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Abstract This paper is concerned with the boundary-value problem on the Boltzmann equation in bounded
domains with diffuse-reflection boundary where the boundary temperature is time-periodic. We establish the
existence of time-periodic solutions with the same period for both hard and soft potentials, provided that the
time-periodic boundary temperature is sufficiently close to a stationary one which has small variations around a
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1 Introduction

Let a rarefied gas be contained in a bounded domain  C R?® with smooth boundary 92
on which the diffuse-reflection condition is postulated. We assume that the velocity of the
boundary is zero while the temperature of the boundary is periodic in time. One basic problem
is to see whether or not there exists a time-periodic motion of such rarefied gas with the same
period.

To treat the problem, we assume that the motion of the rarefied gas is governed by the
Boltzmann equation

O F +v-V,F =Q(F,F), teR, ze€Q, veR3 (1.1)

Here F' = F(t,z,v) > 0 stands for the density distribution function of gas particles with position
x € Q and velocity v € R?® at time ¢ € R. The Boltzmann collision operator Q(-,-) is of the
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non-symmetric bilinear form:
Q(G,F) :/ / B(v —u,w)G(u)F(v") dwdu
R3 J§2
- / / B(v — u,w)G(u)F (v) dwdu.
R3 J§2

Here the relation between the velocity pair (v',u’) after collision with the velocity pair (v, )
before collision for two particles is given by

vVV=v—[(v—u)- ww, v =u+[(v—u)- ww,
with w € S?, satisfying the conservations of momentum and energy due to the elastic collision:
v +u = v 4, [v'|? + [o/|? = |v]? + |ul?.
The Boltzmann collision kernel B(v — u,w) takes the form of
B(v—u,w) = |v —u]b(@),

with
3<y<l, 0<b)<Cleosql, cosgi= LW

)

v —ul
for a generic constant C. Note that the angular cutoff assumption is required and we allow for
both hard and soft potentials in the full range.

To solve the Boltzmann equation (1.1) in the bounded domain, it is supplemented with the
following diffuse-reflection boundary condition:

B, U)|v~n(r)<0 = He / F(t,z,u)|u-n(z)| du, (1.2)
u-n(x)>0

for any t € R, where n(z) denotes the outward normal vector at the boundary point x € 99,
and pg takes the form of

1 v]?

Ho = Ho(t,x) (U) = 2702 (t7 x) e 20(t.z) (13)
Here we have assumed that the boundary velocity is zero and the boundary temperature is a

function 6(t,x) which is periodic in time and may also depend on the space variable.
Throughout this paper, we assume that Q = {x : {(z) < 0} is connected and bounded with
&(x) being a smooth function in R3. We assume V&(x) # 0 at each boundary point z with
&(z) = 0. The outward normal vector n(z) is therefore given by n(x) = VE&(z)/|VE(x)|, and it
can be extended smoothly near 90 = {z : {(x) = 0}. We define that § is convex if there exists

a constant c¢g > 0 such that
3

82
S 08 @) > ekl
Q=1

xiaxj

for all z such that £(x) < 0 and for all ¢ = ({1, (2, (3) € R3. We denote the phase boundary in
the space Q x R3 as v = 99 x R3, and split it into the outgoing boundary v, the incoming
boundary v_, and the singular boundary ~yy for grazing velocities, respectively:

vy = {(z,v) €92 x R®: n(z) -v > 0},
v = {(z,v) € 92 x R3 : n(z) -v < 0},
70 = {(z,v) € 9Q x R : n(z) - v = 0}.
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Note that ug satisfies the boundary condition (1.2) but may not be a solution to the Boltz-
mann equation (1.1) since the boundary temperature 6(t, z) may have nontrivial variations in
t or z. When 6(t,z) is identical to a constant 6y > 0, for instance, without loss of generality
we assume 0y = 1 to the end, the global Maxwellian corresponding to (1.3) is reduced to

1 w2

p=pv) =, e 2, (1.4)

which satisfies both (1.1) and (1.2). In such case, there have been extensive studies of existence,
large-time behavior and regularity of small-amplitude L°° solution around p to the initial-
boundary value problem on the Boltzmann equation, for instance, [7-9,10,12,13,15,16]. Readers
may also refer to references therein for related works.
When 6(t,z) is a time-independent function #(z) which has a small variation around 6y,
namely, sup | — | is small enough, one may expect that the large-time behavior of solutions
o0

to the initial-boundary value problem on the Boltzmann equation is determined by solutions
to the following steady problem

v- V. F=Q(F,F), z €, veR?

F(J;,v)}v_n(x)@ = ug($)/ F(z,u)|u-n(x)| du. (1.5)
u-n(x)>0

Indeed, for hard potentials 0 < v < 1, [7] established the existence and dynamical stability of

a stationary solution F*(z,v) to (1.5). Recently, the result of [7] has been extended in [3] to

the case of soft potentials —3 < v < 0. We refer readers to [3] for extensive discussions on the

subject.

In the current work, we consider the case when 6(¢,x) is a general time-space-dependent
function assumed to be periodic in time with period T > 0 and sufficiently close to 6(z). Under
such situation, we shall prove that there exists a unique time-periodic solution FP®*(¢,x,v)
around F*(x,v) with the same period T for the problem (1.1) and (1.2), and further show
the dynamical stability of FP'(¢,x,v) under small perturbations in the sense that the solu-
tion F'(t,z,v) to the initial-boundary value problem on the Boltzmann equation (1.1) with
initial data F(0,z,v) = Fy(z,v) and boundary data (1.2) exists globally in time and is time-
asymptotically close to FP* (¢, z,v) whenever Fy(x,v) is sufficiently close to FP*(0,z,v). Note
that the limiting situation T' = 0 for the period of 8(¢, z) is also allowed and this corresponds to
the stationary case considered in [7] and [3] as mentioned above. Therefore, the current work
can be regarded as an extension of [3,7] to the time-periodic boundary.

In what follows we state the main results of this paper. Let

wa,p(v) = (1 +[of?) 2 etll” (1.6)

be the velocity weight function, and let F*(x,v) be the steady solution to (1.5) corresponding
to the stationary boundary temperature 6(z) constructed in [3,7]. We assume that F*(z,v) has
the same total mass as that of the global Maxwellian g in (1.4), i.e.,

/Q /Rz [F*(x,v) — p(v)] dvdz = 0.

To the end, for brevity we shall write wq g as w by ignoring the dependence of w on parameters
q and B. The first result is concerned with the existence of time-periodic solutions of small
amplitude.

Theorem 1.1. Let =3 <~ <1,0<¢ < § and 8> max{3,3 —~}. Assume that (t, ) is a
time-periodic function with period T > 0. Then there exist § > 0 and C' > 0 such that if

by := sup [0(t,-) = 0(-)|p=(a0) <6, b2 :=10(-) — 1|z (00) <6,
0<t<T
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then the Boltzmann equation (1.1) with the diffuse-reflection boundary (1.2) admits a unique
nonnegative time-periodic solution with the same period T':

FP(t,x,0) = F*(2,0) + /p(v) fP(t, ,0) >0, (1.7)
satisfying
/ FPe(t, x,v)\/ u(v) duda = 0, teR, (1.8)
Q JR3
and
sup [JwfP ()|~ + sup [wfP(t)[Le(y) < Cor. (1.9)
0<t<T 0<t<T

Moreover, if Q is convex, 0(t,z) is continuous on R x 0Q, and 0(x) is continuous on OS2, then
FPe*(t,x,v) is also continuous away from the grazing set R x .

The second result is concerned with the large-time behavior of solutions to the initial-
boundary value problem

OWF +v-V,F=Q(F,F), t>0, z€Q, veR3

F(t’x’v)}v-n(a:)<0 = ue(m)/ " F(t,z,u)|u-n(x)| du, (1.10)
u-n(x)>0

F(vavv) = F()(J),U),
whenever Fy(z,v) is around FP®(0,x,v) in a sense to be clarified later on.

Theorem 1.2. Let -3 < v <1, 0<qg< é and > max{3,3 —v}. Then there exist

constants §', ¢ >0, 9 >0 and C > 0 such that if

sup |0(t,-) = 1| g (o) <9,
0<t<T

and Fy(z,v) = FP'(0,z,v) + \/p(v) fo(z,v) > 0 satisfies

// fo(z, v)\/pu(v) dvdz = 0, (1.11)
Q Jrs

and
lwfollLe < eo,

then the initial-boundary value problem (1.10) on the Boltzmann equation admils a unique
global-in-time solution

F(t,x,v) :Fper(t,x,v)—k\/,u(v)f(t,a:,v) >0, t>0,zeQvelR3

satisfying
/ / f(t, x,v)\/ p(v) dvdz = 0
Q Jr3
and
[wf ()L + [wf (O] y) < Ce™ [Jwfol| e, (1.12)
for allt > 0, where p > 0 is determined by

1, if v€l0,1],

p= 2 , (1.13)
24 |y € (0,1), if ve€(=3,0).
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Moreover, if Q is convex, Fy(x,v) is continuous except on o satisfying

Fo(z,0)]y. = 19(0, 2, v) / Fo(z, w)lu - ()| du,
u-n(x)>0

and 0(t, x) is continuous over R x 982, then the solution F(t,z,v) is also continuous in [0, 00) X
{Q xR\ 7o}

Remark 1.3. In the soft potential case —3 < v < 0, the time-decay estimate (1.12) implies
that there is no loss of velocity weight in the weighted L> space for the solution compared to
the one for initial data, which is different from the recent result'®. We refer readers to [3] for
more details.

