
Acta Mathematicae Applicatae Sinica, English Series

Vol. 35, No. 3 (2019) 549–563

https://doi.org/10.1007/s10255-019-0831-9
http://www.ApplMath.com.cn & www.SpringerLink.com

Acta Mathema�cae Applicatae Sinica,
English Series
© The Editorial Office of  AMAS & 
     Springer-Verlag GmbH Germany 2019

On a General Class of Semiparametric Hazards
Regression Models for Recurrent Gap Times
Qin JIANG1,2,†, Hui ZHAO3, Hong QIN1

1Department of Statistics, Central China Normal University, Wuhan 430079, China

(E-mail: jiangqin999@126.com)
2Department of Mathematics, Huanggang Normal University, Huanggang 438000, China
3Department of Statistics, Zhongnan University of Economics and Law, Wuhan 430073, China

Abstract In the article, we investigate a general class of semiparametric hazards regression models for recur-

rent gap times. The general class includes the proportional hazards model, the accelerated failure time model

and the accelerated hazards models as special cases. The model is flexible in modelling recurrent gap times

since a covariate effect is identified as having two separate components, namely a time-scale change on hazard

progression and a relative hazards ratio. In order to infer the model parameters, the procedure is proposed based

on estimating equations. The asymptotic properties of the proposed estimators are established and the finite

sample properties are investigated via simulation studies. In addition, a lack of fit test is presented to assess the

adequacy of the model and an application of data from a bladder cancer study is reported for illustration.
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1 Introduction

Recurrent events are frequently encountered in biomedical studies, reliability studies and social
sciences when each subject experiences a particular event repeatedly over time. Here the event
could be, for instance, the occurrence of a certain disease, of hospitalization, or of breakdowns
of an automobile. It is challenging to analyze such recurrent events data on account of the
dependence of the recurrent event times within each individual and the presence of censoring
such as the loss to follow-up. For recurrent event data, various statistical methods have been
proposed, such as some intensity based methods (see [2,27,39]), some frailty model approaches
(see [11,22,23,40]) and some marginal means and rates models (see [7,13,17,30,34,35]).

In many applications, researchers are naturally interested in the gap times between recurrent
events, and inferring effects of covariates such as age and treatment on the gap times. Many
semiparametric hazards regression models are proposed for gap times. For example, Huang and
Chen[10], Schaubel and Cai[29] and Darlington and Dixon[8] studied proportional hazards mod-
els. Sun, Park, and Sun[33] considered additive hazards models. Chang[5] and Strawderman[31]

considered accelerated failure time models for logarithm transformed gap times. Lu[19] studied
the semiparametric linear transformation models for the gap times, which include the propor-
tional hazards and proportional odds models as special cases, but do not contain the additive
hazards model as a special case. Kang et al.[12] considered a class of transformed hazards mod-
els for recurrent gap time data, including both the proportional and additive hazards models
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as special cases. Moreover, some nonparametric models were discussed for the gap time (see
[9,16,25,36]). Luo and Huang[20,21] demonstrated that many existing methods for recurrent gap
time data can be viewed as weighted risk-set methods.

In this paper, we pay attention to the analysis of recurrent gap times with a general flexible
class of semiparametric hazards regression models, which was studied by Chen and Jewell[6] for
univariate survival data. In the general class of models, a covariate’s effect is identified as having
two separate components, namely a time-scale change on hazard progression and a relative
hazards ratio. The class includes the proportional hazards model, the accelerated failure time
model and the accelerated hazards models as special cases. Estimation of model parameters and
associated statistical properties are also investigated under a set of mild regularity conditions.

The remainder of the paper is organized as follows. In Section 2, we introduce data struc-
ture and the models. Estimation procedures are presented for the model parameters. The
asymptotic properties of the proposed estimators are established. In Section 3, a technique
is developed for checking the adequacy of the general model. In Section 4, some results are
reported from simulation studies conducted for evaluating the proposed methods. In Section 5,
the methodology is applied to a bladder cancer study data of Byar[3], followed by concluding
remarks in Section 6. The details of the proofs are relegated to Appendix.

2 Model and Estimation Procedure
2.1 The Model

Suppose that a total of n subjects are observed over time and each subject experiences re-
currences of the same event (see [4,10,12,33]). For subject i, let Tij denote the time from
the (j − 1)th to the jth occurrence of the event, j = 1, 2, · · · , i = 1, 2, · · · , n. Obviously,
Ti1 + · · · + Tij is the jth recurrent event time. Also let Zi denote the p-dimensional vector of
time-independent covariates associated with subject i, Ci denote the follow-up or censoring
time and Ni = {Tij : j = 1, 2, · · ·}. Assume that {(Ni, Ci, Zi); i = 1, 2, · · · , n} are independent
and identically distributed, and Ni is independent of Ci given Zi. Let Mi be the index of
observed gap times for subject i, such that

Mi−1∑
j=1

Tij ≤ Ci,

Mi∑
j=1

Tij > Ci.

Then observed data are {Ti1, · · · , Ti,Mi−1, Ci, Zi} which mean the first Mi − 1 gap times are
observed, but Ti,Mi is censored at

T +
i,Mi

= Ci −
Mi−1∑
j=1

Tij .

