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Abstract This paper is concerned with the boundary-value problem on the Boltzmann equation in bounded

domains with diffuse-reflection boundary where the boundary temperature is time-periodic. We establish the

existence of time-periodic solutions with the same period for both hard and soft potentials, provided that the

time-periodic boundary temperature is sufficiently close to a stationary one which has small variations around a

positive constant. The dynamical stability of time-periodic profiles is also proved under small perturbations, and

this in turn yields the non-negativity of the profile. For the proof, we develop new estimates in the time-periodic

setting.
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1 Introduction

Let a rarefied gas be contained in a bounded domain Ω ⊂ R
3 with smooth boundary ∂Ω

on which the diffuse-reflection condition is postulated. We assume that the velocity of the
boundary is zero while the temperature of the boundary is periodic in time. One basic problem
is to see whether or not there exists a time-periodic motion of such rarefied gas with the same
period.

To treat the problem, we assume that the motion of the rarefied gas is governed by the
Boltzmann equation

∂tF + v · ∇xF = Q(F, F ), t ∈ R, x ∈ Ω, v ∈ R
3. (1.1)

Here F = F (t, x, v) ≥ 0 stands for the density distribution function of gas particles with position
x ∈ Ω and velocity v ∈ R

3 at time t ∈ R. The Boltzmann collision operator Q(·, ·) is of the
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non-symmetric bilinear form:

Q(G, F ) =
∫

R3

∫
S2

B(v − u, ω)G(u′)F (v′) dωdu

−
∫

R3

∫
S2

B(v − u, ω)G(u)F (v) dωdu.

Here the relation between the velocity pair (v′, u′) after collision with the velocity pair (v, u)
before collision for two particles is given by

v′ = v − [(v − u) · ω]ω, u′ = u + [(v − u) · ω]ω,

with ω ∈ S
2, satisfying the conservations of momentum and energy due to the elastic collision:

v′ + u′ = v + u, |v′|2 + |u′|2 = |v|2 + |u|2.
The Boltzmann collision kernel B(v − u, ω) takes the form of

B(v − u, ω) = |v − u|γb(φ),

with

−3 < γ ≤ 1, 0 ≤ b(φ) ≤ C| cosφ|, cosφ :=
(v − u) · ω
|v − u| ,

for a generic constant C. Note that the angular cutoff assumption is required and we allow for
both hard and soft potentials in the full range.

To solve the Boltzmann equation (1.1) in the bounded domain, it is supplemented with the
following diffuse-reflection boundary condition:

F (t, x, v)
∣∣
v·n(x)<0

= μθ

∫
u·n(x)>0

F (t, x, u)|u · n(x)| du, (1.2)

for any t ∈ R, where n(x) denotes the outward normal vector at the boundary point x ∈ ∂Ω,
and μθ takes the form of

μθ := μθ(t,x)(v) =
1

2πθ2(t, x)
e−

|v|2
2θ(t,x) . (1.3)

Here we have assumed that the boundary velocity is zero and the boundary temperature is a
function θ(t, x) which is periodic in time and may also depend on the space variable.

Throughout this paper, we assume that Ω = {x : ξ(x) < 0} is connected and bounded with
ξ(x) being a smooth function in R

3. We assume ∇ξ(x) �= 0 at each boundary point x with
ξ(x) = 0. The outward normal vector n(x) is therefore given by n(x) = ∇ξ(x)/|∇ξ(x)|, and it
can be extended smoothly near ∂Ω = {x : ξ(x) = 0}. We define that Ω is convex if there exists
a constant cξ > 0 such that

3∑
i,j=1

∂2ξ

∂xi∂xj
(x)ζiζj ≥ cξ|ζ|2

for all x such that ξ(x) ≤ 0 and for all ζ = (ζ1, ζ2, ζ3) ∈ R
3. We denote the phase boundary in

the space Ω × R
3 as γ = ∂Ω × R

3, and split it into the outgoing boundary γ+, the incoming
boundary γ−, and the singular boundary γ0 for grazing velocities, respectively:

γ+ = {(x, v) ∈ ∂Ω × R
3 : n(x) · v > 0},

γ− = {(x, v) ∈ ∂Ω × R
3 : n(x) · v < 0},

γ0 = {(x, v) ∈ ∂Ω × R
3 : n(x) · v = 0}.
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Note that μθ satisfies the boundary condition (1.2) but may not be a solution to the Boltz-
mann equation (1.1) since the boundary temperature θ(t, x) may have nontrivial variations in
t or x. When θ(t, x) is identical to a constant θ0 > 0, for instance, without loss of generality
we assume θ0 = 1 to the end, the global Maxwellian corresponding to (1.3) is reduced to

μ = μ(v) :=
1
2π

e−
|v|2
2 , (1.4)

which satisfies both (1.1) and (1.2). In such case, there have been extensive studies of existence,
large-time behavior and regularity of small-amplitude L∞ solution around μ to the initial-
boundary value problem on the Boltzmann equation, for instance, [7–9,10,12,13,15,16]. Readers
may also refer to references therein for related works.

When θ(t, x) is a time-independent function θ̄(x) which has a small variation around θ0,
namely, sup

∂Ω
|θ̄ − θ0| is small enough, one may expect that the large-time behavior of solutions

to the initial-boundary value problem on the Boltzmann equation is determined by solutions
to the following steady problem⎧⎨

⎩
v · ∇xF = Q(F, F ), x ∈ Ω, v ∈ R

3,

F (x, v)
∣∣
v·n(x)<0

= μθ̄(x)

∫
u·n(x)>0

F (x, u)|u · n(x)| du.
(1.5)

Indeed, for hard potentials 0 ≤ γ ≤ 1, [7] established the existence and dynamical stability of
a stationary solution F ∗(x, v) to (1.5). Recently, the result of [7] has been extended in [3] to
the case of soft potentials −3 < γ < 0. We refer readers to [3] for extensive discussions on the
subject.

In the current work, we consider the case when θ(t, x) is a general time-space-dependent
function assumed to be periodic in time with period T > 0 and sufficiently close to θ̄(x). Under
such situation, we shall prove that there exists a unique time-periodic solution F per(t, x, v)
around F ∗(x, v) with the same period T for the problem (1.1) and (1.2), and further show
the dynamical stability of F per(t, x, v) under small perturbations in the sense that the solu-
tion F (t, x, v) to the initial-boundary value problem on the Boltzmann equation (1.1) with
initial data F (0, x, v) = F0(x, v) and boundary data (1.2) exists globally in time and is time-
asymptotically close to F per(t, x, v) whenever F0(x, v) is sufficiently close to F per(0, x, v). Note
that the limiting situation T = 0 for the period of θ(t, x) is also allowed and this corresponds to
the stationary case considered in [7] and [3] as mentioned above. Therefore, the current work
can be regarded as an extension of [3,7] to the time-periodic boundary.

In what follows we state the main results of this paper. Let

wq,β(v) := (1 + |v|2)β
2 eq|v|2 (1.6)

be the velocity weight function, and let F ∗(x, v) be the steady solution to (1.5) corresponding
to the stationary boundary temperature θ̄(x) constructed in [3,7]. We assume that F ∗(x, v) has
the same total mass as that of the global Maxwellian μ in (1.4), i.e.,∫

Ω

∫
R3

[F ∗(x, v) − μ(v)] dvdx = 0.

To the end, for brevity we shall write wq,β as w by ignoring the dependence of w on parameters
q and β. The first result is concerned with the existence of time-periodic solutions of small
amplitude.

Theorem 1.1. Let −3 < γ ≤ 1, 0 ≤ q < 1
8 and β > max{3, 3 − γ}. Assume that θ(t, x) is a

time-periodic function with period T > 0. Then there exist δ > 0 and C > 0 such that if

δ1 := sup
0≤t≤T

|θ(t, ·) − θ̄(·)|L∞(∂Ω) ≤ δ, δ2 := |θ̄(·) − 1|L∞(∂Ω) ≤ δ,
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then the Boltzmann equation (1.1) with the diffuse-reflection boundary (1.2) admits a unique
nonnegative time-periodic solution with the same period T :

F per(t, x, v) = F ∗(x, v) +
√

μ(v)fper(t, x, v) ≥ 0, (1.7)

satisfying ∫
Ω

∫
R3

fper(t, x, v)
√

μ(v) dvdx = 0, t ∈ R, (1.8)

and
sup

0≤t≤T
‖wfper(t)‖L∞ + sup

0≤t≤T
|wfper(t)|L∞(γ) ≤ Cδ1. (1.9)

Moreover, if Ω is convex, θ(t, x) is continuous on R × ∂Ω, and θ̄(x) is continuous on ∂Ω, then
F per(t, x, v) is also continuous away from the grazing set R × γ0.

The second result is concerned with the large-time behavior of solutions to the initial-
boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

∂tF + v · ∇xF = Q(F, F ), t > 0, x ∈ Ω, v ∈ R
3,

F (t, x, v)
∣∣
v·n(x)<0

= μθ(t,x)

∫
u·n(x)>0

F (t, x, u)|u · n(x)| du,

F (0, x, v) = F0(x, v),

(1.10)

whenever F0(x, v) is around F per(0, x, v) in a sense to be clarified later on.

Theorem 1.2. Let −3 < γ ≤ 1, 0 < q < 1
8 and β > max{3, 3 − γ}. Then there exist

constants δ′, c > 0, ε0 > 0 and C > 0 such that if

sup
0≤t≤T

|θ(t, ·) − 1|L∞(∂Ω) ≤ δ′,

and F0(x, v) = F per(0, x, v) +
√

μ(v)f0(x, v) ≥ 0 satisfies
∫

Ω

∫
R3

f0(x, v)
√

μ(v) dvdx = 0, (1.11)

and
‖wf0‖L∞ ≤ ε0,

then the initial-boundary value problem (1.10) on the Boltzmann equation admits a unique
global-in-time solution

F (t, x, v) = F per(t, x, v) +
√

μ(v)f(t, x, v) ≥ 0, t ≥ 0, x ∈ Ω, v ∈ R
3,

satisfying ∫
Ω

∫
R3

f(t, x, v)
√

μ(v) dvdx = 0

and
‖wf(t)‖L∞ + |wf(t)|L∞(γ) ≤ Ce−ctρ‖wf0‖L∞ , (1.12)

for all t ≥ 0, where ρ > 0 is determined by

ρ =

⎧⎨
⎩

1, if γ ∈ [0, 1],
2

2 + |γ| ∈ (0, 1), if γ ∈ (−3, 0).
(1.13)
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Moreover, if Ω is convex, F0(x, v) is continuous except on γ0 satisfying

F0(x, v)|γ− = μθ(0, x, v)
∫

u·n(x)>0

F0(x, u)|u · n(x)| du,

and θ(t, x) is continuous over R×∂Ω, then the solution F (t, x, v) is also continuous in [0,∞)×
{Ω̄ × R

3 \ γ0}.
Remark 1.3. In the soft potential case −3 < γ < 0, the time-decay estimate (1.12) implies
that there is no loss of velocity weight in the weighted L∞ space for the solution compared to
the one for initial data, which is different from the recent result[16]. We refer readers to [3] for
more details.

The issue about the time-periodic solutions to the Boltzmann equation has been studied in
[17] and [5]. Particularly, [17] first considered the case where the Boltzmann equation is driven
by a time-periodic source term in the whole space. The main idea of [17] is to study the extra
time-decay property of the linearized solution operator U(t) and look for the time-periodic
solution as a fixed point to an integral equation

f(t) =
∫ t

−∞
U(t − s)Nf (s) ds,

where Nf (·) includes both the nonlinear term and the time-periodic inhomogeneous source.
The approach of [17] was later applied in [5] to consider the Boltzmann equation with a small
time-periodic external force. Note that [5] has to require a strong assumption that the space
dimensions are not less than five, and it has remained a big open problem to remove such
restriction.

A similar time-periodic problem on the Vlasov-Poisson-Fokker-Planck system in the whole
space was also considered in [4] when the background density profile is time-periodic around a
positive constant, where the proof is based on another approach different from [17]. It should
be pointed out that three space dimensions are allowed in [4] due to the exponential time-decay
structure of the linearized system.

In the current work, we carry out a proof of existence of time-periodic solutions which is
different from [4,5,17] mentioned above but is similar to the one in [3] for the steady problem.
In fact, instead of solving the Cauchy problem, the basic idea in the present paper is to regard
the time-periodic problem as a special boundary value problem over [0, T ] × Ω × R

3, with the
time-periodic boundary condition at t = 0 and t = T . For the proof, we develop new estimates
in the time-periodic setting.

