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1 Introduction

It is well known that problems involving the p-Laplacian operator appear in many areas of
applied mathematics and physics (for more details, please see [8]). Recently, some people have
studied the following problem { −�u = u − |u|−2θu,

u ∈ H1(RN ) ∩ L2(1−θ)(RN ).
(1.1)

In [2], Balabane et al. proved that for each integer k, there exists a radial compactly supported
solution of (1.1) which has k-zeros in it’s support. In [9], Ounaies proved that there exists a
ground state solution of (1.1) which is non-negative radial compactly supported. In [3], Ben-
rhouma and Ounaies studied the existence of two solutions for the following nonhomogeneous
problem { −�u = u − |u|−2θu + f,

u ∈ H1(RN ) ∩ L2(1−θ)(RN ),
(1.2)

where f ∈ L2(RN ) ∩ L
2(1−θ)
1−2θ (RN ), f ≥ 0, f �= 0, N ≥ 3 and θ ∈ (0, 1

2 ).
In [10], Su discussed a class of p-Laplace equations with negative power of the unknown

function on unbounded domains in R
N . Motivated by [3] and [10], we study the following

p-Laplace nonhomogeneous problem{ −�pu = |u|p−2u − |u|−2θu2m−1 + f,

u ∈ W 1,p(RN ) ∩ L2(m−θ)(RN ),
(1.3)

where m is a positive integer, �pu = div(|∇u|p−2∇u), N > p ≥ 2, m − p
2 < θ < m − 1

2 , f
satisfies ||f ||qq < cθ for some constants cθ > 0 and

(H) f ∈ Lq(RN ) ∩ L
2(m−θ)

2m−1−2θ (RN ), f ≥ 0, f �= 0, where q satisfies
1
p

+
1
q

= 1.
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If f ≡ 0, then Problem (1.3) becomes the following p-Laplace homogeneous problem
{ −�pu = |u|p−2u − |u|−2θu2m−1,

u ∈ W 1,p(RN ) ∩ L2(m−θ)(RN ),
(1.4)

In [5], Deng proved that there exists a nonnegative ground state solution to a class of general
p-Laplace equations which include Problem (1.4) as a special case.

2 Preliminaries

Let E = W 1,p(RN ) ∩ L2(m−θ)(RN ), and endow E with the following norm

||u|| = ||∇u||p + ||u||2(m−θ).

It is easy to verify that (E, ‖ · ‖) is a Banach space. Define the functionals I∞ and I on E by

I∞(u) =
1
p

∫
RN

(|∇u|p − |u|p)dx +
1

2(m − θ)

∫
RN

|u|2(m−θ)dx,

I(u) =
1
p

∫
RN

(|∇u|p − |u|p)dx +
1

2(m − θ)

∫
RN

|u|2(m−θ)dx −
∫

RN

fudx.

Obviously, I∞ and I are C1 functions on E. It is well known that the critical points of I and
I∞ are weak solutions to Problems (1.3) and (1.4) respectively.

Lemma 2.1. There exists a constant c0 > 1 such that for any u ∈ E we have

2
p
||u||pp ≤ 1

4(m − θ)
||u||2(m−θ)

2(m−θ) + c0||∇u||p∗
p .

Proof. If s �= 0, we consider the following function

h(s) =
2
p |s|p − 1

4(m−θ) |s|2(m−θ)

|s| Np
N−p

, s �= 0.

It is easy to prove that there exists c1 > 1 such that

2
p
|s|p ≤ 1

4(m − θ)
|s|2(m−θ) + c1|s|p∗

. (2.1)

If s = 0, it is obvious that (2.1) holds. Let s = |u(x)|, by (2.1) we have

2
p
|u(x)|p ≤ 1

4(m − θ)
|u(x)|2(m−θ) + c1|u(x)|p∗

, ∀x ∈ R
N . (2.2)

Integrate (2.2), we get

2
p
||u||pp ≤ 1

4(m − θ)
||u||2(m−θ)

2(m−θ) + c1||u||p
∗

p∗ .

By the Gagliardo-Nirenberg inequality we conclude that Lemma 2.1 is true. �

In the following, we fix the constant c0 in Lemma 2.1.

