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Abstract A regular edge-transitive graph is said to be semisymmetric if it is not vertex-transitive. Let p be

a prime. By Folkman [J. Combin. Theory 3 (1967), 215–232], there is no cubic semisymmetric graph of order

2p or 2p2, and by Hua et al. [Science in China A 54 (2011), 1937–1949], there is no cubic semisymmetric graph

of order 4p2. Lu et al. [Science in China A 47 (2004), 11–17] classified connected cubic semisymmetric graphs

of order 6p2. In this paper, for p > q ≥ 5 two distinct odd primes, it is shown that the sufficient and necessary

conditions which a connected cubic edge transitive bipartite graph of order 2qp2 is semisymmetric.
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1 Introduction

Throughout this paper graphs are assumed to be finite, simple and undirected. For a graph
X , let V (X), E(X), A(X) and Aut(X) be the vertex set, the edge set, the arc set and the
automorphism group of X , respectively. For u, v ∈ V (X), denote by uv the edge incident to
u and v in X , and by NX(u) the neighborhood of u in X , the set of vertices adjacent to u

in X . A graph X̃ is called a covering of a graph X with projection p : X̃ → X if there is a
surjection p : V (X̃) → V (X) such that p|

N
X̃

(̃v)
→ NX(v) is a bijection for any vertex v ∈ V (X)

and ṽ ∈ V (X̃). A covering X̃ of X with a projection p is said to be regular (or K-covering)
if there is a semiregular subgroup K of the automorphism group Aut(X̃) such that graph X

is isomorphic to the quotient graph X̃/K, say by h, and the quotient map X̃ → X̃/K is the
composition ph of p and h (for the purpose of this paper, all functions are composed from
left to right). If K is cyclic or elementary abelian then X̃ is called a cyclic or an elementary
abelian covering of X , and if X̃ is connected K becomes the covering transformation group.
The fibre of an edge or a vertex is its preimage under p. An automorphism of X̃ is said to be
fibre-preserving if it maps a fibre to a fibre, while every covering transformation maps a fibre
on to itself.

An s-arc in a graph X is an ordered (s + 1)-tuple (v0, v1, · · · , vs) of vertices of X such that
vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 �= vi+1 for 1 ≤ i < s, in other words, a directed walk
of length s which never includes a backtracking. For a graph X and a subgroup G of Aut(X), X
is said to be G-vertex-transitive, G-edge-transitive or G-s-arc-transitive if G is transitive on the
sets of vertices, edges or s-arcs of X respectively, and G-s-regular if G acts regularly on the set
of s-arcs of X . Similarly, a graph is G-semisymmetric if it is G-edge-transitive but not G-vertex-
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transitive. A graph X is said to be vertex-transitive, edge-transitive, s-arc-transitive or s-regular
if X is Aut(X)- vertex-transitive, Aut(X)-edge-transitive, Aut(X)-s-arc-transitive or Aut(X)-
s-regular respectively. In particular, 1-arc-transitive means arc-transitive or symmetric. It can
be shown that a G-edge-transitive but not G-vertex-transitive graph is necessarily bipartite,
where the two partite parts of the graph are orbits of G. Moreover, if X is regular, then these
two partite sets L(X) and R(X) have equal cardinality. Let A+ be the subgroup of Aut(X)
fixing L(X) and R(X) setwise. Clearly, if X is connected then either |Aut(X) : A+| = 2 or
Aut(X) = A+, depending on whether or not there exists an automorphism which interchanges
the two parts. Suppose G is a subgroup of A+. Then X is said to be G-semitransitive if G acts
transitively on both L(X) and R(X), and semitransitive if X is A+-semitransitive. We called
a graph semisymmetric if it is regular and edge- but not vertex-transitive graph.