From Huang and Chen[10], Sun et al.[33] and Kang et al.[12], we suppose that each individual
recurrent event process is a renewal process. This implies that the observed complete gap times
{Tij, j = 1, · · · , Mi − 1} are identically distributed for given (Ci, Mi, T

+
i,Mi

).
Let λ(t|Zi) be the hazard function of Tij given Zi. In the following, we investigate a general

class of semiparametric hazards regression models defined as

λ(t|Zi) = λ0(teβ′
10Zi) exp(β′

20Zi) (1)

for Tij given Zi, where β10,β20 are the true p-vectors regression parameters, and λ0(t) is an an
unspecified baseline hazards function.
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To simplify our discussion without losing generality, as an example we only consider the
covariate Zi is binary. As seen in the following development, results can be easily extended to
the situation of multiple covariates.

Suppose that Zi = 1 stands for the treatment group and Zi = 0 for the control group, as in
a randomised clinical trial. Then Model (1) reduces to

λ1(t) = λ0(teβ10) exp(β20), (2)

where λ1(·) is the treatment group’s hazard function, λ0(·) is the control group’s hazard func-
tion, and β10, β20 ∈ R are the parameters. Clearly, Model (2) includes the proportional hazards
model, the accelerated failure time model and the accelerated hazards model as subclasses of
models: when β10 = 0, Model (2) becomes the proportional hazards model with a proportional-
ity constant of exp(β20); when β10 = β20, model (2) becomes the accelerated failure time model
for counting processes with a time scale change of exp(β10) = exp(β20); when β20 = 0, model
(2) reduces to accelerated hazards model with the hazards progression time ratio of exp(β10).

The two parameters β10 and β20 can be interpreted as measuring two different effects the
covariate may have on recurrent gap times. The first parameter β10 identifies the acceleration
or deceleration of hazard progression in the treatment group, while β20 characterises the relative
hazard after adjusting for the different hazard progressions in the treatment and the control
groups. Therefore, model (1) implies that the treatment can alter both the magnitude of hazard
and the pace of progression simultaneously.

Correctly identifying and estimating these two components may better describe a given re-
current gap times data, although the main value of the general Model (2) may be in quantifying
and highlighting differences between the three subclasses of models that are commonly used
individually.

Flexibility of the general model may lead to concern of identifiability. Following the ar-
guments of Chen and Jewell[6] and Sun and Su[34], we show the issue of identifiability in the
following proposition.

Proposition 1. Under Model (1), if there exist a sequence of constants {ck}+∞
k=−∞ and a large

enough t0 > 0 such that λ0(t) = Σ+∞
k=−∞cktk for any t ∈ [0, t0], then β10 and β20 are identifiable

if and only if there exist k1, k2 ∈ {0,±1,±2, · · ·} such that k1 �= k2 and ck1 , ck2 �= 0.
In the paper, we assume that β10 and β20 are identifiable.

2.2 Inference Method

Our inference procedure is based on the establishment of a connection between a subset of the
observed gap times and clustered survival data. Let �i = I(Mi > 1), Si = max(Mi − 1, 1),
and

Xij =
{

Tij , if �i = 1,

T+
ij , if �i = 0,

j = 1, 2, · · · , Si.

Then {Xij ,�i, Zi, j = 1, · · · , Si} (i = 1, · · · , n) can be treated as clustered survival data. Since
the cluster size is informative, the censored gap time needs to be removed for Mi > 1.

Define Nij(t) = ΔiI(Xij ≤ t) and Yij(t; β1) = I(Xij ≥ te−β′
1Zi). Denote Ñij(t; β1) =

Nij(te−β′
1Zi). Let β = (β′

1, β
′
2)

′, β0 = (β′
10, β

′
20)

′ and

Mij(t; β, Λ0) = Ñij(t; β1) −
∫ t

0

Yij(s; β1) exp{(β2 − β1)′Zi}dΛ0(s).

According to Model (1), we know that Mij(t; β0, Λ0) (j = 1, · · · , Si; i = 1, · · · , n) are zero-mean
stochastic processes but not martingales, since the hazard function is not modeled conditionally
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on the recurrent event process. Based on this fact and using the generalized estimating equation
approach[14], it is reasonable to estimate Λ0(t) and β0 with the following equations

n∑
i=1

1
Si

Si∑
j=1

∫ t

0

dMij(s; β, Λ0) = 0, (3)

n∑
i=1

1
Si

Si∑
j=1

∫ t

0

ZidMij(s; β, Λ0) = 0, (4)

n∑
i=1

1
Si

Si∑
j=1

∫ t

0

W (s, Zi; β)dMij(s; β, Λ0) = 0, (5)

for all 0 ≤ t ≤ τ , where τ is a prespecified constant satisfying P (Ci ≥ τe−β′
10Zi) > 0, i =

1, 2, · · · , n, W (s, Zi; β) is a known p-dimensional weight function of s, Zi and β, but not in
the span of the function 1 and Zi. We denote the estimator of Λ0(t) by Λ̂0(t, β), which can be
specified from (3) in the following explicit expression:

Λ̂0(t, β) =
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

dÑij(s; β1)∑n
i=1

1
Si

Si∑
j=1

Yij(s; β1) exp{(β2 − β1)′Zi}
, 0 ≤ t ≤ τ. (6)

In order to estimate β0, replacing Λ0(t) with its estimator Λ̂0(t, β) in (4) and (5), we can use
the following two estimating equations:

