
Acta Mathematicae Applicatae Sinica, English Series

Vol. 34, No. 3 (2018) 493–515

DOI: 10.1007/s10255-018-0765-7
http://www.ApplMath.com.cn & www.SpringerLink.com

Acta Mathema�cae Applicatae Sinica,
English Series
© The Editorial Office of  AMAS & 
     Springer-Verlag GmbH Germany 2018

A Riemann-Hilbert Approach to the Chen-Lee-Liu
Equation on the Half Line
Ning ZHANG1,2,3,†, Tie-cheng XIA2, En-gui FAN3

1Department of Basical Courses, Shandong University of Science and Technology, Taian 271019, China

(E-mail: zhangningsdust@126.com)
2Department of Mathematics, Shanghai University, Shanghai 200444, China
3School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Abstract In this paper, the Fokas unified method is used to analyze the initial-boundary value for the Chen-
Lee-Liu equation

i∂tu + ∂xxu − i|u|2∂xu = 0

on the half line (−∞, 0] with decaying initial value. Assuming that the solution u(x, t) exists, we show that it

can be represented in terms of the solution of a matrix Riemann-Hilbert problem formulated in the plane of

the complex spectral parameter λ. The jump matrix has explicit (x, t) dependence and is given in terms of the

spectral functions {a(λ), b(λ)} and {A(λ), B(λ)}, which are obtained from the initial data u0(x) = u(x, 0) and

the boundary data g0(t) = u(0, t), g1(t) = ux(0, t), respectively. The spectral functions are not independent,

but satisfy a so-called global relation.
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1 Introduction

One of important integrable systems in mathematics and physics is the following Chen-Lee-Liu
(C-L-L) equation[3]

i∂tu+ ∂xxu− i|u|2∂xu = 0 (1.1)

which has been derived as an integrable generalization of the nonlinear Schrödinger (NLS)
equation by using bi-Hamiltonian methods[14]. The C-L-L equation is also called the derivative
nonlinear Schrödinger II (DNLS II) equation[12]. Another two kinds of derivative type NLS
equations are the famous KN or the so called DNLS I equation[20,21],

i∂tu+ ∂xxu+ i∂x(|u|2u) = 0 (1.2)

and the Gerdjikov-Ivanov equation or the DNLS III equation[18],

i∂tu+ ∂xxu− iu2∂xu+
1
2
|u|4u = 0. (1.3)

It has been found that there exists gauge transformations among these three equations[2,9−11,23].
The DNLS equations have many applications in plasma physics and nonlinear optics fibers (see
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[8,13,19,29,32]). For example, it governs the evolution of small-amplitude Alfvén waves in a
low-β plasma or the large-amplitude magnetohydrodynamic waves. The picosecond pulses in
the single-mode nonlinear optical fibers are described by the DNLS equation.

A method to solving initial-boundary value problems for nonlinear integrable systems for-
mulated on the half line and on a finite intervalis presented by Fokas in [15]. The Fokas method
provides a generalization of the inverse scattering transformation formalism from initial value
problem to initial-boundary value problems. In recent years, this method has been developed
by several authors[3−6,22,26−28,31].

In this paper, we use the Fokas method for solving boundary value problems for (1.1) on
the half line (−∞, 0]. The paper is orginized as follows. In Section 2, we study the analytical
properties of the eigenfunctions and spectral functions associated with the Lax pair of the C-L-
L Equation (1.1). Then we change the initial value of the C-L-L Equation (1.1) into a matrix
Riemann-Hilbert problem (RHP). The jump matrix has explicit (x, t) dependence and is given
in terms of the spectral functions {a(λ), b(λ)} and {A(λ), B(λ)}, which are obtained from the
initial data u0(x) = u(x, 0) and the boundary data g0(t) = u(0, t), g1(t) = ux(0, t), respectively.
In Section 3, we show that it can be represented in terms of the solution of a matrix RHP
formulated in the plane of the complex spectral parameter λ. The problem has the jump across
{Imλ4 = 0}.

2 Summary of Some Results and the Basic RHP

2.1 Lax Pair

We introduce some notation and definitions which are used throughout the paper.

• σ3 = diag (1,−1) denotes the third Pauli’s matrix, σ+ =
(

0 1

0 0

)
, σ− =

(
0 0

1 0

)
, and

σ1 = σ+ + σ−;

• A,B are two 2 × 2 matrixes, matrix commutator [A,B] = AB −BA;

• σ̂3 denotes the matrix commutator with σ3, σ̂3A = [σ3, A], then eσ̂3 can be easily com-
puted: eσ̂3A = eσ3Ae−σ3 , where A is a 2 × 2 matrix;

• If f(•) is a function then f(•) denotes the complex conjugate of f(•);
• D is an unbounded domain of R ∪ iR, let S(D) denote the space of Schwartz class on
D, i.e., the class of smooth scalar-valued functions f(x) on D which together with all
derivatives tend to zero faster than any positive power of |x|−1 as |x| → ∞;