The class of semisymmetric graphs was first introduced by Folkman [11], where several in fi-
nite families of such graphs were constructed and eight open problems were posed which spurred
the interest in this topic (see for example [1,2,13-16,26,31,33]). A beautiful recent result on the
automorphism groups of cubic semisymmetric graphs of twice odd order was given by Parker
[28]. Marušič [25] constructed the first in finite family of cubic semisymmetric graphs and as one
of the first applications of covering techniques, Malnič, et al.[23] classified cubic semisymmetric
cyclic coverings of the bipartite graph K3,3 when the fibre-preserving group contains an edge-
but not vertex-transitive subgroup. Semisymmetric elementary abelian coverings of the Hea-
wood graph were considered in [5,22]. Using the method developed in [21,22], Malnič, et al.[20]

determined all pairwise nonisomorphic minimal semisymmetric elementary abelian regular cov-
ering projections of the Möbius-Kantor graph, and Feng and Zhou[9] proved that the coverings
corresponding to these covering projections are indeed semisymmetric. Malnič, et al.[24] clas-
sified cubic semisymmetric graphs of order 2p3 for a prime p, while Folkman [10] proved there
is no cubic semisymmetric graphs of order 2p or 2p2. Du and Xu [7] classified connected cubic
semisymmetric graphs of order 2pq, one has there is no connected cubic semisymmetric graph
of order 6p, and Lu, et al.[18] classified connected cubic semisymmetric graphs of order 6p2.
Feng, et al.[8] and Hua, et al.[11] classified connected cubic semisymmetric graphs of order 4p3,
6p3 and 8p3.

In this paper, we consider that whether a connected cubic edge-transitive bipartite graph of
order 2qpt(t = 2, 3) is semisymmetric. If q = 2 and p = 3, then there are no cubic semisymmetric
graph of order 36 or 108 by Conder [5]. If q = 2 and p > 3, by [11, Lemma 3.1], Aut(X) has a
normal sylow-p-subgroup, say P , and by Proposition 2.1, the quotient graph XP of X relative
to P has order 4. It follows that XP

∼= K4, a contradiction because K4 is not bipartite. If q = 3,
by [18] and [8], there exists cubic semisymmetric graphs. Thus, we only consider a connected
cubic edge-transitive bipartite graph of order 2qpt(t = 2, 3) for p > q ≥ 5.

Theorem 1.1. Let p > q ≥ 5 be two odd prime, and let X be a connected cubic edge transitive
bipartite graph of order 2qpt, where t = 2, 3. If X is semisymmetric, then either X is a regular
covering of Heawood graph for q = 7 or X is a connected cubic normal bi-Cayley graph on
non-abelian group G of order qpt for q �= 7 and 3|q − 1.

Let G7 = 〈a, b, c | ap = bp = cq = [a, b] = 1, ac = b, bc = a−1bl+lp , lq ≡ 1 (mod p)〉 be a
nonabelian group of order qp2. Further, one has the following theorem.

Theorem 1.2. Let p > q ≥ 5 be two odd prime, and let X be a connected cubic edge-
transitive bipartite graph of order 2qp2. Then X is semisymmetric if and only if there exists
an element of order three α ∈ Aut(G7) such that G7 = 〈c, cα〉, and cα = asbtcw, s, t ∈
Zp, w2 +w+1 = 0(mod q), and there does not exist an element of order two β ∈ Aut(G7) such
that cβ = c−1, cαβ = (cα)−1. Furthermore, X = BCay (G7, S) is a normal bi-Cayley graph on
G7, where S = {1, c−1, cα}.
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2 Preliminary Results

For a connected cubic G-semisymmetric graph, the action of a normal subgroup of G was
considered by Lu, Wang and Xu in [18].

Proposition 2.1 Let X be a connected cubic G-semisymmetric graph with bipartite sets L(X)
and R(X), and let N be a normal subgroup of G. If N is intransitive on both L(X) and R(X)
then N acts semiregularly on L(X) and R(X). The kernel of G on the quotient graph XN is
N , and X is an N -covering of XN , which is a G/N -semisymmetric graph.

Let X be a connected bipartite graph and H an abelian subgroup of Aut(X) acting regularly
on each bipartite set of X . Then we may identify R(X) = {R(h) | h ∈ H} and L(X) =
{L(h) | h ∈ H} as the two bipartition sets of X , and the action of h ∈ H on R(X) and L(X) is
just the left multiplication by h, that is, R(g)h = R(hg) and L(g)h = L(hg) for any g, h ∈ H .
It is easy to check that the map R(h) �→ L(h−1), L(h) �→ R(h−1), h ∈ H , is an automorphism
of X interchanging R(X) and L(X).