Lemma 2.2. Suppose that 0 < ρ ≤ ( 1
2pc0

)
1

p∗−p , then there exist cθ > 0 and a > 0 such that
I(u) ≥ a provided ||f ||qq < cθ and ||u|| = ρ.
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Proof. By the Cauchy-Young inequality, we get

I(u) ≥ 1
p
(||∇u||pp − ||u||pp) +

1
2(m − θ)

||u||2(m−θ)
2(m−θ) −

1
p
||u||pp −

1
q
||f ||qq. (2.3)

By Lemma 2.1 and (2.3), we have

I(u) ≥ 1
p
||∇u||pp − c0||∇u||p∗

p +
1

4(m − θ)
||u||2(m−θ)

2(m−θ) −
1
q
||f ||qq. (2.4)

Note that if ||∇u||p ≤ (
1

2pc0

) 1
p∗−p , then 1

p ||∇u||pp − c0||∇u||p∗
p ≥ 1

2p ||∇u||pp. Thus, according to
(2.4) we conclude that

I(u) ≥ 1
2p

||∇u||pp +
1

4(m − θ)
||u||2(m−θ)

2(m−θ) −
1
q
||f ||qq. (2.5)

Since ρ ≤ (
1

2pc0

) 1
p∗−p , then (2.5) is true for ||u|| = ρ. On the other hand, we observe that if

||u|| = ρ then ||∇u||p ≥ 1
2ρ or ||u||2(m−θ) ≥ 1

2ρ. Therefore, there are two cases to be discussed.

Case 1. ||∇u||p ≥ 1
2ρ. In this case, by (2.5) we have I(u) ≥ 1

2p ( 1
2ρ)p − 1

q ||f ||qq. Let cθ =
q
2p ( 1

2ρ )p and a = q
2p ( 1

2ρ)p − ||f ||qq, then I(u) ≥ a provided ||f ||qq ≤ cθ and ||u|| = ρ.

Case 2. ||u||2(m−θ) ≥ 1
2ρ. In this case, we have I(u) ≥ 1

4(m−θ)(
1
2ρ )2(m−θ) − 1

q ||f ||qq. Let

cθ = q
4(m−θ)(

1
2ρ)2(m−θ) and a = q

4(m−θ)

(
1
2ρ

)2(m−θ) − ||f ||qq. It is obvious that I(u) ≥ a provided
||f ||qq ≤ cθ and ||u|| = ρ.

The proof is complete. �

Fix the constant ρ in Lemma 2.2 and set Bρ = {u ∈ E, ||u|| ≤ ρ}. We have

Lemma 2.3. Let c∞ = inf
u∈Bρ

I∞(u), then c∞ = 0.

Proof. Suppose c∞ < 0. If (vn) ⊆ Bρ is a minimizing sequence of infu∈Bρ I∞(u), then
I∞(vn) < 0 for n large enough. Therefore we have

1
p
||∇vn||pp +

1
2(m − θ)

||vn||2(m−θ)
2(m−θ) ≤

1
p
||vn||pp.

Since 0 < ρ ≤ (
1

2pc0

) 1
p∗−p and (vn) ⊆ Bρ, then ||∇vn||p ≤ (

1
2pc0

) 1
p∗−p . It follows that

1
p
||∇vn||pp − c0||∇vn||p∗

p ≥ 1
2p

||∇vn||pp.

Using Lemma 2.1, similar to [3], we can get a contradiction and consequently we arrive at the
conclusion c∞ = 0. �

Lemma 2.4 (see [11], Lemma 2.1). Let (un) ⊆ W 1,p
0 (Ω) a bounded sequence and p ≥ 2.

Going if necessary to a subsequence, one may assume that un ⇀ u in W 1,p
0 (Ω), un → u a.e.,

where Ω ⊆ R
N is an open subset. Then,

lim
n→∞

∫
Ω

|∇un|pdx ≥ lim
n→∞

∫
Ω

|∇un −∇u|pdx + lim
n→∞

∫
Ω

|∇u|pdx. (2.6)

Lemma 2.5[4]. Suppose fn → f a.e. and ||fn||p ≤ c < ∞ for all n and for some 0 < p < ∞.
Then

lim
n→∞ ||fn||pp = lim

n→∞ ||fn − f ||pp + ||f ||pp. (2.7)



Infinitely Many Solutions to a Class of p-Laplace Equations 773

Let fn = gn + f . If gn → 0 a.e., 0 < p < ∞ and gn ⇀ 0 in Lp(Ω) for open subset Ω ⊆ R
N ,

similar to the proof of Theorem 2 in [4] we have

lim
n→∞ ||gn + f ||pp = lim

n→∞ ||gn||pp + ||f ||pp. (2.8)