The issue about the time-periodic solutions to the Boltzmann equation has been studied in
[17] and [5]. Particularly, [17] first considered the case where the Boltzmann equation is driven
by a time-periodic source term in the whole space. The main idea of [17] is to study the extra
time-decay property of the linearized solution operator U(t) and look for the time-periodic
solution as a fixed point to an integral equation

f(@) :/_ U(t — s)N¢(s) ds,

where Ny(-) includes both the nonlinear term and the time-periodic inhomogeneous source.
The approach of [17] was later applied in [5] to consider the Boltzmann equation with a small
time-periodic external force. Note that [5] has to require a strong assumption that the space
dimensions are not less than five, and it has remained a big open problem to remove such
restriction.

A similar time-periodic problem on the Vlasov-Poisson-Fokker-Planck system in the whole
space was also considered in [4] when the background density profile is time-periodic around a
positive constant, where the proof is based on another approach different from [17]. It should
be pointed out that three space dimensions are allowed in [4] due to the exponential time-decay
structure of the linearized system.

In the current work, we carry out a proof of existence of time-periodic solutions which is
different from [4,5,17] mentioned above but is similar to the one in [3] for the steady problem.
In fact, instead of solving the Cauchy problem, the basic idea in the present paper is to regard
the time-periodic problem as a special boundary value problem over [0, 7] x £ x R?, with the
time-periodic boundary condition at t = 0 and ¢t = T'. For the proof, we develop new estimates
in the time-periodic setting.

In the end we remark that motivated by the works [1] and [18], the existence and dynamical
stability of time-periodic profiles to the Boltzmann equation in a bounded interval recently
have been also established in [6] in the case when one boundary point moves with a small time-
periodic velocity. Compared to the current work in the case when the boundary temperature is
time-periodic, the mathematical analysis in [6] is much harder, since the reformulated problem
is related to the Boltzmann equation with a time-periodic external force in the bounded domain.

The rest of this paper is organized as follows. In Section 2, we make a list of basic lemmas
which will be used in the later proof. Then, Section 3 and Section 4 are devoted to the proof
of Theorem 1.1 and Theorem 1.2, respectively.

Notations. Throughout this paper, C denotes a generic positive constant which may vary from
line to line. C,, Cyp, - - - denote the generic positive constants depending on a, b, - - -, respectively,
which also may vary from line to line. A < B means that there exists a constant C' > 0 so that
A < CB and A <, B means that the constant depends on a. | -||r2 denotes the standard
L?(QxR3)-norm and ||-|| L denotes the L (2xR2)-norm. We denote (-, -) as the inner product

in L2(Q x R3) or L*(R?). Moreover, we define || - || p2(o,7);r2) = ||| - |22 HLQ[QT]. For the phase
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boundary integration, we define dy = |n(z) - v|dS(x)dv, where dS(z) is the surface measure
and define |f|¥, = fv |f(z,v)[Pdy and the corresponding space is denoted as LP(9Q x R3) =

LP(9Q x R3; dvy). Furthermore, we denote |f|ro(y,) = |[f1y.|zr and | f|pso(y.) = [f1y4 |L. For
simplicity, we denote |f|poo(y) = [flroo(yy) + [flLoo(v)-

2 Preliminaries

Recall (cf.[10]) that around the global Maxwellian x as in (1.4), one can write

1
\/MQ(M +vufp+vuf) =—Lf +T(f. f),
where L and I'(+, -) are the corresponding linearized operator and nonlinear operator respectively
given by

1
Lf= —\/M{Q(% Vi) +Q(uf m)},

and

I(f.g) = \/IMQ(WL Vig).

Moreover, one has L = v — K, where the velocity multiplication v = v(v) is defined by

v(v) = /R3 /82 B(v —u,w)p(u) dwdu ~ (1 4 |v])7,

and the integral operator K := K7 — K> is defined in terms of

(K1 f)(v / / v—uw\/,u u) dwdu,
r3 Js?

and

(Kaf) (v / / v—uw\/,u " dwdu
R3 Js?

/ / (v — u,w) /() " dwdu.
RS Js?

Lemma 2.1 The operator L is self-adjoint and non-negative. The kernel of L is a
five-dimensional space spanned by the following bases:

[11,12]

o= (2m) A e = (2m) v/, i=1,2.3 es= \/g ([0]2 = 3) /.
Define the projection P by
Pf= Z(f, ei)e;. (2.1)
Then there exists a constant cg > 0 such that

(Lf, f) = colv! (I = P) f[32gs)- (2.2)
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Note that the integral operator K can be written as

Kf) = [ ko) dn

with a symmetric kernel k(v, 7). Asin [11,14], we introduce a smooth cutoff function 0 < y,, <1
with 0 < m <1 such that

Xm(s) =1 for s <m; Xm(s) =0 for s>2m.

Then we define
5 )0) = [ [ B~ whnlo = ) Vit £) dd
// (v — 1, W) X ([0 — u|) /() " dwdu
r3 Js2
// (v — 1w, W) X ([0 — u|)/ (V) u) dwdu
R3 S2

=K3"f(v) = K{" f(v),
and K¢ = K — K™. Correspondingly, one can write
Empe) = [ Frenf@da. &= [ K
The following estimates on K™ and K¢ can be found in [2].

Lemma 2.2. Let -3 <~ < 1. Then, for any 0 < m <1, it holds that

_lv?
[(K™g)(v)] < Cm* e o ||g[| e, (2.3)

where C' is a generic constant independent of m. The kernels k™ (v,n) and k°(v,n) satisfy that
for0<a <1,

_ I24 102
B 0,1)] < Ol = + o=l % e

and
Cmetv—1) 1 lo—ni2  _ llvl2=1nl?2
kc < - 16|v—n|2
Wl e @+ o€ ¢
_ w2 2
+ Clo=n"[1 = xm(jv—nl]e” + e+, (2.4)

where C' is a generic constant independent of m and a.
Particularly, since the constant C' in (2.4) does not depend on a € [0,1], we have the
following estimates on k¢(v,7n) by taking a = 1 and a = 0.

Lemma 2.32. Let -3 < v < 1. One has

Cm 1 wom2  _lIw2=Iml2?
WIS ol g e (25)
v =T v n

and
2 2,2
[v]2 In|? 3—y _ |u—n|2 w2 =Inl?]|

E(o,m < Clo—nl"e” 4 e” 1 +Clo—n|” 2 e 10 e oo, (2.6)
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Moreover, it holds that

(1+ [uf?) 2 et
/ e 2 < CmrT (L o) (2.6)
]_ —+ |77| )2@‘1|77|2
and 5 ool
. 1+ |v]?)zedlv _
[t Ty < e (27)
R3 (1+ |n|2)2e‘1|”|

where B > 0 is an arbitrary positive constant and 0 < q < 1/8. Here the constant C' in all
estimates above is independent of m.

In what follows we recall the back-time trajectory in phase space with respect to the diffuse-
reflection boundary condition (1.2) which was first introduced in [12]. First of all, for each
boundary point x € 912, we define the velocity space for the outgoing particles:

V(z) = {v' € R®: v -n(z) > 0},

associated with the probability measure do = do(z) := p(v")|v" - n(z)| dv’. Given (¢,z,v), let
[X (s;t,2,v), V(s;t,z,v)] be the backward bi-characteristics for the Boltzmann equation, which

is determined by
dX (s;t,x,v)

dS = V(S;t7a:7v)7
dV (s;t,x,v)
= O7
ds

(X (t;t,2,0), V(¢ z,0)] = [z,0].

The solution is then given by
[X (s5t,2,0), V(s;t,z,v)] = [z —v(t — ), v].

For each (z,v) with z € Q and v # 0, we define the backward exit time ty(x,v) > 0 to be the
last moment at which the back-time straight line [X (s;0,z,v), V(s;0,z,v)] remains in :

to(z,v) =inf{r > 0:2 —vr ¢ Q}.
We therefore have x — tp,v € 0Q and &(z — tpv) = 0. We also define
Th(x,v) = — tpv € 0L

Note that v - n(xp) = v - n(xp(x,v)) < 0 always holds true. Let z € Q, (z,v) ¢ vy U~y_ and
(to, o, v0) = (t,x,v). For vgt1 € Vi1 := {vkt1 - n(zr+1) > 0}, the back-time cycle is defined
as

cl s;t, @, v Zl[tk+1,tk) {xk — ’Uk(tk — S)}

Va(s;t,x,v) E 1[tk+1,tk Yk,

with
(rt1s Tha1, Vet1) = (te — to(Tr, Vk)s Tb (Tk, Uk ), Vkt1)-

Define the near-grazing set of v, as

/ 1
v :{(x,v)E’}q_: lv-n(z)| <& or o] < or v] > } (2.8)
1S

Then we have
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Lemma 2.41'2,  Let ¢/ > 0 be a small positive constant, then it holds that

t
/0|f(7')1»y+\»yi’|L1(’y)dT
<Coa{ll£(O)]2: + / (1) s+ 110 +v- V() a]dr },

where the positive constant Cer o > 0 depends only on ¢ and 2.
In the end we conclude this section with the following iteration lemma which will be crucially
used later on. The proof of this lemma can be found in [3].

Lemma 2.5. Let {az} be a sequence with each a; > 0. For an integer k > 0, we define a
new sequence {A¥}12, by

A = max{a;,ait1, - @i},  i=0,1,--.
(i) Let D >0 be a constant. If
1
Qi1 < 8A§+D, i=0,1,---,

then it holds that

Ak < (é)[’“il] -max{Ak, AF ... AR} 4 8—;kD7 (2.9)
foranyi>k+1.
(i) Let 0 <n <1 with np**' > 1. If
Gip14+k < ;Af+0k~ni+k+l, i=0,1,---

then it holds that

8+F itk

AF
7777

(2

IN

1\ kil
(8) U max{Ak, Ak ARy 420y (2.10)

foranyi>k+1.