U1(β) =
n∑

i=1

1
Si

Si∑
j=1

∫ τ

0

{
Zi − Z(t; β)

}
dÑij(t, β1), (7)

U2(β) =
n∑

i=1

1
Si

Si∑
j=1

∫ τ

0

{
W (t, Zi; β) − W (t; β)

}
dÑij(t, β1), (8)

where

Z(t; β) =

n∑
i=1

1
Si

Si∑
j=1

Yij(t; β1) exp{(β2 − β1)′Zi}Zi

n∑
i=1

1
Si

Si∑
j=1

Yij(t; β1) exp{(β2 − β1)′Zi}
,

W (t; β) =

n∑
i=1

1
Si

Si∑
j=1

Yij(t; β1) exp{(β2 − β1)′Zi}W (t, Zi; β)

n∑
i=1

1
Si

Si∑
j=1

Yij(t; β1) exp{(β2 − β1)′Zi}
.

Denote Z∗
i (t; β) = (Z ′

i, W (t, Zi; β)′)′, Z
∗
(t; β) = (Z(t, β)′, W (t; β)′)′ and U(β) = (U1(β)′,

U2(β)′)′. Thus, we rewrite (7) and (8) as the following equation

U(β) =
n∑

i=1

1
Si

Si∑
j=1

∫ τ

0

{
Z∗

i (t; β) − Z
∗
(t; β)

}
dÑij(t, β1). (9)

That is, we can estimate β0 by (9). However, U(β) is a discontinuous function of β1, it is
usually unavailable to get a unique solution for β in U(β) = 0. We may define a solution β̂ as
a zero-crossing of (9) or as the minimiser of the Euclidean norm of ‖U(β)‖ (see [6,15,34]).
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In our numerical studies, we use the “fminsearch” function in MATLAB to obtain the
minimiser of‖U(β)‖. The Nelder-Mead direct search algorithm is adopted and its accuracy is
set to be less than 0.0001.

2.3 Asymptotic Properties

In general, in order to establish the asymptotic properties of β, we first establish the asymptotic
properties of U(β0). The asymptotic properties of U(β0) are summarized in the following
theorems with the proofs given in Appendix.

Theorem 1. Under Conditions (C1)–(C5) stated in Appendix, n−1/2U(β0) is asymptotically
normal with mean zero and covariance matrix Σ = E{did

′
i} which can be consistently estimated

by Σ̂, where

di =
1
Si

Si∑
j=1

∫ τ

0

{Z∗
i (t; β0) − z∗(t)}dMij(t; β0),

Σ̂ = n−1
n∑

i=1

Di(β̂)Di(β̂)′,

z∗(t) = (z(t)′, w(t)′)′,

Di(β) =
1
Si

Si∑
j=1

∫ τ

0

{Z∗
i (t; β) − Z

∗
(t; β)}dM̂ij(t; β),

M̂ij(t, β) = Ñij(t; β1) −
∫ t

0

Yij(s; β1) exp{(β2 − β1)′Zi}dΛ̂0(s),

and z(t) and w(t) are the limits of Z(t; β) and W (t; β) respectively.
In the following, let

S(0)(t; β) = n−1
n∑

i=1

1
Si

Si∑
j=1

Yij(t; β1) exp{(β2 − β1)′Zi},

S(1)(t; β) = n−1
n∑

i=1

1
Si

Si∑
j=1

Yij(t; β1) exp{(β2 − β1)′Zi}Zi,

S(2)
z (t; β) = n−1

n∑
i=1

1
Si

Si∑
j=1

Yij(t; β1) exp{(β2 − β1)′Zi}Z⊗2
i ,

S(2)
w (t; β)) = n−1

n∑
i=1

1
Si

Si∑
j=1

Yij(t; β1) exp{(β2 − β1)′Zi}Wi(t, Zi; β)Z ′
i.

Next, the asymptotic properties of β̂ are read as follows.

Theorem 2. Under the Hypotheses (C1)–(C6) stated in Appendix, the estimator β̂ is strongly
consistent and n1/2(β̂ − β0) converges in distribution to zero-mean normal with covariance
matrix A−1Σ(A−1)′ that can be consistently estimated by Â−1Σ̂(Â−1)′, where

Â =
(

Â11 Â12

Â21 Â22

)
,

Â11 =
∫ τ

0

[S(2)
z (t, β̂) − Z(t, β̂)⊗2S(0)(t, β̂)]d{λ̂0(t)t},
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Â12 =
∫ τ

0

[S(2)
z (t, β̂) − Z(t, β̂)S(1)(t, β̂)′]d{Λ̂0(t)},

Â21 =
∫ τ

0

[S(2)
w (t, β̂) − W (t, β̂)Z(t, β̂)S(0)(t, β̂)′]d{λ̂0(t)t},

Â22 =
∫ τ

0

[S(2)
w (t, β̂) − W (t, β̂)S(1)(t, β̂)′]d{Λ̂0(t)},

and λ̂0(t) = h−1
∫

K
(

u−t
h

)
dΛ̂0(u) is a density-type estimator of Λ̇0(t), h is the bandwidth and

K(·) is a kernel function with a compact support[28].
Based on the above result, we see that the estimator Â requires an estimate for the derivative

of Λ0(t). Because such density-type estimator λ̂0(t) tends to be numerically unstable, the
resulting variance estimator for β̂ will also be unreliable. In order to obtain a stable variance
estimate of β̂, via Parzen et al.[24] and Sun and Su[34], we adapt a resampling technique.
Specifically, let β̂∗ be the solution to