In the end we remark that motivated by the works [1] and [18], the existence and dynamical
stability of time-periodic profiles to the Boltzmann equation in a bounded interval recently
have been also established in [6] in the case when one boundary point moves with a small time-
periodic velocity. Compared to the current work in the case when the boundary temperature is
time-periodic, the mathematical analysis in [6] is much harder, since the reformulated problem
is related to the Boltzmann equation with a time-periodic external force in the bounded domain.

The rest of this paper is organized as follows. In Section 2, we make a list of basic lemmas
which will be used in the later proof. Then, Section 3 and Section 4 are devoted to the proof
of Theorem 1.1 and Theorem 1.2, respectively.

Notations. Throughout this paper, C denotes a generic positive constant which may vary from
line to line. Ca, Cb, · · · denote the generic positive constants depending on a, b, · · ·, respectively,
which also may vary from line to line. A � B means that there exists a constant C > 0 so that
A ≤ CB and A �a B means that the constant depends on a. ‖ · ‖L2 denotes the standard
L2(Ω×R

3
v)-norm and ‖·‖L∞ denotes the L∞(Ω×R

3
v)-norm. We denote 〈·, ·〉 as the inner product

in L2(Ω × R
3
v) or L2(R3

v). Moreover, we define ‖ · ‖L2([0,T ];L2) =
∥∥‖ · ‖L2

∥∥
L2[0,T ]

. For the phase
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boundary integration, we define dγ ≡ |n(x) · v|dS(x)dv, where dS(x) is the surface measure
and define |f |pLp =

∫
γ
|f(x, v)|pdγ and the corresponding space is denoted as Lp(∂Ω × R

3) =
Lp(∂Ω×R

3; dγ). Furthermore, we denote |f |Lp(γ±) = |f1γ± |Lp and |f |L∞(γ±) = |f1γ± |L∞ . For
simplicity, we denote |f |L∞(γ) = |f |L∞(γ+) + |f |L∞(γ−).

2 Preliminaries

Recall (cf.[10]) that around the global Maxwellian μ as in (1.4), one can write

1√
μ

Q(μ +
√

μf, μ +
√

μf) = −Lf + Γ(f, f),

where L and Γ(·, ·) are the corresponding linearized operator and nonlinear operator respectively
given by

Lf = − 1√
μ

{
Q(μ,

√
μf) + Q(

√
μf, μ)

}
,

and
Γ(f, g) =

1√
μ

Q(
√

μf,
√

μg).

Moreover, one has L = ν − K, where the velocity multiplication ν = ν(v) is defined by

ν(v) =
∫

R3

∫
S2

B(v − u, ω)μ(u) dωdu ∼ (1 + |v|)γ ,

and the integral operator K := K1 − K2 is defined in terms of

(K1f)(v) =
∫

R3

∫
S2

B(v − u, ω)
√

μ(v)μ(u)f(u) dωdu,

and

(K2f)(v) =
∫

R3

∫
S2

B(v − u, ω)
√

μ(u)μ(u′)f(v′) dωdu

+
∫

R3

∫
S2

B(v − u, ω)
√

μ(u)μ(v′)f(u′) dωdu.

Lemma 2.1[11,12]. The operator L is self-adjoint and non-negative. The kernel of L is a
five-dimensional space spanned by the following bases:

e0 = (2π)−
1
4
√

μ; ei = (2π)−
1
4 vi

√
μ, i = 1, 2, 3; e4 =

(2π)−
1
4√

6
(|v|2 − 3)

√
μ.

Define the projection P by

Pf =
4∑

i=0

〈f, ei〉ei. (2.1)

Then there exists a constant c0 > 0 such that

〈Lf, f〉 ≥ c0|ν1/2(I − P )f |2L2(R3). (2.2)
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Note that the integral operator K can be written as

Kf(v) =
∫

R3
k(v, η)f(η) dη,

with a symmetric kernel k(v, η). As in [11,14], we introduce a smooth cutoff function 0 ≤ χm ≤ 1
with 0 < m ≤ 1 such that

χm(s) = 1 for s ≤ m; χm(s) = 0 for s ≥ 2m.

Then we define

(Kmg)(v) =
∫

R3

∫
S2

B(v − u, ω)χm(|v − u|)
√

μ(u)μ(u′)f(v′) dωdu

+
∫

R3

∫
S2

B(v − u, ω)χm(|v − u|)
√

μ(u)μ(v′)f(u′) dωdu

−
∫

R3

∫
S2

B(v − u, ω)χm(|v − u|)
√

μ(v)μ(u)f(u) dωdu

=Km
2 f(v) − Km

1 f(v),

and Kc = K − Km. Correspondingly, one can write

(Kmf)(v) =
∫

R3
km(v, η)f(η) dη, (Kcf)(v) =

∫
R3

kc(v, η)f(η) dη.

The following estimates on Km and Kc can be found in [2].

Lemma 2.2. Let −3 < γ ≤ 1. Then, for any 0 < m ≤ 1, it holds that

|(Kmg)(v)| ≤ Cm3+γe−
|v|2
6 ‖g‖L∞, (2.3)

where C is a generic constant independent of m. The kernels km(v, η) and kc(v, η) satisfy that
for 0 ≤ a ≤ 1,

|km(v, η)| ≤ C
{|v − η|γ + |v − η|− 3−γ

2
}
e−

|v|2+|η|2
16 ,

and

|kc(v, η)| ≤ Cma(γ−1)

|v − η|1+ (1−a)
2 (1−γ)

1
(1 + |v| + |η|)a(1−γ)

e−
|v−η|2

10 e
− ||v|2−|η|2|2

16|v−η|2

+ C|v − η|γ [1 − χm(|v − η|)]e− |v|2
4 e−

|η|2
4 , (2.4)

where C is a generic constant independent of m and a.
Particularly, since the constant C in (2.4) does not depend on a ∈ [0, 1], we have the

following estimates on kc(v, η) by taking a = 1 and a = 0.

Lemma 2.3[2]. Let −3 < γ ≤ 1. One has

|kc(v, η)| ≤ Cmγ−1

|v − η|(1 + |v| + |η|)1−γ
e−

|v−η|2
10 e

− ||v|2−|η|2|2
16|v−η|2 (2.5)

and

|kc(v, η)| ≤ C|v − η|γe−
|v|2
4 e−

|η|2
4 + C|v − η|− 3−γ

2 e−
|v−η|2

10 e
− ||v|2−|η|2|2

16|v−η|2 . (2.6)
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Moreover, it holds that

∫
R3

|kc(v, η)| · (1 + |v|2)β
2 eq|v|2

(1 + |η|2)β
2 eq|η|2

dη ≤ Cmγ−1(1 + |v|)γ−2 (2.6)

and ∫
R3

|kc(v, η)| · (1 + |v|2)β
2 eq|v|2

(1 + |η|2)β
2 eq|η|2

dη ≤ C(1 + |v|)−1, (2.7)

where β ≥ 0 is an arbitrary positive constant and 0 ≤ q < 1/8. Here the constant C in all
estimates above is independent of m.

In what follows we recall the back-time trajectory in phase space with respect to the diffuse-
reflection boundary condition (1.2) which was first introduced in [12]. First of all, for each
boundary point x ∈ ∂Ω, we define the velocity space for the outgoing particles:

V(x) = {v′ ∈ R
3 : v′ · n(x) > 0},

associated with the probability measure dσ = dσ(x) := μ(v′)|v′ · n(x)| dv′. Given (t, x, v), let
[X(s; t, x, v), V (s; t, x, v)] be the backward bi-characteristics for the Boltzmann equation, which
is determined by ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX(s; t, x, v)
ds

= V (s; t, x, v),

dV (s; t, x, v)
ds

= 0,

[X(t; t, x, v), V (t; t, x, v)] = [x, v].

The solution is then given by

[X(s; t, x, v), V (s; t, x, v)] = [x − v(t − s), v].

For each (x, v) with x ∈ Ω̄ and v �= 0, we define the backward exit time tb(x, v) ≥ 0 to be the
last moment at which the back-time straight line [X(s; 0, x, v), V (s; 0, x, v)] remains in Ω̄:

tb(x, v) = inf{τ ≥ 0 : x − vτ /∈ Ω̄}.
We therefore have x − tbv ∈ ∂Ω and ξ(x − tbv) = 0. We also define

xb(x, v) = x − tbv ∈ ∂Ω.

Note that v · n(xb) = v · n(xb(x, v)) ≤ 0 always holds true. Let x ∈ Ω̄, (x, v) /∈ γ0 ∪ γ− and
(t0, x0, v0) = (t, x, v). For vk+1 ∈ Vk+1 := {vk+1 · n(xk+1) > 0}, the back-time cycle is defined
as ⎧⎪⎪⎨

⎪⎪⎩

Xcl(s; t, x, v) =
∑

k

1[tk+1,tk)(s){xk − vk(tk − s)},

Vcl(s; t, x, v) =
∑

k

1[tk+1,tk)(s)vk,

with
(tk+1, xk+1, vk+1) = (tk − tb(xk, vk), xb(xk, vk), vk+1).

Define the near-grazing set of γ+ as

γε′
+ =

{
(x, v) ∈ γ+ : |v · n(x)| < ε′ or |v| ≤ ε′ or |v| ≥ 1

ε′
}
. (2.8)

Then we have
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Lemma 2.4[12]. Let ε′ > 0 be a small positive constant, then it holds that
∫ t

0

|f(τ)1γ+\γε′
+
|L1(γ)dτ

≤Cε′,Ω

{
‖f(0)‖L1 +

∫ t

0

[‖f(τ)‖L1 + ‖[∂τ + v · ∇x]f(τ)‖L1

]
dτ

}
,

where the positive constant Cε′,Ω > 0 depends only on ε′ and Ω.
In the end we conclude this section with the following iteration lemma which will be crucially

used later on. The proof of this lemma can be found in [3].

Lemma 2.5. Let {ai}∞i=0 be a sequence with each ai ≥ 0. For an integer k ≥ 0, we define a
new sequence {Ak

i }∞i=0 by

Ak
i = max{ai, ai+1, · · · , ai+k}, i = 0, 1, · · · .

(i) Let D ≥ 0 be a constant. If

ai+1+k ≤ 1
8
Ak

i + D, i = 0, 1, · · · ,

then it holds that

Ak
i ≤

(1
8

)[ i
k+1 ]

· max{Ak
0 , Ak

1 , · · · , Ak
k} +

8 + k

7
D, (2.9)

for any i ≥ k + 1.

(ii) Let 0 ≤ η < 1 with ηk+1 ≥ 1
4 . If

ai+1+k ≤ 1
8
Ak

i + Ck · ηi+k+1, i = 0, 1, · · ·

then it holds that

Ak
i ≤

(1
8

)[ i
k+1 ]

· max{Ak
0 , Ak

1 , · · · , Ak
k} + 2Ck

8 + k

7
ηi+k, (2.10)

for any i ≥ k + 1.

3 Existence of Time-periodic Solutions

3.1 Linear Problem

We start from the following linear problem with time-periodic inhomogeneous source term and
boundary data: {

∂tf + v · ∇xf + Lf = g,

f(t, x, v)|γ− = Pγf + r.
(3.1)

Here the boundary operator Pγ is defined by

Pγf(t, x, v) =
√

μ(v)
∫

v′·n(x)>0

f(t, x, v′)
√

μ(v′)|v′ · n(x)| dv′.

Both the inhomogeneous terms g = g(t, x, v) and r = r(t, x, v) are periodic in time with period
T > 0. Recall the weight function (1.6) and we write w(v) = wq,β(v) for brevity. We define

h(t, x, v) = w(v)f(t, x, v).
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Then the equation for h reads:
⎧⎨
⎩

∂th + v · ∇xh + ν(v)h = Kwh + wg,

h(t, x, v)|γ− =
1

w̃(v)

∫
v′·n(x)>0

h(t, x, v′)w̃(v′)dσ′ + wr(t, x, v),

where

w̃(v) ≡ 1
w(v)

√
μ(v)

, Kwh = wK
( h

w

)
.

The proof of Theorem 1.1 heavily relies on the solvability of the linearized time-periodic
problem (3.1).