3 Existence of Time-periodic Solutions

3.1 Linear Problem
We start from the following linear problem with time-periodic inhomogeneous source term and
boundary data:

{ Of+v-Vaof +Lf =y, (3.1)

f(t,x,v)|7, = P’Yf + .
Here the boundary operator P, is defined by

P, f(t,z,v) = V(v / Ft, 2z, ") ) - n(z)| dv'.
n(z)>0

Both the inhomogeneous terms g = g(¢,z,v) and r = r(t,
T > 0. Recall the weight function (1.6) and we write w(v

h(t,z,v) = w(v)f(t, z,v).

x, v) are periodic in time with period
) = wq g(v) for brevity. We define
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Then the equation for h reads:
Oh+v-Vih+v(v)h = Kyh + wg,

1
h(t,z,v)|, = (o) // o h(t,z,v"Yw(v")do" + wr(t,z,v),

where )

w(v) = ;

w(v)/p(v)

The proof of Theorem 1.1 heavily relies on the solvability of the linearized time-periodic
problem (3.1).

Proposition 3.1. Let -3<~v<1,0<¢< 51; and § > max{3,3 —v}. Assume that g and r
are time-periodic functions with period T > 0, and satisfy the zero-mass condition

Kyh = wK(Z)

[ [ sttt doas = [ et <o 652)

for allt € R, and L*> bounds

sup ||V*1wg(t)|\Loo + sup |wr(t)|pe(y_) < 00.
0<t<T 0<t<T

Then there exists a unique time-periodic solution f = f(t,x,v) with the same period T to the
linearized Boltzmann equation (3.1), such that

/ f(t, z,v)y/ndvde =0
QxR3
for allt € R, and

sup |lwf(t)llze + sup |wf(t)|re<(y)
0<t<T 0<t<T

<C sup |wr(t)|p=(y_y+C sup |[v 'wg(t)||pe-. (3.3)
0<t<T 0<t<T

Moreover, if Q is convex, and g is continuous in R x Q x R? and r is continuous in R x v_,
then f(t,z,v) is also continuous away from the grazing set R X vq.
The following two subsections will be devoted to the proof of Proposition 3.1.

3.2 A Priori L*° Estimate

To prove Proposition 3.1, we start from the a priori L estimate on solutions to the following
time-periodic problems:

Oh™ v - Voh T+ (e + v(v)) W = AKThE + AKE b 4+ wyg,

. 1 ) - .
WYtz v)], = / R (t,z, v )w(v")do" + w(v)r(t,x,v), (34)
w(v) v’ -n(z)>0
for i = 0,1,2,---, where h® := hO(t,z,v) is given. Here 0 < X\ < 1 and ¢ > 0 are given

parameters, and ¢(¢,z,v) and r(¢,z,v) are both time-periodic functions with period 7" > 0.
Before doing that, we need some preparations. The following lemma gives the mild formulation
of hiT1. As the proof is more or less the same as [12, Lemma 24], we omit it for brevity.
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Lemma 3.2. Let 0 < A < 1 and e > 0. For any t € [0,T], for almost every (x,v) €
Q x R3\(yo Uv-) and for any s < t, we have

Rt 2, v) ZJ@ + 21{t1>s}.]e (3.5)

with
J = l{tlSs}e*(””(”))(t*s)hi“(s, x—o(t—s),v),

t

Jo+ I3+ Jy = / e VW=D INK™R 4 AKE B + wg(r, 2 — v(t — 1), v)dr,
max{ti,s}
Js = *(€+V(v))(tft1)w( )r (t17$1, ),
—(et+v(v))(t—t1)
Jo = / Z L ssyw@)r (i, T, v)d (tg),
Hk 1V_] =
—(et+v(v))(t—t1)
Jr = / Z Loty <scey DT 7 (s, 00— vt — ), 01)dSu(s),
Hk 1V_] l 1
—(e4v(v)(t—t1) k=1 oy
e
Js + Jo + Jio = ) /Hk o ;/ Lt <s<ti}
AK™RTE L AKE R 4 wg (T, @ — v(ty — T),0)dE (1),
—(e4v(v)(t—t1) k=1 oy
Ji1 4+ Jig + Jiz = ~ / / 1 s
w(v) H.k—lvj ZZ; -~ {tig1>s}
. [)\K;”hi_l +AKSRT 4 wyl(r,z; — vty — 7),v1)dE (1),
e (@) (t—t) s
J1a = 7:(7(1)) /Hk—l ‘ 1{tk>s}h (tk,xk,vk_l)dEk_l(tk).

Here we have denoted

d> (1) {Hf llﬂdffj} . {w(vl)e—(sw(ul))(tl—T)dal}

. {H§:11 —(e+v(v)) () *tj+1)daj }7

and do; = p(v;){n(z;) - v;}dv;.

Next, the following lemma is due to [12], which gives a quantitative smallness estimate on
the measure of possible velocities, so that the particle can not reach down the underlying initial
plane, in terms of the number of reflection.

Lemma 3.3. Let T > 0. Let n_be sufficiently large. There exist constants Cy and Cy
independent of n such that for k = C (nT)z51 and (t,z,v) € [0,T] x Q x R3, it holds that

N 5
_ 1 Co(nT)4
/k Ly Ml do, < (2) . (3.6)
11

j=1"J

Proposition 3.4. Let -3 <~y <1,6>0,0<q<1/8 and 3> 3. Assume that hi(t,z,v) are
all time-periodic functions with period T > 0 and satisfy

sup {||A*(t)|| Lo + [P (1)] e (1)} < 00,
0<t<T
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for i =0,1,2,---. Then there exist two universal constants C'> 0 and n > 1 large enough,
independent of i, \ and &, such that for k = Cg(nT)Z, it holds, for i > k, that

sup [[B7H ()|l Lo + sup [hTFH(E)| Lo ()
0<t<T 0<t<T

1 - hz l
< v o0
<g g { 2o, O b+ € gua (| it s o rym )
+C sup {[lv wg(t)|lne + [wr(t)| )} (3.7)
0<t<T

Here we have denoted (v) := (1 + [v|>)/2. Moreover, if h* = h for i = 1,2,---, i.e., h is a
solution, then (3.7) is reduced to the following form

sup (AL + sup [h(t)[Le(y)
0<t< 0<t<T
h

) (3.8)

< -t s oo
<C sup (v wg®lle + her®li o} + Oy

L2([0,7);L2)

Proof. Let s = —nT in (3.5) with n > 1 large enough such that (3.6) holds true. We first
estimate Ji. Note that by periodicity, we have

R (s, — (t — s)v,v) = K0, 2 — (t — s)v,v).
Then if 0 <~ <1, v(v) > vy > 0 for some constant vy. Then it is direct to get

[J1| < e Vo(t+NT) sup Hh”l(t)HLoo. (3.9)
0<t<T

If -3<~v<0, v(v)~ (14 |v])” no longer has a positive lower bound, when |v| is sufficiently
large. In this case we note that
do

0 S tb(ﬂf,v) S )
[v]

where do := sup |z — y| is the diameter of Q. Then for [v] > %2 it holds that
T,y €

t1 —s=1t—tp(x,v)+nT > 0.
In other words, J; appears only when the particle velocity |v| is rather small, so that we have

e sup [ (1)

[J1] <1g,<1
0<t<T

{lv< 22}
<1y <oy Lgojcaye W0 sup W)L
0<t<T
SCB_”O(t+nT) sup ||hi+1(t)HLoo, (3.10)
0<t<T

for the suitably large n, where for simplicity of notations we have still denoted the strictly
positive constant vy > 0 to be the infimum of v(v) over |v| < 1. For contributions coming from

g and 7, we notice that
1 eli—a)lvf?

T o 4oyt

so it holds that

1 2
< 2o~ (i—alv < slvl® )
) V2r(1 + |7 e Ce~ (3.11)
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Moreover, we have
5|vm |2 k1
e o IIZ do; < C,
k—1
-ty

k—1
5|vm |2 _
/HHV Y Lzs<ye *© WZ{do; < Ck, (3.12)
j=1":

Jl=1

k=1
Slom|® 1 q
/kalv >_Lnsse © MZido; < Ck,
j=1""

i =1
for all 1 < m < k — 1. Combining this with periodicity of r and g, we get that

|Ja| + |J10| + | /13| < Ck sup [[v~ wg(t)||ne-,
0<t<T

(3.13)
|Js| + |J6| < Ck sup |wr(t)|pe(y_)-
0<t<T

Next, we shall estimate J7. If 0 < v < 1, we use the fact that v(v) > 1y > 0 as well as (3.11)
and (3.12) to get

| Jo| <Ce~8lvf emro(t+nT)  pay { sup ||hi+1*l(t)|\m}

1<i<k—1 0<t<T
k—1
~ k—
X/k_l Zl{t1+1§8<tz}w(vl) Hj:lldaj
;2 Vii=1
<Cke sl g=o(t+nT)  pax { sup ||hi+1—l(t)||Loo}. (3.14)
1<I<k—1

0<t<T

If —3 < v < 0, we again note that v(v) no longer has a positive lower bound. In this case, it
holds from Young’s inequality that

[v]?

v()(m —72) + 16

> c(m — 1),
for any 71 > 72, where we have taken a = +2\7|’ and ¢ > 0 is a constant independent of 71, 7
and v. In the sequel ¢ > 0 may take different values at different places. So, from (3.11) we have