Lemma 2.6. Suppose that (un) is a sequence in W 1,p(RN ) such that (un) converges weakly
to U0. Let vn = un − U0, going if necessary to a subsequence, we conclude that there exists a
constant k > 0 such that

1
p

lim
n→∞

∫
RN

|∇vn + ∇U0|pdx ≥ k lim
n→∞

∫
RN

|∇vn|p +
1
p

∫
RN

|∇U0|pdx. (2.9)

Proof. If (un) converges strongly to U0 in W 1,p(RN ), then lim
n→∞

∫
RN |∇vn|p = 0. Thus (2.9)

holds. If (un) converges weakly to U0 in W 1,p(RN ), then

k =
lim

n→∞
∫

RN |∇vn + ∇U0|pdx − ∫
RN |∇U0|pdx

2p lim
n→∞

∫
RN |∇vn|p .

is the constant satisfies (2.9). The proof is complete. �

3 Existence of the Nonnegative Solution

In this section, we prove that there exists a nonnegative solution to Problem (1.3). For this
purpose, we set Bρ = {u ∈ E, ||u|| ≤ ρ} and consider the following problem

c = inf
u∈Bρ

I(u). (3.1)

If ρ is small enough, similar to [3] and some arguments in Lemma 2.2, we can easily get
−∞ < c < 0. Furthermore, we have

Theorem 3.1. There exists U0 ∈ Bρ such that c = I(U0) and U0 is a nonnegative nontrivial
solution of Problem (1.3).

Proof. Let (un) ⊆ Bρ be a minimizing sequence of Problem (3.1). We can extract a subse-
quence of (un), also denoted by (un) such that un ⇀ U0 in E, un → U0 in Ls

loc(R
N ), ∀ 1 ≤

s < p∗ and un → U0 a.e in R
N . Let vn = un − U0. By (2.8) and (2.9) we conclude that there

exists a constant k > 0 such that

c = lim
n→∞ I(un) ≥ k lim

n→∞

∫
RN

|∇vn|p +
1
p

∫
RN

|∇U0|pdx − 1
p

lim
n→∞

∫
RN

(|vn|p + |U0|p)dx

+
1

2(m − θ)
lim

n→∞

∫
RN

(|vn|2(m−θ) + |U0|2(m−θ))dx − lim
n→∞

∫
RN

fvndx −
∫

RN

fU0dx.
(3.2)

Since
∫

RN fvndx → 0, then

c ≥ I(U0) + lim
n→∞

[
k||∇vn||pp − 1

p
||vn||pp +

1
2(m − θ)

||vn||2(m−θ)
2(m−θ)

]
. (3.3)

On the other hand, by (2.6) we get

ρ p ≥ lim
n→∞ ||∇un||pp ≥ lim

n→∞ ||∇vn||pp + ||∇U0||pp.
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Thus, we have lim
n→∞ ||∇vn||p < ρ which means that ||∇vn||p ≤ ρ for n large enough. If ρ is

small enough, similar to the discussions in Lemma 2.2, we have

k||∇vn||pp − 1
p
||vn||pp +

1
2(1 − θ)

||vn||2(m−θ)
2(m−θ) ≥

k

2
||∇vn||pp +

1
4(m − θ)

||vn||2(m−θ)
2(m−θ). (3.4)

Combining (3.3) and (3.4), we obtain

c ≥ I(U0) + lim
n→∞

k

2
||∇vn||pp +

1
4(m − θ)

lim
n→∞ ||vn||2(m−θ)

2(m−θ). (3.5)

Since un ⇀ U0 in E, then ||U0|| ≤ lim inf
n→∞ ||un|| ≤ ρ. This means that U0 ∈ Bρ and consequently

we have c − I(U0) ≤ 0. Therefore, by (3.5) we conclude that vn → 0 in E. Thus I(un) →
I(U0) = c < 0, I ′(U0) = 0 and U0 is a nonnegative nontrivial solution of problem (1.3). The
proof of Theorem 3.1 is complete. �

By the same discussions of Theorem 3.3 in [3], we have

Theorem 3.2. If f → 0 in Lq then U0(f) → 0 in E.

