L2‖∇T ‖4

L2

+ ‖u‖2
L2‖∇q‖4

L2 + ‖u‖2
L2‖∇q‖4

L2).

Then,
d

dt
(‖∇u‖2

L2 + ‖∇T ‖2
L2 + ‖∇q‖2

L2)

≤C5(‖Q‖2
L2 + ‖G‖2

L2) + C6‖u‖2
L2(‖∇u‖2

L2 + ‖∇T ‖2
L2 + ‖∇q‖2

L2)2. (3.1)
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Integrate (2.5) over [t, t + r], it follows that

C1

∫ t+r

t

(‖∇u‖2
L2 + ‖∇T ‖2

L2 + ‖∇q‖2
L2)dt

≤C2(‖Q‖2
L2 + ‖G‖2

L2)r + (‖u(t)‖2
L2 + ‖T (t)‖2

L2 + ‖q(t)‖2
L2).

Since (u, T, q) has an absorbing set in L2, we have
∫ t+r

t

(‖∇u‖2
L2 + ‖∇T ‖2

L2 + ‖∇q‖2
L2)dt

≤C7(‖Q‖2
L2 + ‖G‖2

L2)r + C8M
2, t > t∗.

Let
⎧

⎪

⎨

⎪

⎩

g = C6‖u‖2
L2(‖∇u‖2

L2 + ‖∇T ‖2
L2 + ‖∇q‖2

L2),
h = C5(‖Q‖2

L2 + ‖G‖2
L2),

y = ‖∇u‖2
L2 + ‖∇T ‖2

L2 + ‖∇q‖2
L2,

(3.2)

and furthermore, we assume
⎧

⎪

⎨

⎪

⎩

a1 = C6M [C7(‖Q‖2
L2 + ‖G‖2

L2)r + C8M
2],

a2 = C5(‖Q‖2
L2 + ‖G‖2

L2)r,
a3 = C7(‖Q‖2

L2 + ‖G‖2
L2)r + C8M

2.

(3.3)

Applying the uniform Gronwall Lemma[16] for Eq.(3.1), we have

∥

∥(∇u,∇T,∇q)(t)
∥

∥

2

L2 ≤
(a3

r
+ a2

)

ea1 , for any t ≥ t∗ + r.

Clearly, there exists a bounded constant M1 such that M2
1 >

(

a3
r +a2

)

ea1 , for any (u0, T0, q0) ∈
B, where B is a bounded set in H . Then there exists t∗ + r > 0 satisfying

S(t)(u0, T0, q0) = (u(t), T (t), q(t)) ∈ BM1 , t > t∗ + r, (3.4)

where BM1 is a ball in H 1
2
, at 0 of radius M1. Thus Eqs.(1.1)–(1.6) have a bounded set BM1

in H 1
2
.

Next, we need to prove that the solution φ(t) = (u, T, q) to Eqs.(1.1)–(1.6) is uniformly
bounded in Hα (α < 1), i.e.,

‖φ(t, φ0)‖Hα ≤ Cα,
1
2
≤ α < 1, ∀φ0 ∈ Hα. (3.5)

It is known that, for any θ, Hθ and H−θ are dual, and if, for v ∈ Hθ, we have < u, v >≤
C‖v‖Hθ

, then u ∈ H−θ and ‖u‖−θ ≤ C.
For ˜φ = (ũ, ˜T , q̃) ∈ Hθ, we have

〈Fφ, ˜φ〉 =
∫

Ω

[−Prσu · ũ + Pr(RT − ˜Rq)ũ2 + (∇ · u)u · ũ

+ u2
˜T − (u · ∇)T ˜T + Q ˜T + u2q̃ − (u · ∇)qq̃ + Gq̃]dx

≤
∫

Ω

[|Prσu · ũ| + PrR|T ||ũ2| + | ˜R||q||ũ2| + |u2|| ˜T | + |u2||q̃|

+ |Q|| ˜T | + |G||q̃|]dx +
∫

Ω

[|(u · ∇)u · ũ| + |(u · ∇)T ˜T | + |(u · ∇)qq̃|]dx
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≤C(‖u‖L2‖ũ‖L2 + ‖T ‖L2‖ũ2‖L2 + ‖q‖L2‖ũ2‖L2 + ‖u2‖L2‖˜T‖L2

+ ‖u2‖L2‖q̃‖L2 + ‖Q‖L2‖ ˜T‖L2 + ‖G‖L2‖q̃‖L2)

