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Introduction

We consider the discrete nonlinear Schrödinger equation (DNLS)

iψ̇n + Δψn − ṽnψn + γn|ψn|p−2ψn = 0, n ∈ Z, 2 < p <∞, (1)

where Δψn = ψn+1 + ψn−1 − 2ψn is the discrete Laplacian operator, and ṽn and γn are real-
valued sequences−the potential and anharmonic parameters, respectively. We consider the
special solutions of (1) of the form ψn = e−itωun. These solutions are called breather solutions
or standing waves due to their periodic behavior. Inserting the ansatz of standing waves into (1),
we see that any breather solution satisfies the infinite nonlinear system of algebraic equations

−Δun + ṽnun − ωun − γn|un|p−2un = 0. (2)

Looking for solitary waves, we supplement equation (2) with zero boundary condition at infinity:

lim
n→±∞un = 0. (3)

In the following we will consider a more general equation

−Δun + vnun − γnf(n, un) = 0 (4)

with the same boundary Condition (3), where vn = ṽn − ω is the potential of equation (4).
We are interested in the existence of sign-changing solutions. As usual, we say that a solution
u = {un}n∈Z of (4) is sign-changing if sgn(us) = −sgn(ut) for some s ∈ Z and t ∈ Z. And
a solution u = {un}n∈Z of (4) is positive if sgn(us) = 1 for all s ∈ Z. We consider (4) as a
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nonlinear equation in the space l2 of two-sided infinite sequences. Note that any element of l2

automatically satisfies (3).
DNLS equation is a nonlinear lattice system that appears in many areas of physics such as

nonlinear optics [2], biomolecular chains [8] and Bose-Einstein condensates [11]. Some reviews
on DNLS equations can be found in [3,4,7], especially both theoretical and numerical simulation
results can be found in [7]. The discrete Schröinger equation with periodic potentials and peri-
odic nonlinearities has found a great deal of interest in very recent years, see [12–14,17,21,25].
The discrete Schröinger equation with unbounded potential also has been investigated by some
authors, see [15,22–24]. In these papers, the condition that the potential V = {vn}n∈Z satisfies

lim
|n|→∞

vn = +∞. (5)

plays an essential role. Condition (5) is used to establish compact imbedding theorem (see [23,
Theorem 2.2]). So far as the authors are aware, the investigation on the standing wave solutions
for DNLS equation with nonperiodic bounded potential cannot be found in the literature.
Moreover, there is still no result on the existence and multiplicity of sign-changing solutions for
(4).

The main purpose of the present paper is to establish the existence and infinitely many
sign-changing decaying solutions for equation (4) with nonperiodic bounded potential. Since
condition (5) is not satisfied, to overcome the difficulty caused by the lack of compactness, we
construct the positive linear compact operator T (see (9)). But T is not symmetric with respect
to the usual inner product of l2. Therefore, we introduce a new inner product of l2 to guarantee
that T is symmetric. In argument, the operator T and its properties play an important role.

In order to state our results we require the following assumptions:
(V1) the discrete potential V = {vn}n∈Z is bounded and satisfies 0 < v ≤ vn ≤ v for all

n ∈ Z for fixed v and v.
(V2) 0 < γn ≤ γ for all n ∈ Z and fixed γ > 0, and

∑

n∈Z

γn < +∞.

(H1) f(n, 0) = 0, f ∈ C(R × R,R), and lim sup
|x|→0

|f(n,x)|
|x| < λ1 uniformly in n ∈ Z, where λ1

is given in Proposition 10.
(H2) there are constants C > 0 and p > 2 such that |f(n, x)| ≤ C(1+ |x|p−1) for n ∈ Z, x ∈

R.
(H3) there is η > 2 such that 0 < ηF (n, x) ≤ f(n, x)x for n ∈ Z, x �= 0, where F (n, x) =

∫ x

0 f(n, s)ds.

(H4) lim
|x|→∞

f(n, x)
x = λ uniformly in n ∈ Z, and λ > λ2 is not an eigenvalue of (19).

(H5) f(t, x) is odd in x, that is, f(n,−x) = −f(n, x) for all n ∈ Z and x ∈ R.
Here are the main results.

Theorem 1. Assume (V1), (V2), and (H1)–(H3) hold. Then problem (4) has at least a
positive solution, a negative solution and a sign-changing solution.

Theorem 2. Assume (V1), (V2), (H1) and (H4) hold. Then Problem (4) has at least a
positive solution, a negative solution and a sign-changing solution.

Theorem 3. Assume (V1), (V2), (H1)–(H3) and (H5) hold. Then Problem (4) has an un-
bounded sequence of sign-changing solutions.