4 Existence of the Second Solution

In this section, we use the mountain-pass theorem of Ambrosetti Rabinowitz (see [1]) to prove
that there is another solution for Problem (1.3). Let U0 be the nonnegative solution of Problem
(1.3) given in Lemma 3.1 and choose a nonnegative ground state w of Problem (1.4).

Lemma 4.1 (see [6], p.322). Suppose that 0 ≤ a ≤ b and p > 1, then

(a + b)p ≤ bp + (2p − 1)bp−1a.

According to Lemma 4.1, we can easily get

Lemma 4.2. If p > 1, then

(a + b)p ≤ (|a| + |b|)p ≤ |b|p + |a|p + (2p − 1)|b|p−1|a| + (2p − 1)|a|p−1|b|. (4.1)

Lemma 4.3. If w is a nonnegative ground state of Problem (1.4), then

I(U0 + tw) <I(U0) +
( t2(m−θ)

2(m − θ)
− tp

p

)
||w||2(m−θ)

2(m−θ) + (2p − 1)tp−1

∫
RN

|∇U0||∇w|p−1dx

+ (2p − 1)t
∫

RN

|∇U0|p−1|∇w|dx +
22(m−θ) − 1
2(m − θ)

t2(m−θ)−1

∫
RN

w2(m−θ)−1U0dx

+
t2(m−θ)

2(m − θ)

∫
RN

w2(m−θ)dx +
22(m−θ) − 1
2(m − θ)

t

∫
RN

wU
2(m−θ)−1
0 dx

+
1

2(m − θ)

∫
RN

|U0|2(m−θ)dx − t

∫
RN

fwdx. (4.2)

Proof. It is obvious that if a > 0 and b > 0 then

(a + b)p > ap + bp. (4.3)
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By Lemma 4.2 and (4.3), we have

I(U0 + tw) <
1
p

∫
RN

(|∇U0|p − Up
0 )dx +

tp

p

∫
RN

(|∇w|p − wp)dx

+ (2p − 1)tp−1

∫
RN

|∇U0||∇w|p−1dx + (2p − 1)t
∫

RN

|∇U0|p−1|∇w|dx

+
1

2(m − θ)

∫
RN

|U0|2(m−θ)dx +
22(m−θ) − 1
2(m − θ)

t2(m−θ)−1

∫
RN

w2(m−θ)−1U0dx

+
t2(m−θ)

2(m − θ)

∫
RN

w2(m−θ)dx +
22(m−θ) − 1
2(m − θ)

t

∫
RN

wU
2(m−θ)−1
0 dx

−
∫

RN

fU0dx − t

∫
RN

fwdx. (4.4)

Since w is a critical point of I∞, then∫
RN

(|∇w|p − wp)dx = −
∫

RN

|w|2(m−θ)dx (4.5)

Combining (4.4) and (4.5), we conclude that (4.2) is true. The proof is complete. �

According to (4.2), we can choose t0 large enough such that I(U0 + tw) < I(U0) for all
t ≥ t0. Put ϕ0 = U0 + t0w and ϕ1 = ϕ0 + w. Let

d = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), (4.6)

where Γ = {γ ∈ C([0, 1], E); γ(0) = ϕ0, γ(1) = ϕ1} �= ∅.
Lemma 4.4. −∞ < d < I(U0).

Proof. Let γ0 ∈ Γ defined by γ0(t) = ϕ0 + tw. Then, there exists T ∈ [0, 1] such that

d = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≤ max
t∈[0,1]

I(γ0(t)) = I(γ0(T )) = I(ϕ0 + Tw). (4.7)

Since I(ϕ0 + Tw) = I(U0 + (T + t0)w) and T + t0 ≥ t0, by (4.7) we have d < I(U0). It is
obvious that d > −∞, then we complete the proof. �

Lemma 4.5. −∞ < d < I(U0) + I∞(w)

Proof. It follows from (4.5) that

I∞(w) =
( 1

2(m − θ)
− 1

p

)
||w||2(m−θ)

2(m−θ) > 0. (4.8)

Therefore, by Lemma 4.4 we have d < I(U0) + I∞(w). the proof is complete. �

Lemma 4.6. Let (un) ⊆ E such that (I(un)) is bounded and I ′(un) → 0 in E′, then (un) is
bounded in E.