Proposition 2.2. Let X be a connected G-semisymmetric graph with bipartition sets L(X)
and R(X), and let H ≤ G be abelian acting regularly on L(X) and R(X), respectively. Then
X is symmetric.

Now let us mention several definitions which will be used in the following sections. For a
group T , and a subset S (possibly, containing the identity element 1T ) of T , the bi-Cayley graph
BCay(T, S) of T with respect to S is bipartite graph with vertex set T × {0, 1} and edge set
{{(g, 0), (sg, 1)}|g ∈ T, s ∈ S}.

Each
R(g) : (x, 0) �→ (xg, 0), (x, 1) �→ (xg, 1), ∀x ∈ T

is an automorphism of BCay(T, S). Set R(T ) = {R(g)|g ∈ T }. Furthermore, a bi-Cayley graph
BCay(T, S) is said to be normal if R(T ) is normal in Aut(BCay(T, S)).

Analogous to a theorem for Cayley graphs, the following can be gained from [7, Lemma
2.5].

Proposition 2.3. A semitransitive graph X is bi-Cayley if and only if (Aut X)+ has a sub-
group which acts regular on each of the two parts of V (X).

Proposition 2.4 ([17, Theorem 2.3]). Let S be subset of finite non-cyclic group G, containing
the identity element 1 of G, such that |S| = 3 and 〈S〉 = G. Set X = BCay(G, S) and A+

be the maximal subgroup of Aut(X) fixing two bipartition sets of X setwise. Then NA+(R(G))
acts transitively on the edge set E(X) if and only if X is isomorphic to BCay(G, S1), where
S1 = {1, a−1, aα}, α is an automorphism of group G of order three such that aaαaα2

= 1.

Proposition 2.5. ([19, Theorem 3.1]). Let T be a finite nonabelian group and S = {1T , a, b}
be a subset of T such that T = 〈a, b〉, and let X = BCay(T, S). Suppose that R(T ) is normal
in Aut(X). If X is edge-transitive, then X is symmetric if and only if there exists α ∈ Aut(T )
such that Sα = S−1.

We introduce the so called coset graph (see [27,29]) constructed from a finite group G
relative to a subgroup H of G and a union D of some double cosets of H in G such that
D−1 = D. The coset graph Cos(G, H, D) of G with respect to H and D is defined to have
vertex set [G : H ], the set of right cosets of H in G, and edge set {{Hg, Hdg}|g ∈ G, d ∈ D}.
The graph Cos(G, H, D) has valency |D|/|H | and is connected if and only if D generates the
group G.

By Zhou and Feng [34], we have the following proposition.

Proposition 2.6. Let X be a connected cubic symmetric graph of order 2pq, where p > q are
odd primes. Then X can be s-regular for each 1 ≤ s ≤ 5. Furthermore,
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(1) X is 1-regular if and only if either q = 3 and 3|(p − 1) or 3|(p − 1) and 3|(q − 1).

(2) X is 2-regular if and only if it is isomorphic to NC1
182, where NC1

182 is isomorphic to the
coset graph of PSL(2, 13) relative to the subgroup S3, and Aut(NC1

182) = PSL(2, 13).

(3) X is 3-regular if and only if it is isomorphic to NC2
182, NC506, or Coxer-Frucht graph

CF110, where NC2
182 is isomorphic to the coset graph of PGL(2, 13) relative to the subgroup

D12, NC506 is isomorphic to the coset graph of PSL(2, 23) relative to the subgroup D12,
and Aut(NC2

182) = PGL(2, 13), Aut(NC506) = PSL(2, 23), Aut(CF110) = PGL(2, 11).

(4) X is 4-regular if and only if it is isomorphic to C506,NC2162, or the Smith-Biggs graph
SB102, where C506 and NC2162 is isomorphic to the Coset graph of PGL(2, 23) and
PSL(2, 47) relative to the subgroup S4, respectively, and Aut(C506) = PGL(2, 23),

Aut(NC2162) = PSL(2, 47), Aut(SB102) = PSL(2, 17).

(5) X is 5-regular if and only if it is isomorphic to the Levi graph L30, where Aut(L30) =
S6 � Z2.