Theorem 4. Assume that lim
|x|→0

f(n,x)
x = 0 uniformly in n ∈ Z. Then any solution u obtained

in Theorems 1–3 decays exponentially at infinity, i.e., there exist two positive constants C and
α such that |un| ≤ Ce−α|n| with n ∈ Z.
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2 The Eigenvalue Problem

In this section, a difference operator related to Problem (4) is introduced, and some properties
of the operator are discussed. We consider the real sequence spaces

lp ≡ lp(Z) =
{

u = {un}n∈Z : ∀n ∈ Z, un ∈ R,
∥

∥u
∥

∥

p
=

(

∑

n∈Z

∣

∣un

∣

∣

p
)1/p

<∞
}

, 1 ≤ p <∞,

with ‖u‖∞ = sup
n∈Z

|un| when p = ∞. The case p = 2 corresponds to the Hilbert space l2 and the

symbol (·, ·)2 stands for its standard inner product. The following embedding relation holds:

lq ⊂ lp, ‖u‖p ≤ ‖u‖q, 1 ≤ q ≤ p ≤ ∞. (6)

Let P = {u ∈ l2 : un ≥ 0, n ∈ Z}. Obviously, P (−P ) is the positive (negative) cone in l2, and
P (−P ) has empty interior. We introduce the new inner product of l2 as follows

(u,w) =
∑

n∈Z

((un+1 − un)(wn+1 − wn) + vnunwn). (7)

The induced norm is
∥

∥u
∥

∥ =
(

∑

n∈Z

(∣

∣un+1 − un

∣

∣

2 + vn

∣

∣un

∣

∣

2)) 1
2 , which is equivalent to the usual

norm of l2 since
v
∥

∥u
∥

∥

2

2
≤ ∥

∥u
∥

∥

2 ≤ (4 + v)
∥

∥u
∥

∥

2

2
. (8)

Lemma 5. Let w ∈ l2 and v > 0. Then the problem

−Δun + vun = wn, n ∈ Z

has a unique solution u ∈ l2 with un =
∑

s∈Z

G(n, s)ws, where

G(n, s) =
1

λ− λ−1

{

λs−n, s ≤ n,

λn−s, n ≤ s
λ =

v + 2 +
√

v(v + 4)
2

> 1.

Proof. Let un =
∑

s∈Z

G(n, s)ws and σ = (λ− λ−1)−1. A simple computation shows that

−Δun + vun = σ
n

∑

s=−∞
λsws(−Δλ−n + vλ−n) + σ

+∞
∑

s=n+1

λ−sws(−Δλn + vλn) + wn,

and −Δλ−n + vλ−n = 0, n ∈ Z. Thus, −Δun + vun = wn for all n ∈ Z.
Now we prove u ∈ l2. It is easy to see that cn :=

∑

s∈Z

G(n, s) = 1
v and ds :=

∑

n∈Z

G(n, s) = 1
v .

By the definition of u, we have that |un

cn
≤ ∑

s∈Z

G(n,s)
cn

∣

∣ws

∣

∣. Since the positive numbers G(n,s)
cn

for

n ∈ Z with a fixed n have the sum 1, the right member is a weighted average of the
∣

∣ws

∣

∣. We
note that x2 is a convex function of x � 0, the 2-th power of the the right member does not
exceed the weighted average of the

∣

∣ws

∣

∣

2 with the same weights [5, p.70]. Thus,

( |un|
cn

)2

≤
∑

s∈Z

∣

∣G(n, s)
∣

∣

cn

∣

∣ws

∣

∣

2
,

∣

∣un

∣

∣

2 ≤ cn
∑

s∈Z

G(n, s)
∣

∣ws

∣

∣

2
.
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It follows that
∥

∥u
∥

∥

2

2
≤ 1
v

∑

s∈Z

ds

∣

∣ws

∣

∣

2 ≤ 1
v2

∥

∥w
∥

∥

2

2
. (9)

This gives u ∈ l2. The proof of Lemma 5 is completed. �

Define operators K,L,Λ, f , respectively, by

(Ku)n =
∑

s∈Z

G(n, s)us; (Lu)n = (v − vn)un; (Λu)n = γnun; (fu)n = f(n, un),

where u ∈ l2, n ∈ Z. It is easy to see from Lemma 5 and (9) that KL : l2 → l2 is a linear
continuous operator with

∥

∥KL
∥

∥ ≤ ∥

∥K
∥

∥

∥

∥L
∥

∥ ≤ v−v
v < 1. This gives that I −KL has a bounded

inverse (I −KL)−1, where I is the identity operator. Let

T := (I −KL)−1KΛ = KΛ + (KL)KΛ + · · · + (KL)nKΛ + · · · , (10)

where we used the Neumann expansion formula. Then T : l2 → l2 is linear continuous.

Lemma 6. Suppose that (V1) and (V2) hold, then for each w ∈ l2, the following linear
problem

−Δun + vnun = γnwn, n ∈ Z (11)

has a unique solution u ∈ l2, where un = (Tw)n.