Proof. There exists M > 0 such that for n large enough, |I(un)| < M and |〈I ′(un), un〉| ≤
||un||. By the Hölder inequality and the Young inequality, we have

I(un) − 1
p
〈I ′(un), un〉 ≥

( 1
2p(m − θ)

− 1
p

)
||un||2(m−θ)

2(m−θ) − c||f ||
2(m−θ)

2m−1−2θ
2(m−θ)

2m−1−2θ

. (4.9)

According to (4.9), we get
( 1

2p(m − θ)
− 1

p

)
||un||2(m−θ)

2(m−θ) − c1 < M +
1
p
||un||. (4.10)
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Since ||un|| = ||∇un||p + ||un||2(m−θ), by (4.10) we get
( 1

2p(m − θ)
− 1

p

)
||un||2(m−θ)

2(m−θ) −
1
p
||un||2(m−θ) <

1
p
||∇un||p + c2.

We suppose by contrary ||un||2(m−θ) → +∞. If 1 < λ < 2(m − θ), then for n large enough we
can suppose

||un||λ2(m−θ) <
( 1

2p(m − θ)
− 1

p

)
||un||2(m−θ)

2(m−θ) −
1
p
||un||2(m−θ) <

1
p
||∇un||p + c2.

Therefore, we get
||un||2(m−θ) < c||∇un||

1
λ
p + c3. (4.11)

Choosing r such that
2r

p∗
+

2(1 − r)
2(1 − θ)

= 1,

we have
||un||pp ≤ ||un||2r

p∗||un||2(1−r)
2(1−θ). (4.12)

By the Gagliardo-Nirenberg inequality and (4.12), we get

||un||pp ≤ c4||∇un||2r
p ||un||2(1−r)

2(m−θ). (4.13)

Similar to the proof of Lemma 4.4 in [3], we can get a contradiction. Thus ||un||2(m−θ) is
bounded and consequently by (4.13) we conclude that ||∇un||p is also bounded. The proof is
complete. �

Theorem 4.7. There exists V0 which is the second solution of Problem (1.3) and V0 is a
critical point of I.

Proof. By the mountain-pass theorem of Ambrosetti-Rabinowitz in [1], we conclude that there
exists (PS ) sequence (un) in E such that I(un) → d and I ′(un) → 0 in E′. According to Lemma
4.6, (un) is bounded in E and then up to a subsequence there is a function V0 such that un ⇀ V0

in E, un → V0 in Lq
loc(R

N ) for all 1 ≤ q ≤ p∗ and un → V0 a.e in R
N . Similar to [3], we have

〈I ′(un), ϕ〉 → 〈I ′(V0), ϕ〉 = 0, ∀ϕ ∈ C∞
0 (RN )

It follows that V0 is a weak solution of problem (1.3) and V0 is a critical point of I.
Now, we prove that V0 �= U0, where U0 is the nonnegative solution to problem (1.3) given

in Theorem 3.1. By the fact that un ⇀ V0, we have ||V0|| ≤ lim inf
n→∞ ||un||. Since (||un||) is

bounded, then there exists a subsequence, also denoted by (||un||) such that lim
n→∞ ||un|| exists.

We distinguish two cases to discuss and only give details which is different from that in [3].

Case 1. lim
n→∞ ||un|| = ||V0||. Similar to [3], we can easily verify that un → V0 in E. Therefore,

I(un) → d = I(V0). By Lemma 4.4, we have d < I(U0). Thus, we conclude that V0 �= U0.

Case 2. lim
n→∞ ||un|| > ||V0||. In this case, we set vn(x) = un(x) − V0(x), then vn ⇀ 0

in E. Furthermore, we affirm that there exists (y1
n) ⊂ R

N such that (y1
n) is not bounded,

vn(·+ y1
n) ⇀ V1 �= 0 in E, and V1 is a solution of the homogeneous Problem (1.4). We separate

three steps to prove this affirmation.

Step 1. Suppose that vn(· + y1
n) ⇀ 0 in E for all (y1

n) ⊂ R
N , then

sup
y∈RN

∫
B(y,R)

|vn|2(m−θ)dx → 0, for all R > 0.
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By Lemma 1.1 in [7], we have vn → 0 in Ls(RN ) if 2(m− θ) < s < p∗. According to (2.8), (2.9)
and the fact that un(x) = vn(x) + V0(x), we conclude that there exists a constant k such that

0 = lim
n→∞〈I ′(un), un〉 ≥ 〈I ′(V0), V0〉

+ lim
n→∞

(
k

∫
RN

|∇vn|pdx +
∫

RN

|vn|2(m−θ)dx
)
. (4.14)

According to (4.14) and 〈I ′(V0), V0〉 = 0, we conclude that vn → 0 in E. This contradicts
lim

n→∞ ||un|| > ||V0||.
Step 2. Suppose that (y1

n) is bounded. Similar to the Step 2 in [3], we can get V1 = 0 a.e in
R

N . Therefore, we obtain a contradiction.