Proposition 3.1. Let −3 < γ ≤ 1, 0 ≤ q < 1
8 and β > max{3, 3 − γ}. Assume that g and r

are time-periodic functions with period T > 0, and satisfy the zero-mass condition
∫

Ω

∫
R3

g(t, x, v)
√

μ(v) dvdx =
∫

γ−
r(t, x, v)

√
μ(v) dγ = 0, (3.2)

for all t ∈ R, and L∞ bounds

sup
0≤t≤T

‖ν−1wg(t)‖L∞ + sup
0≤t≤T

|wr(t)|L∞(γ−) < ∞.

Then there exists a unique time-periodic solution f = f(t, x, v) with the same period T to the
linearized Boltzmann equation (3.1), such that

∫
Ω×R3

f(t, x, v)
√

μ dvdx = 0

for all t ∈ R, and

sup
0≤t≤T

‖wf(t)‖L∞ + sup
0≤t≤T

|wf(t)|L∞(γ)

≤C sup
0≤t≤T

|wr(t)|L∞(γ−) + C sup
0≤t≤T

‖ν−1wg(t)‖L∞ . (3.3)

Moreover, if Ω is convex, and g is continuous in R × Ω × R
3 and r is continuous in R × γ−,

then f(t, x, v) is also continuous away from the grazing set R × γ0.
The following two subsections will be devoted to the proof of Proposition 3.1.

3.2 A Priori L∞ Estimate

To prove Proposition 3.1, we start from the a priori L∞ estimate on solutions to the following
time-periodic problems:

⎧⎨
⎩

∂th
i+1 + v · ∇xhi+1 + (ε + ν(v))hi+1 = λKm

w hi + λKc
whi + wg,

hi+1(t, x, v)|γ− =
1

w̃(v)

∫
v′·n(x)>0

hi(t, x, v′)w̃(v′)dσ′ + w(v)r(t, x, v),
(3.4)

for i = 0, 1, 2, · · ·, where h0 := h0(t, x, v) is given. Here 0 ≤ λ ≤ 1 and ε > 0 are given
parameters, and g(t, x, v) and r(t, x, v) are both time-periodic functions with period T > 0.
Before doing that, we need some preparations. The following lemma gives the mild formulation
of hi+1. As the proof is more or less the same as [12, Lemma 24], we omit it for brevity.
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Lemma 3.2. Let 0 ≤ λ ≤ 1 and ε > 0. For any t ∈ [0, T ], for almost every (x, v) ∈
Ω̄ × R

3\(γ0 ∪ γ−) and for any s ≤ t, we have

hi+1(t, x, v) =
4∑


=1

J
 +
14∑


=5

1{t1>s}J
 (3.5)

with

J1 = 1{t1≤s}e−(ε+ν(v))(t−s)hi+1(s, x − v(t − s), v),

J2 + J3 + J4 =
∫ t

max{t1,s}
e−ν(v)(t−τ)[λKm

w hi + λKc
whi + wg](τ, x − v(t − τ), v)dτ,

J5 = e−(ε+ν(v))(t−t1)w(v)r(t1 , x1, v),

J6 =
e−(ε+ν(v))(t−t1)

w̃(v)

∫
Πk−1

j=1Vj

k−2∑
l=1

1{tl+1>s}w(vl)r(tl+1, xl+1, vl)dΣl(tl+1),

J7 =
e−(ε+ν(v))(t−t1)

w̃(v)

∫
Πk−1

j=1Vj

k−1∑
l=1

1{tl+1≤s<tl}h
i+1−l(s, xl − vl(tl − s), vl)dΣl(s),

J8 + J9 + J10 =
e−(ε+ν(v))(t−t1)

w̃(v)

∫
Πk−1

j=1 Vj

k−1∑
l=1

∫ tl

s

1{tl+1≤s<tl}

· [λKm
w hi−l + λKc

whi−l + wg](τ, xl − v(tl − τ), vl)dΣl(τ),

J11 + J12 + J13 =
e−(ε+ν(v))(t−t1)

w̃(v)

∫
Πk−1

j=1Vj

k−1∑
l=1

∫ tl

tl+1

1{tl+1>s}

· [λKm
w hi−l + λKc

whi−l + wg](τ, xl − v(tl − τ), vl)dΣl(τ),

J14 =
e−(ε+ν(v))(t−t1)

w̃(v)

∫
Πk−1

j=1Vj

1{tk>s}hi+1−k(tk, xk, vk−1)dΣk−1(tk).

Here we have denoted

dΣl(τ) =
{
Πk−1

j=l+1dσj

} · {w̃(vl)e−(ε+ν(vl))(tl−τ)dσl

}
· {Πl−1

j=1e
−(ε+ν(vj))(tj−tj+1)dσj

}
,

and dσj = μ(vj){n(xj) · vj}dvj.
Next, the following lemma is due to [12], which gives a quantitative smallness estimate on

the measure of possible velocities, so that the particle can not reach down the underlying initial
plane, in terms of the number of reflection.

Lemma 3.3. Let T > 0. Let n be sufficiently large. There exist constants Ĉ1 and Ĉ2

independent of n such that for k = Ĉ1(nT )
5
4 and (t, x, v) ∈ [0, T ]× Ω̄ × R

3, it holds that

∫
Πk−1

j=1 Vj

1{tk>−nT} Πk−1
j=1 dσj ≤

(1
2

)Ĉ2(nT )
5
4

. (3.6)

Proposition 3.4. Let −3 < γ ≤ 1, ε > 0, 0 ≤ q < 1/8 and β > 3. Assume that hi(t, x, v) are
all time-periodic functions with period T > 0 and satisfy

sup
0≤t≤T

{‖hi(t)‖L∞ + |hi(t)|L∞(γ)} < ∞,
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for i = 0, 1, 2, · · ·. Then there exist two universal constants C > 0 and n > 1 large enough,
independent of i, λ and ε, such that for k = Ĉ2(nT )

5
4 , it holds, for i ≥ k, that

sup
0≤t≤T

‖hi+1(t)‖L∞ + sup
0≤t≤T

|hi+1(t)|L∞(γ)

≤1
8

max
0≤l≤k

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}
+ C max

0≤l≤k

{∥∥∥ hi−l

〈v〉|γ|w
∥∥∥

L2([0,T ];L2)

}

+ C sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)}. (3.7)

Here we have denoted 〈v〉 := (1 + |v|2)1/2. Moreover, if hi ≡ h for i = 1, 2, · · ·, i.e., h is a
solution, then (3.7) is reduced to the following form

sup
0≤t≤T

‖h(t)‖L∞ + sup
0≤t≤T

|h(t)|L∞(γ)

≤C sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)} + C
∥∥∥ h

〈v〉|γ|w
∥∥∥

L2([0,T ];L2)
. (3.8)

Proof. Let s = −nT in (3.5) with n > 1 large enough such that (3.6) holds true. We first
estimate J1. Note that by periodicity, we have

hi+1(s, x − (t − s)v, v) = hi+1(0, x − (t − s)v, v).

Then if 0 ≤ γ ≤ 1, ν(v) ≥ ν0 > 0 for some constant ν0. Then it is direct to get

|J1| ≤ e−ν0(t+NT ) sup
0≤t≤T

‖hi+1(t)‖L∞ . (3.9)

If −3 < γ < 0, ν(v) ∼ (1 + |v|)γ no longer has a positive lower bound, when |v| is sufficiently
large. In this case we note that

0 ≤ tb(x, v) ≤ dΩ

|v| ,

where dΩ := sup
x,y∈Ω

|x − y| is the diameter of Ω. Then for |v| > dΩ
nT , it holds that

t1 − s = t − tb(x, v)+nT > 0.

In other words, J1 appears only when the particle velocity |v| is rather small, so that we have

|J1| ≤1{t1≤s}1{|v|≤ dΩ
nT }e

−ν(v)(t−s) sup
0≤t≤T

‖hi+1(t)‖L∞

≤1{t1≤s}1{|v|≤1}e−ν(v)(t−s) sup
0≤t≤T

‖hi+1(t)‖L∞

≤Ce−ν0(t+nT ) sup
0≤t≤T

‖hi+1(t)‖L∞ , (3.10)

for the suitably large n, where for simplicity of notations we have still denoted the strictly
positive constant ν0 > 0 to be the infimum of ν(v) over |v| ≤ 1. For contributions coming from
g and r, we notice that

w̃(v) =
1√
2π

e( 1
4−q)|v|2

(1 + |v|2)β
2

,

so it holds that
1

w̃(v)
≤

√
2π(1 + |v|2)β

2 e−( 1
4−q)|v|2 ≤ Ce−

1
8 |v|2 . (3.11)
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Moreover, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Πk−1

j=1Vj

e
5|vm|2

16 Πk−1
j=1dσj ≤ C,

∫
Πk−1

j=1Vj

k−1∑
l=1

1{tl+1≤s<tl}e
5|vm|2

16 Πk−1
j=1dσj ≤ Ck,

∫
Πk−1

j=1Vj

k−1∑
l=1

1{tl+1>s}e
5|vm|2

16 Πk−1
j=1dσj ≤ Ck,

(3.12)

for all 1 ≤ m ≤ k − 1. Combining this with periodicity of r and g, we get that

⎧⎨
⎩

|J4| + |J10| + |J13| ≤ Ck sup
0≤t≤T

‖ν−1wg(t)‖L∞ ,

|J5| + |J6| ≤ Ck sup
0≤t≤T

|wr(t)|L∞(γ−).
(3.13)

Next, we shall estimate J7. If 0 ≤ γ ≤ 1, we use the fact that ν(v) ≥ ν0 > 0 as well as (3.11)
and (3.12) to get

|J7| ≤Ce−
1
8 |v|2e−ν0(t+nT ) max

1≤l≤k−1

{
sup

0≤t≤T
‖hi+1−l(t)‖L∞

}

×
∫

Πk−1
j=1Vj

k−1∑
l=1

1{tl+1≤s<tl}w̃(vl) Πk−1
j=1dσj

≤Cke−
1
8 |v|2e−ν0(t+nT ) max

1≤l≤k−1

{
sup

0≤t≤T
‖hi+1−l(t)‖L∞

}
. (3.14)

If −3 < γ < 0, we again note that ν(v) no longer has a positive lower bound. In this case, it
holds from Young’s inequality that

ν(v)(τ1 − τ2) +
|v|2
16

≥ c(τ1 − τ2)α,

for any τ1 > τ2, where we have taken α = 2
2+|γ| , and c > 0 is a constant independent of τ1, τ2

and v. In the sequel c > 0 may take different values at different places. So, from (3.11) we have

e−ν(v)(t−t1)

w̃(v)
≤ Ce−

|v|2
16 e−c(t−t1)

α

,

and

|J7| ≤Ce−
|v|2
16 e−c(t−t1)

α

max
1≤l≤k−1

{
sup

0≤t≤T
‖hi+1−l(t)‖L∞

}

×
k−1∑
l=1

∫
Πl

j=1Vj

1{tl+1≤s<tl}w̃(vl)e−ν(vl)(tl−s)dσlΠl−1
j=1e

−ν(vj)(tj−tj+1)dσj .