By [3, IV chapter], one has the following proposition.

Proposition 2.7. Let G be a non-abelian group of order qp2. Then G is one of the following
presentations:

G1 = 〈a, b | aq = bp2
= 1, ab = ar, rp ≡ 1 (mod q)〉,

G2 = 〈a, b | a, b | aq = bp2
= 1, ab = ar, rp2 ≡ 1 (mod q), rp �≡ 1 (mod q)〉,

G3 = 〈a, b | ap2
= bq = 1, ab = ar, rq ≡ 1 (mod p2)〉,

G4 = 〈a, b, c | ap = bp = cq = [a, b] = [a, c] = 1, cb = cr, rp ≡ 1 (mod q)〉 ∼= Zp × Fqp,

G5 = 〈a, b, c | ap = bp = cq = [a, b] = [a, c] = 1, bc = br, rq ≡ 1 (mod p)〉 ∼= Zp × Fpq,

G6x = 〈a, b, c | ap = bp = cq = [a, b] = 1, ac = ar, bc = brx

, rq ≡ 1 (mod p), x �= 0〉;
G7 = 〈a, b, c | ap = bp = cq = [a, b] = 1, ac = b, bc = a−1bl+lp , lq ≡ 1 (mod p)〉.

Note: Obviously, if q < p, then G is not G1, G2 or G4. For G6x, set u = b, v = a, w = cy and
xy ≡ 1 (mod q). we have 〈a, b, c | ap = bp = cq = [a, b] = 1, ac = ar, bc = brx〉 ∼= 〈u, v, w | up =
vp = wq = [u, v] = 1, uw = ur, vc = vry〉. So x has 1+1+ q−3

2 = q+1
2 options. It is easy to check

that they are nonisomorphic each other for each x, that is, there are 1
2 (q + 1) non-isomorphic

groups. For G7, l is a complex number, and lq ≡ 1 (mod p) and lp + l are interge numbers. �

Lemma 2.8. Let α be a group automorphism of G6x. If x = 1, then α is the following form:

α :=

⎧⎪⎨
⎪⎩

a �→ aibj ,

b �→ akbm,

c �→ asbtc.

where i, j, k, m, s, t ∈ Zp.
If x �= 1, then either

α :=

⎧⎪⎨
⎪⎩

a �→ ai,

b �→ bm,

c �→ asbtc.

α :=

⎧⎪⎨
⎪⎩

a �→ bj,

b �→ ak,

c �→ asbtc−1.
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where i, j, k, m, s, t ∈ Zp, and the last case occurs only when x = −1.

Proof. Suppose that α : a �→ aibj , b �→ akbm, c �→ asbtcy, where i, j, k, m, s, t ∈ Zp and
y ∈ Zq. By Proposition 2.7, one has ac = ar. Considering the images of ac = ar under α, one
has airy

bjrxy

= airbjr, implying that iry = ir and jrxy = jr.
Thus, if x = 1, then y = 1 (mod q). If x �= 1, then y = 1 (mod q), j = 0 (mod p)

or xy = 1 (mod q), i = 0 (mod p). For the last case, Considering the images of bc = brx

under α, one has akry

= akrx

, implying that kry = krx, that is, y = x (mod q). Combining
xy = 1 (mod q), one has y = x = ±1 (mod q). �

Finally we introduce some concepts. Let G be a simple group and Z an abelian group. We
call an extension E of Z by G a central extension of G if Z ≤ Z(E). If E is perfect, that is,
the derived group E′ = E, we call E a covering group of G. Schur proved that for every simple
group G there is a unique maximal covering group M such that every covering group of G is a
factor group of M . This group M is called the full covering group of G, and the center of M is
called the Schur multiplier of G, denoted by Mult(G). �

3 Main Result

Lemma 3.1. Let X be a connected cubic edge-transitive bipartite graph of order 2qpt, where
t ≥ 2 and p > q ≥ 5. Then one of the following holds:

(1) Aut(X) has normal Sylow p-subgroups;
(2) Aut(X) has normal p-subgroups of order pt−1. Further, X is a regular covering of

cubic edge-transitive bipartite graph of order 2qp.