Step 3. Let ϕ ∈ C∞
0 (RN ). Direct calculation shows that

〈I ′(un), ϕ(x − y1
n)〉 =

∫
RN

(|∇un(x + y1
n)|p−1∇ϕ(x) − |un(x + y1

n)|p−1ϕ(x))dx

+
∫

RN

|un(x + y1
n)|2m−2θ−2(un(x + y1

n))ϕ(x)dx −
∫

RN

f(x)ϕ(x − y1
n)dx.

Since |y1
n| → +∞, then

∫
RN f(x)ϕ(x − y1

n)dx → 0. Recall that vn(· + y1
n) ⇀ V1 in E, we get

∫
RN

(|∇un(x + y1
n)|p−1∇ϕ(x) − |un(x + y1

n)|p−1ϕ(x))dx →
∫

RN

(|∇V1|p−1∇ϕ − |V1|p−1ϕ)dx

and 〈I ′(un), ϕ(x − y1
n)〉 → 0. Similar to the proof of proposition 4.6 in [3], we have∫
RN

(|∇V1|p−1∇ϕ − |V1|p−1ϕ + |V1|2m−2θ−2V1ϕ)dx = 0.

Therefore, we conclude that V1 is a weak solution of the homogeneous Problem (1.4).
Now, we prove that in this case, we also have U0 �= V0. In fact, since vn(· + y1

n) ⇀ V1 in
E we have ||V1|| ≤ lim inf

n→∞ ||vn(· + y1
n)||. If ||V1|| = lim inf

n→∞ ||vn(· + y1
n)|, similar to [3] we have

un − V0 − V1(· − y1
n) → 0 in E. By (2.6) and (2.7), we get

lim
n→∞ I(un − V0) ≤1

p
lim

n→∞

∫
RN

(|∇un|p − |∇V0|p)dx − 1
p

lim
n→∞

∫
RN

(|un|p − |V0|p)dx

+
1

2(m − θ)
lim

n→∞

∫
RN

(|un|2(m−θ) − |V0|2(m−θ))dx

−
∫

RN

fV0dx +
∫

RN

fV0dx. (4.15)

According to (4.15), we conclude that

lim
n→∞ I(un − V0) ≤ lim

n→∞ I(un) − I(V0) = d − I(V0). (4.16)

Since un − V0 ⇀ 0 and un − V0 − V1(· − y1
n) → 0 in E, then we conclude that V1(· − y1

n) ⇀ 0 in
E and consequently we have

lim
n→∞ I(un − V0) = lim

n→∞ I(V1(· − y1
n)) = lim

n→∞ I∞(V1(· − y1
n)). (4.17)

After a scale change z = x − y1
n in the integral, we find that lim

n→∞ I∞(V1(· − y1
n)) = I∞(V1).

Since w is a ground state of problem (1.4), by (4.16), (4.17) and Lemma 4.5 we get

I(V0) + I∞(w) ≤ I(V0) + I∞(V1) ≤ d < I(U0) + I∞(w).
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Then we arrive at U0 �= V0.
If ||V1|| < lim inf

n→∞ ||vn(· + y1
n)|, we put v1

n = un − V0 − V1(· − y1
n). Similar to [3], we restart

the analysis with the sequence (v1
n) while reiterating the process as many time as necessary.

Similar to the above Step 3 and the proof of (4.8), (4.16) and (4.17), we conclude that there is
a general decomposition of the following form

un(x) −
(
V0(x) +

m∑
k=1

Vk(x − yk
n)

)
→ 0 in E,

∀ k ≥ 1, |y(k)
n | → +∞, |y(k)

n − y(l)
n | → +∞ if k �= l,

I(un) → d ≥ I(V0) +
s1∑

k=1

I∞(Vk)

and (Vk)1≤k≤s1 are solutions of Problem (1.4) which satisfies I∞(Vk) > 0, ∀ 1 ≤ k ≤ s1.
Therefore, we have

I(U0) + I∞(w) > d ≥ I(V0) + I∞(V1) ≥ I(V0) + I∞(w).