For each l, we take |vm| = max{|v1|, · · · , |vl|}. Then it holds that

Πl−1
j=1e

−ν(vj)(tj−tj+1) × e−ν(vl)(tl−s)w̃(vl) ≤ e−ν(vm)(t1−s)e
|vm|2

4 ≤ e−c(t1−s)α

e
5|vm|2

16 .
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Thus one has

|J7| ≤e−
|v|2
16 e−c(t−s)α

max
1≤l≤k−1

{
sup

0≤t≤T
‖hi+1−l(t)‖L∞

}

×
k−1∑
l=1

l∑
m=1

∫
Πl

j=1Vj

1{tl+1≤s<tl}e
5|vm|2

16 Πl
j=1dσj

≤Ck2e−
|v|2
16 e−c(t+nT )α

max
1≤l≤k−1

{
sup

0≤t≤T
‖hi+1−l(t)‖L∞

}
. (3.15)

Here we have used the elementary fact that aα + bα ≥ (a + b)α for a, b ≥ 0 and 0 ≤ α ≤ 1. For
J14, it follows from (3.6) and (3.11) that

|J14| ≤ Ce−
|v|2
16

(1
2

)Ĉ2(nT )
5
4

sup
0≤t≤T

‖hi+1−k(t)‖L∞ . (3.16)

For the contribution from Km, we use (2.3) to obtain

|J2| ≤ Cm3+γw(v)e−
1
6 |v|2 sup

0≤t≤T
‖hi(t)‖L∞ ≤ Cm3+γe−

|v|2
48 sup

0≤t≤T
‖hi(t)‖L∞ . (3.17)

Similarly, we use (2.3), (3.11) and (3.12) to get

|J8| ≤Cm3+γe−
|v|2
8 max

1≤l≤k−1

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}

×
∫

Πk−1
j=1 Vj

k−1∑
l=1

1{tl+1≤s<tl}

∫ tl

s

e−ν(vl)(tl−τ)ν(vl)dτν−1(vl)w̃(vl) Πk−1
j=1dσj

≤Ckm3+γe−
|v|2
8 max

1≤l≤k−1

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}
, (3.18)

and

|J11| ≤Cm3+γe−
|v|2
8 max

1≤l≤k−1

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}

×
∫

Πk−1
j=1 Vj

k−1∑
l=1

1{tl+1>s}

∫ tl

tl+1

e−ν(vl)(tl−τ)ν(vl)dτν−1(vl)w̃(vl) Πk−1
j=1dσj

≤Ckm3+γe−
|v|2
8 max

1≤l≤k−1

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}
. (3.19)

It remains to estimate the terms involving Kc. Firstly, we have

|J9| ≤Ce−
1
8 |v|2

k−1∑
l=1

∫
Πl−1

j=1Vj

dσl−1 · · · dσ1

∫
Vl

∫
R3

∫ tl

s

e−ν(vl)(t−τ)1{tl+1≤s<tl}

× w̃(vl)|kc
w(vl, v

′)hi−l(τ, xl − vl(tl − τ), v′)|dτdv′dσl

=Ce−
1
8 |v|2

k−1∑
l=1

∫
Πl−1

j=1Vj

dσl−1 · · · dσ1

∫
Vl∩{|vl|≥N}

∫
R3

∫ tl

s

(· · ·)dτdv′dσl

+ Ce−
1
8 |v|2

k−1∑
l=1

∫
Πl−1

j=1Vj

dσl−1 · · ·dσ1

∫
Vl∩{|vl|≤N}

∫
R3

∫ tl

s

(· · ·)dτdv′dσl

:=
k−1∑
l=1

(J91l + J92l). (3.20)
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For J91l, we use (3.12) to obtain that

k−1∑
l=1

J91l ≤Cke−
1
8 |v|2 max

1≤l≤k−1

{
sup

0≤t≤T
‖hi−l(t)‖L∞

∫
Πl−1

j=1Vj

dσl−1 · · · dσ1

×
∫
Vl∩{|vl|≥N}

∫ tl

s

e−ν(vl)(tl−τ)ν(vl)e−
|vl|2
32 dτe

5|vl|2
16 dσl

}

≤Cke−
1
8 |v|2e−

1
32N2

max
1≤l≤k−1

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}
. (3.21)

For J92l, it holds that

J92l ≤Ce−
1
8 |v|2

∫
Πl−1

j=1Vj

Πl−1
j=1dσj

∫
Vl∩{|vl|≤N}

∫
R3

∫ tl

tl− 1
N

(· · ·)dτdv′dσl

+ Ce−
1
8 |v|2

∫
Πl−1

j=1Vj

Πl−1
j=1dσj

∫
Vl∩{|vl|≤N}

∫ tl− 1
N

s

e−ν(vl)(tl−τ)e−
1
8 |vl|2dτdvl

×
∫
|v′|≥2N

|kc
w(vl, v

′)|e |vl−v′|2
64 dv′e−

N2
64 · max

1≤l≤k−1

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}

+ Ce−
1
8 |v|2

∫
Πl−1

j=1Vj

Πl−1
j=1dσj

∫ tl− 1
N

s

dτ

∫
Vl∩{|vl|≤N}

∫
|v′|≤2N

× 1{tl+1≤s<tl}e
− 1

8 |vl|2 |kc
w(vl, v

′)hi−l(τ, xl − vl(tl − τ), v′)|dv′dvl.

Then, by (2.6) we have

J92l ≤Ce−
1
8 |v|2

∫
Πl−1

j=1Vj

Πl−1
j=1dσj

{∫ tl− 1
N

s

∫
Vl∩{|vl|≤N}

∫
|v′|≤2N

× 1{tl+1≤s<tl}e
− 1

8 |vl|2 |kc
w(vl, v

′)hi−l(τ, xl − vl(tl − τ), v′)|dv′dvldτ

}

+
C

N
e−

1
8 |v|2 · max

1≤l≤k−1

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}
. (3.22)

By Hölder’s inequality, the integral term on the right-hand of (3.22)
∫ tl− 1

N

s

∫
Vl∩{|vl|≤N}

∫
|v′|≤2N

(· · ·) dv′dvldτ :=
∫∫∫

D
(· · ·) dv′dvldτ (3.23)

is bounded by

CN

{ ∫∫∫
D

e−
1
8 |vl|2 |kc

w(vl, v
′)|2dv′dvldτ

}1/2

×
{ ∫∫∫

D
1{tl+1≤s<tl}

∣∣∣hi−l(τ, xl − vl(tl − τ), v′)
〈v′〉|γ|w(v′)

∣∣∣2dv′dvldτ
}1/2

≤ CNn1/2mγ−1

{∫∫∫
D

1{tl+1≤s<tl}
∣∣∣hi−l(τ, xl − vl(tl − τ), v′)

〈v′〉|γ|w(v′)

∣∣∣2dv′dvldτ
}1/2

.

Here we have used (2.5) in the last inequality. Note that yl := xl − vl(tl − τ) ∈ Ω for s ≤ τ ≤
tl − 1

N . Making change of variables vl → yl, we obtain that (3.23) is bounded by

CNn1/2mγ−1
{∫ tl

s

∥∥∥hi−l(τ)
〈v〉|γ|w

∥∥∥2

L2
dτ

}1/2

.
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We use periodicity of hi−l to further bound the above term by

CNn1/2mγ−1
{∫ T

s

∥∥∥hi−l(τ)
〈v〉|γ|w

∥∥∥2

L2
dτ

}1/2

≤ CNnmγ−1
∥∥∥ hi−l

〈v〉|γ|w
∥∥∥

L2([0,T ];L2)
.

Combining this with (3.20), (3.21) and (3.22), we get

|J9| ≤Ck

N
e−

|v|2
8 max

1≤l≤k−1

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}

+ CN,n,me−
|v|2
8 max

1≤l≤k−1

{∥∥∥ hi−l

〈v〉|γ|w
∥∥∥

L2([0,T ];L2)

}
. (3.24)

Similarly, for J12 one has

|J12| ≤Ck

N
e−

|v|2
8 max

1≤l≤k−1

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}

+ CN,n,me−
|v|2
8 max

1≤l≤k−1

{∥∥∥ hi−l

〈v〉|γ|w
∥∥∥

L2([0,T ];L2)

}
. (3.25)

Collecting all estimates (3.9), (3.10), (3.13)–(3.19), (3.24) and (3.25), we get that for t ∈ [0, T ],

|hi+1(t, x, v)|

≤
∫ t

max{t1,s}
e−ν(v)(t−τ)

∫
R3

|kc
w(v, v′)hi(τ, x − (t − τ)v, v′)|dv′dτ + Ai(t, v),

(3.26)

where we have denoted

Ai(t, v) :=Ck2e−
|v|2
48

{
m3+γ + e−c(t+nT )α

+ 2−Ĉ2(nT )
5
4 +

1
N

}

· max
0≤l≤k−1

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}

+ Ce−c(t+nT ) sup
0≤t≤T

‖hi+1(t)‖L∞

+ Ck
{

sup
0≤t≤T

‖ν−1wg(t)‖L∞ + sup
0≤t≤T

|wr(t)|L∞(γ−)

}

+ CN,n,me−
|v|2
8 max

0≤l≤k−1

{∥∥∥ hi−l

〈v〉|γ|w
∥∥∥

L2([0,T ];L2)

}
,

and
k = Ĉ1(nT )

5
4 ∼ (nT )

5
4 . (3.27)

Denoting x′ := x − (t − τ)v and t′1 := t1(τ, x′, v′), we use (3.26) for hi(τ, x′, v′) to evaluate

|hi+1(t, x, v)| ≤Ai(t, v) +
∫ t

max{t1,s}
e−ν(v)(t−τ)

∫
R3

|kc
w(v, v′)Ai−1(τ, v′)| dv′dτ

+
∫ t

max{t1,s}
e−ν(v)(t−τ)dτ

∫
R3

∫ τ

max{t′1,s}

∫
R3

{
e−ν(v′)(τ−τ ′)

× |kc
w(v, v′)kc

w(v′, v′′)hi−1(τ ′, x′ − (τ − τ ′)v′, v′′)|}dv′′dτ ′dv′

=Ai(t, v) + B1 + B2, (3.28)
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where B1 and B2 denote two integral terms on the right-hand respectively. It follows from (2.7)
that

B1 ≤Ck2
{
mγ−1e−cnT + m3+γ + e−c(t+nT )α

+ 2−Ĉ2(nT )
5
4 +

1
N

}

× max
0≤l≤k

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}

+ Ckmγ−1
{

sup
0≤t≤T

‖ν−1wg(t)‖L∞ + sup
0≤t≤T

|wr(t)|L∞(γ−)

}

+ CN,n,m max
0≤l≤k

{∥∥∥ hi−l

〈v〉|γ|w
∥∥∥

L2([0,T ];L2)

}
. (3.29)

Finally, we estimate B2. If |v| > N , we have from (2.7) that

B2 ≤Cm2(γ−1)(1 + |v|)−2 sup
0≤t≤T

‖hi−1(t)‖L∞

≤C
m2(γ−1)

N2
sup

0≤t≤T
‖hi−1(t)‖L∞ . (3.30)

If |v| ≤ N , we denote the integrand of B2 as U(τ ′, v′, v′′; τ, v), and split the integral domain
with respect to dτ ′dv′′dv′ into the following four parts:

4⋃
i=1

Oi :={|v′| ≥ 2N} ∪ {|v′| ≤ 2N, |v′′| > 3N}

∪
{
|v′| ≤ 2N, |v′′| ≤ 3N, τ − 1

N
≤ τ ′ ≤ τ

}

∪
{
|v′| ≤ 2N, |v′′| ≤ 3N, max{t′1, s} ≤ τ ′ ≤ τ − 1

N

}
.

Over O1∪O2, we have either |v− v′| ≥ N or |v′− v′′| ≥ N , so that one of the following is valid:

|kc
w(v, v′)| ≤ e−

N2
64 e

|v−v′|2
64 |kc

w(v, v′)|

or

|kc
w(v′, v′′)| ≤ e−

N2
64 e

|v′−v′′|2
64 |kc

w(v′, v′′)|.
Recall (2.5). Then it holds that

∫
R3

|kc
w(v, v′)|e |v−v′ |2

64 dv′ ≤ Cmγ−1ν(v),

or ∫
R3

|kc
w(v′, v′′)|e |v′−v′′|2

64 dv′′ ≤ Cmγ−1ν(v′).

Therefore one has
∫ t

max{t1,s}
e−ν(v)(t−τ)

∫
O1∪O2

U(τ ′, v′, v′′; τ, v)dv′′dτ ′dv′dτ

≤Cm2(γ−1)e−
N2
64 sup

0≤t≤T
‖hi−1(t)‖L∞ . (3.31)
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Over O3, it is direct to obtain
∫ t

max{t1,s}
e−ν(v)(t−τ)

∫
O3

U(τ ′, v′, v′′; τ, v)dv′′dτ ′dv′dτ

≤C
m2(γ−1)

N
sup

0≤t≤T
‖hi−1(t)‖L∞ . (3.32)

For O4, we have, from (2.5), that
∫
O4

U(τ ′, v′, v′′; τ, v)dv′′dτ ′dv′

≤CN

{∫
O4

|kc
w(v, v′)kc

w(v′, v′′)|2dv′dv′′dτ ′
} 1

2

×
{∫

O4

1{max{t′1,s}≤τ ′≤τ}
∣∣∣hi−1(τ ′, y′, v′′)
〈v′′〉|γ|w(v′′)

∣∣∣2dv′dv′′dτ ′
} 1

2

≤CN,n,m

{∫
O4

1{max{t′1,s}≤τ ′≤τ}
∣∣∣hi−1(τ ′, y′, v′′)
〈v′′〉|γ|w(v′′)

∣∣∣2dv′dv′′dτ ′
} 1

2
, (3.33)

where we have denoted y′ := y − (τ − τ ′)v′. Making change of variable v′ → y′, the right-hand
side of (3.33) is further bounded by

CN,n,m

{∫ T

s

∥∥∥hi−1(τ ′)
〈v〉|γ|w

∥∥∥2

L2
dτ ′

}1/2

≤ CN,n,m

∥∥∥ hi−1

〈v〉|γ|w
∥∥∥

L2([0,T ],L2)
.