—v(v)(t—t
e ( )( 1) < Ce_hl/‘; e—c(t—tl)a,

w() T
and
lv|? a ;
< — 7C(t7t1) { +1—1 oo}
|J7] <Ce™ 16 ¢ | dnax ogng |~ @z
k-1
" Z/ L, <acen B(ur)e =9 g T o=@ 6 -t541) g

1=1 /1 Vi

For each [, we take |vy,| = max{|v1]|,- -, |vi|}. Then it holds that

vm |2 @ vm |2
Hllflle—l/(vj)(tj—tjq_l) X e—l/(vl)(tl—s),&j’(,ul) < e—l/(vm)(tl_s)e‘ 4‘ < e—c(tl—s) 65\ 16‘
j= =~
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Thus one has

lv|? o )
T2 <e='i6 e=<t=9" ax { sup ||h”1’l(t)||Loo}

1<i<k—1 Lo<i<T
k—1 1
5‘”771\2 1
XZZ . Lin<s<nye o I dog
1=1 m=1"1;_1 Vi
2 a 1
<Ck?e™ 16 gclttnT) 1<rln<a]§<1{ Sup |t l(t)HLeo}. (3.15)

Here we have used the elementary fact that a® 4 6 > (a + b) fora,b>0and 0 < a < 1. For
J14, it follows from (3.6) and (3.11) that

1 CQ(TLT)‘l )
|J1a| < Ce 16 (2) sup [[RHER ()| poo (3.16)
0<t<T

For the contribution from K™, we use (2.3) to obtain
lv|2 .
| J2| < CmPHrw(w)e” s P sup [|B(1)]| = < Cm*He” 5 sup [|hi(t)] L (3.17)
0<t<T 0<t<T

Similarly, we use (2.3), (3.11) and (3.12) to get

[v]?
<Om3t7e™ s { Rt oo}
|Js| <Cm*t7e Jex Oiug R L

/m v, Zl{“ﬂml}/ e Oy () () (or) T} do
7 l=1

2
< 34y, { . il oo} )
<Ckm*e % | Jnax | Ozltlnglh Oz ¢, (3.18)

and

[v]? ;
il <Om®* e max L sup [0 o~ |
1<i<k—1 0<t<T

/H" i, Zl{tl+1>s}/ —V(Ul)(tL—T)y(vl)dTl/_ (v)w(vy) H?;lldaj

i 1=1 +1
0|2
<Ok e { s W0 |
<Ckm*t7e™ s 1§Iln§al§{—1 Ozug 12|l (3.19)

It remains to estimate the terms involving K°. Firstly, we have

|J9| <Ce™ 8'”‘ Z/l 1V doy_y - do'l/v /]1{3/ —z/(m)(t T)]‘{tz+1<s<tz}
I

@(v)| kS, (v, v YW 7 @ — oty — 7),0")|drdv’ doy

k—1
—Ce sl Z/ doj—1 - dal/ / / Ddrdv' doy
=1 IV Vin{|u|>N} JR3
k—1
+ CeslvP Z/ dal,l...dgl/ / / Ydrdv' doy
— /Y Vin{|u|<N} JR3

k-1
Z Jou + Jo21). (3.20)
=1
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For Jy1;, we use (3.12) to obtain that

k—1

1 2 .
> Jou <Cke™3 " max { sup WD)z~ / doy_y - doy
1<I<k—1 \g<<r M1y,
=1 - = j=1"7
! v -) _lml® sl
X e l 1 V(Ul)e 32 dTe 16 do’l}
V[ﬁ{‘l}l‘>N}

1 2 1 2 .
< — 3] N { i—l oo}. .
SCke™sMems™ max oi?%”h ®llz (3:21)

For Jgg;, it holds that

Jooy <Ce™ slol? / Hé 11d0']/ / / deU do
-1y, Vin{|v |[<N} JR3 St —

t— 1
—i—Ce*élvﬁ/ Hé-;lldaj/ / T e =) o= gy,
Hl 1V Vin{|vi|<N} Js

v, —v'|2

2
% k¢ Ne ‘61 dyle o - { Ri=t oo}
[ i e e { s 0

10,12 -1 =y
+ Ce sl / Hj_:ldaj/ dT/ /
mi_lv; s Vin{|u|<N} J|v/|<2N

J

2 .
X Lig, <s<t)€ s ke (v, 0 )R (@ — o (= 1), ") | .

Then, by (2.6) we have

Joa §C€7§|U‘2/ Hl 1d0]{/ / /
n_iv Vin{|v|<N} J|v'|<2N

2 .
X ]-{tz-¢-1§s<tz}€78 ferl |k1cu(vl7 Ul)hlil(Ta Ty — Ul(tl - 7-)7 U/)|dvldvld7}

C 2
L] { i—1 oo}
+ Ne 8 | Jnax Sup Hh ®)|lzee ¢- (3.22)

By Holder’s inequality7 the integral term on the right-hand of (3.22)

/ / / (- ) dv'dvydr == /// ) dv'dvdr (3.23)
Vin{|v|[<N} J v |<2N

is bounded by

1/2
CN{/// e*é‘”l|2|kfu(vl,v’)|2dv'dvld7}
D
RN, 2 — vty — 7)
X {/// 1{tz+1§8<tl}
D

() (o)
B hiil(T x—ult—7
12, 41 ’
< Cyn'’?m" {///D Lt <s<t) (") w(v)

Here we have used (2.5) in the last inequality. Note that y; ;== x; —vi(t; —7) € Q for s <7 <
t — ]{7 Making change of variables v; — y;, we obtain that (3.23) is bounded by

t hifl(T) 2 1/2
172, ~—1
Cyn/“m” {/S der} .

<’U>"Y|w

v') ’2dv’dvldr}1/2

2 1/2
)’”)‘ dv’dvldT} .
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We use periodicity of h*~! to further bound the above term by

hz l 1/2 hifl
ety < vt 1
W|w (v)Irlw 20, 17;22)
Combining this with (3.20), (3.21) and (3.22), we get
Ck _v? -
< e - %
[Jol < e 15%6‘;351{02‘;1§T|‘h O]l }
2 hi—t
+CNmme™ & max {H ) } (3.24)
™ 1<I<k—1 YlwllLz(o,1);22)
Similarly, for Ji2 one has
Ck _? -
< Ve S i- -
il e s { s 100 |
2 hi—!
FCnnme™®  ma {H ) } (3.25)
i 141551 YW lw L2 ([0,11;22)

Collecting all estimates (3.9), (3.10), (3.13)—(3.19), (3.24) and (3.25), we get that for t € [0, T,
(Wt 2, 0)]

t
< / e V(@) (t=7) |kS (v, 0" Wi (T, 2 — (t — T)v,v")|dv'dT + Ay(t,v),
max{ti,s} R3 (326)

where we have denoted
Ai(tvv) ::Ck2€7‘z‘82 {m3+'y + efc(tJrnT)a + 2702(nT)2 + ]]\'[}
. hi*l t OO}
Og%Jh?%H ol
+ CemHT) sup || ()| e
0<t<T

—I—Ck{ sup ||V_1U}g(t)HLoo+ sup |w7"(t)|Loo(,y_)}
0<t<T 0<t<T

Uk hi—!
+Oxnme™ s s [ | },
i 0<15he1 Yrlw L2 (jo,11;12)
and
k= Cy(nT)% ~ (nT)5. (3.27)

Denoting 2’ := z — (t — 7)v and t} := t1(7,2',v"), we use (3.26) for h'(r,2’,v’) to evaluate

t
B A+ [ [ ) Al
max{ti,s}

t
/ —v(v)(t—7 dT/ / / (v")(r—7")
max{tl,s} R3 Jmax{t},s} JR3

x |kS (0,0 )kS, (v, 0" 2 — (7 — 7 ) 0" | v dr do
:Ai(t, U) + Bl + BQ, (328)
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where B; and By denote two integral terms on the right-hand respectively. It follows from (2.7)
that

Bl <Ck2{m771676”T—|—m3+7 _’_efc(tJrnT)“ +27CA'2(nT)A5L + 1 }
o N
Rt w}
X Orglagk{ozgngl )l

+Chm ™ sup v wg(O)l e+ sup fr(®)]s ;)

il
+CN"morgza<Xk{H h\vlw’ L2([0,T]; L2)} (3.29)
Finally, we estimate Bs. If |v| > N, we have from (2.7) that
By <Cm*0 V(14 o)™ sup [|h77H(#)]| e
0<t<T
<™ g ) o (3.30)

N2 gq<r
If |v| < N, we denote the integrand of By as U(7',v',v”;7,v), and split the integral domain
with respect to d7’dv”dv’ into the following four parts:

4
U 0 =={Iv'| = 2N} u{]v| < 2N, | > 3N}
i=1

1
U{|v'| <2N, P <3N, T— <7 gT}
1
U {|v'| < 2N, |[v"] <3N, max{t},s} <71 <7 - N}'

Over 01 Uy, we have either |[v—v'| > N or [v/ —v”| > N, so that one of the following is valid:

[v— v\

2
ko (0, 0)| < e e e kG (0,0)
or
2 P
ko (o, o) S e ne e kG (o).
Recall (2.5). Then it holds that
v—v'|2
|kfv(v,v’)|e‘ o dv' < CmY u(v),
R3
or
kS (v, 0")|e e dv” < CmY ().
R3