Proof. Denote by L(X) and R(X) the bipartite sets of X . Clearly, |L(X)| = |R(X)| = qpt. Let
A+ be the subgroup of Aut(X) fixing L(X) and R(X) setwise. Then |Aut(X) : A+| ≤ 2 and X is
A+-semisymmetric. Since X has valency 3, the connectivity of X implies that |A+| = 2m ·3·q ·pt

for some integer t ≥ 2. For any prime divisor of |A+|, let Or(A+) be the maximal normal r-
subgroup of A+. We show that |Op(A+)| = pt or |Op(A+)| = pt−1.

Suppose that |Op(A+)| = ps with 0 ≤ s < t. To finish the proof, it is sufficient to
show that s = t − 1. Let H/Op(A+) = Or(A+/Op(A+)). Clearly, Op(A+/H) = 1. Since
|L(X)| = |R(X)| = qpt and H � A+, H can not be transitive on L(X) and R(X). By
Proposition 2.1, H is semiregular on L(X) and R(X), implying r = q, and |H | = ps or qps,
depending on |H/Op(A+)| = 1 or q, respectively. Since A+/Op(A+)/H/Op(A+) ∼= A+/H , one
has Oq(A+/H) = 1. It follows that O2(A+/H) = O3(A+/H) = Oq(A+/H) = Op(A+/H) = 1.

Let B = A+/H and denote by Y = XH the quotient graph of X relative to the orbits of
H . By proposition 2.1, one may assume that B ≤ Aut(Y ), and Y is a cubic B-semisymmetric
graph. Then Y is bipartite and let L(Y ) and R(Y ) be the two partite sets of Y . Depending
on |H/Op(A+)| = 1 or q, one has |L(Y )| = |R(Y )| = pt−s or qpt−s, and |B| = 2m · 3 · pt−s

or |B| = 2m · 3 · q · pt−s, where t − s ≥ 1. The connectivity of Y implies that 32 � |Bu|
for any u ∈ V (Y ). Let N be a minimal normal subgroup of B. Since O2(B) = O3(B) =
Oq(B) = Op(B) = 1, N is non-solvable. If N is not transitive on both R(Y ) and L(Y ), then by
Propositon 2.1, N is semiregular. Since |R(Y )| = |L(Y )| = qpt−s or pt−s, it contradicts that the
nonsolvability of N . Thus, N is transitive on R(Y ) or L(Y ). Without loss of any generality,
let N be transitive on L(Y ). For any x ∈ V (Y ), Bx is transitive on NY (x) because of the
B-semisymmetric of Y . Clearly Bx is primitive on NY (x). Since Nx � Bx, Nx is transitive
on NY (x), implying that 3 | |Nx|. Note that 32 � |Nx|. Let u ∈ L(Y ) and v ∈ R(Y ). Then
|N | = |uN ||Nu| = |vN ||Nv|, that is, |L(Y )||Nu| = |vN ||Nv|. Suppose that N is not transitive
on R(Y ). Then |vN | �= |R(Y )|, and the normality of N in B, implies that |vN | is a divisor
of |R(Y )|. It follows that |Nv| = |L(Y )|

|vN | · |Nu|, which forces q = 2 and |Nv| = 2|Nu| because
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|L(Y )| = pt−s or qpt−s, and 32 � |Nv|. Thus, N has two orbits on R(Y ), say R1(Y ) and R2(Y ).
Since Y has valency 3, u has two neighbors not only in R1(Y ) but also in R2(Y ), forcing that
Y has valency at least 4, a contradiction. Thus N is transitive both on L(Y ) and R(Y ), hence
Y is N -semisymmetric,

Since N is nonsolvable, N = T m, where T is a non-abelian simple group. Recall that N ≤ B
and |B| = 2m · 3 · pt−s or |B| = 2m · 3 · q · pt−s, and by [12, p.134–136] or [30], N is one of the
following groups:

PSL(2, 7), PSL(2, 16), PSL(2, p), where p2 − 1 = 2a · 3 · q with p > q > 3 primes, and
PSL(2, 2m), where 2m − 1 = p, 2m + 1 = 3q with p > q > 3 primes. In these cases, one has
p||N | and p2 � |N |. Note that Y is N -semisymmetric graph, one may easily get |V (Y )| = 2p or
2qp, implying that t − s = 1. �

Lemma 3.2. Let X be a connected cubic edge-transitive bipartite graph of order 2qpt, where
t = 2, 3 and p > q ≥ 5. Then Aut(X) has normal Sylow p-subgroups.