Then it holds that
∫ t

max{t1,s}

∫
O4

U(τ ′, v′, v′′; τ, v)dv′′dτ ′dv′dτ ≤ CN,n,m

∥∥∥ hi−1

〈v〉|γ|w
∥∥∥

L2([0,T ],L2)
.

The above estimate together with (3.30), (3.31) and (3.32) yield that

B2 ≤ Cm2(γ−1)

N
sup

0≤t≤T
‖hi−1(t)‖L∞ + CN,n,m

∥∥∥ hi−1

〈v〉|γ|w
∥∥∥

L2([0,T ],L2)
.

Combining this with (3.28) and (3.29), we get, for t ∈ [0, T ], that

|hi+1(t, x, v)| ≤Ce−cnT sup
0≤t≤T

‖hi+1(t)‖L∞ + η max
0≤l≤k

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}

+ Cn5/4mγ−1
{

sup
0≤t≤T

‖ν−1wg(t)‖L∞ + sup
0≤t≤T

|wr(t)|L∞(γ−)

}

+ CN,n,m sup
0≤l≤k

∥∥∥ hi−l

〈v〉|γ|w
∥∥∥

L2([0,T ];L2)
, (3.34)

where we have denoted

η := Cn5/2
{

mγ−1e−cnT + m3+γ + e−c(nT )α

+
(1

2

)Ĉ2(nT )
5
4

+
m2(γ−1)

N

}
.

We now take

m =
( 1

32C

) 1
3+γ

n− 5
2(3+γ) ,
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choose n suitably large, and then choose N large enough, so that it holds that

Ce−cnT ≤ 1
2
, η ≤ 1

16
.

Then we obtain (3.7) from (3.34). Finally, (3.8) directly follows from (3.7). Therefore, the proof
of Proposition 3.4 is complete. �

3.3 Approximation Solutions

It is very delicate to make the construction of approximation solutions. For readers’ convenience,
we first outline the procedure by four steps as follows.
Step 1. Construct the solution f j,ε to the following time-periodic problem:

{
∂tf

j,ε + v · ∇xf j,ε + (ε + ν(v))f j,ε = g,

f j,ε(t, x, v)|γ− = (1 − 1
j )Pγf j,ε + r.

(3.35)

Step 2. Construct the solution fε to the following time-periodic problem:
{

∂tf
ε + v · ∇xfε + (ε + ν(v))fε = g,

fε(t, x, v)|γ− = Pγfε + r,
(3.36)

by passing to the limit j → ∞.
Step 3. Make the uniform-in-λ a priori estimates on the solution fλ,ε to the following time-
periodic problem:

{
∂tf

λ,ε + v · ∇xfλ,ε + (ε + ν(v))fλ,ε = λKfλ,ε + g,

fλ,ε(t, x, v)|γ− = Pγfλ,ε + r,
(3.37)

and bootstrap from λ = 0 to λ = 1. Then the solution fε to
{

∂tf
ε + v · ∇xfε + (ε + ν(v))fε = Kfε + g,

fε(t, x, v)|γ− = Pγfε + r,
(3.38)

is therefore constructed. We remark that the zero-mass condition (3.2) is not necessary up to
the present step.
Step 4. Take the limit ε → 0. Note that in the limit process, the artificial damping term
guarantees that the following key zero-mass condition

∫
Ω

∫
R3

∂tf
ε(t, x, v)

√
μ(v)dvdx =

∫
Ω

∫
R3

fε(t, x, v)
√

μ(v)dvdx = 0, (3.39)

holds true for any t ∈ R. In fact, let

ρε(t) :=
∫

Ω

∫
R3

fε(t, x, v)
√

μ(v)dvdx.

Taking the inner product of (3.38) with
√

μ(v) over Ω× R
3 and using the zero-mass condition

(3.2), we get
dρε

dt
+ ερε = 0.

Since ρε(t) is periodic in time, we then obtain ρε(t) ≡ 0.
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In what follows, we will proceed the proof along the way mentioned above. The first lemma
is related to the issue stated in Step 1. For the choice of j in the second line of (3.35), one can
fix j0 > 1 to be large enough such that

1
8

(
1 − 2

j
+

3
2j2

)− k+1
2 ≤ 1

2

holds true for any j ≥ j0, where k ∼ (nT )5/4 is defined in (3.27). Then we only consider j ≥ j0
in the problem (3.35).

Lemma 3.5. Let −3 < γ ≤ 1, ε > 0, 0 ≤ q < 1/8 and β > 3. Assume that g and r are
time-periodic functions with period T > 0 and satisfy

sup
0≤t≤T

‖ν−1wg(t)‖L∞ + sup
0≤t≤T

|wr(t)|L∞(γ−) < ∞.

Then there exists a unique solution f j,ε to (3.35), which is time-periodic with period T , and
satisfies

sup
0≤t≤T

‖wf j,ε(t)‖L∞ + sup
0≤t≤T

|wf j,ε(t)|L∞(γ)

≤Cε,j

(
sup

0≤t≤T
|wr(t)|L∞(γ−) + sup

0≤t≤T
‖ν−1wg(t)‖L∞

)
, (3.40)

where the positive constant Cε,j > 0 depends only on ε and j. Moreover, if the domain Ω
is convex, g is continuous in R × Ω × R

3, and r is continuous in R × γ−, then the solution
f j,ε(t, x, v) is also continuous away from the grazing set R × γ0.

Proof. For given ε > 0 and j ≥ j0, we shall construct the solution to (3.35). To do so, we
consider the approximation sequence {f i(t, x, v)}∞i=0 iteratively solved by

⎧⎨
⎩

∂tf
i+1 + v · ∇xf i+1 + (ε + ν(v))f i+1 = g,

f i+1(t, x, v)|γ− =
(
1 − 1

j

)
Pγf i + r,

(3.41)

with f0 ≡ 0. Here we have dropped ε and j for brevity. Indeed, the solution to (3.41) can be
constructed by the method of characteristics. Let

hi+1(t, x, v) = w(v)f i+1(t, x, v).

Then for any t ∈ R and almost every (x, v) ∈ Ω̄ × R
3 \ (γ0 ∪ γ−), one can write

hi+1(t, x, v) =e−(ε+ν(v))tb(x,v)w(v)
[(

1 − 1
j

)
Pγf i + r

]
(t − tb(x, v), xb(x, v), v)

+
∫ t

t−tb(x,v)

e−(ε+ν(v))(t−s)wg(s, x − (t − s)v, v)ds. (3.42)

Note that for (x, v) ∈ γ−, it is direct to write

hi+1(t, x, v) = w(v)
[(

1 − 1
j

)
Pγf i + r

]
(t, x, v). (3.43)

Now we use the induction argument to show that

hi(t, x, v) is time-periodic with period T > 0, (3.44)
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and the following estimate holds true:

sup
0≤t≤T

‖hi(t)‖L∞ + sup
0≤t≤T

|hi(t)|L∞(γ)

≤Cj,ε,i

(
sup

0≤t≤T
‖ν−1wg(t)‖L∞ + sup

0≤t≤T
|wr(t)|L∞(γ−)

)
. (3.45)

Indeed, for i = 0, it is obvious to see that (3.44) and (3.45) are satisfied. Assume that (3.44)
and (3.45) hold for i ≥ 0. (3.42) implies that

hi+1(t + T, x, v)

=e−(ε+ν(v))tbw(v)
[(

1 − 1
j

)
Pγf i + r

]
(t + T − tb, xb, v)

+
∫ t+T

t+T−tb

e−(ε+ν(v))(t+T−s)wg(s, x − (t + T − s)v, v)ds. (3.46)

Note that by the induction assumption that both f i and r are time-periodic functions with
period T , the first term on the right-hand side of (3.46) is equal to

e−(ε+ν(v))tbw(v)
[(

1 − 1
j

)
Pγf i + r

]
(t − tb, xb, v).

For the second term, taking change of variables s → s − T , we get that
∫ t+T

t+T−tb

e−(ε+ν(v))(t+T−s)wg(s, x − (t + T − s)v, v)ds

=
∫ t

t−tb

e−(ε+ν(v))(t−s)wg(s + T, x − (t − s)v, v)ds

=
∫ t

t−tb

e−(ε+ν(v))(t−s)wg(s, x − (t − s)v, v)ds,

where in the last line we have used the fact that g is periodic in time with period T . Therefore,
it follows from (3.46) that

hi+1(t + T, x, v) ≡ hi+1(t, x, v),

so, (3.44) holds true for i + 1. Moreover, to show (3.45) for i + 1, it follows from (3.42) that

sup
0≤t≤T

{‖hi+1(t)‖L∞ + |hi+1(t)|L∞(γ+)}

≤C sup
0≤t≤T

{|hi(t)|L∞(γ+) + |wr(t)|L∞(γ−) + ‖ν−1wg(t)‖L∞}

≤Cj,i sup
0≤t≤T

{|wr(t)|L∞(γ−) + ‖ν−1wg(t)‖L∞},

and also one obtains by (3.43) that

sup
0≤t≤T

|hi+1(t)|L∞(γ−) ≤C sup
0≤t≤T

|hi(t)|L∞(γ+) + C sup
0≤t≤T

|wr(t)|L∞(γ−)

≤Cj,i sup
0≤t≤T

{|wr(t)|L∞(γ−) + ‖ν−1wg(t)‖L∞}.

Combing the above two estimates gives the proof of (3.45) for i + 1. Therefore, by induction
(3.44) and (3.45) are satisfied for all i. Then, each hi(t, x, v) is well-defined in L∞ and time-
periodic with period T > 0. Moreover, if Ω is convex, tb(x, v) and xb(x, v) are smooth away
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from γ0. If g and r are further continuous, then each f i(t, x, v) is also continuous for away from
the grazing set R × γ0.

Next, we need to obtain the uniform-in-i estimate on the solution sequence f i. We first
treat it in the L2 setting. Taking the inner product of (3.41) with f i+1 over [0, T ]×Ω×R

3 and
using the periodicity of f i+1, we obtain that

1
2

∫ T

0

|f i+1(s)|2L2(γ+) ds +
∫ T

0

ε‖f i+1(s)‖2
L2 +

3
4
‖ν1/2f i+1(s)‖2

L2ds

≤1
2

(
1 − 2

j
+

3
2j2

) ∫ T

0

|f i(s)|2L2(γ+)ds

+
∫ T

0

‖ν−1/2g(s)‖2
L2 + Cj |r(s)|2L2(γ−)ds, (3.47)

where we have used the fact that |Pγf i|L2(γ−) = |Pγf i|L2(γ+) ≤ |f i|L2(γ+). For the difference
f i+1 − f i, in a similar way we have

1
2

∫ T

0

|[f i+1 − f i](s)|2L2(γ+) ds

+
∫ T

0

ε‖[f i+1 − f i](s)‖2
L2 +

3
4
‖ν1/2[f i+1 − f i](s)‖2

L2ds

≤1
2

(
1 − 2

j
+

3
2j2

) ∫ T

0

|[f i − f i−1](s)|2L2(γ+)ds, (3.48)

and hence, by iteration the right-hand side of (3.48) is further bounded by

1
2

(
1 − 2

j
+

3
2j2

)i
∫ T

0

|[f1 − f0](s)|2L2(γ+)ds

≤1
2

(
1 − 2

j
+

3
2j2

)i

·
{
Cj

∫ T

0

|r(s)|2L2(γ−) + ‖ν−1/2g(s)‖2
L2ds

}
, (3.49)

where in the second line we have used (3.47) for i = 0 as well as f0 ≡ 0. As j0 > 1 is chosen to
be large enough, one has 0 < 1 − 2

j + 3
2j2 < 1 for any j ≥ j0. It then follows from (3.48) and

(3.49) that {f i}∞i=0 is a Cauchy sequence in L2. Moreover, for any i ≥ 0, it holds that

∫ T

0

‖ν1/2f i(s)‖2
L2 + |f i(s)|2L2(γ+)ds ≤ Cj

∫ T

0

|r(s)|2L2(γ−) + ‖ν−1/2g(s)‖2
L2ds,

and hence the following uniform-in-i estimate holds true:
∫ T

0

‖ν1/2f i(s)‖2
L2 + |f i(s)|2L2(γ+)ds

≤Cj

{
sup

0≤t≤T
|wr(t)|L∞(γ−) + sup

0≤t≤T
‖ν−1wg(t)‖L∞

}2

. (3.50)

Next we turn to treat the uniform estimate in the L∞ setting in terms of the results obtained
in the previous subsection. Note that Proposition 3.4 is also valid if the boundary condition of
the problem (3.4) is replaced by

hi+1(t, x, v)|γ− =
1 − 1

j

w̃(v)

∫
v′·n(x)>0

hi(t, x, v′)w̃(v′)dσ′ + w(v)r(t, x, v),
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namely, we have only changed 1 to 1−1/j. Correspondingly one can deduce the mild formulation
(3.5), and prove Lemma 3.3 and Proposition 3.4. Particularly, all constants in (3.7) and (3.8)
are independent of j. Then, using (3.7), we obtain that

sup
0≤t≤T

‖hi+1(t)‖L∞ + sup
0≤t≤T

|hi+1(t)|L∞(γ)

≤1
8

max
0≤l≤k

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}
+ C sup

0≤t≤T

{|wr(t)|L∞(γ−) + ‖ν−1wg(t)‖L∞
}

+ C sup
0≤l≤k

{‖ν1/2f i−l‖L2([0,T ];L2)}.