Proof. It is easy to see that (11) is equivalent to the operator equation u = KLu + KΛw.
Therefore, System (11) has a unique solution u = Tw. �

Lemma 7. Assume (H1) and (V2). Then f : l2 → l2 is continuous and Λf : l2 → l2 is
compact.

Proof. By (H1), there exists δ > 0 such that
∣

∣f(n, x)
∣

∣≤ λ1|x| for any |x| ≤ δ. For any
u ∈ l2, there is a positive integer N such that |un| ≤ δ for any |n| > N. Thus, ‖fu‖2

2 =
∑

|n|≤N

|f(n, un)t|2 + λ2
1

∑

|n|>N

|un|2 <∞. Then fu ∈ l2, which implies that f : l2 → l2.

We now show f : l2 → l2 is continuous. Suppose that uk → u0 in l2 as k → +∞. Then
there exists a positive integer N1 such that sup

|n|>N1

|uk,n| ≤ δ for k = 0, 1, 2, · · ·. Thus, we have

that |(fuk)n| = |f(n, uk,n)| ≤ λ1|uk,n|, ∀ |n| > N1. This gives that
∣

∣(fuk)n − (fu0)nbig| ≤ λ1

(|uk,n| + |u0,n|
) ≤ λ1

(|uk,n − u0,n| + 2|u0,n|
)

, ∀ |n| > N1. (12)

Now we claim that fuk → fu0 in l2 as k → +∞. Suppose the contrary, then there exist
ε0 > 0 and a subsequence of {uk} (still denoted by {uk}) such that

∑

n∈Z

∣

∣(fuk)n − (fu0)n

∣

∣

2 ≥ ε0, k = 1, 2, · · · . (13)

Note that uk → u0 in l2. Then, passing to a subsequence if necessary, it can be assumed that
+∞
∑

k=1

‖uk − u0‖2 < +∞. This means that uk,n → u0,n for every n ∈ Z and

w =
{

wn :=
+∞
∑

k=1

|uk,n − u0,n|
}

n∈Z

∈ l2. (14)

Combining (12) and (14), we get
∣

∣(fuk)n − (fu0)n

∣

∣ ≤ λ1

(

wn + 2|u0,n|
)

, ∀ |n| > N1. (15)
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Let q = λ1(w + 2|u0|). We have q ∈ l2. So, there is a positive integer N2 > N1 such that
∑

|n|>N2

|q|2 < ε0
2
. (16)

The continuity of f implies that for sufficiently large k,
∑

|n|≤N2

∣

∣(fuk)n − (fu0)n

∣

∣

2
<
ε0
2
. (17)

It follows from (15)–(17) that
∑

n∈Z

|(fuk)n − (fu0)n|2 =
∑

|n|>N2

|(fuk)n − (fu0)n|2 +
∑

|n|≤N2

|(fuk)n − (fu0)n|2 < ε0,

which contradicts to (13). Thus, the claim above is true and f : l2 → l2 is continuous.
Let Θ = {θn}n∈Z satisfy θn = γn

f(n,un)
un

, if un �= 0; θn = 0, if un = 0. By assumptions (H1)
and (V2), θn → 0 as |n| → ∞. This and Lemma 2.3 in [23] mean that the multiplication by θn

is a compact operator in l2. Thus, the operator Λf is compact. �

Remark 8. By Lemma 6 we know that the solution of (4) is equivalent to the fixed point of
T f .

T defined in (10) is an important operator in our later discussion. We present some prop-
erties of T . Let us point out that T is not symmetric with respect to the usual inner product
of l2.

Lemma 9. If (V1) and (V2) are satisfied, then
(i) T : l2 → l2 is compact symmetric with respect to the inner product (·) defined by (7).
(ii) T : l2 → l2 is positivity preserving, that is, (Tu)n > 0, n ∈ Z for all u ∈ P with u �= 0.

Proof. (i) By (V2) and Lemma 2.3 in [23], the multiplication operator Λ is a compact operator.
Notice that the product of a compact operator with a bounded operator is compact ([6, Theorem
4.8]). Thus, T = (I −KL)−1KΛ : l2 → l2 is a compact operator. For any given x, y ∈ l2, let
u = Tx. It follows from Lemma 6 that

(Tx, y) = (u, y) =
∑

n∈Z

(−Δun + vnun)yn =
∑

n∈Z

γnxnyn. (18)

This implies that (Tx, y) = (x, T y). Then T is symmetric.
(ii) From Lemma 5, we see that G(n, s) > 0 for all n, s ∈ Z. This and (V2) imply that

(KΛu)n > 0, n ∈ Z for all u ∈ P with u �= 0. Obviously, KL (P ) ⊂ P , that is, KL is positive.
By (10), we obtain that T is positivity preserving. �

Proposition 10. If (V1) and (V2) are satisfied, then the linear eigenvalue problem

−Δun + vnun = λγnun, n ∈ Z (19)

possesses a sequence of eigenvalues 0 < λ1 < λ2 ≤ · · · ≤ λk → ∞ as k → ∞, where each λk

has finite multiplicity, the first eigenvalue λ1 is simple with eigenfunction ϕ1 > 0 on Z and the
eigenfunctions ϕk correspondent to λk (k ≥ 2) are all sign-changing.