Proof. By Lemma 3.1, |Q| = |Op(A+)| ≥ pt−1. Suppose |Q| = pt−1, we show that this leads
to a contradiction.

Denote by XQ the quotient graph of X relative to the orbits of Q. Then |V (XQ)| = 2qp.
By [7], there are three cubic semisymmetric graphs of order 110, 182 and 506. They are bi-
Cayley graphs, and PGL(2, 11), PGL(2, 13), PSL(2, 23) act bi-primitively on their vertex set,
respectively. By Proposition 2.6, a cubic connected vertex transitive graphs of order 2qp were
classified and their autmorphism of graphs had also determined. Thus, if Aut(XQ) is nonsolv-
able, there exists a normal subgroup of PSL(2, p) = M/Q ≤ Aut(XQ), respectively. Obviously,
CM (Q) ≥ Q. If CM (Q) = Q, then M/CM (Q) = M/Q � Aut(Q), that is, PSL(2, p) ≤ Aut(Q).
By the simplify of PSL(2, p), Q is not a cyclic group. It follows that PSL(2, p) ≤ GL(2, p),
implying that PSL(2, p) ≤ SL(2, p). Since SL(2, p)/(Z ∩ SL(2, p)) = PSL(2, p), where Z =
Z(GL(2, p)), SL(2, p) = PSL(2, p) × Z2. Note that SL(2, p) has only one involution, a contra-
diction. If CM (Q) > Q, then CM (Q)/Q is a normal subgroup of M/Q = PSL(2, p). By the
simplify of M/Q, CM (Q)/Q = M/Q. Thus, Q = Z(M). Let M ′ be the derived group of M .
Then (M/Q)′ = M ′Q/Q = M/Q, and M ′/M ′ ∩ Q = M/Q = PSL(2, p). So |M ′ ∩ Q| ≤ pt−1.
If |M ′ ∩Q| < pt−1, then |pt| � |M ′|. By Proposition 2.1, M ′ is semiregular on every bipartite of
X . It imply that |M ′| | qpt, which is contradict to the nonsolvablity of M ′. If |M ′ ∩Q| = pt−1,
then M ′ = M . Thus M is a covering group of PSL(2, p), and Q = Z(M) is a Schur multiple of
PSL(2, p). By [6], we have that for all PSL(2, p), p does not divide the order of their Schur mul-
tiplier, a contradiction. If Aut(XQ) is solvable, then by [34], XQ is 1-regular and 3|p− 1, q − 1,
implying |Aut(XQ)| = 6qp. Since X is a connected Q-covering X/Q, we have |Aut(X)| = 6qpt.
Let G be a subgroup of Aut(X) with order qpt. Set K the kernel of Aut(X) on [Aut(X) : G].
Then Aut(X)/K � S6. Since 3|p − 1, q − 1 and 5 ≤ q < p, implying that |K| ≥ qpt. Thus
K = G, that is, G � Aut(X). Let P be a Sylow-p subgroup of Aut(X). Obviously, P is the
Sylow-p subgroup of G. By Sylow-Theorem, P � G, implying P is characteristic in G. Thus P
is a normal subgroup of Aut(X) because G is normal in Aut(X). This completes the proof. �

Proof of Theorem 1.1. Let X be a connected cubic edge-transitive bipartitie graph of order
2qpt for two primes p > q ≥ 5 and t = 2, 3. By lemma 3.2, Aut(X) has a normal Sylow
p-subgroup, say P . Considering the quotient graph XP of X relative to the orbits of P . By
proposition 2.1, XP is a cubic edge-transitive bipartite graph of order 2q, and by [4], XP is
isomorphic to Petersen graph for q = 5, or XP is isomorphic to Heawood graph for q = 7, or
XP