It then follows from (3.50) that

sup
0≤t≤T

‖hi+1(t)‖L∞+ sup
0≤t≤T

|hi+1(t)|L∞(γ)

≤1
8

max
0≤l≤k

{
sup

0≤t≤T
‖hi−l(t)‖L∞

}
+ Cj sup

0≤t≤T

{|wr(t)|L∞(γ−) + ‖ν−1wg(t)‖L∞
}
.

(3.51)

Applying (2.9) to (3.51), it holds that for i ≥ k + 1,

sup
0≤t≤T

‖hi(t)‖L∞+ sup
0≤t≤T

|hi(t)|L∞(γ)

≤1
8

max
1≤l≤2k

{
sup

0≤t≤T
‖hl(t)‖L∞

}

+
8 + k

7
Cj

{
sup

0≤t≤T
|wr(t)|L∞(γ−) + sup

0≤t≤T
‖ν−1wg(t)‖L∞

}

≤Cj

{
sup

0≤t≤T
|wr(t)|L∞(γ−) + sup

0≤t≤T
‖ν−1wg(t)‖L∞

}
, (3.52)

where we have used (3.45) for i = 1, · · · , 2k in the last inequality. Combining (3.52) with (3.45),
we obtain that for i ≥ 1,

sup
0≤t≤T

‖hi(t)‖L∞+ sup
0≤t≤T

|hi(t)|L∞(γ)

≤Cj

{
sup

0≤t≤T
|wr(t)|L∞(γ−) + sup

0≤t≤T
‖ν−1wg(t)‖L∞

}
. (3.53)

Similarly for obtaining (3.53), one can apply (3.7) to hi+2 − hi+1 to get

sup
0≤t≤T

‖[hi+2 − hi+1](t)‖L∞ + sup
0≤t≤T

|[hi+2 − hi+1](t)|L∞(γ)

≤1
8

max
0≤l≤k

{
sup

0≤t≤T
‖[hi+1−l − hi−l](t)‖L∞

}

+ C max
0≤l≤k

{‖ν1/2[f i+1−l − f i−l]‖L2([0,T ];L2)}

≤1
8

max
0≤l≤k

{
sup

0≤t≤T
‖[hi+1−l − hi−l](t)‖L∞

}

+ Cjη
i−k
j

{∫ T

0

|r(s)|2L2(γ−) + ‖ν−1/2g(s)‖2
L2ds

}1/2

≤1
8

max
0≤l≤k

{
sup

0≤t≤T
‖[hi+1−l − hi−l](t)‖L∞

}

+ Cj sup
0≤t≤T

{|wr(t)|L∞(γ−) + ‖ν−1wg(t)‖L∞}ηi+k+1
j , (3.54)
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where we have denoted ηj :=
√

1 − 2
j + 3

j2 . Let j0 > 1 be suitably large such that 1
8η−k−1

j ≤ 1
2

for any j ≥ j0. Then, applying (2.10) to (3.54), we obtain that for i ≥ k + 1,

sup
0≤t≤T

‖[hi+2 − hi+1](t)‖L∞ + sup
0≤t≤T

|[hi+2 − hi+1](t)|L∞(γ)

≤
(1

8

)[ i
k+1 ]

max
0≤l≤2k+1

{‖hl(t)‖L∞}
+ Cj sup

0≤t≤T
{|wr(t)|L∞(γ−) + ‖v−1wg(t)‖L∞} · ηi

j

≤Cj

{(1
8

)[ i
k+1 ]

+ ηi
j

}
sup

0≤t≤T
{|wr(t)|L∞(γ−) + ‖v−1wg(t)‖L∞}. (3.55)

Hence, from (3.55), we see that {hi} is also a Cauchy sequence in L∞. Let h(t, x, v) be the
limit function of hi in L∞. It is straightforward to check that f := h

w solves (3.35) for j ≥ j0.
Furthermore, since each f i is a time-periodic function with period T and hi = wf i converges
to h in L∞, then f = h

w is also periodic in time with the same period T . If Ω is convex, the
continuity of f directly follows from the continuity of f i. Moreover, taking the limit i → ∞ in
(3.50), we get that

‖ν1/2f‖L2([0,T ];L2) ≤ Cj sup
0≤t≤T

{|wr(t)|L∞(γ−) + ‖ν−1wg(t)‖L∞}. (3.56)

Then the L∞ bound (3.40) directly follows from (3.8) and (3.56). The proof of Lemma 3.5 is
therefore complete. �

As mentioned before, Lemma 3.5 is the first step for obtaining the approximation solutions
f j,ε to (3.35). We now turn to the second step to establish the solvability of the problem (3.36)
by letting j → ∞. For the time being, in the following lemma we omit the dependence of f j,ε

on ε for brevity.

Lemma 3.6. Let −3 < γ ≤ 1, ε > 0, 0 ≤ q < 1/8 and β > 3. Under the same assumption
as in Lemma 3.5, there exists a unique time-periodic solution f(t, x, v) to (3.36) satisfying the
estimate

sup
0≤t≤T

{‖wf(t)‖L∞ + |wf(t)|L∞(γ)

}

≤C sup
0≤t≤T

{|wr(t)|L∞(γ−) + ‖ν−1wg(t)‖L∞
}
. (3.57)

Furthermore, if Ω is convex, g is continuous in R×Ω×R
3 and r is continuous in R× γ−, then

f(t, x, v) is also continuous away from the grazing set R × γ0.

Proof. We shall first obtain the uniform-in-j estimate on the solutions f j to (3.35) and then
show that hj := wf j is Cauchy in L∞.

To treat L∞ estimates, we should start from L2 estimates. Taking the inner product of
(3.35) with f j over [0, T ]× Ω × R

3 gives that

∫ T

0

ε‖f j(s)‖2
L2 +

1
2
‖ν1/2f j(s)‖2

L2 +
1
2
|f j(s)|2L2(γ+)ds

≤C

∫ T

0

‖ν−1/2g(s)‖2
L2ds +

1
2

∫ T

0

∣∣∣
(
1 − 1

j

)
Pγf j + r

∣∣∣2
L2(γ−)

ds

≤C

∫ T

0

‖ν−1/2g(s)‖2
L2ds +

1 + η

2

∫ T

0

|Pγf j(s)|2L2(γ+)ds + Cη

∫ T

0

|r(s)|2L2(γ−)ds,
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which further implies that
∫ T

0

ε‖f j(s)‖2
L2 +

1
2
‖ν1/2f j(s)‖2

L2 +
1
2
|(I − Pγ)f j(s)|2L2(γ+)ds

≤C

∫ T

0

‖ν−1/2g(s)‖2
L2ds +

η

2

∫ T

0

|Pγf j(s)|2L2(γ+)ds

+ Cη

∫ T

0

|r(s)|2L2(γ−)ds, (3.58)

where η > 0 can be arbitrarily small. To estimate the second term on the right-hand side of
(3.58), using the same idea as in [7], we recall the near-grazing set γε′

+ defined in (2.8) and split
Pγf j = Pγ(f j1γε′ ) + Pγ(f j1γ+\γε′

+
). By a direct computation, we have

|Pγ(f j1γε′ )|L2(γ−) ≤ Cε′|f j|L2(γ+) ≤ Cε′|Pγf j |L2(γ+) + Cε′|(I − Pγ)f j |L2(γ+),

and

|Pγ(f j1γ+\γε′
+

)|2L2(γ−)

=
∫

γ−
μ(v)|n(x) · v|dγ

( ∫
n(x)·v′>0

e−
|v|2
8 f j1γ+\γε′

+
e

|v|2
8

√
μ(v)|n(x) · v′|dv′

)2

≤C|e− |v|2
8 f j1γ+\γε′

+
)|2L2(γ+).

From the first equation of (3.35), we have

(∂t + v · ∇x)e−
1
4 |v|2(f j)2 = 2e−

1
4 |v|2gf j − 2[ε + ν(v)]e−

1
4 |v|2(f j)2,

which implies that

‖(∂t + v · ∇x)e−
1
4 |v|2(f j)2‖L1 ≤ C‖e− |v|2

16 f j‖2
L2 + C‖e− |v|2

16 g‖2
L2.

Thus, from the trace Lemma 2.4, it follows that
∫ T

0

|e− 1
8 |v|2f j(s)1γ+\γε′

+
|2L2(γ+)ds

=
∫ T

0

∣∣[e− 1
8 |v|2f j]2(s)1γ+\γε′

+

∣∣
L1(γ+)

ds

�ε′,Ω

∫ T

0

‖(∂t + v · ∇x)e−
1
4 |v|2(f j)2‖L1 + ‖e− 1

4 |v|2(f j)2(s)‖L1ds

+ ‖e− 1
4 |v|2(f j)2(0)‖L1

�ε′,Ω

∫ T

0

‖e− |v|2
16 f j(s)‖2

L2ds +
∫ T

0

‖e− |v|2
16 g(s)‖2

L2ds + sup
0≤t≤T

‖e− |v|2
16 f j(t)‖2

L∞ .

Collecting these estimates, we have
∫ T

0

|Pγf j(s)|2L2(γ+)ds

≤Cε′
∫ T

0

|Pγf j(s)|2L2(γ+)ds + Cε′
∫ T

0

|(I − Pγ)f j(s)|2L2(γ+)ds
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+ C

∫ T

0

|e− 1
8 |v|2Pγf j1γ+\γε′

+
(s)|2L2(γ+)ds

≤Cε′
∫ T

0

|Pγf j(s)|2L2(γ+)ds + Cε′
∫ T

0

|(I − Pγ)f j(s)|2L2(γ+)ds

+ Cε′

∫ T

0

‖e− |v|2
16 f j(s)‖2

L2 + ‖e− |v|2
16 g(s)‖2

L2ds + Cε′ sup
0≤t≤T

‖e− |v|2
16 f j(t)‖2

L∞

≤C

∫ T

0

|(I − Pγ)f j(s)|2L2(γ+) + ‖e− |v|2
16 f j(s)‖2

L2 + ‖e− |v|2
16 g(s)‖2

L2ds

+ C sup
0≤t≤T

‖e− |v|2
16 f j(t)‖2

L∞ . (3.59)

Here we have taken ε′ > 0 suitably small. Plugging (3.59) back to (3.58) we get that
∫ T

0

ε‖f j(s)‖2
L2 + ‖ν1/2f j(s)‖2

L2 + |(I − Pγ)f j(s)|2L2(γ+)ds

≤Cη

∫ T

0

‖ν1/2f j(s)‖2
L2 + |(I − Pγ)f j(s)|2L2(γ+)ds + Cη sup

0≤t≤T
‖e− |v|2

16 f j(t)‖2
L∞

+ C

∫ T

0

‖ν−1/2g(s)‖2
L2ds + C

∫ T

0

|r(s)|2L2(γ−)ds. (3.60)

Then, for any η with 0 < η ≤ η1 := 1
2C , it follows from (3.60) that

∫ T

0

ε‖f j(s)‖2
L2 +

1
2
‖ν1/2f j(s)‖2

L2 +
1
2
|(I − Pγ)f j(s)|2L2(γ+)ds

≤Cη sup
0≤t≤T

‖e− |v|2
16 f j(t)‖2

L∞ + Cη

∫ T

0

‖ν−1/2g(s)‖2
L2ds + Cη

∫ T

0

|r(s)|2L2(γ−)ds

≤Cη sup
0≤t≤T

‖e− |v|2
16 f j(t)‖2

L∞ + Cη sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)}2. (3.61)

On the other hand, by applying the L∞ estimate (3.8) to hj := wf j , one has

sup
0≤t≤T

{‖hj(t)‖L∞ + |hj(t)|L∞(γ)}

≤C sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)} + C‖ν1/2f j‖L2([0,T ];L2).