+
∫

Ω

[|u||Du||ũ| + |u||DT ||˜T | + |u||Dq||q̃|]dx

≤C(‖u‖L2 + ‖T ‖L2 + ‖q‖L2)(‖ũ‖L2 + ‖˜T‖L2 + ‖q̃‖L2)

+ C(‖Q‖L2 + ‖G‖L2)(‖ũ‖L2 + ‖˜T‖L2 + ‖q̃‖L2)

+ C(‖u‖H1 + ‖T ‖H1 + ‖q‖H1)‖u‖L2q(‖ũ‖L2p + ‖ ˜T‖L2p + ‖q̃‖L2p),

where p > 1 is arbitrary, q = p/(p− 1). By Lemma 2.6, we have

‖u‖L2p ≤ C‖u‖Hθ
, ∀ θ ≥ p − 1

2p
.

Hence,

〈Fφ, ˜φ〉 ≤C
[‖u‖L2 + ‖T ‖L2 + ‖q‖L2 + ‖Q‖L2 + ‖G‖L2

+ (‖u‖H1 + ‖T ‖H1 + ‖q‖H1)‖u‖H1

]

(‖ũ‖Hθ
+ ‖ ˜T‖Hθ

+ ‖q̃‖Hθ
)

≤C(‖φ‖H1 + 1)‖˜φ‖Hθ
, ∀ θ > 0.

Then the mapping

F : H 1
2
→ H−θ is bounded for any θ > 0. (3.6)

So it follows that,

‖L−θF (φ(t, φ0))‖H ≤ C, ∀θ > 0, φ0 ∈ Hα, α ≥ 1
2
.

From (2.3) and Lemma 2.7, we find

‖φ(t, φ0)‖Hα ≤‖Φ(t)φ0‖Hα + ‖
∫ t

0

Φ(t − τ)F (φ)dτ‖Hα

≤‖Φ(t)φ0‖Hα +
∫ t

0

‖LαΦ(t − τ)F (φ)‖Hdτ

≤C +
∫ t

0

‖Lα+θΦ(t − τ)‖‖L−θF (φ)‖Hdτ

≤C +
∫ t

0

τ−(α+θ)e−δτdτ, ∀ 0 < α + θ < 1.

which implies (3.5).
In the following, we prove that for 1

2 < α ≤ k
2 (k ≥ 2), there exists a number β with

0 < β ≤ k−1
2 such that

F : Hα → Hβ bounded, and β → k − 1
2

as α → k

2
. (3.7)

It suffices to prove (3.7) only for bilinear operator
{

F0 : Hα1 × Hα2 → Hβ,

F0(φ, ˜φ) = (P [(u · ∇)ũ], (u · ∇)˜T , (u · ∇)q̃),
(3.8)
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where φ = (u, T, q) ∈ Hα1 , ˜φ = (ũ, ˜T , q̃) ∈ Hα2 .
It is known that Hα

(

k−1
2 ≤ α ≤ k

2

)

are interpolations between H k
2

and H k−1
2

(see [16]):

Hα = [H k
2
, H k−1

2
]θ, θ =

k − 1 + α

2
, 0 ≤ θ ≤ 1,

H k−1
2

= [H k
2
, H k−1

2
]θ=0, H k

2
= [H k

2
, H k−1

2
]θ=1.

Moreover, if
L : H k

2
→ H k−1

2
linear bounded,

L : H k−1
2

→ H k−2
2

linear bounded,

then
L : [H k

2
, H k−1

2
]θ → [H k−1

2
, H k−2

2
]θ linear bounded, ∀0 ≤ θ ≤ 1. (3.9)

For the bilinear operator (3.8), it is readily to verify that for any bounded set U ∈ H k−1
2

,
there is a constant C > 0, such that for all φ ∈ U , we have

F0(φ, ·) : H 1
2
→ H−γ linear bounded, ∀ γ > 0,

F0(φ, ·) : H k
2
→ H k−1

2
linear bounded, ∀ k ≥ 2,

‖F0(φ, ·)‖ ≤ C, ∀φ ∈ U ⊂ H k
2
, k ≥ 1.

By the interpolation relation (3.9) for linear bounded operators, we infer

F0(φ, ·) : [H k
2
, H k−1

2
]θ → [H k−1

2
, H k−2

2
]θ, ∀ k ≥ 3,

F0(φ, ·) : [H1, H 1
2
]θ → [H 1

2
, H−γ ]θ, ∀ γ > 0,

‖F0(φ, ·)‖ ≤ C, ∀φ ∈ U ⊂ H k−1
2

, k ≥ 3, or ∀φ ∈ U ⊂ [H1, H 1
2
]θ.