Thus we also have V0 �= U0. The proof is complete. �

According to the proof of Theorem 4.7, we have

Proposition 4.8. (Vk)1≤k≤s1 are solutions of the Problem (1.4), where (Vk), 1 ≤ k ≤ s1 are
mentioned in the proof of Theorem 4.7.

5 Existence of Infinitely Many Solutions

Theorem 5.1. There exist infinitely many solutions to Problem (1.3).

Proof. Let V0 be the solution mentioned in Theorem 4.7. Let w be a nonnegative ground stat
of Problem (1.4). By the same discussions in Lemma 4.3 we have

I(V0 + tw) <I(V0) +
( t2(m−θ)

2(m − θ)
− tp

p

)
||w||2(m−θ)

2(m−θ) + (2p − 1)tp−1

∫
RN

|∇V0||∇w|p−1

+ (2p − 1)t
∫

RN

|∇V0|p−1|∇w| + 22(m−θ) − 1
2(m − θ)

t2(m−θ)−1

∫
RN

w2(m−θ)−1V0dx

+
t2(m−θ)

2(m − θ)

∫
RN

w2(m−θ)dx +
22(m−θ) − 1
2(m − θ)

t

∫
RN

wV
2(m−θ)−1
0 dx

+
1

2(m − θ)

∫
RN

|V0|2(m−θ)dx − t

∫
RN

fwdx. (5.1)

By (5.1), we can choose t0 large enough such that I(V0 + tw) < I(V0) for all t ≥ t0. Put
ϕ2 = V0 + t0w and ϕ3 = ϕ2 + w. Let d = inf

γ∈Γ
max

t∈[0,1]
I(γ(t)) where Γ = {γ ∈ C([0, 1], E); γ(0) =

ϕ2, γ(1) = ϕ3} �= ∅. Similar to the discussions in Lemma 4.4 and Lemma 4.5, we have

−∞ < d < I(V0), −∞ < d < I(V0) + I∞(w). (5.2)

By the mountain-pass theorem of Ambrosetti-Rabinowitz, we conclude that there exists (PS )
sequence (un) in E such that I(un) → d and I ′(un) → 0 in E′. According to Lemma 4.6, (un)
is bounded in E and then up to a subsequence there is a function U1 such that un ⇀ U1 in E,
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un → U1 in Lq
loc(R

N ) for all 1 ≤ q ≤ p∗ and un → U1 a.e in R
N . Similar to the discussions in

Theorem 4.7 we have

〈I ′(un), ϕ〉 → 〈I ′(U1), ϕ〉 = 0, ∀ϕ ∈ C∞
0 (RN ).

Therefore, U1 is a weak solution of Problem (1.3).
If lim

n→∞ ||un|| = ||U1||. Similar to the Case 1 in the proof of Theorem 4.7, we have I(un) →
d = I(U1). By (5.2), we conclude that V0 �= U1.

If lim
n→∞ ||un|| > ||U1||. Set vn(x) = un(x) − U1(x), then vn ⇀ 0 in E. Similar to the Case

2 in the proof of Theorem 4.7, we affirm that there exists (y1
n) ⊂ R

N such that (y1
n) is not

bounded, vn(· + y1
n) ⇀ U2 �= 0 in E, and U2 is a solution of the homogeneous Problem (1.4).

If ||U2|| = lim inf
n→∞ ||vn(· + y1

n)|, then un − U1 − U2(· − y1
n) → 0 in E. Similar to the proof of

Theorem 4.7, we have

I(U1) + I∞(w) ≤ I(U1) + I∞(U2) ≤ d < I(V0) + I∞(w).

Then we arrive at V0 �= U1.
If ||U2|| < lim inf

n→∞ ||vn(· + y1
n)|, Similar to the proof of Theorem 4.7 we conclude that there

exist (Uk)2≤k≤s2 which are solutions of problem (1.4). In this case, we also have I(V0)+I∞(w) >
d ≥ I(U1) + I∞(U2) ≥ I(U1) + I∞(w). Therefore, V0 �= U1. Similarly, we can prove that
U0 �= U1. Repeat the above processes, we conclude that (1.3) has infinitely many solutions.
The proof is complete. �
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