∼= G(2q, 3) with 3|q − 1 for q > 7. Obviously, for q = 5, Petersen graph is not bipartite,
a contradiction. For q = 7, X is a regular P -covering of Heawood graph. For q > 7, assume
X is a connected cubic semisymmetric graph. Then X is a regular P -covering of G(2q, 3) with
a lift of a semisymmetric group of Aut(G(2q, 3)). By [4], Aut(G(2q, 3)) = (Zq � Z3) � Z2, and
Aut(G(2q, 3)) has a semisymmetric subgroup N , where N = Zq � Z3. If N is abelian, then the
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vertex stabilizer of Aut(G(2q, 3)) Z3 is characteristic in N , implying that Z3 �Aut(G(2q, 3)), a
contradiction. Thus N is nonabelian. Let T = P �N . Then X is T -semisymmetric. Set G ≤ T
and |G| = qpt. Let K be the kernel of T on [T : G]. Then T/K � S3 becuase [T : G] = 3,
implying that K = G, that is, G � T . We claim that G is regular on R(X) and L(X). For
any x ∈ V (X), Tx is transitive on NX(x) because T is semisymmetric on X . Clearly Tx is
primitive on NX(x). Since Gx �Tx, we have 3 | |Gx| or Gx = 1. Note that 2 and 3 don’t divide
|G|. It follows that G is semiregular on R(X) and L(X), and then G is regular on L(X) and
R(X) because |G| = |R(X)| = |L(X)|.

By Proposition 2.3, X is a bi-Cayley graph of G. Hence X is a normal bi-Cayley of G. �

Proof of Theorem 1.2. Let X be a connected cubic edge-transitive bipartitie graph of order
2qp2 for two primes p > q ≥ 5. By Lemma 3.2, Aut(X) has a normal Sylow-p-subgroup, say
P . It follows that X is a regular covering of XP . By Theorem 1.1, one has q �= 5. For q = 7,
X is a regular covering of Heawood graph with a transformation group P of order p2 because
a connected cubic edge-transitive bipartite graph of order 14 is Heawood graph. Whether
P = Zp2 or P = Z2

p, there are not semisymmetric graphs which satisfy these conditions by [32]

and [22], respectively. For q > 7, by Theorem 1.1, X is a connected cubic normal edge-transitive
bi-Cayley graph on group G of order qp2. If X is semisymmetric, one has G is non-ablelian
by Proposition 2.2. Set X = BCay(G, S). By Proposition 2.7, one has G = Gi(i = 3, 5, 6x, 7).
Suppose that the Sylow p-subgroup P of G is cyclic. Recall that X is T -semisymmetric,
where T = P � N and N = Zq � Z3. Let C = CT (P ), obviously, C ≥ P . If C = P ,
then N = T/C � Aut(P ). Thus, N is abelian, a contradiction. If C > P , then |C| = qp2

because C is semiregular on V (X). Thus, X is the bi-Cayley graph on C, implying that X
is symmetric graph, a contradiction. Thus, the Sylow p-subgroup P of G is not cyclic, that
is G �= G3. Suppose that G has a center subgroup Z = Zp. Since G is normal in T , one
has Z is normal in T . Considering that the quotient graph XZ , XZ is a edge-transitive
graph of order 2qp. Note that p > q > 7. By [7], there is a cubic semisymmetric graph of
order 506, which is a bi-Cayley graph, and PSL(2, 23) is bi-primitive on its vertex set. By
Proposition 2.6, a cubic connected vertex transitive graphs of order 2qp are classified and their
autmorphism of graphs had also determined. Thus, if Aut(XZ) is nonsolvable, there exists a
normal subgroup of PSL(2, p) = M/Z ≤ Aut(XZ), respectively. Obviously, CM (Z) ≥ Z. If
CM (Z) = Z, then M/CM (Z) = M/Z � Aut(Z), that is, PSL(2, p) ≤ Aut(Z), a contradiction.
If CM (Z) > Z, then CM (Z)/Z is a normal subgroup of M/Z = PSL(2, p). By the simplify
of M/Z, CM (Z)/Z = M/Z. Thus, Z = Z(M). Let M ′ be the derived group of M . Then
(M/Z)′ = M ′Z/Z = M/Z, and M ′/M ′ ∩ Z = M/Z = PSL(2, p). So M ′ ∩ Z = Z or 1. If
M ′ ∩ Z = 1, then |p2| � |M ′|. By Proposition 2.1, M ′ is semiregular on every bipartite of
X . It imply that |M ′| | qp2, which is contradict to the nonsolvablity of M ′. If M ′ ∩ Z = Z,
then M ′ = M . Thus M is a covering group of PSL(2, p), and Z = Z(M) is a Schur multiple
of PSL(2, p). By [6], we have that for all PSL(2, p), p does not divide the order of their Schur
multiplier, a contradiction. Thus Aut(XZ) is solvable. By [34], XZ is 1-regular symmetric graph
and Aut(XZ) = D2pq � Z3, implying that the subgroup of order pq of Aut(XZ) is cyclic, a
contradiction because G5/Z = Fpq ≤ Aut(XZ). Thus, G = G6x or G7. Obviously, both groups
can be generated by two elements of order q. By Proposition 2.4, one has S = {1, c−1, cα},
where α ∈ Aut(G) is an element of order 3 such that ccαcα2