U(β) =
n∑

i=1

Di(β̂)Gi, (10)

where {G1, · · · , Gn} are independent standard normal variables. Following the arguments of
Parzen et al.[24], Lin et al.[15] and Sun and Su[34], the asymptotic distribution of n1/2(β̂ −
β0) can be approximated by the conditional distribution of n1/2(β̂∗ − β0) given the data
{Nij(·), Yij , Zi, Si} (i = 1, · · · , n, j = 1, · · · , Si). To approximate the distribution of β̂, we
produce a large number of realisations of β̂∗ by repeatedly generating the random samples
{G1, · · · , Gn} while fixing the data {Nij(·), Yij , Zi, Si}(i = 1, · · · , n, j = 1, · · · , Si) at their
observed values. The covariance matrix of β̂ can then be approximated by the empirical covari-
ance matrix of β̂∗. Hence, confidence intervals for β0 can be constructed using the empirical
distribution of β̂∗.

Theorem 3. Λ̂0(t) converges almost surely to Λ0(t) uniformly on [0, τ ], and the process V (t) =
n1/2{Λ̂0(t) − Λ0(t)}, 0 ≤ t ≤ τ , converges weakly to a mean-zero Gaussian process whose

covariance function at (s, t) can be consistently estimated by Γ̂(s, t) = n−1
n∑

i=1

Ψ̂i(s)Ψ̂i(t), where

Ψ̂i(t) =
1
Si

Si∑
j=1

( ∫ t

0

dM̂ij(s, β̂)

S(0)(s; β̂)
− Ĥ(t)′Â−1

∫ τ

0

{Z∗
i (u, β̂) − Z

∗
(u, β̂)}dM̂ij(u; β̂)

)
,

Ĥ1(t) =
∫ t

0

Z(u, β̂)d{λ̂0(u)u}, Ĥ2(t) =
∫ t

0

S(1)(u, β̂)

S(0)(u, β̂)
d{Λ̂0(u)},

and Ĥ(t) = (Ĥ1(t)′, Ĥ2(t)′)′.
As in the case of β̂, it is difficult to estimate the asymptotic covariance function of V (t) an-

alytically. Following Lin et al.[15] and Sun and Su[34], we show that the asymptotic distribution
of V (t) can be approximated by the conditional distribution of V̂ (t), where

V̂ (t) = n1/2{Λ̂0(t; β̂) − Λ̂0(t; β̂∗)} + n−1/2
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

dM̂ij(s; β̂)

S(0)(s; β̂)
Gi.

Here β̂∗ is the solution to (10). Thus, we may make inference about Λ0(t) via the simulated
distribution of V̂ (t).
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3 Model Checking

To assess the adequacy of hazards model, we employ some existing goodness-of-fit methods[18].
In the following, we develop a lack-of-fit test for assessing the adequacy of Model (1). Following
from Lin et al.[17] and Sun and Su[34], we consider the following cumulative sums of residuals:

F(t, z; β̂) = n−1/2
n∑

i=1

∫ t

0

I(Zi ≤ z)dM̂i(s; β̂),

where dM̂i(s; β) = 1
Si

Si∑
j=1

dM̂ij(s; β) and the event I(Zi ≤ z) means that each of the components

of Zi is not larger than the respective component of z. We show in Appendix that the null
distribution of F(t, z; β̂) can be approximated by

F̃(t, z) =n−1/2
n∑

i=1

∫ t

0

{
I(Zi ≤ z) − S(u, z; β̂)

S(0)(u; β̂)

}
dM̂i(u; β̂)

− B̂(t, z)′Â−1n−1/2
n∑

i=1

∫ τ

0

(Z∗
i (u; β̂) − Z

∗
(u; β̂))dM̂i(u; β̂), (11)

where

S(u, z; β) =n−1
n∑

i=1

1
Si

Si∑
j=1

Yij(u; β1) exp{(β2 − β1)′Zi}I(Zi ≤ z),

B̂1(t, z) =n−1
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

Yij(u; β̂1) exp{(β̂2 − β̂1)′Zi}

· I(Zi ≤ z)
{
Zi − Z(u; β̂)

}
d{λ̂0(u)u},

B̂2(t, z) =n−1
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

Yij(u; β̂1) exp{(β̂2 − β̂1)′Zi}Zi

·
{
I(Zi ≤ z) − S(u, z; β̂)

S(0)(u; β̂)

}
dΛ̂0(u),

and B̂(t, z) = (B̂1(t, z)′, B̂2(t, z)′)′.
It is also difficult to estimate the asymptotic covariance function of F(t, z; β̂) analytically.

We again use the resampling approach to approximate the null distribution of F(t, z; β̂) by the
conditional distribution of F̂(t, z), where

F̂(t, z) =
{F(t, z; β̂) −F(t, z; β̂∗)

}
+ n−1/2

n∑
i=1

∫ t

0

{
I(Zi ≤ z) − S(u, z; β̂)

S(0)(u; β̂)

}
dM̂i(u; β̂)Gi.