Plugging (3.61) in the above estimate gives

sup
0≤t≤T

{‖hj(t)‖L∞ + |hj(t)|L∞(γ)}

≤Cη1/2 sup
0≤t≤T

‖hj(t)‖L∞ + Cη sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)}.

Further letting η > 0 be small enough, it then follows that

sup
0≤t≤T

{‖hj(t)‖L∞ + |hj(t)|L∞(γ)}

≤C sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)}. (3.62)

This completes the uniform-in-j L∞ estimates.
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Next, we need to show that hj := wf j is Cauchy in L∞. For this, we consider the difference
hj2 − hj1 . Note that f j2 − f j1 = w−1

(
hj2 − hj1

)
solves

{
∂t(f j2 − f j1) + v · ∇x(f j2 − f j1) + [ε + ν(v)](f j2 − f j1) = 0,

(f j2 − f j1)|γ− =
(
1 − 1

j2

)
Pγ(f j2 − f j1) +

(
1
j1

− 1
j2

)
Pγf j1 .

Then, by similar energy estimates made above, it holds that

∫ T

0

‖ν1/2(f j2 − f j1)(s)‖2
L2ds

≤η sup
0≤t≤T

‖(hj2 − hj1)(t)‖2
L∞ + Cη

∫ T

0

∣∣∣
( 1

j2
− 1

j1

)
Pγf j1(s)

∣∣∣2
L2(γ−)

ds

≤η sup
0≤t≤T

‖(hj2 − hj1)(t)‖2
L∞

+ Cη

(
1
j2
1

+
1
j2
2

)
sup

0≤t≤T
{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)}2,

where we have used (3.62) in the last inequality. Again, applying (3.8) to the difference hj2−hj1 ,
we get that

sup
0≤t≤T

‖(hj2 − hj1)(t)‖L∞ + sup
0≤t≤T

|(hj2 − hj1)(t)|L∞(γ)

≤C sup
0≤t≤T

∣∣∣w
( 1

j2
− 1

j1

)
Pγf j1

∣∣∣
L∞(γ−)

+ C‖ν1/2(f j2 − f j1)‖L2([0,T ];L2)

≤Cη1/2 sup
0≤t≤T

‖(hj2 − hj1)(t)‖L∞

+ Cη

( 1
j1

+
1
j2

)
sup

0≤t≤T
{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)}.

Taking η > 0 suitably small, the above estimate yields that hj is Cauchy in L∞. Let h(t, x, v)
be the limit function of hj . It is direct to check that f := h

w solves (3.36), and the estimate
(3.57) follows from (3.62). Moreover, since each f j is time-periodic with period T , then f is
also time-periodic with the same period T . The continuity follows in a similar way. Thus, the
proof of Lemma 3.6 is complete. �

We now move to the third step for treating the existence and uniform estimates of solutions
to the linear problem (3.38) where the linear collision term is involved. For the proof ,we follow
the same strategy as in [3].

Lemma 3.7. Let −3 < γ ≤ 1, ε > 0, 0 ≤ q < 1/8 and β > 3. Under the same assumption
as in Lemma 3.5, the linear problem (3.38) admits a unique time-periodic solution fε(t, x, v)
with period T , satisfying the following estimate:

sup
0≤t≤T

{‖wfε(t)‖L∞ + |wfε(t)|L∞(γ)

}

≤Cε sup
0≤t≤T

{|wr(t)|L∞(γ−) + ‖ν−1wg(t)‖L∞
}
. (3.63)

Moreover, if Ω is convex, g is continuous in R × Ω × R
3, and r is continuous in R × γ−, then

fε(t, x, v) is also continuous away from R × γ0.

Proof. The proof relies on the following uniform-in-λ estimate on the solution fλ,ε to the
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modified linear problem (3.37) for 0 ≤ λ ≤ 1:

sup
0≤t≤T

{‖wfλ,ε(t)‖L∞ + |wfλ,ε(t)|L∞(γ)

}

≤Cε sup
0≤t≤T

{|wr(t)|L∞(γ−) + ‖ν−1wg(t)‖L∞
}
, (3.64)

where the positive constant Cε is independent of λ but may depend on ε. Once (3.64) is
established, one can use the same bootstrap argument as in [3] to complete the whole proof
of Lemma 3.7, particularly deriving the estimate (3.64). Thus, for brevity of presentation, in
what follows we only show the uniform estimate (3.64).

Taking the inner product of (3.37) with fλ,ε over [0, T ]× Ω × R
3 gives that

∫ T

0

ε‖fλ,ε(s)‖2
L2 + ‖ν1/2fλ,ε(s)‖2

L2 +
1
2
|fλ,ε(s)|2L2(γ+)ds

≤
∫ T

0

〈λKfλ(s), fλ(s)〉 +
1
2

∣∣Pγfλ,ε(s) + r(s)
∣∣2
L2(γ−)

+
ε

4
‖fλ,ε(s)‖2

L2 +
1
ε
‖g(s)‖2

L2ds. (3.65)

Note that due to the non-negativity of L = ν − K,

〈λKfλ,ε, fλ,ε〉 ≤ λ‖ν1/2fλ,ε‖2
L2 ,

for any 0 ≤ λ ≤ 1. Then from (3.65), we have

3ε

4

∫ T

0

‖fλ,ε(s)‖2
L2ds +

1
2

∫ T

0

|(I − Pγ)fλ,ε(s)|2L2(γ+)ds

≤η

2

∫ T

0

∣∣Pγfλ,ε(s)
∣∣2
L2(γ+)

+ Cη

∫ T

0

|r(s)|2L2(γ−)ds +
1
ε

∫ T

0

‖g(s)‖2
L2ds. (3.66)

Here η > 0 can be chosen to be arbitrarily small. Similar for obtaining (3.59), we have that

∫ T

0

|Pγfλ,ε(s)|2L2(γ+)ds

≤C

∫ T

0

‖e− |v|2
16 fλ,ε(s)‖2

L2 + |(I − Pγ)fλ,ε(s)|2L2(γ+) + ‖e− |v|2
16 g(s)‖2

L2ds

+ C sup
0≤t≤T

‖e− |v|2
16 fλ,ε(t)‖2

L∞ . (3.67)

Substituting (3.67) into (3.66) gives that for any small constant η > 0,

ε

2

∫ T

0

‖fλ,ε(s)‖2
L2ds +

1
4

∫ T

0

|(I − Pγ)fλ,ε(s)|2L2(γ+)ds

≤Cη sup
0≤t≤T

‖e− |v|2
16 fλ,ε(t)‖2

L∞ + Cη,ε

∫ T

0

|r(s)|2L2(γ−)ds + Cη,ε

∫ T

0

‖g(s)‖2
L2ds

≤Cη sup
0≤t≤T

‖wfλ,ε(t)‖2
L∞ + Cη,ε sup

0≤t≤T
{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)}2. (3.68)
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Applying the L∞ estimate (3.8) to hλ,ε := wfλ,ε, we have

sup
0≤t≤T

{‖hλ,ε(t)‖L∞ + |hλ,ε(t)|L∞(γ)}

≤C sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)} + C
∥∥fλ,ε

∥∥
L2([0,T ];L2)

≤Cη1/2 sup
0≤t≤T

‖hλ,ε(t)‖L∞ + Cη,ε sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)},

where we have used (3.68) in the second inequality. Letting η > 0 be small enough, it then
follows from the above estimate that

sup
0≤t≤T

{‖hλ,ε(t)‖L∞ + |hλ,ε(t)|L∞(γ)} ≤ Cε sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)}.

This shows (3.64) and then completes the proof of Lemma 3.7. �

3.4 Solution to the Linear Inhomogeneous Problem

The last step is concerned with the limit procedure ε → 0.

Proof of Proposition 3.1. Taking the inner product of (3.38) of fε over [0, T ]×Ω×R
3, we get

that for any η > 0,

ε

∫ T

0

‖fε(s)‖2
L2ds +

∫ T

0

〈Lfε(s), fε(s)〉ds +
1
2

∫ T

0

|(I − Pγ)fε(s)|L2(γ+)ds

≤η

∫ T

0

‖ν1/2fε(s)‖2
L2ds + η

∫ T

0

|Pγfε(s)|2L2(γ+)ds

+ Cη

∫ T

0

‖ν−1/2g(s)‖2
L2ds + Cη

∫ T

0

|r(s)|2L2(γ−)ds. (3.69)

By the coercivity estimate (2.2), it holds that

∫ T

0

〈Lfε(s), fε(s)〉ds ≥ c0

∫ T

0

‖ν1/2(I − P )fε(s)‖2
L2ds,

where the projection P is defined in (2.1). For the estimate on Pγfε, it is direct to see that

(∂t + v · ∇x)
(
e−

|v|2
4 (fε)2

)
= 2e−

|v|2
4 gfε − 2e−

|v|2
4 fεLfε − 2εe−

|v|2
4 (fε)2.

Then it follows that

‖(∂t + v · ∇x)
(
e−

|v|2
4 (fε)2

)‖L1 ≤ C‖e− |v|2
16 g‖2

L2 + C‖e− |v|2
16 fε‖2

L2 .

Thus, similar for obtaining (3.67), it holds that

∫ T

0

|Pγfε(s)|2L2(γ+)ds

≤C

∫ T

0

‖e− |v|2
16 fε(s)‖2

L2 + |(I − Pγ)fε(s)|2L2(γ+) + ‖e− |v|2
16 g(s)‖2

L2ds

+ C sup
0≤t≤T

‖e− |v|2
16 fε(t)‖2

L∞ . (3.70)
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For the macroscopic part Pfε, we note that fε satisfies the zero-mass condition (3.39). Then
from [7, Lemma 6.1] there exists a functional Gfε(t) with the property |Gfε(t)|� ‖fε(t)‖2

L2 such
that

∫ t

0

‖ν1/2Pfε(s)‖2
L2

�
(
Gfε(t) − Gfε(0)

)
+

∫ t

0

‖ν1/2(I − P )fε(s)‖2
L2ds

+
∫ t

0

‖g(s)‖2
L2ds +

∫ t

0

|r(s)|2L2(γ−)ds +
∫ t

0

|(I − Pγ)fε(s)|2L2(γ+)ds. (3.71)

In particular, taking t = T in (3.71) and utilizing the periodicity of fε, we get
∫ T

0

‖ν1/2Pfε(s)‖2
L2

≤C

∫ T

0

‖ν1/2(I − P )fε(s)‖2
L2ds + C

∫ T

0

‖g(s)‖2
L2ds

+ C

∫ T

0

|r(s)|2L2(γ−)ds + C

∫ T

0

|(I − Pγ)fε(s)|2L2(γ+)ds. (3.72)

A suitable combination of (3.69), (3.70) and (3.72) yields that
∫ T

0

‖ν1/2fε(s)‖2
L2 + |fε(s)|2L2(γ+)ds

≤η sup
0≤t≤T

‖e− |v|2
16 fε(t)‖2

L∞ + Cη

∫ T

0

‖ν−1/2g(s)‖2
L2 + ‖g(s)‖2

L2 + |r(s)|2L2(γ−)ds

≤η sup
0≤t≤T

‖e− |v|2
16 fε(t)‖2

L∞ + Cη sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)}2, (3.73)

where η > 0 can be chosen to be arbitrarily small. Moreover, in terms of the L∞ estimate (3.8),
it holds that

sup
0≤t≤T

{‖wfε(t)‖L∞ + |wfε(t)|L∞(γ)}

≤C sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)} + C‖ν1/2fε‖L2([0,T ];L2)

≤Cη1/2 sup
0≤t≤T

‖wfε(t)‖L∞ + Cη sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)},
(3.74)

where we have used (3.73) in the last inequality. Then taking η > 0 suitably small in (3.74),
we get the desired estimate.