Therefore one has

t
/ e~ v(@)(t=7) / U(r' o' 0" m0)dv" dr’ dv' dr
O1UO0-

max{ti,s}

2 .
<Cm20 Vet sup |[hTL(E)| Loe. (3.31)
0<t<T
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Over QOgs, it is direct to obtain

¢
/ e v()(t=7) U(r' o' 0" 7 v)dv" dr’ dv' dr
max{ti,s} O3
2(y-1) )
<c™ sup [|R7L(#)]| L (3.32)
N o<zt

For Oy, we have, from (2.5), that

U(r' o' 0" 7 v)dv” dr’ dv’
Oy
1

SCN{/ |kfu(v,v')kfu(v',v”)|2dv'dv”d7’}
O4

W ) 2
X 1max rsr<r! <t
{/04{{“——}<> (o)

W=y o)
<C nm{/ 1 max{t/ , s}<r'<t ’
>UNn, o { {t},s}<7'<7} < //>|7\w( )

where we have denoted y' := y — (7 — 7/)v’. Making change of variable v — 3/, the right-hand
side of (3.33) is further bounded by

1
I/dT/} 2

1
”dT’} 2, (3.33)

T =17 i—1
()2 1/2 h
Cxnm{ || a7’} < Comm| i | ~
Nom, /S (v)rhw liz2 g N Yrlw L2 (j0,17,L2)
Then it holds that
hz 1

/ U(r' o' 0" 7 v)dv” dr’ dv d’T<CNan ‘ )
max{ti,s} J Oy "Y|w L2([0,T],L2)

The above estimate together with (3.30), (3.31) and (3.32) yield that

< ol

Cm2t—1) i
sup ||AH(t )HLOO-FCNan Il

N 0<t<T

L2([0,T],L2)

Combining this with (3.28) and (3.29), we get, for ¢t € [0, 7], that

B (1) <O sup [0l 4y s { sup [0 )
0<t<T <I<k Lo<e<T

+On?hmd ] sup [ (1) 4 sup fwr(f)] e, |
0<t<T

+CNnym sup (3.34)

0<I<k

Hh”)

|’Y‘w

r2([0,T};L2)’

where we have denoted

3 (n 5 om—1

We now take )

1 \ely _ s
= 2(3+7)
m (320) nom
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choose n suitably large, and then choose N large enough, so that it holds that

1 1
7CTLT < < .
Ce™ =y MS g

Then we obtain (3.7) from (3.34). Finally, (3.8) directly follows from (3.7). Therefore, the proof
of Proposition 3.4 is complete. O

3.3 Approximation Solutions

It is very delicate to make the construction of approximation solutions. For readers’ convenience,
we first outline the procedure by four steps as follows.
Step 1. Construct the solution f7: to the following time-periodic problem:

{ Ouf1 +v-Vaf?+ (e +v(v) 75 =g, (3.35)
(b, 0)ly = (1= P, i< 4. :
Step 2. Construct the solution f¢ to the following time-periodic problem:
O ff+v-Vofe+(e+ c=g,
{ i fE v f (e+v()f g (3.36)
fs(t7x7v)|’7— = P’)’fs + T,

by passing to the limit j — oo.
Step 3. Make the uniform-in-\ a priori estimates on the solution f*¢ to the following time-
periodic problem:

{ N[N+ Vo fY 4+ (e +v(v) [ = AK M 4 g, (3.37)
fA7€(t7xvv)|’Y— :P’Yf)\7s+r7 )
and bootstrap from A = 0 to A = 1. Then the solution f¢ to
{ Ouf + - Vo + (e +v(W)f* = Kf*+9, 59
fs(tvxvv”’}’— :P»st—f—T, )

is therefore constructed. We remark that the zero-mass condition (3.2) is not necessary up to
the present step.

Step 4. Take the limit ¢ — 0. Note that in the limit process, the artificial damping term
guarantees that the following key zero-mass condition

/ 8tf5(t7x,v)\/u(v)dvdx:// Fe(t, 2, 0)y/ p(v)dvuda = 0, (3.39)
o Jrs o Jrs

holds true for any ¢ € R. In fact, let
(0= [ [ 5t uto)dds,
Q Jr3

Taking the inner product of (3.38) with \/pu(v) over Q x R? and using the zero-mass condition
(3.2), we get

dp®
dt

Since p(t) is periodic in time, we then obtain p°(t) = 0.

+ep® =0.
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In what follows, we will proceed the proof along the way mentioned above. The first lemma
is related to the issue stated in Step 1. For the choice of j in the second line of (3.35), one can
fix jo > 1 to be large enough such that

k41
(-2 )t <y
8 j o 252 2
holds true for any j > jo, where k ~ (nT)%/* is defined in (3.27). Then we only consider j > jo
in the problem (3.35).

Lemma 3.5. Let -3 <~v<1, ¢>0, 0<¢qg<1/8and B > 3. Assume that g and r are
time-periodic functions with period T > 0 and satisfy

sup [lv " wg(t)||lp + sup |wr(t)|pee 4y < 0.
0<t<T 0<t<T

Then there exists a unique solution f7° to (3.35), which is time-periodic with period T, and
satisfies

sup [lwf(t)|[ e + sup |wf ()| Lo (o)
0<t<T 0<t<T

<Cey( sup fwr()li=io)+ swp v wg()lli~ ), (3.40)
0<t<T 0<t<T

where the positive constant C.; > 0 depends only on € and j. Moreover, if the domain )
is convex, g s continuous in R x Q x R3, and r is continuous in R x vy_, then the solution
fPe(t, x,v) is also continuous away from the grazing set R X vq.

Proof. For given € > 0 and j > jo, we shall construct the solution to (3.35). To do so, we
consider the approximation sequence { f*(¢, z,v)}5°, iteratively solved by

Oftl+ v -Vofitl + (e +v)fitt =g,

1

i i 3.41
FHt, 2, 0)), = (1 - j)Pfo-r, (3.41)

with f9 = 0. Here we have dropped ¢ and j for brevity. Indeed, the solution to (3.41) can be
constructed by the method of characteristics. Let

Rt x,0) = w(v) f(t, 2, v).

Then for any ¢ € R and almost every (z,v) €  x R3\ (7o U~_), one can write
) 1 .
RN, @, v) =e EHV Dt (@0) () [(1 — j)P,,fl + r} (t — tp(z,v), zp(x,v),v)

t
+ / e Ny (s, 2 — (t — s)v,v)ds. (3.42)
t

—tp(z,v)

Note that for (xz,v) € v_, it is direct to write

Rt 2, v) = w(v) [(1 - ;)P,Yfi + 7‘} (t,z,v). (3.43)

Now we use the induction argument to show that

hi(t,z,v) is time-periodic with period T > 0, (3.44)
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and the following estimate holds true:

sup [[B'(t)|[~ + sup [B'(t)| L~ (y)
0<t<T 0<t<T

<Ciei sw v wgll= + sup fwr(t)|pe(s ) ). (3.45)
0<t<T 0<t<T

Indeed, for ¢ = 0, it is obvious to see that (3.44) and (3.45) are satisfied. Assume that (3.44)
and (3.45) hold for ¢ > 0. (3.42) implies that

Rt 4T, x,v)

1 .
=e~ (EFP )0 (4) [(1 - j)Pfyfl + r} t+T —tp,zp,v)
t+T
+ / e EHONFT=9) yyg(s 2 — (t+ T — s)v,v)ds. (3.46)
t+T—ty

Note that by the induction assumption that both f* and r are time-periodic functions with
period T, the first term on the right-hand side of (3.46) is equal to

1 .
e (EFT )t () [(1 - j)Pfyfl + r} (t — tp, Tp, V).
For the second term, taking change of variables s — s — T, we get that

t+T
/ e~ (T 0 (s 0 (¢ 4+ T — 5)v, v)ds
t+T—tp

t
:/ e EFONE=)yg(s + T, 2 — (t — s)v,v)ds
t—tp
t
:/ e EFONE=)yg(s 2 — (t — s)v,v)ds,
t—tp

where in the last line we have used the fact that g is periodic in time with period T". Therefore,
it follows from (3.46) that 4 4
Rt + T, z,0) = BT (t, 2, v),

50, (3.44) holds true for ¢ + 1. Moreover, to show (3.45) for ¢ + 1, it follows from (3.42) that
sup {[A7F ()L + BT () Lo (o) }
0<t<T

<C sup {|h" ()| (yy) + [wr(t) oo vy + v wg ()| 2=}
0<t<T

<Cji sup {|lwrt)|pe=(y_) + v wg(t)l|L=},
0<t<T

and also one obtains by (3.43) that
sup A (1) ey ) SO sup [h(1)]poo(yy) +C sup [wr(t)|pes ()
0<t<T 0<t<T 0<t<T
<Cji sup {[wr(t)|pe ) + v wg(t)] =}
0<t<T

Combing the above two estimates gives the proof of (3.45) for i + 1. Therefore, by induction
(3.44) and (3.45) are satisfied for all i. Then, each h(t,z,v) is well-defined in L and time-
periodic with period T' > 0. Moreover, if € is convex, t,(z,v) and xp(z,v) are smooth away
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from 7. If g and 7 are further continuous, then each fi(¢, z, v) is also continuous for away from
the grazing set R x ~q.