Specifically, in order to approximate the distribution of F(t, z; β̂), one can obtain a large number
of realizations from F̂(t, z), by repeatedly generating the standard normal random sample
(G1, · · · , Gn) while fixing the data {Nij(·), Yij , Zi, Si} (i = 1, · · · , n, j = 1, · · · , Si) at their
observed values. To assess the overall fit of model (1), one can plot a few realizations from
F̂(t, z) along with the observed F(t, z; β̂), and see if they can be regarded as arising from the
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same population. More formally, we can apply the supremum test statistic sup
0≤t≤τ,z

|F(t, z; β̂)|
whose p-value can be obtained by comparing the observed value of sup

0≤t≤τ,z
|F(t, z; β̂)| to a large

number of realizations from sup
0≤t≤τ,z

|F̂(t, z)|.
It can be shown that under model (1), F(t, z; β̂) is equivalent in distribution to F̃(t; z),

which converges to a zero-mean Gaussian process. Actually, F̃(t; z) was used here only to
show the asymptotic normality of F(t, z; β̂) theoretically. However, it is difficult to estimate
the asymptotic covariance function of F(t, z; β̂) or F̃(t; z) analytically. Then a resampling
technique based on F̂(t, z) was applied and the p-value of the test can be obtained by comparing
the observed value of sup

0≤t≤τ,z
|F(t, z; β̂)| to a large number of realizations of sup

0≤t≤τ,z
|F̂(t, z)|.

4 Simulation Studies

In this section, we conduct some simulation studies to examine the finite-sample behavior of
the proposed inference procedure. In the study, a heterogeneous mixture of individual renewal
processes is used with Model (1). Specifically, the baseline hazard function is chosen to be log-
logistic distributions with scale parameter of 1, that is λ0(t) = 1/(1 + t). Firstly, we generate
the baseline gap time T 0

ij having distribution function Φ(Ai + Bij), where Φ is the cumulative
distribution function of the standard normal distribution, Ai and Bij are independent normal
random variables with mean zeros and variances ρ and 1 − ρ, respectively, with ρ ∈ [0, 1].
Here the parameter ρ dictates the heterogeneity of between individual, and 1 − ρ controls the
heterogeneity of between-episodes within an individual.

Secondly, given the baseline gap times, general gap times Tij are taken as

exp(−β′
10Zi)

(
(T 0

ij)
exp{(β10−β20)

′Zi} − 1
)
,

with β10 = −1, β20 = 1 and β10 = 0, β20 = 1 respectively, where Zi is a Bernoulli random
variable with success probability 0.5. The censoring time Ci is taken as the minimum of the
uniform distribution on (0, 3) and 1.

For each simulation study, we consider ρ = 0, 0.25 and 0.5. Two choices are considered for
the weight function W (t, Zi; β):

(i) W1(t, Zi; β) = n−1
n∑

k=1

1
Sk

Sk∑
j=1

Ykj(t, β1) exp(−β′
1Zk)Zi;

(ii) W2(t, Zi; β) = t
1+tZi.

1000 simulation samples are considered and 1,000 resamplings are generated for each sim-
ulation sample.

Table 1 presents the simulation results on estimation of β10 and β20 with the sample sizes n=
100 and 200, according to two different weight functions. In Table 1, Bias stands for the sample
means of the point estimates β̂ minus the true value, SSE is the sampling standard errors of β̂,
ESE is the sampling means of the estimated standard errors of β̂, and CP stands for the 95%
empirical coverage probability for β0 = (β′

10, β
′
20)

′ based on the empirical distribution of β̂∗.
From Table 1, we easily see the proposed estimation procedure performs well for the situations
considered here. Specifically, the proposed estimators are practically unbiased, and both the
variance estimation and coverage probabilities seem reasonable. Moreover the results become
better when the sample size increases from 100 to 200.
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Table 1. Summary of the Simulation Study