To pass to the limit ε → 0+, we consider the difference fε1 − fε2 with 0 < ε1, ε2 � 1. We
see that fε1 − fε2 solves the problem:

{
∂t(fε1 − fε2) + v · ∇x(fε1 − fε2) + L(fε1 − fε2) = ε2f

ε2 − ε1f
ε1 ,

fε1 − fε2 |γ− = Pγ(fε1 − fε2).

Similar as before, direct energy estimates show that
∫ T

0

‖ν1/2(fε1 − fε2)(s)‖2
L2 + |(fε1 − fε2)(s)|2L2(γ+)ds
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+ ‖ν−1/2fε2(s)‖2
L2 + ‖fε1(s)‖2

L2 + ‖fε2(s)‖2
L2ds

≤η sup
0≤t≤T

‖e− |v|2
16 (fε1 − fε2)(t)‖2

L∞

+ Cη(ε2
1 + ε2

2) sup
0≤t≤T

{‖wfε1(t)‖L∞ + ‖wfε2(t)‖L∞}2

≤η sup
0≤t≤T

‖e− |v|2
16 (fε1 − fε2)(t)‖2

L∞

+ Cη(ε2
1 + ε2

2) sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)}2.

Then applying the L∞ estimate (3.8) to hε1 − hε2 := w(fε1 − fε2), we get that in the case of
0 ≤ γ ≤ 1,

sup
0≤t≤T

‖(hε1 − hε2)(t)‖L∞ + sup
0≤t≤T

|(hε1 − hε2)(t)|L∞(γ)

≤C(ε1 + ε2) sup
0≤t≤T

{‖ν−1hε1(t)‖L∞ + ‖ν−1hε2(t)‖L∞
}

+ C‖ν1/2(fε1 − fε2)‖L2([0,T ];L2)

≤Cη sup
0≤t≤T

‖(hε1 − hε2)(t)‖L∞

+ Cη(ε1 + ε2) sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)},

≤C(ε1 + ε2) sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)}, (3.75)

and in the case of −3 < γ < 0,

sup
0≤t≤T

‖ν(hε1 − hε2)(t)‖L∞ + sup
0≤t≤T

|ν(hε1 − hε2)(t)|L∞(γ)

≤C(ε1 + ε2) sup
0≤t≤T

{‖hε1(t)‖L∞ + ‖hε2(t)‖L∞
}

+ C‖ν1/2(fε1 − fε2)‖L2([0,T ];L2)

≤Cη1/2 sup
0≤t≤T

‖e− |v|2
16 (hε1 − hε2)(t)‖L∞

+ Cη(ε1 + ε2) sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)}

≤C(ε1 + ε2) sup
0≤t≤T

{‖ν−1wg(t)‖L∞ + |wr(t)|L∞(γ−)}, (3.76)

by taking η > 0 suitably small. Therefore, from (3.75) and (3.76) we have respectively shown
that fε is Cauchy in L∞

w for 0 ≤ γ ≤ 1, and Cauchy in L∞
νw for −3 < γ < 0. Let f(t, x, v) be

the limit function of fε(t, x, v) in the corresponding function space. It is direct to check that
f(t, x, v) satisfies (3.1). Finally, the time-periodicity and continuity of f directly follow from
the time-periodicity and continuity of fε. The proof of Proposition 3.1 is therefore complete.�

3.5 Proof of Theorem 1.1.

We consider the solution sequence {f j(t, x, v)} iteratively solved from

⎧⎨
⎩

∂tf
j+1 + v · ∇xf j+1 + Lf j+1 = −L√

μf∗f j + Γ(f j , f j),

f j+1|γ− = Pγf j+1 +
μθ − μ√

μ

∫
v′·n(x)>0

f j√μ{v′ · n(x)}dv′ + r,
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for j = 0, 1, 2 · · ·, where we have set f0 ≡ 0. Here we have denoted

r(t, x, v) =
μθ − μθ̄√

μ

∫
v′·n(x)>0

F ∗(x, v′){v′ · n(x)}dv′,

and

L√
μf∗f j = − 1√

μ
[Q(

√
μf∗,

√
μf j) + Q(

√
μf j ,

√
μf∗)].

A direct calculation shows that
∫

Ω×R3
Γ(f j, f j)

√
μ(v)dvdx =

∫
Ω×R3

L√
μf∗f j

√
μ(v)dvdx = 0, (3.77)

and
∫

v·n(x)<0

[μθ(v) − μ(v)]{v · n(x)}dv =
∫

v·n(x)<0

[μθ(v) − μθ̄(v)]{v · n(x)}dv = 0. (3.78)

Furthermore, one can verify that

‖ν−1wL√
μf∗f j‖L∞ + ‖ν−1wΓ(f j , f j)‖L∞ ≤ Cδ‖wf j‖L∞ + C‖wf j‖2

L∞ , (3.79)

and
∣∣∣∣w

{
r +

μθ − μ√
μ

∫
v′·n(x)>0

f j√μ{v′ · n(x)}dv′
}∣∣∣∣

L∞(γ−)

≤ Cδ1 + Cδ|f j |L∞(γ+). (3.80)

Recall (3.77)–(3.80). Then, by applying (3.3) to f j+1, we get

sup
0≤s≤T

{‖wf j+1(s)‖L∞ + |wf j+1(s)|L∞(γ)}

≤Cδ1 + C sup
0≤s≤T

{
w‖f j(s)‖2

L∞ + δ‖wf j(s)‖L∞ + δ|wf j(s)|L∞(γ+)

}
. (3.81)

From (3.81), it is direct to prove by an induction argument that

sup
0≤s≤T

‖wf j(s)‖L∞ + sup
0≤s≤T

|wf j(s)|L∞(γ) ≤ 2Cδ1, (3.82)

for j = 1, 2, · · ·, provided that δ > 0 is suitably small, where C is a generic constant independent
of j. For the convergence of the approximation sequence f j, we consider the difference f j+1−f j

which satisfies

∂t(f j+1 − f j) + v · ∇x(f j+1 − f j) + L(f j+1 − f j)
=−L√

μf∗(f j − f j−1) + Γ(f j − f j−1, f j) + Γ(f j−1, f j − f j−1),

with the boundary condition

(f j+1 − f j)|γ− =Pγ(f j+1 − f j)

+
μθ − μ√

μ

∫
v′·n(x)>0

(f j − f j−1)
√

μ{v′ · n(x)}dv′.
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Once again, applying (3.3) to f j+1 − f j gives that

sup
0≤s≤T

{‖w(f j+1 − f j)(s)‖L∞ + |w(f j+1 − f j)(s)|L∞(γ)

}

≤C
(
δ + sup

0≤s≤T

{‖wf j(s)‖L∞ + ‖wf j−1(s)‖L∞})

× sup
0≤s≤T

{‖w(f j − f j−1)(s)‖L∞ + |w(f j − f j−1)(s)|L∞(γ+)

}

≤Cδ sup
0≤s≤T

{‖w(f j − f j−1)(s)‖L∞ + |w(f j − f j−1)(s)|L∞(γ+)

}

≤1
2

sup
0≤s≤T

{‖w(f j − f j−1)(s)‖L∞ + |w(f j − f j−1)(s)|L∞(γ+)

}
, (3.83)

where we have used (3.82) in the second inequality and also we have taken δ > 0 small enough
such that Cδ ≤ 1/2. Hence, f j(t, x, v) is a Cauchy sequence in L∞

w . Let

fper(t, x, v) = lim
j→∞

f j(t, x, v)

in L∞
w . It is direct to check that

F per(t, x, v) = F∗(x, v) +
√

μfper(t, x, v)

is the time-periodic solution to the boundary-value problem (1.1) and (1.2), and also (1.8)
and (1.9) are satisfied. The proof of (1.7) for the non-negativity of F per(t, x, v) is left to the
next section. The uniqueness and continuity of fper(t, x, v) can be obtained in a usual way[3].
Therefore this completes the proof of Theorem 1.1 �

4 Asymptotical Stability

This section is concerned with the large-time behavior of solutions to the initial-boundary
value problem (1.10) whenever F0(x, v) is sufficiently close to F per(0, x, v) at initial time. As
a byproduct, the result about the dynamical stability of the non-trivial time-periodic profile
F per(t, x, v) in turn yields its non-negativity.

As for obtaining the existence of the time-periodic solution F per(t, x, v), we need to first
study the linear inhomogeneous problem in the following Proposition 4.1. As its proof is is
more or less the same as the one of [7, Proposition 7.1] for 0 ≤ γ ≤ 1 and [3, Proposition 4.4]
for −3 < γ < 0. The full details are omitted for brevity.

Proposition 4.1. Let −3 < γ ≤ 1, 0<q < 1
8 and β > max{3, 3 − γ}. Let

‖wf0‖L∞ + ‖ν−1wg‖L∞ < ∞,

and ∫
Ω

∫
R3

f0(x, v)
√

μ(v) dxdv =
∫

Ω

∫
R3

g(t, x, v)
√

μ(v) dxdv = 0.

Then if
sup

0≤t≤T
|θ(t, ·) − 1|L∞(∂Ω)

is sufficiently small, the linear inhomogeneous initial-boundary value problem:
⎧⎪⎪⎨
⎪⎪⎩

∂tf + v · ∇xf + Lf = g, t > 0, x ∈ Ω, v ∈ R
3,

f(t, x, v)|γ− = Pγf +
μθ − μ√

μ

∫
v′·n(x)>0

f
√

μ{n(x) · v′} dv′,

f(t, x, v)|t=0 = f0(x, v),



The Boltzmann Equation with Time-periodic Boundary Temperature 207

admits a unique solution f(t, x, v) satisfying that

sup
0≤s≤t

ecsρ{‖wf(t)‖L∞ + |wf(t)|L∞(γ)}

≤C‖wf0‖L∞ + C sup
0≤s≤t

ecsρ‖ν−1wg(s)‖L∞ , (4.1)

for any t > 0, where ρ is defined in (1.13), and c > 0 is a generic small constant. Moreover, if Ω
is convex, f0(x, v) is continuous except on γ0, g is continuous in the interior of [0,∞)×Ω×R

3,

f0(x, v)|γ− = Pγf0 +
μθ − μ√

μ

∫
v′·n(x)>0

f0
√

μ{n(x) · v′}dv′,

and θ(t, x) is continuous over R×∂Ω, then the solution f(t, x, v) is also continuous over [0,∞)×
{Ω̄ × R

3 \ γ0}.
Proof of Theorem 1.2. We construct the solution via the following iteration:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tf
j+1 + v · ∇xf j+1 + Lf j+1 = −L√

μfperf j + Γ(f j , f j),

f j+1|γ− = Pγf j+1 +
μθ − μ√

μ

∫
v′·n(x)>0

f j+1√μ{v′ · n(x)}dv′,

f j+1(0, x, v) = f0(x, v),

for j = 0, 1, 2 · · ·, where we have set f0 ≡ 0, and also

L√
μfperf j := − 1√

μ
[Q(

√
μfper,

√
μf) + Q(

√
μf,

√
μfper)].

Similar for obtaining estimates (3.77)–(3.80), we have
∫

Ω×R3
Γ(f j, f j)

√
μ(v)dvdx =

∫
Ω×R3

L√
μfperf j

√
μ(v)dvdx = 0,

and
‖ν−1w[L√

μfperf j‖L∞ + ‖ν−1wΓ(f j , f j)]‖L∞ ≤ Cδ′‖wf j‖L∞ + C‖wf j‖2
L∞ .

Then we can apply the linear time-decay property (4.1) to f j+1 to obtain that

sup
0≤s≤t

ecsρ{‖wf j+1(s)‖L∞ + |wf j+1(s)|L∞(γ)}

≤ C‖wf0‖L∞ + Cδ′ sup
0≤s≤t

ecsρ‖wf j(s)‖L∞ + C sup
0≤s≤t

ecsρ‖wf j(s)‖2
L∞ . (4.2)

From (4.2), we can also use the induction argument to show that

sup
0≤s≤t

ecsρ{‖wf j+1(s)‖L∞ + |wf j+1(s)|L∞(γ)} ≤ 2C‖wf0‖L∞ ,

provided that both δ′ > 0 and ‖wf0‖L∞ are suitably small. Similar to obtain (3.83), one can
show that {f j}∞j=1 is a Cauchy sequence in L∞

w , then we obtain the solution f(t, x, v) as the
limit of f j(t, x, v). The uniqueness and continuity is standard, and the positivity can be shown
by the same method as in [7]. Therefore, we complete the proof of Theorem 1.2. �
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