= 1. Without loss of generality,
we may assume that

α :=

⎧⎪⎨
⎪⎩

a �→ aibj,

b �→ akbm,

c �→ asbtcw.

where i, j, k, m, s, t ∈ Zp and w3 = 1 (mod q). Further, w = 1 or w2 + w + 1 = 0 (mod q).
Suppose that G = G6x. Since w3 = 1, one has w = 1 by Lemma 2.8, that is, cα = asbtc. It
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follows that

1 =ccαcα2
= casbtc(asbtc)α = casbtc(aibj)s(akbm)tasbtc

=casbtcais+kt+sbjs+mt+tc = c2(c−1asc)(c−1btc)ais+kt+sbjs+mt+tc

=c2arsbrxtais+kt+sbjs+mt+tc.

Thus, ars+is+kt+sbrxt+js+mt+t = c−3. Obviously, a contradiction.
Thus, G = G7. When w = 1, similarly, a contradiction. If there is three order element

α ∈ Aut(G7) such that 1 = ccαcα2
and w2 + w + 1 = 0 (mod q). By Proposition 2.5, X

is symmetric if and only if there exists a two order element β ∈ Aut(G7) such that Sβ =
S−1. It follows that {(c−1)β , cαβ} = {c, (cα)−1}. Suppose that (c−1)β = (cα)−1, cαβ = c, one
has w2 = 1, a contradiction. Thus (c−1)β = c, (cα)−1 = cαβ . It follows that X is a cubic
semisymmetric graph of order 2qp2 if and only if there is three order element α ∈ Aut(G7) such
that 1 = ccαcα2

and w2 + w + 1 = 0 (mod q), and there is not two order element β ∈ Aut(G7)
such that (c−1)β = c, (cα)−1 = cαβ . Further, X = BCay(G7, S) and S = {1, c−1, cα}. �
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[26] Marušič, D., Potočnik, P. Semisymmetry of generalized Folkman graphs. Eur. J. Combin., 22: 333–349
(2001)

[27] Miller, R.C. The trivalent symmetric graphs of girth at most six. J. Combin. Theory B, 10: 163–182
(1971)

[28] Parker, C.W. Semisymmetric cubic graphs of twice odd order. Eur. J. Combin., 2: 572–591 (2007)
[29] Sabidussi, B.O. Vertex-transitive graphs. Monash Math., 68: 426–438 (1964)
[30] Shi, W.J. About the K4-groups. Chinese Science Buttetin, 36(17): 1281–1283 (1991)
[31] Titov, V.K. On symmetry in graphs. Voprocy Kibernetiki 9150, Proc. of II all Unio Seminar on Combi-

natorial Mathematics (in Russian), part 2, Nauka. Moscow, 1975, 76–109
[32] Wang, C.Q., Hao, Y.H. Edge-transitive regrlar Zn-covers of the Heawood graph. Discrete Math., 310:

1752–1758 (2010)
[33] Wilson, S. A worthy family of semisymmetric graphs. Discrete Math., 271: 283–294 (2003)
[34] Zhou, C.X., Feng Y.Q. Cubic vertex-transitive graphs of order 2pq. J. Graph Theory, 65: 285–302 (2010)