Next, we need to obtain the uniform-in-i estimate on the solution sequence f*. We first
treat it in the L? setting. Taking the inner product of (3.41) with f**! over [0, T] x Q x R3 and
using the periodicity of fi*!, we obtain that

1 T % T % 3 %
o | @ s [T R ) s

1 2 3 LT
(1= 4 ) [ 1P

T
[ g6l + Clr e, s, (3.7
0

where we have used the fact that [Py f|r2(y_y = |Pyf'r2(y,) < |f'L2(y,)- For the difference
fiHl — fi in a similar way we have

L ,
o | = PG ds

b [l = I+ IR~ £ s
0
T
< (1= ) [ = P s (3.45)

and hence, by iteration the right-hand side of (3.48) is further bounded by

1 2 3N (T o e

G170+ o) [ = Uy, s

1 2 3\¢ ’ 2 —1/2 2

g2<1—j+2j2) .{Cj/o [7(5) 220,y + I g(s)HLgds}, (3.49)

where in the second line we have used (3.47) for i = 0 as well as f¥ = 0. As jo > 1 is chosen to
be large enough, one has 0 < 1 — ? + 2?2 < 1 for any j > jo. It then follows from (3.48) and

(3.49) that {f}22, is a Cauchy sequence in L?. Moreover, for any i > 0, it holds that

T T
/0 12 ()12 + 1 (8) 72y s < Cj/o ()| 22y + IV 2g(s) I 2ds,

and hence the following uniform-in-i estimate holds true:

T
/0 A2 F (3)25 + 1£(5) oo, ds

2
<Cif{ swp_fwr(®)lp )+ swp_ [l twg)l=} (3.50)
0<t<T 0<t<T
Next we turn to treat the uniform estimate in the L°° setting in terms of the results obtained
in the previous subsection. Note that Proposition 3.4 is also valid if the boundary condition of
the problem (3.4) is replaced by

1-1

R () | 7/ Ri(t, z, v )w(v)do" + w(v)r(t, z,v),
’LU(’U) v n(x)>0
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namely, we have only changed 1 to 1—1/j. Correspondingly one can deduce the mild formulation
(3.5), and prove Lemma 3.3 and Proposition 3.4. Particularly, all constants in (3.7) and (3.8)
are independent of j. Then, using (3.7), we obtain that

sup [[hT(t)||l L~ + sup A7) foe (s
0<t<T 0<t<T

1
< it m} e -1 .
<g s { e 0@l }+C sy {ur@las oo + v wg (O]}

+C sup {|[}/?f! 7l||L2([0,T];L2)}~
0<I<k

It then follows from (3.50) that

sup [[RTH ()Lt sup [ATFH(E)] oo ()
0<t<T 0<t<T

1 i—1
g {2, IO b €5 s (Ol 7 sl

Applying (2.9) to (3.51), it holds that for i > k + 1,

sup R (t)][p=+ sup [A'(1)] o0 ()
0<t<T 0<t<T

1 l
< -
_81g2§k{ozup A" () }

8+ k _
+ 5N swp Jwr e )+ sup v g0
7 0<t<T 0<t<T

<C{ sup fwr(t)]z=io)+ sup [lv wg(O)]lzx . (3:52)
0<t<T 0<t<T

where we have used (3.45) for i = 1, - - -, 2k in the last inequality. Combining (3.52) with (3.45),
we obtain that for ¢ > 1,

sup [[B(t)|| L+ sup |h*(t)] Loy
0<t<T 0<t<T

SCj{ sup |wr(t)|pe(y )+ sup HV_lwg(t)”Loo}. (3.53)
0<t<T 0<t<T

Similarly for obtaining (3.53), one can apply (3.7) to h**2? — h*+! to get
sup [|[R"F2 = A (t) [ + sup [ = (1)1 ()
0<t<T

0<t<T
1 . .
< i+1-1 _ pi—1 OO}
<g i 2, 107 - AT
1/21 pit+1-1 i—1
+C e {0 = P oy}

1 ) )
< i+1-1 _ pi—l OO}
,Sorglagk{o;l%ll[h R L

i—k T 2 —1/2 2 1/2
O ) e + I 2006 Fads

1 . .
< 1=l _ il w}
-8 Org%xk{ozltlgT”[h U

+Cj sup {Jwr(t)|poe vy + v wg(t)l|n< Inf T, (3.54)
0<t<T
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where we have denoted 7; := \/1 -2 + 3 . Let jo > 1 be suitably large such that _k < 1
for any j > jo. Then, applying (2.10) to (3.54), we obtain that for ¢ > k4 1,

sup [[W"? — B (@) ||z 4+ sup [[RF? — B (#)| Lo )
0<t<T 0<t<T

1N Leia]
< oo
_<8) 0<l<2k+1{Hh( )HL }

+C sup {wr(t)]ze iy + [0 gl
0<t<T
IANISEY ;
<C; +ntt su wr(t)| oo + llo " wg(t)|| o }. 3.55
i{(5) "+ i} s (Ol + o wg(0) o=} (3.55)

Hence, from (3.55), we see that {h’} is also a Cauchy sequence in L*. Let h(t,z,v) be the
limit function of h' in L. It is straightforward to check that f := LL) solves (3.35) for j > jo.
Furthermore, since each f* is a time-periodic function with period T" and h* = wf* converges
to h in L, then f = 1’; is also periodic in time with the same period T'. If € is convex, the
continuity of f directly follows from the continuity of f’. Moreover, taking the limit ¢ — oo in
(3.50), we get that

172 fll2o.yiz2) < Cj S {fwr(®)lpe) + lv = wg ()2 }- (3.56)

<t<T

Then the L*> bound (3.40) directly follows from (3.8) and (3.56). The proof of Lemma 3.5 is
therefore complete. o

As mentioned before, Lemma 3.5 is the first step for obtaining the approximation solutions
17 to (3.35). We now turn to the second step to establish the solvability of the problem (3.36)
by letting 7 — oco. For the time being, in the following lemma we omit the dependence of f7-
on ¢ for brevity.

Lemma 3.6. Let -3<y<1, €¢>0, 0<q<1/8 and 8> 3. Under the same assumption
as in Lemma 3.5, there exists a unique time-periodic solution f(t,x,v) to (3.86) satisfying the
estimate

swp {Ilwf(t)l\mo + [ wf (8 Lo () }

<C sup {|wr () Lo (o) + Il wg( )||Loo} (3.57)
0<t<T

Furthermore, if Q is convez, g is continuous in R x Q x R? and r is continuous in R x y_, then
ft,x,v) is also continuous away from the grazing set R X vq.

Proof. We shall first obtain the uniform-in-j estimate on the solutions f7 to (3.35) and then
show that h? := wf’ is Cauchy in L*°.

To treat L™ estimates, we should start from L2 estimates. Taking the inner product of
(3.35) with f7 over [0,7] x 2 x R? gives that

T
. 1 . 1, ..
| AP @+ I )+ s,
T T
1 1 .
< ~1/2()|12 ’ 1— )P, f
_C/ lv=2g(s)||72ds + 2/0 ( ) v +TL2(7 )ds

1+
<C/ ||V 1/2 ()”L d8+ 277/ |Pf ( )|L2(fy )dS‘f’C / |L2(fy )ds
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which further implies that

1

0= PP ($)a(, ds

T
, 1 ,
| AP @I+ 1 2Pl +
T n T )
<C [ (o) ads + ] [P0 e ds
0 0

T
e / () 22, ds, (3.58)

where 1 > 0 can be arbitrarily small. To estimate the second term on the right-hand side of
(3.58), using the same idea as in [7], we recall the near-grazing set 75 defined in (2.8) and split
Py f? =Py (f'1,) + Py(f1 | ). By a direct computation, we have

+

1Py (f71 ) L2y y < CE L L2(ry) < CE Py f1L2(h, ) + CE (I = Py) 1244,
and
|P~y(fj17+\ﬁ')|%2(y_)

_1v? j lv]? 0\ 2
= [ n@ln() - vldy( s S et Vu)n() - od)
n(x)v' >

v|?

| i
<Cle™ = f 17+\7i/ )|%2(7+)'

From the first equation of (3.35), we have
(O +v- Va)e () = 207 g 7 — 2l +u(w)e ()2,
which implies that
. w2 . Jv]?
1@+ Va)e ()2 < Clle™ e e+ Clle” o g2,

Thus, from the trace Lemma 2.4, it follows that

T
102 pq
L1 P, gy

T 1 2 .
:/ |[678‘v| fj]z(s)l’w—\'}’i/

0

Li(yy) 5

T 1 2 - 1 2 -
oo / 105 + v - Va)e 1P ()2 1 + e 11 (£9)2(s) || L1 ds
+ [le 4P (F)2(0)| oo

< T e ’ 9 T e 9 _E 2
Sea [ llem e fl(s)lleds+ [ lle” 1@ g(s)llz2ds + sup [le™ 1 f/(#)[|7 .
0 0 0<t<T
Collecting these estimates, we have
T .