β10 = −1 β20 = 1

n ρ W BIAS SSE ESE CP BIAS SSE ESE CP

100 0 W1 −0.0714 0.1651 0.1664 0.919 0.0082 0.3404 0.3351 0.937

0.25 W1 −0.0721 0.1646 0.1693 0.922 0.0091 0.3449 0.3393 0.933

0.5 W1 −0.0708 0.1593 0.1796 0.924 0.0081 0.3463 0.3272 0.928

0 W2 −0.0725 0.1587 0.1783 0.931 0.0191 0.3344 0.3130 0.928

0.25 W2 −0.0763 0.1594 0.1763 0.942 0.0214 0.3357 0.3198 0.932

0.5 W2 −0.0802 0.1517 0.1905 0.943 0.0267 0.3457 0.3266 0.925

200 0 W1 −0.0707 0.1362 0.1483 0.927 0.0076 0.3344 0.3213 0.935

0.25 W1 −0.0671 0.1396 0.1497 0.921 0.0072 0.3385 0.3261 0.931

0.5 W1 −0.0663 0.1385 0.1499 0.929 0.0073 0.3397 0.3183 0.933

0 W2 −0.0687 0.1182 0.1435 0.947 0.0136 0.2304 0.2129 0.925

0.25 W2 −0.0665 0.1194 0.1535 0.951 0.0021 0.2285 0.2171 0.936

0.5 W2 −0.0662 0.1166 0.1744 0.967 0.0070 0.2272 0.2618 0.963

β10 = 0 β20 = 1

100 0 W1 −0.0013 0.0359 0.0236 0.948 0.0257 0.2685 0.2627 0.943

0.25 W1 −0.0009 0.0295 0.0218 0.946 0.0178 0.2642 0.2628 0.948

0.5 W1 −0.0006 0.0344 0.0303 0.943 0.0206 0.2721 0.2684 0.946

0 W2 −0.0022 0.0324 0.0212 0.951 0.0261 0.2754 0.2625 0.933

0.25 W2 −0.0008 0.0375 0.0227 0.944 0.0208 0.2679 0.2622 0.943

0.5 W2 −0.0009 0.0332 0.0253 0.943 0.0212 0.2613 0.2583 0.946

200 0 W1 −0.0007 0.0254 0.0201 0.941 0.0203 0.2217 0.2201 0.939

0.25 W1 −0.0005 0.0223 0.0213 0.942 0.0116 0.2050 0.1798 0.944

0.5 W1 −0.0006 0.0227 0.0198 0.947 0.0171 0.2017 0.1884 0.945

0 W2 −0.0008 0.0219 0.0199 0.948 0.0163 0.2059 0.1736 0.937

0.25 W2 −0.0006 0.0228 0.0216 0.945 0.0153 0.2113 0.1822 0.942

0.5 W2 −0.0007 0.0235 0.0206 0.938 0.0162 0.2012 0.1906 0.947

5 An Example of Application

In this section, the proposed methodology is applied to a bladder cancer study conducted
by the Veterans Administration Cooperative Urological Research Group (see [2,3,37]). The
study consisted of 85 patients with superficial bladder tumors, a number of whom experienced
recurrences of the tumors. The patients were randomly allocated to one of two treatments,
placebo (47) and thiotepa (38). This dataset can be found in the R Package “survival”. A
primary interest for this data is to assess the effects of thiotepa treatment on the recurrent
event (see [10,33,37]).

In this section, we aim at assessing the effects of the thiotepa on the gap time between
recurrent tumors in the general model (1). We set the treatment indicator Z to be 0 for
placebo or 1 for thiotepa. To estimate standard errors of β̂, 1000 resamplings are used. We
adopt the weight function W2(t, Zi; β) as the simulations. The results are shown in Table 2.

In Table 2, the signs of parameters estimators (β̂10, β̂20) = (−2.6779,−0.9921), are negative,
which indicate the treatment thiotepa can delay the recurrence of the bladder tumor. Moreover,
according to p-value of β10, we find that thiotepa treatment has an significant effect on the
time-scale change. However, the p-value of β20 suggests that thiotepa treatment seems to be
no significant proportional effect. Finally, we apply the model checking techniques given in
Section 3 to assess the adequacy of Model (1) for the data. We calculate the statistic F(t, z; β̂)
and obtain p-value of test statistic sup

0≤t≤τ,z
|F(t, z; β̂)| is 0.3061 based on 1000 realizations of the
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corresponding statistic sup
0≤t≤τ,z

|F̂ (t, z)|. This result indicates that we have no sufficient proof

to reject the model assumption and that the model is reasonable to fit the data in some extent.
In this example, β20 is not significant, we can just consider the accelerated hazards models.

Table 2. Summary of Regression Analysis for Bladder Cancer Data

Parameters Estimation Std p-Value

β10 −2.6779 0.3332 0.0000

β20 −0.9921 0.7096 0.1646

6 Concluding Remarks

In this article we study a general class of semiparametric hazards regression models for recurrent
gap time data. The models are flexible and include some commonly used models as special
cases. An estimation procedure is proposed for the model parameters, based on an established
connection between observed gap times and clustered survival data with informative cluster size.
The asymptotic properties of the estimators are established. Simulation studies are conducted
to verify the finite sample behaviors and the results show that the proposed method works well.

Note that in (8), there is a weight function that needs to be specified. We use two different
weight functions W1 and W2 in the simulation studies, and there are many potential candidates
for the weight function[6]. Usually the weight function was used to improve the efficiency of the
estimation since the estimate based on the generalized estimating equations is not efficient. It
is clear that W cannot be any data-dependent function as W needs to be chosen such that the
estimating function has zero expectation. In general, one would like to choose W that gives
the most efficient estimate of covariate effects. However, sometimes, this may not be possible
and it is usually quite difficult. Chen and Jewell[6] gave some suggestions in their simulation
part. It may be a valuable research direction in the future to develop some procedures for the
selection of an appropriate weight function for a given data set.

7 Appendix: the Proofs of Asymptotic Properties

Now, we give the similar regularity conditions defined by Anderson and Gill[1] in the following:
(C1) (Ni(·), Ci, Zi(·)) are independent and identically distributed for i = 1, · · · , n.

(C2) P (Yi(τ ; β10) = 1) > 0.

(C3) Zi and W (t, Zi; β0) are bounded on [0, τ ] for i = 1, · · · , n.