Proof. From Lemma 9 and spectral theory of symmetric compact operators on Hilbert space
[6, 20], we obtain the result. �

Remark 11. By Proposition 10, we see that |(Tx, y)| ≤ 1
λ1
‖x‖‖y‖ for all x, y ∈ l2. The

eigenfunction ϕ1 with ϕ1 > 0 is also obtained by the Krein-Rutmann theorem ([18, Theorem
4.2.2]).
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3 The Variational Framework

In this section, we shall establish variational framework for the Equation (4). On the Hilbert
space l2, we consider the functional J : l2 → R,

J(u) =
1
2

∑

n∈Z

(
∣

∣un+1 − un

∣

∣

2 + vn

∣

∣un

∣

∣

2) −
∑

n∈Z

γnF (n, un) � J1(u) − J2(u). (20)

It follows from (H1) that there exists δ > 0 such that for any |x| ≤ δ,

F (n, x) ≤ λ1

2

∣

∣x
∣

∣

2
. (21)

For any fixed u ∈ l2, take ˜N > 0 large such that
∣

∣un

∣

∣ ≤ δ for every
∣

∣n
∣

∣ > ˜N . By (21), one has
that

J2(u) ≤
∑

|n|≤Ñ

γnF (n, un) +
λ1γ

2

∑

|n|>Ñ

∣

∣un

∣

∣

2
<∞.

Then we obtain that J2 and J are both well defined on l2 if (H1) holds.

Lemma 12. If (V1), (V2) and (H1) hold, then J ∈ C1(l2,R), and for any u,w ∈ l2,

(J ′(u), w) =
∑

n∈Z

(

(un+1 − un)(wn+1 − wn) + vnunwn − γnf(n, un)wn

)

= (u− T fu,w). (22)

Moreover, J ′
2 is compact, and any nontrivial critical point of J is a nontrivial solution of (4).

Proof. It is easy to check that J1 ∈ C1(l2,R), and any u,w ∈ l2,

(J ′
1(u), w) = (u, w) =

∑

n∈Z

(

(un+1 − un)(wn+1 − wn) + vnunwn

)

, (23)

where J ′
1(u) is the Fréhet derivative of J1 at u. Now we show that J2 is Fréhet differentiable,

and
(J ′

2(u), w) =
∑

n∈Z

γnf(n, un)wn = (T fu,w). (24)

For any given u ∈ l2, let us define B(u) : l2 → R as follows

B(u)w =
∑

n∈Z

γnf(n, un)wn.

Obviously, B(u) is linear. By (H1), there exists δ > 0 such that
∣

∣f(n, x)
∣

∣≤ λ1|x| for any |x| ≤ δ.

We can easily have that there exists N > 0 such that
∣

∣un

∣

∣ ≤ δ for any |n| > N . Thus,

∣

∣B(u)w
∣

∣ ≤ D
∑

|n|≤N

γn

∣

∣wn

∣

∣ + λ1

∑

|n|>N

γn

∣

∣un

∣

∣

∣

∣wn

∣

∣ ≤ γ(D(2N + 1)
1
2 + λ1‖u‖2)‖w‖2,

where D = max|n|≤N

∣

∣f(n, un)
∣

∣ < ∞. Then B(u) is bounded. Moreover, for u, w ∈ l2, by the
mean value theorem, (18) and Lemma 7, we have

∣

∣J2(u + w) − J2(u) −B(u)w
∣

∣ =
∣

∣

∣

∑

n∈Z

γn(f(n , un + θnwn) − f(n, un))wn

∣

∣

∣

≤‖T ‖‖f(u+ θw) − fu‖‖w‖ = ◦(‖w‖),
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where 0 < θn < 1 and (θw)n = θnwn. Hence, J2 is Fréhet differentiable in l2, and (24) holds.
Next, it is to show that J ′

2(u) is continuous in u. Suppose that uk → u in l2. Owing to
Lemma 7, one has that

J ′
2(uk) − J ′

2(u) = sup
‖w‖=1

|(T fuk − T fu, w)| ≤ ‖T ‖‖fuk − fu‖ → 0 as k → ∞.

So, J ′
2(u) is continuous in u and J2 ∈ C1(l2,R). It is easy to see that J ∈ C1(l2,R). By (23)

and (24), we have that (22) holds. Furthermore, J ′
2 : l2 → l2 is compact by (10) and Lemma 7.