/ Py () 22, ds
0

T T
<Ce [P PO yds+ O [ 10 = PP, s
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TP p g 2
+C 0 le™ =" Py f 17+\7i/(s)|L2(7+)d8
T ‘ T o
<O [ PP O ayuds + O [T = PP (5o ds
ol
+C€// P ($)]12 + e g(s)|Zads + Cor sup [le™ i FB)]3
0<t<T
. w2 . lv]?
SC/ (= Py) f7(8)[E2(r, ) +lle™ 10 f(s)lI72 + [le™ 1o g(s)lZds
0
w2
+C sup |le 16 ()2 . (3.59)
0<t<T
Here we have taken €’ > 0 suitably small. Plugging (3.59) back to (3.58) we get that
/O ellF7 (e + 12 ()12 + 1T = Py)f(5)[2ags, ds
T . . w2 .
SCn/ 112 £ (8)l[72 + [(L = Py) 7 () 220y ds + Cnp sup e 1o f7 (1)
0<t<T
+C/ |v=12g Hdes—i—C/ ()72, yds. (3.60)

Then, for any n with 0 < 7 <1 := i, it follows from (3.60) that

T
. 1 . 1 ;
| AP @+ G 26+ (T = PPy, s
<Cn swp 16~ PO~ +Cy [ 1o 2gots + O, [ 1), 05
<Cn sup =% P~ +Cy sup (I g+ lor@lime e (360
0<t<T 0<t<T

On the other hand, by applying the L> estimate (3.8) to A’ := wf’, one has
sup {[|17 (t)l|z= + B (t)| Lo () }
0<t<T
<C sup {|lv" wg(®)|lze + [wr(t)| e (o)} + Clo 2| Laoryzey.
0<t<T
Plugging (3.61) in the above estimate gives
sup {[|17 (t)l|z= + B (t)| Lo (1) }
0<t<T
<Cn'? sup || (#)|[z + Cy sup {[lv" wg(t)l|le + |wr(t)|ps(y )}
0<t<T 0<t<T
Further letting > 0 be small enough, it then follows that
sup {[|h7 (&)l Lo + B (8)| oo (4}
0<t<T

<C sup {[[v" wg(t)| e~ + [wr(t) Loy )} (3.62)
0<t<T

This completes the uniform-in-j L> estimates.



200 R.D. DUAN, Y. WANG, Z. ZHANG

Next, we need to show that h’/ := wf7 is Cauchy in L>. For this, we consider the difference
hz — b1, Note that f7z — fir = ufl(hj2 — hjl) solves
O(f72 = 1) + 0 Vo2 = 1) + e+ v()(f” - f7) =0,
(sz_fj1)|% :(1_312>p7(sz f]l) ( )P .

Then, by similar energy estimates made above, it holds that

T
/0 I 2(f3 — fir)(s)||2ads

2
ds

<y sup_ (5 = ) |\Lw+c/ I LECT

0<t<

<n sup_ I(h72 — K7 ) (t)][7
0<t<

11 ~
v Cn( Lo ) s Ol @l P
Ji 0<t<T

J2

where we have used (3.62) in the last inequality. Again, applying (3.8) to the difference h72 —hJt,
we get that

sup_|[[(A72 — h7)(t)||p= + sup [(h7 —h)(t)] 1 ()

0<t<T 0<t<T
1 1 , ) )
<C sup ’w< - )P’yfjl + CII2 (72 = )| 2 (o.1):02)
0<t<T 2 1 Loo(y-)

<Cn'’? sup |[|(h?> — h7")(t)| L~
0<t<T

11 -
(5 + ) s (e wg Ol + fwr(d]e )
Ju J27/ o<i<T

Taking n > 0 suitably small, the above estimate yields that k7 is Cauchy in L>. Let h(t,z,v)
be the limit function of A7. It is direct to check that f := Z solves (3.36), and the estimate
(3.57) follows from (3.62). Moreover, since each f7 is time-periodic with period T', then f is
also time-periodic with the same period 7T'. The continuity follows in a similar way. Thus, the
proof of Lemma 3.6 is complete. |

We now move to the third step for treating the existence and uniform estimates of solutions
to the linear problem (3.38) where the linear collision term is involved. For the proof ,we follow
the same strategy as in [3].

Lemma 3.7. Let -3<y<1, €¢>0, 0<¢q<1/8 and 8> 3. Under the same assumption
as in Lemma 3.5, the linear problem (3.38) admits a unique time-periodic solution f¢(t,x,v)
with period T, satisfying the following estimate:

S {lwfe @l + lwf ()= }

<C’s sup {|wr(t)|pecy_y + v wg(t)| L~} (3.63)
0<t<T

Moreover, if Q is convex, g is continuous in R x Q x R3, and r is continuous in R x v_, then
fe(t,z,v) is also continuous away from R X .

Proof. The proof relies on the following uniform-in-A estimate on the solution f»¢ to the
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modified linear problem (3.37) for 0 < A < 1:

oS {lwf @)z + [wf*e () L) }

<Ce s {uwr(Dlis o+ v Ol ), (3.64)

where the positive constant C. is independent of A but may depend on £. Once (3.64) is
established, one can use the same bootstrap argument as in [3] to complete the whole proof
of Lemma 3.7, particularly deriving the estimate (3.64). Thus, for brevity of presentation, in
what follows we only show the uniform estimate (3.64).

Taking the inner product of (3.37) with f*€ over [0,T] x Q x R3 gives that

T
1
/0 ell F ()72 + 222 (s)l172 + 2IfA’E(S)I%%w)d‘“f
g A A 1 e 2
< [ OEPE PO+ P46 +r @),
€ 1
+ 4||f*’5(8)|\iz + EIIQ(S)II%zd& (3.65)
Note that due to the non-negativity of L = v — K,

(K2, f22) < Mw

for any 0 < A < 1. Then from (3.65), we have

35 ’ Ae 2 1 T e 2
1F5 ()l z2ds + ; |(I_P7)f “(8)]12 ¢y )8
{P )| +Cy s)|7 ds+ _ ! T|| (s)]|72ds (3.66)
L2(v) L2(y-) ) 9\8)lI 248 :
Here nn > 0 can be chosen to be arbitrarily small. Similar for obtaining (3.59), we have that
T
| PP s

€ € _ v
<C/ fA )72 + (1 = Py A (8) 720,y + e 18 g(s)[|72ds

+C sup [l ()2 (3.67)
0<t<T
Substituting (3.67) into (3.66) gives that for any small constant n > 0,

€ r e 2 1 r e 2
) )1 <s>||L2ds+4 A= )£ ()

<On sup =% PO+ Cue [ 1K s + Coc [ lalo)lcs
0<t<T

<Cn sup |lwf*(t)[F + Cpe sup {[lv wg(t)]| e + [wr(t)|poe )} (3.68)
0<t<T 0<t<T
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Applying the L™ estimate (3.8) to h*¢ := wf™, we have
OzltlgT{HhA’s(t)llLoo + BN ()] ()}
SCoiltlgT{llflwg(t)HLw +wr) oo )} + C P oo 1222

<Cn'? sup [[BME(t)||ze + Cre sup {Ilv " wg(t)| L + [wr(t)Le(y_)},
0<t<T 0<t<T

where we have used (3.68) in the second inequality. Letting > 0 be small enough, it then
follows from the above estimate that

sup {[[AM (1)l + [P () Lo} < Ce sup {[[v™ wg(t)l[ 2 + [wr(t) Lo, ) }-
0<t<T 0<t<T
This shows (3.64) and then completes the proof of Lemma 3.7. ad

3.4 Solution to the Linear Inhomogeneous Problem

The last step is concerned with the limit procedure ¢ — 0.

Proof of Proposition 3.1. Taking the inner product of (3.38) of £ over [0,7] x 2 x R3, we get
that for any n > 0,

T T 1 T

[ M@t [ (L@ s+ [0 = P ds
T T

<o [ IR F s+ [P Ol s

+c/ =129 (s |\L2ds+(]/ ) ds. (3.69)

By the coercivity estimate (2.2), it holds that

T T
/ (LF(s), £(s))ds > co / [T — P) fo(s)|22ds,
0 0

where the projection P is defined in (2.1). For the estimate on P, f¢, it is direct to see that

2 2 2 | ‘2

(@ +v-Ve)(e 1 (fs)Q) =2 gfc —2e” ¥ fELFE —2ee (f)2.

Then it follows that

2
[v]

- c _lvl? _li2
10 + v+ Va)(e™ 4 (f9)%)ler < Clle™ 10 gll7z + Clle™ o f][72.

Thus, similar for obtaining (3.67), it holds that
T
/ P 2 (5) 2, ds
_ _vl?
<c/ P20+ 1 = P () Bag + e g(s)[22ds

+C sup e i fs(t)HQLOO' (3.70)
0<t<T
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For the macroscopic part Pf¢, we note that f¢ satisfies the zero-mass condition (3.39). Then
from [7, Lemma 6.1] there exists a functional G s« (t) with the property |G - (t)|< || f€(¢)|% 2 such
that

/0 172P e (s) 12
S(Gre(t) - G-(0)) + / 1A 2(1 = P)f2(5)|2ads

t t t
+/0 ||g(8)||2L2d8+/0 |r(s)|§2(%)ds+/o (T = P ) s (371)

In particular, taking ¢ = 7" in (3.71) and utilizing the periodicity of f¢, we get
T
IR GEIRCT
0
T T
<C [ WA= PFE@eds+C [ g()]ads
0 0

T T
€ [ ds+C [T =P g, s (3.72)

A suitable combination of (3.69), (3.70) and (3.72) yields that
T
| IR @l + 150 e s
lv|? T
<n sup e 10 f5(1)]| 7 +Cn/ v 2g() 172 + lg(s) 72 + |r(s)[72(, yds
0<t<T 0
_lv? _
<n sup e 10 f(t)l|7 + Cy sup {|lv" wg(t)llLoe + [wr(t)| Loy )}, (3.73)
0<t<T 0<t<T

where 17 > 0 can be chosen to be arbitrarily small. Moreover, in terms of the L> estimate (3.8),
it holds that

sup {||wfe(t)||ze + [wfe(t)|poe )}
0<t<T
<C sup {[lv " wg(t)||Loe + [wr(t) ooy )} + ClIVY2 £ Lo,y 02)
0<t<T

<Cn'? sup |wfe(t)|l~ +Cy sup {lv " wg(t) L + [wr(t)| Ly )}
0<t<T 0<t<T (3.74)

where we have used (3.73) in the last inequality. Then taking n > 0 suitably small in (3.74),
we get the desired estimate.
To pass to the limit € — 0T, we consider the difference f! — f°2 with 0 < £1,62 < 1. We
see that ¢! — f¢2 solves the problem:
Q(for = f2)+v-Vao(for = f2)+ L(f* — [2) = eaf —er [,
fe _f62|'y_ = P'y(fsl — [%2).