(C4) λ0(·) is bounded twice continuously differentiable.
(C5) Cie

β10Zi has a bounded density.
(C6) A is nonsingular, where

A =
(

A11 A12

A21 A22

)
,

A11 =
∫ τ

0

[s(2)
z (t) − z(t)⊗2s(0)(t)]d{λ0(t)t},

A12 =
∫ τ

0

[s(2)
z (t) − z(t)s(1)(t)′]d{Λ0(t)},

A21 =
∫ τ

0

[s(2)
w (t) − w(t)z(t)s(0)(t)′]d{λ0(t)t},
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A22 =
∫ τ

0

[s(2)
w (t) − w(t)s(1)(t)′]d{Λ0(t)}.

where s(0)(t), s(1)(t), s(2)
z (t), s(2)

w (t), z(t) and w(t) are the limits of S(0)(t; β0), S(1)(t; β0), S
(2)
z (t; β0),

S
(2)
w (t; β0), Z(t; β0), and W (t; β0), respectively.

Proof of Theorem 1. Clearly, an easy algebraic manipulation yields that

U(β0) =
n∑

i=1

1
Si

Si∑
j=1

∫ τ

0

{Z∗
i (t; β0) − Z

∗
(t; β0)}dMij(t; β10).

By Theorem 1 of Lin et al.[15], it’s easy to obtain that

n−1/2U(β0) = n−1/2
n∑

i=1

di + op(1),

where

di =
1
Si

Si∑
j=1

∫ τ

0

{Z∗
i (u, β0) − z∗(u)}dMij(u; β0).

It follows from the multivariate central limit theorem that n−1/2U(β0) converges in distribution
to a normal random variable with mean zero and variance matrix Σ = E{did

′
i}, which can be

consistently estimated by Σ̂.
Let U(β) be the limit of n−1U(β), and N be a compact neighborhood of β0 on which ‖U(β)‖

is minimised to obtain β̂. �

Proof of Theorem 2. We write

U1(β) − U1(β0) = U1(β1, β2) − U1(β1, β20) + U1(β1, β20) − U1(β10, β20).

For any sequence εn → 0, using a Taylor series expansion and the uniform strong law of large
numbers, we have that for ‖β − β0‖ ≤ εn,

U1(β1, β2) − U1(β1, β20) = −A12n(β2 − β20) + o(n‖β − β0‖).
On the other hand, we note that

U1(β1, β20) − U1(β10, β20) =
n∑

i=1

1
Si

Si∑
j=1

∫ τ

0

(
Zi(t; β1, β20) − Z(t; β1, β20)

)
× {

dÑij(t, β1) − Yij(t, β1) exp{(β20 − β1)′Zi}
}
dΛ0(te(β10−β1)

′Zi)

−
n∑

i=1

1
Si

Si∑
j=1

∫ τ

0

(
Zi(t; β10, β20) − Z(t; β10, β20)

)
× {

dÑij(t, β10) − Yij(t, β10) exp{(β20 − β10)′Zi}
}
dΛ0(t)

+
n∑

i=1

1
Si

Si∑
j=1

∫ τ

0

(Zi(t; β1, β20) − Z(t; β1, β20)

× Yij(t, β1)e(β20−β1)
′Zid[Λ0(te(β10−β1)

′Zi) − Λ0(t)]. (12)

Applying the technique of Ying[38] and Lin et al.[15], one shows that the first term on the right
hand side of equality (12) is of order o(n1/2). By a Taylor series expansion, we obtain that

Λ0(te(β10−β1)
′Zi) − Λ0(t) = {λ0(t) + o(1)}t(β10 − β1)′Zi.
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Therefore, the second term can be rewritten as

n∑
i=1

1
Si

Si∑
j=1

∫ t

0

[Zi(t; β1, β20) − Z
(
t; β1, β20)] · Yij(t, β1)e(β20−β1)

′ZiZ ′
id{tλ0(t)}(β10 − β1)

+ o(n‖β1 − β10‖) = −A11n(β1 − β10) + o(n‖β1 − β10‖)
almost surely. It then follows from analogy with Theorem 1 in [38] that, for any sequence
εn → 0,

sup
‖β−β0‖≤εn

{‖U1(β) − U1(β0) + (A11, A12)n(β − β0)‖/(n1/2 + n‖β − β0‖)
}

= o(1)

almost surely. Similarly, we get that for any sequence εn → 0,

sup
‖β−β0‖≤εn

{‖U2(β) − U2(β0) + (A21, A22)n(β − β0)‖/(n1/2 + n‖β − β0‖)
}

= o(1)

almost surely. Therefore, we get that for any sequence εn → 0,

sup
‖β−β0‖≤εn

{‖U(β) − U(β0) + A · n(β − β0)‖/(n1/2 + n‖β − β0‖)
}

= o(1) (13)

almost surely. It is easy to show that U(β0) = 0. Note that n−1U(β) → U(β) uniformly in
N and U(β) �= 0 for all β �= β0. Then following the argument used in Theorem 2 of Lin et
al.[15], we can get that β̂ is strongly consistent under the regularity Conditions (C1)–(C5). In
addition, by the definition of β̂, condition (C6) and (13), n1/2(β̂−β0) is asymptotically normal
with mean zero and covariance matrix A−1Σ(A−1)′, which can be consistently estimated by
Â−1Σ̂(Â−1)′. �

Proof of Theorem 3. Note that

Λ̂0(t) − Λ0(t) =Λ̂0(t; β̂1, β̂2) − Λ̂0(t; β̂1, β20) + Λ̂0(t; β̂1, β20)

− Λ̂0(t; β0) + Λ̂0(t; β0) − Λ0(t).