We denote

α =
k − 1 + θ

2
, k ≥ 2, β =

⎧

⎨

⎩

k − 2 + θ

2
, k ≥ 3,

−γ + (1
2 + γ)θ, k = 2.

Then,

F0 : Hα → Hβ bounded and β → k − 1
2

as α → k

2
.

Thus (3.7) holds.
Next, we shall verify that any solution φ(t) = (u, T, q) to Eqs.(1.1)–(1.6) is uniformly

bounded in Hα

(

k−1
2 ≤ α < k

2

)

, i.e.,

‖φ(t, φ0)‖Hα ≤ Cα,
k − 1

2
≤ α <

k

2
, ∀φ0 ∈ Hα. (3.10)

From (3.7), for k−1
2 ≤ α < k

2 there is k−2
2 ≤ β < k−1

2 satisfying

‖F (φ(t, φ0))‖Hβ
= ‖LβF (φ(t, φ0))‖H ≤ C, ∀t > 0, φ0 ∈ Hα.

Utilizing (2.3) and Lemma 2.7, we obtain that

‖φ(t, φ0)‖Hα ≤‖Φ(t)φ0‖Hα +
∥

∥

∥

∫ t

0

Φ(t − τ)F (φ)dτ
∥

∥

∥

Hα
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≤‖Φ(t)φ0‖Hα +
∫ t

0

‖LαΦ(t − τ)F (φ)‖Hdτ

≤C +
∫ t

0

‖Lα−βΦ(t − τ)‖‖LβF (φ)‖Hdτ

≤C +
∫ t

0

τ−(α−β)e−δτdτ, ∀ 0 < α − β < 1.

Thus (3.10) holds. Then for any α ≥ 0, any solution φ(t) = (u, T, q) to Eqs.(1.1)–(1.6) is
uniformly bounded in Hα, i.e.,

‖φ(t, φ0)‖Hα ≤ Cα, 0 ≤ α, ∀φ0 ∈ Hα. (3.11)

Finally, we shall prove that for any α ≥ 0, Eqs.(1.1)–(1.6) have a bounded absorbing set in
Hα. From Theorem 4.1 in [6] and (3.4), the conclusion holds for the case 1

2 ≥ α ≥ 0. We only
proceed with the case α > 1

2 .
By (2.3) we find

φ(t, φ0) = Φ(t − T )φ(T, φ0) +
∫ t

T

Φ(t − τ)F (φ)dτ. (3.12)

Let D ⊂ H 1
2

be the bounded absorbing set of Eqs.(1.1)–(1.6) in H 1
2

and T0 > 0 such that

φ(t, φ0) ∈ D, ∀ t > T0, ∀φ0 ∈ U ⊂ Hα, α ≥ 1
2
.

By Lemma 2.7, for all φ0 ∈ U and T > 0, we have that

lim
t→∞ ‖Φ(t − T )φ(T, φ0)‖Hα → 0. (3.13)

By Lemma 2.7, it follows from (3.12) and (3.13) that, for any α < 1 and T > T0. Then

‖φ(t, φ0)‖Hα ≤ ‖Φ(t − T )φ(T0, φ0)‖Hα +
∥

∥

∥

∫ t

T

Φ(t − τ)F (φ)dτ
∥

∥

∥

Hα

≤‖Φ(t − T )φ(T0, φ0)‖Hα +
∫ t

T

‖LαΦ(t − τ)F (φ)‖Hdτ

≤C +
∫ t

T

‖Lα+θΦ(t − τ)‖‖L−θF (φ)‖Hdτ

≤C +
∫ t

T

τ−(α+θ)e−δτdτ, ∀ 0 < α + θ < 1.

For ∀α < 1 and U ⊂ Hα, there is a T > 0, such that

‖φ(t, φ0)‖Hα ≤ C, ∀ t ≥ T, φ0 ∈ U,

where C > 0 is independent of φ0. Then Eqs.(1.1)–(1.6) have a bounded absorbing set in
Hα(α < 1).

By iteration procedures, we find that Eqs.(1.1)–(1.6) have a bounded absorbing set in
Hα(α ≥ 0), i.e., for ∀α ≥ 0 and U ⊂ Hα, there is a T > 0 such that

‖φ(t, φ0)‖Hα ≤ C, ∀ t ≥ T, φ0 ∈ U,

where C > 0 is independent of φ0.
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From Lemma 2.2, (3.11) and (3.14), Eqs.(1.1)–(1.6) possess a global attractor A in Hk(Ω,
R4) ∩ H and A attracts any bounded set of Hk(Ω,R4) in the Hk−norm. �
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