Similar as before, direct energy estimates show that

T
/0 2850 = f22) ()12 + (50 — £22)(5) a5
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+ 2 2 ()12 + 15 (8)I1F2 + 112 (5) |2 ds

2
<n sup flem 36 (£ — £22) (1) 2
0<t<T

+ Cy(ef +€3) sup {[lwfe(t)|Le + [[wfe ()]~}
0<t<T

v

2
<n sup flem 36 (£ — £22) (1) %
0<t<T

+ Cy(ef +€3) sup {[lv " wg(t)|| e + [wr(t)]pe )}
0<t<T

Then applying the L estimate (3.8) to h®* — h®2 := w(f** — f°2), we get that in the case of
0<~y<1,

sup [[(h™ = h**)(t)[z + sup [(A7" = h™)(t)| Lo ()
0<t<T 0<t<T

<C(e1 +e2) sup {[v "B (1)L~ + v~ R (1) < }
0<t<T

+ CIIM2(f5 = o)l 2oy
<Cn sup [[(h®* —h®2)(t)||L~
0<t<T

+Cyler+e2) sup (v wg(®)llz + lwr(®)]z=() ),
0<t<T

<C(e1 +e2) sup {[[v wg(t)llze + [wr(t)|L= ()}, (3.75)
0<t<T

and in the case of —3 < vy < 0,

sup [[v(h® — h%)(t)[[Le + sup [v(h™ = h®?)(t)[re(y)
0<t<T 0<t<T

<C(e1 + £2) OiltlgT{Hh“(t)llLoo R (@)=} + Cl 2 (= £22) | r2o,myi2)

[v]2
<COn*? sup |le” 1 (b — h%)(t)|| Lo
0<t<T

+Cyler +22) sup (v wg(®)ll + hor()] =)
0<t<T
<C(er+e2) sup {[lv " wg(t)|lLe= + [wr(t)|Le=( )}, (3.76)
0<t<T
by taking 1 > 0 suitably small. Therefore, from (3.75) and (3.76) we have respectively shown
that f¢ is Cauchy in LS° for 0 < v < 1, and Cauchy in LS, for —3 < v < 0. Let f(t,x,v) be
the limit function of f¢(¢,2,v) in the corresponding function space. It is direct to check that

f{t,x,v) satisfies (3.1). Finally, the time-periodicity and continuity of f directly follow from
the time-periodicity and continuity of f¢. The proof of Proposition 3.1 is therefore complete.O

3.5 Proof of Theorem 1.1.
We consider the solution sequence {f7(¢,x,v)} iteratively solved from
It v Vo fITH+ LT = =L yup- 7 +T(f7, 1),

Pt bt 1N PV e,
v -n(x)>
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for j =0,1,2---, where we have set f = 0. Here we have denoted
r(t,x,v) = Ho = o / F*(z,0"){v" - n(z)}dv',
\/,u v’ -n(x)>0
and
. 1 N . . N
Lyus-t" = —\/M[Q(Wf VRFT) + Qf N f )]
A direct calculation shows that
/ C(f7, )N/ p(v)dvda :/ L s 73/ u(v)dvdz = 0, (3.77)
QxR3 QxR3
and
[ o) = p@loen@ldo= [ fuale) = ng)l (v no)}do 0. (378)
v-n(z)<0 vn(z)<0
Furthermore, one can verify that
[ wL g Lo + v wl (7, f2) || < Collwf? || + Cllwf? |2, (3.79)
and
Ho — K j / / J
‘w{r n / F/u{v’ - n(z)}dv } < OO+ COlfi| e,y (3.80)
\//1' v n(x)>0 Loo(y-)
Recall (3.77)—(3.80). Then, by applying (3.3) to f/*1, we get
sup {[Jwf*(s)l| Lo + [wfTH ()| Lo ()}
0<s<T
<Cd; + CoquT {w| 7 (s)|F + Sllwf(s)|| Lo + Slwf? (s)|poo(r, )} (3.81)
From (3.81), it is direct to prove by an induction argument that
sup [[wf(s)l|lz= + sup |wf?(s)|pe(y) < 2001, (3.82)
0<s<T 0<s<T
for j = 1,2, -, provided that 6 > 0 is suitably small, where C' is a generic constant independent

of j. For the convergence of the approximation sequence f7, we consider the difference f7+! — f7

which satisfies
OUPTT = 1)+ 0 Va(f7H = )+ L = )
==Ly (f) = PP +T( = L)+ D7 = P70,
with the boundary condition
7 = e =P (7 = f)

Ho — b i opi—1 o nlx V.
+ ¢Mtﬁmﬂwu FY Yl n(z)}a
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Once again, applying (3.3) to f/*! — f7 gives that

sup {Jw(f7+ = ) (s)|ne + lw( 7 = f7)(8)] Lo () }
0<s<T

<C(6+ sup {[lwf?(s)|r + wf'~ ()] L~})
0<s<T

< sup {[w(f! = 778l + lw(f? = 7)) () }

0<s<T

<08 sup {fu(f = F)6)lem + ol = ) e}
0<s<T

<y s (ol — P e + 0~ P} (3.83)
0<s<T

where we have used (3.82) in the second inequality and also we have taken § > 0 small enough
such that C§ < 1/2. Hence, f7(t,x,v) is a Cauchy sequence in LS. Let

Pt x,v) = lim fI(t,z,v)
J— 00
in LS. It is direct to check that
FP™ (t,2,0) = F. (0, 0) + /nf" (¢, 2,0)

is the time-periodic solution to the boundary-value problem (1.1) and (1.2), and also (1.8)
and (1.9) are satisfied. The proof of (1.7) for the non-negativity of FP®'(t,z,v) is left to the
next section. The uniqueness and continuity of fP'(¢,z,v) can be obtained in a usual way[3l.
Therefore this completes the proof of Theorem 1.1 o

4 Asymptotical Stability

This section is concerned with the large-time behavior of solutions to the initial-boundary
value problem (1.10) whenever Fy(z,v) is sufficiently close to FP®*(0,z,v) at initial time. As
a byproduct, the result about the dynamical stability of the non-trivial time-periodic profile
FPer(¢, x,v) in turn yields its non-negativity.

As for obtaining the existence of the time-periodic solution FPe*(¢,z,v), we need to first
study the linear inhomogeneous problem in the following Proposition 4.1. As its proof is is
more or less the same as the one of [7, Proposition 7.1] for 0 < v <1 and [3, Proposition 4.4]
for —3 < v < 0. The full details are omitted for brevity.

Proposition 4.1.  Let -3 <~y <1, 0<q < § and # > max{3,3 —~}. Let
[wfollze + [V wgl e < oo,
and
[ ] soworuwdsas = [ [ glt,z,0/ue) dodo =
Q JR3 Q JR3

Then if

sup |0(t,-) — 1]~ (a0)
0<t<T

is sufficiently small, the linear inhomogeneous initial-boundary value problem:

Ohf+v-Vuf+Lf=g, t>0, r€Q, veR?

ftao)l, =P+ N Fyuln(@) o'} dv',
\//1’ v n(x)>0

f(t7x7v)|t:0 = fO(xvv)v
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admits a unique solution f(t,z,v) satisfying that
P
sup € {[|wf(t)]|Lee + [wf ()L}
0<s<t

<CllwfollL= +C sup e’ |v " wg(s)| L, (4.1)
0<s<t

for anyt > 0, where p is defined in (1.13), and ¢ > 0 is a generic small constant. Moreover, if
is conver, fo(x,v) is continuous except on o, g is continuous in the interior of [0,00) x Q x R3,

fo(z,v)l. =Py fo+ Ho = Jov/p{n(z) - v'}dv’,
\/,u v n(x)>0

and 0(t, x) is continuous over Rx dQ, then the solution f(t,z,v) is also continuous over [0, 00) x
{Q xR\ 7o}
Proof of Theorem 1.2.  We construct the solution via the following iteration:
Ouf7 T 40 Vo f7T 4 LY = =L oo [+ T(f7, 1),
=g PR g
\/,u v n(x)>0
fjJrl (07 z, U) = fO(x7 0)7

for j =0,1,2---, where we have set f° =0, and also

Lyugom = = ) (U™ f) + QU/id. Vel

Similar for obtaining estimates (3.77)—-(3.80), we have

| uvas = |

- L. per 7/ p(v)dvdz = 0,

X

and
I 0lL o goer | + v~ 0l (7, )] < OO o f e + Cllurf? e

Then we can apply the linear time-decay property (4.1) to f7*! to obtain that

sup e {lw I (s)[[ = + |w T (5)| e () }
0<s<t

< Clwfolle +C8 sup " ||wf?(s)]ze +C sup e wf? (s)[F - (4.2)
0<s<t 0<s<t

From (4.2), we can also use the induction argument to show that

sup e {Jwf () [+ [wf T (3] o)) < 20w ol

provided that both 6’ > 0 and ||wfy||L= are suitably small. Similar to obtain (3.83), one can
show that {f7 521 is a Cauchy sequence in L7, then we obtain the solution flt,z,v) as the
limit of f7(t,z,v). The uniqueness and continuity is standard, and the positivity can be shown
by the same method as in [7]. Therefore, we complete the proof of Theorem 1.2. a
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