With a Taylor series expansion, the uniform strong law of large numbers[26] and an easy algebraic
manipulation, we have

n1/2(Λ̂0(t; β̂1, β̂2) − Λ̂0(t; β̂1, β20)) = −h2(t)′(β̂2 − β20) + op(1)

uniformly in t ∈ [0, τ ]. Applying the results of Theorem 2, we obtain

n1/2(Λ̂0(t; β̂1, β20) − Λ̂0(t; β0)) = −h1(t)′(β̂1 − β10) + op(1),

uniformly in t ∈ [0, τ ], where h1(t) =
∫ t

0
z(u)d{λ0(u)u} and h2(t) =

∫ t

0
s(1)(u)
s(0)(u)

d{Λ0(u)}. Clearly,
some algebraic manipulations yield

n1/2{Λ̂0(t, β0) − Λ0(t)} = n−1/2
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

dMij(u; β0)
s(0)(u)

+ op(1)

uniformly in t ∈ [0, τ ]. Hence, we have

n1/2{Λ̂0(t) − Λ0(t)} = n−1/2
n∑

i=1

Ψi(t) + op(1), (14)
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where

Ψi(t) =
1
Si

Si∑
j=1

∫ t

0

dMij(u; β0)
s(0)(u)

− h(t)′A−1 1
Si

Si∑
j=1

∫ τ

0

{Z∗
i (u, β0) − z∗(u)}dMij(u; β0)

and h(t) = (h1(t)′, h2(t)′)′.
Because Ψi(t) are independent zero-mean random variables for each t, via the multivariate

central limit theorem, we know n−1/2
n∑

i=1

Ψi(t) converges in finite dimensional distributions to

a zero-mean Gaussian process. By the modern empirical theory as in Lin et al.[17], we know

n−1/2
n∑

i=1

Ψi(t) is tight. Thus, n1/2(Λ̂0(t) − Λ0(t)) converges weakly to a zero-mean Gaussian

process with covariance function Γ(s, t) that can be consistently estimated by Γ̂(s, t) at (s, t),
by the arguments of Lin et al.[17]. �

Proof of (11) in Section 3. Rewrite

F(t, z; β̂)

=n−1/2
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

I(Zi ≤ z)
{
dÑij(u; β̂1) − Yij(u; β̂1)e(β20−β̂1)

′ZidΛ0(ue(β10−β̂1)
′Zi)

}

− n−1/2
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

I(Zi ≤ z)
{
dÑij(u; β10) − Yij(u; β10)e(β20−β10)

′ZidΛ0(u)
}

− n−1/2
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

I(Zi ≤ z)Yij(u; β̂1)e(β̂2−β̂1)
′Zid

[
Λ̂0(u, β̂) − Λ0(u)

]

− n−1/2
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

I(Zi ≤ z)Yij(u; β̂1)
[
e(β̂2−β̂1)

′ZidΛ0(u) − e(β20−β̂1)
′ZidΛ0(ue(β10−β̂1)

′Zi)
]

+ n−1/2
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

I(Zi ≤ z)dMij(u; β0). (15)

Applying the technique of Ying[38] and Lin et al.[15], we can show that the first and the second
term on the right-hand side of equality (15) is of order o(1) uniformly in t and z. Similar to
(14), the third term on the right-hand side of equality (15) is equivalent to

−n−1/2
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

s(u, z)
s(0)(u)

dMij(u; β0) + b̃(t, z)′n1/2(β̂ − β0) + op(1),

where

b̃1(t, z) = n−1
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

Yij(u; β10)e(β20−β10)′ZiI(Zi ≤ z)z(u)d{λ0(u)u},

b̃2(t, z) = n−1
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

Yij(u; β10)e(β20−β10)′ZiI(Zi ≤ z)
s(1)(u)
s(0)(u)

d{Λ0(u)}

and b̃(t, z) = (̃b1(t, z)′, b̃2(t, z)′)′. By a Taylor series expansion, we obtain the fourth term on
the right-hand side of (15) equals

−b∗(t, z)′n1/2(β̂ − β0) + op(1),



562 Q. JIANG, H. ZHAO, H. QIN

where

b∗1(t, z) = n−1
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

Yij(u; β10)e(β20−β10)
′ZiI(Zi ≤ z)Zid{λ0(u)u},

b∗2(t, z) = n−1
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

Yij(u; β10)e(β20−β10)
′ZiI(Zi ≤ z)Zid{Λ0(u)}

and b∗(t, z) = (b∗1(t, z)′, b∗2(t, z)′)′. Set b(t, z) = b̃(t, z) − b∗(t, z). Therefore, we have

F(t, z; β̂) =n−1/2
n∑

i=1

1
Si

Si∑
j=1

∫ t

0

{
I(Zi ≤ z) − s(u, z)

s(0)(u)

}
dMij(u; β0)

− b(t, z)′A−1n−1/2
n∑

i=1

1
Si

Si∑
j=1

∫ τ

0

{Z∗
i (u; β0) − z∗}dMij(u; β0)

uniformly in t and z. Obviously, it is a sum of i.i.d. zero-mean terms for fixed t and z. By
the multivariate central limit theorem, we all know F(t, z; β̂) converges in finite dimensional
distributions to a zero-mean Gaussian process. Using the modern empirical theory as in Lin et
al.[17], we can show that F(t, z; β̂) is tight. By the arguments of Lin et al.[17], this Gaussian
process can be approximated by F̃(t, z) given by (11). �
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