Lastly, we check that nontrivial critical points of J on l2 are nontrivial solutions of problem
(4). Let u ∈ l2 be a nontrivial critical point of J. Now, by (23) and (24), we have that
0 = (J ′(u), w) = (u − T fu,w) for all w ∈ l2. Hence u − T fu = 0. This, together with Remark
8, implies that u is a nontrivial solution of problem (4). This completes the proof. �

In order to study the critical points of J , we now recall two abstract critical point theorems
in [1,10], respectively. Also see [9,16] for related results.

Lemma 13 (See [10, Theorem 3.2]). Let E be a Hilbert space and J be a C1 functional
defined on E. Assume that J satisfies the PS condition on E and J ′(u) has the expression
J ′(u) = u − Au for u ∈ E. Assume that D1 and D2 are two open convex subsets of E with
the properties that A(∂D1) ⊂ D1, A(∂D2) ⊂ D2 and D1 ∩ D2 �= ∅. If there exists a path
h : [0, 1] → E such that

h(0) ∈ D1 \D2, h(1) ∈ D2 \D1,

] and
inf

u∈D1∩D2

J(u) > sup
t∈[0,1]

J(h(t)),

then J has at least four critical points, one in D1 ∩D2, one in D1 \D2, one in D2 \D1, and
one in E \ (D1 ∪D2).

In order to treat even functionals, we recall the notion of genus for a space B with involution
B � b �→ b ∈ B. The genus of B is defined by

gen (B) := inf{n ≥ 0 : ∃f ∈ C(B, R
n \ {0}), f is odd}.

Here a map f : B → R
n \ {0} is said to be odd if f(b) = −f(b) for all b ∈ B.

Let X be a Banach space, D± closed convex subsets of X , A ∈ C(X,X) an operator and
J ∈ C1(X,R) a functional. Consider D±, A andJ satisfying the following assumptions.

(D) O := int(D+) ∩ int(D−) �= ∅.
(A) the map A is compact, and A(D±) ⊂ int(D±).
(J1) the exist a1 > 0 anda2 > 0 such that for every u ∈ X , J ′(u)(u−A(u)) ≥ a1‖u−A(u)‖2

and ‖J ′(u)‖ ≤ a2‖u−A(u)‖.
(J2) there exists a path h : [0, 1] → X such that h(0) ∈ int (D+)\D− and h(1) ∈ intD−\D+,

and α0 := inf
u∈D+∩D−

J(u) > sup
t∈[0, 1]

J(h(t)).

(J3) there exist a number α1, a sequence {Xk}k∈N of subspaces of X and a sequence
{Rk}k∈N of positive numbers satisfying dimXk ≥ k for k ∈ N, and α0 = inf

u∈D+∩D−
J(u) > α1 ≥

sup
u∈Xk\Bk

J(u), where Bk := {u ∈ Xk : ‖u‖ ≤ Rk}.

Lemma 14 (See [1, Theorem 2.5]). Assume (D), (A), (J1) − (J3). Assume also that A is
odd, J is even and D+ = −D−. Define

dk := inf
S∈Γk

sup
u∈S

J(u) for k ≥ 2,
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where Γk := {h(Bm \B)\ (D+∪D−) : h ∈ Gm, m ≥ k, B = −B ∈ Bk open, gen (B) ≤ m−k}
with Gm := {h ∈ C(Bm, X) : h is odd and h(x) = x for x ∈ ∂XmBm}. Then

dk → +∞ as k → ∞ and K�
dk

�= ∅ for k ≥ 2,

where K�
dk

:= Kdk
\ (D+ ∪D−) with Kdk

:= {u ∈ X : J(u) = dk, J
′(u) = 0}.

4 Proof of Theorems

In the following we consider the convex cones P = {u ∈ l2 : u ≥ 0} and −P = {u ∈ l2 : u ≤ 0}.
The distance in l2 with respect to ‖ · ‖ is denoted by dist. For ε > 0, we define

D+
ε =

{

u ∈ l2 : dist (u, P ) < ε
}

, D−
ε =

{

u ∈ l2 : dist (u, −P ) < ε
}

.

Obviously, D+
ε ∩ D−

ε �= ∅. Note that D+
ε and D−

ε are open convex subsets of l2. Moreover,
l2 \ (D+

ε ∪D−
ε ) contains only sign changing functions.

Lemma 15. Assume that (V1), (V2), (H1) and (H2) are satisfied, and that f(n, x)x > 0 for
all x �= 0 and n ∈ Z. Then there exists ε0 > 0 and such that for 0 < ε < ε0, one has

(i) T f(∂D−
ε ) ⊂ D−

ε , and if u ∈ D−
ε is a nontrivial critical point of J , then u is a negative

solution of Problem (4);
(ii) T f(∂D+

ε ) ⊂ D+
ε , and if u ∈ D+

ε is a nontrivial critical point of J , then u is a positive
solution of Problem (4).

Proof. (i) Let u ∈ l2 and w = T f(u). We denote by u+ resp. u− the positive resp. negative
part of u, that is u+ = max{u, 0}, u− = min{u, 0}. Then, by (8),

‖u+‖2 = inf
h∈−P

‖u− h‖2 ≤ 1√
v

inf
h∈−P

‖u− h‖ =
1√
v

dist (u, −P ). (25)

It follows from (H1) and (H2) that there exist τ > 0, C1 > 0 such that

|f(n, x)| ≤ (λ1 − τ)|x| + C1|x|p−1 for n ∈ Z, x ∈ R. (26)

The fact that u+ = u − u−and u− ∈ −P implies dist (w,−P ) ≤ ‖w − w−‖ = ‖w+‖. Then by
the assumption f(n, x)x > 0 for all x �= 0 and n ∈ Z, (26), (18), Remark 11, (6), (8) and (25),
we have

dist (w, −P )‖w+‖ ≤‖w+‖2 = (w, w+) ≤
∑

n∈Z

γnf(n, u+
n )w+

n

≤(λ1 − τ)(Tu+, w+) + γC1‖u+‖p−1
p ‖w+‖p

≤λ1 − τ

λ1
‖u+‖‖w+‖ + γC1‖u+‖p−1

2 ‖w+‖2

≤
(λ1 − τ

λ1
dist (u, −P ) +

γC1√
vp

(dist (u, −P ))p−1
)

‖w+‖.

Hence, dist (w, −P ) ≤ λ1−τ
λ1

dist (u, −P ) + γC1√
vp

(dist (u,−P ))p−1. So there exists ε0 > 0 such

that for any u ∈ D−
ε with 0 < ε < ε0,

dist (T f(u), −P ) ≤ 2λ1 − τ

2λ1
dist (u, −P ). (27)

Then T f(∂D−
ε ) ⊂ D−

ε , ∀u ∈ ∂D−
ε . If u ∈ D−

ε is a nontrivial critical point of J , then J ′(u) =
u − T f(u), that is, T f(u) = u. By (27), u ∈ −P \ {0}. According to Lemma 9 and the
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assumption f(n, x)x > 0 for all x �= 0 and n ∈ Z, u < 0 on Z. Hence, u is a negative solution
of problem (4) and (i) holds. The proof of (ii) is similar and omitted. �

Lemma 16. Assume (V1), (V2), (H1), and either (H3) or (H4) hold. Then the functional J
(see (20)) satisfies the (PS) condition, i.e., for any sequence {uk} such that J(uk) is bounded
and J ′(uk) → 0 as k → ∞, there exists a subsequence of {uk} which is convergent in l2.

Proof. Let {uk} be a sequence in l2 such that J(uk) is bounded and J ′(uk) → 0 as k → ∞.
Our aim is to prove that {uk} is bounded and has a convergent subsequence.

First suppose that (H3) holds; we know, by (20) and (22), that

ηJ(uk) − (J ′(uk), uk) =
(η

2
− 1

)

‖uk‖2 −
∑

n∈Z

γn(ηF (n, uk,n) − f(n, uk,n)uk,n).

So by (H3),
(

η
2 − 1

)‖uk‖2 ≤ ηJ(uk) − (J ′(uk), uk). Thus, bearing in mind that η > 2, we
conclude that ‖uk‖ is bounded. It follows from Lemma 12 that

uk = J ′(uk) + T fuk (28)

and T f : l2 → l2 is compact. Therefore, one can deduce that {uk} has a convergent subsequence.
And the (PS) condition is verified.

Now, suppose that (H4) holds. We claim that {uk} is bounded. Suppose the contrary,
then there exists a subsequence of {uk} (still denoted by {uk}) such that ρk = ‖uk‖ → +∞ as
k → ∞. Set wk = uk

ρk
. Obviously, ‖wk‖ = 1. So passing to a subsequence if necessary, it can

be assumed that wk ⇀ w0. By (6) and (8), there exists C1 > 0 such that supn∈Z
|wk,n| ≤ C1

for all k = 0, 1, 2, · · ·. It is easy to verify that wk, n converses to w0, n pointwise for all n ∈ Z,
that is,

lim
k→∞

wk,n = w0,n, ∀n ∈ Z. (29)

For any given number ε > 0, since
∑

n∈Z

γn < +∞, there is a positive integer N such that
∑

|n|>N

γn < ε. By (H1) and (H4), there exist τ > 0, C2 > 0 such that |f(n, x)| ≤ (λ1 − τ)|x| +

C2|x|p−1 for n ∈ Z, x ∈ R. So we have
∣

∣

∣

∑

|n|>N

γn(f(n,wk,n) − f(n,w0,n))(wk,n − w0,n)
∣

∣

∣
≤ C3

∑

|n|>N

γn < C3ε, (30)

where C3 > 0. It follows from (29) and the continuity of f(n, x) on x that

∑

|n|≤N

γn(f(n,wk,n) − f(n, w0,n))(wk,n − w0,n) → 0 as k → ∞. (31)

Since ε is arbitrary, combining (30) with (31), we get

∑

n∈Z

γn(f(n,wk,n) − f(n,w0,n))(wk,n − w0,n) → 0 as k → ∞. (32)

It follows from (22) that

(J ′(wk)− J ′(w0), wk −w0) = ‖wk −w0‖2 −
∑

n∈Z

γn(f(n, wk,n)− f(n, w0,n)(wk,n −w0,n). (33)



Standing Waves for Discrete Nonlinear Schrödinger Equations with Nonperiodic Bounded Potentials 383

Note that (J ′(wk) − J ′(w0), wk − w0) → 0. By (32) and (33), we have that wk → w0 in l2 as
k → ∞. Put w̃k = {w̃k,n}n∈Z with w̃k,n = f(n,uk,n)

uk,n
wk,n. Since lim

|x|→∞
f(n,x)

x = λ uniformly in

n ∈ Z, we have
J ′(uk)
ρk

= wk − 1
ρk
T fuk = wk − T w̃k → w0 − λTw0.

Bearing in mind that J′(uk)
ρk

→ 0 as k → ∞, we get that w0 − λTw0 = 0. According to Lemma
6 and Proposition 10, λ is an eigenvalue of problem (19), contrary to assumption. Hence, {uk}
is bounded. By (28), we know also that {uk} has a convergent subsequence. The proof is
complete. �

Lemma 17. Assume (V1), (V2), (H1), and either (H3) or (H4) hold. Then J(u) → −∞ as
‖u‖ → +∞, where u ∈ X2 := span{ϕ1, ϕ2}, and ϕ1, ϕ2 are eigenfunctions corresponding to
eigenvalues λ1, λ2 of Problem (19).

Proof. First suppose that (H3) holds. By (H3), for each n ∈ Z, there is an > 0 such that

F (n, x) ≥ an|x|η, for each |x| ≥ 1. (34)

Hence, for u ∈ X2,
∑

|un|>1

F (n, un) ≥ ∑

|un|>1

an|un|η and

J(u) =
1
2
‖u‖2 −

∑

|un|>1

γnF (n, un) −
∑

|un|≤1

γnF (n, un) ≤ 1
2
‖u‖2 −

∑

|un|>1

anγn|un|η. (35)

Define the functional ψ : S∞ → R as

ψ(w) =
∑

|wn|>1

anγn|wn|η,

where S∞ = {w ∈ X2 : ‖w‖∞ = 2}. Obviously, for any w ∈ S∞, ψ(w) > 0 and the set
{n ∈ Z : |wn| > 1, w ∈ S∞ ⊂ l2} is finite. We show that ψ : S∞ → R is lower semicontinuous.
Suppose that {wk} ⊂ S∞, w0 ∈ S∞ and wk → w0 as k → ∞. By (6) and (8), we have that
{n ∈ Z : |wk,n| > 1}⊃{n ∈ Z : |w0,n| > 1} for sufficiently large k. This together with
wk → w0 as k → ∞ yields that ψ(w0) ≤ lim infk→∞ ψ(wk), that is, ψ : S∞ → R is lower
semicontinuous. Since S∞ is a compact subset of the finite dimension subspace X2, we can
obtain that ρ := inf

w∈S∞
ψ(w) > 0. For any u ∈ X2 with‖u‖∞ > 2, setting w =

{

wn := 2un

‖u‖∞

}

n∈Z
,

we have that w ∈ S∞ and {n ∈ Z : |un| > 1} ⊃ {n ∈ Z : |wn| > 1}. Hence, by (35), one has

J(u) ≤ 1
2
‖u‖2 − 1

2η
‖u‖η

∞
∑

|wn|>1

anγn|wn|η ≤ 1
2
‖u‖2 − ρ

2η
‖u‖η

∞.

Since all norms on the finite dimension subspace X2 are equivalent, this together with η > 2
implies that J(u) → −∞ as ‖u‖ → +∞, where u ∈ X2.

Now, suppose that (H4) holds. For u ∈ X2, u = ε1ϕ1 + ε2ϕ2. Notice that ϕ1 and ϕ2

are orthogonal, i.e., (ϕ1, ϕ2) = 0. Then ‖u‖2 = ε21‖ϕ1‖2 + ε22‖ϕ2‖2. Choose ε such that
0 < ε < min{λ − λ1, λ − λ2}. By lim

|x|→∞
f(n, x)

x = λ uniformly in n ∈ Z, we have that there

exists a > 0 such that for any n ∈ Z and x ∈ R, F (n, x) ≥ λ−ε
2 x2 − a. Hence, for u ∈ X2, by

(18) and Proposition 10,

J(u) ≤1
2
(ε21‖ϕ1‖2 + ε22‖ϕ2‖2) − λ− ε

2

( 1
λ1
ε21‖ϕ1‖2 +

1
λ2
ε22‖ϕ2‖2

)

+ a
∑

n∈Z

γn

=
λ1 − λ+ ε

2λ1
ε21‖ϕ1‖2 +

λ2 − λ+ ε

2λ2
ε22‖ϕ2‖2 + a

∑

n∈Z

γn → −∞
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as ‖u‖ → ∞. The proof is complete. �

Proof of Theorem 1. Our aim is to apply Lemma 13. By (H1) and (H2), we have that
F (n, x) ≤ λ1−τ

2 |x|2 + C
p |x|p for n ∈ Z, x ∈ R. This, together with (18), Remark 11 and (6),

gives that

J(u) ≥ 1
2
‖u‖2 − λ1 − τ

2λ1
‖u‖2 − γC

p
‖u‖p

p ≥ τ

2λ1
‖u‖2 − γC

p
‖u‖p

2.

We note that (25) implies that for any u ∈ D+
ε ∩ D−

ε , ‖u±‖2 ≤ 1√
v dist(u, ∓P ) ≤ 1√

v ε0.
Thus there exists α0 > −∞ such that inf

u∈D+
ε ∩D−

ε

J(u) = α0. Lemma 17 yields that there exists

R > 2ε0 such that J(u) < α0 − 1 for u ∈ X2 and ‖u‖ = R. Define a path h : [0, 1] → X2 as

h(s) = R
cos(πs)ϕ1 + sin(πs)ϕ2

‖ cos(πs)ϕ1 + sin(πs)ϕ2‖ .

Then h(0) = Rϕ1
‖ϕ1‖ ∈ D+

ε \D−
ε , h(1) = − Rϕ1

‖ϕ1‖ ∈ D−
ε \D+

ε and inf
u∈D+

ε ∩D−
ε

J(u) > sup
t∈[0, 1]

J(h(t)).

According to Lemmas 15, 16 and 13, there exists a critical point in l2 \ (D+
ε ∪D−

ε ), which is a
sign-changing solution of problem (4). Also we have a critical point in D+

ε \D−
ε and a critical

point in D−
ε \D+

ε , which correspond to a positive solution and a negative solution of problem
(4), respectively. This completes the proof of Theorem 1. �

Proof of Theorem 2. By assumptions (H1) and (H4), we may fixed m ≥ 0 such that (f(n, x)+
mx)x > 0 for all x �= 0 and n ∈ Z. By replacing f(n, x) by f(n, x) +mx and vn by vn +mγn

in the preceding three sections, Lemmas 15 and 16 and the proof of Theorem 1 give the results.
�

Proof of Theorem 3. For each k ∈ N, define

Xk := span{ϕ1, ϕ2, · · · , ϕk},
where {ϕ1, ϕ2, · · · , ϕk} is given in Proposition 10. By the proof of Lemma 17, it is easy to
construct the desired number α1 and the sequence of positive numbers {Rk}k∈N. Note also that
Lemmas 15, 16 and the proof of Theorem 1. Then the assumptions in Lemma 14 are satisfied.
Therefore the functional J has a sequence of critical points {±uk}k∈N in l2\(D+

ε ∪D−
ε ) which are

sign-changing solutions of problem (4) and which satisfy J(uk) = dk = infS∈Γk
supu∈S J(u) →

+∞ as k → ∞. Since f(n, x)x > 0 for all x �= 0 and n ∈ Z, we have that J(uk) ≤ 1
2‖uk‖2.

Hence ‖uk‖ → +∞. This completes the proof. �

Proof of Theorem 4. It follows from Lemmas 6 and 9, and Proposition 10 that T−1 : l2 → l2, the
inverse mapping of T , exists and is given by T−1un = −Δun+vnun

γn
, and the essential spectrum,

σess(T−1), of T−1 satisfies σess(T−1) = ∅. Let τn = − f(n,un)
un

and Kun = T−1un + τnun. Then
equation (4) is equivalent to

Kun = 0. (36)

By assumptions, τn → 0 as |n| → ∞. Thus, the multiplication by τn is a compact operator in l2,
which implies that σess(K) = σess(T−1) = ∅. Equation (36) means that u ∈ l2 is an eigenvector
of K, with eigenvalue 0 /∈ σess(K). Therefore, the result follows from the standard theorem on
the exponential decay for such eigenfunctions, see, for Example [19, Lemma 2.5]. �
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