• For
k = 1, 2, L(2×2)

k (D) ≡ {F (λ)|λ ∈ D, Fij ∈ Lk(D), i, j = 1, 2},
where

Lk(D) ≡
{
f(λ)|λ ∈ D, ‖f‖Lk(D) ≡

( ∫

D

|f(λ)|k|dλ|
)1/k

<∞
}
,

and
L2×2
∞ (D) ≡ {G(λ)|λ ∈ D, ‖Gij‖L∞(D) ≡ sup

λ∈D
|Gij(λ)| <∞ (i, j = 1, 2)},

with the norms taking as follows

‖(·)‖L2×2
n (D) ≡ max

i,j=1,2
‖(·){ij}‖Ln(D), n = 1, 2, · · · ,∞.
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Definition 2.1.1. Let the contour Γ be the union of a finite number of smooth and oriented
curves on the Riemann sphere C, such that C \Γ has only a finite number of connected compo-
nents. Let J(λ) be a 2 × 2 matrix defined on the contour Γ. The RHP (Γ, J) is the problem of
finding a 2 × 2 matrix-valued function M(λ) that satisfies:

(i) M(λ) is analytic for all λ ∈ C \ Γ, and extends continuously to the contour Γ;

(ii) M+(λ) = M−(λ)J(λ), λ ∈ Γ;

(iii) M(λ) → I, as λ→ ∞.

Proposition 2.1.2. The C-L-L Equation (1.1) admits the following Lax pairs[11]:

∂xΨ(x, t;λ) = M(x, t;λ)Ψ(x, t;λ), ∂tΨ(x, t;λ) = N(x, t;λ)Ψ(x, t;λ), (2.1)

where

M(x, t;λ) =λ(−iλσ3 + uσ+ + vσ−) − i

4
uvσ3,

N(x, t;λ) =2λ2
[
− iσ3λ

2 + (uσ+ + vσ−)λ− i

2
uvσ3

]
+ λ
[1
2
uv(uσ+ + vσ−) + i(uxσ+ − vxσ−)

]

−
[ i
8
u2v2 +

1
4
(uvx − uxv)

]
σ3, (2.2)

with u(x, t) = v(x, t). And u(x, t), v(x, t) satisfy the coupled C-L-L equations

i∂tu+ ∂xxu− i|u|2∂xu = 0, −i∂tv + ∂xxv + i|u|2∂xv = 0. (2.3)

Let u(x, t), v(x, t) satisfy the two nonlinear (2.3) on the half line −∞ < x < 0, 0 < t < T . Let
u(x, t) satisfy decaying initial conditions at t = 0, as well as appropriate boundary conditions
at x = 0. We can prove that (2.3) are the Frobenius compatibility conditions for System (2.1).

Proposition 2.1.3. Let u(x, t)(or v(x, t)) be a solution of (2.3). Then there exists a corre-
sponding solution of System (2.1) such that Ψ(x, t; 0) is a diagonal matrix.

Proof. For given u(x, t), let Ψ̂(x, t;λ) be a solution of System (2.1) which exists in accordance
with Proposition 2.1.2. Then we obtain that Ψ̂(x, t; 0) = exp

( − i
2σ3

∫ x

x0
|u(ξ, t)|2dξ) · K̂1 or

Ψ̂(x, t; 0) = exp
( − i

4σ3

∫ t

t0

[
1
2u

2v2 − i(uvx − uxv)
]
(x, η)dη

) · K̂2, for some x0, t0 ∈ R and non-

degenerate matrix K̂1, K̂2 which is independent of x, t, respectively. The function Ψ(x, t;λ) ≡
Ψ̂(x, t;λ)K̂−1

i (i = 1, 2) is the solution of System (2.1) which is diagonal at λ = 0. �

2.2. Spectral Analysis

Extending the column vector ψ to a 2 × 2 matrix and letting

ψ = Ψei(λ2x+2λ4t)σ3 , −∞ < x < 0, 0 < t < T, (2.4)

then we obtain the equivalent Lax pair

ψx + iλ2[σ3, ψ] =
[
λQ− i

4
Q2σ3

]
ψ,

ψt + 2iλ4[σ3, ψ] =
[
2λ3Q− iλ2Q2σ3 + λ

(1
2
Q3 − iQxσ3

)
+ P

]
ψ, (2.5)
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where
Q = uσ+ + vσ−, P = − i

8
Q4σ3 − 1

4
[Q,Qx]. (2.6)

The Lax pair (2.5) can be written in full derivative form

d(ei(λ2x+2λ4t)σ̂3)ψ(x, t;λ)) = ei(λ2x+2λ4t)σ̂3U(x, t;λ)ψ, −∞ < x < 0, 0 < t < T, (2.7)

where

U(x, t;λ) = U1(x, t;λ)dx + U2(x, t;λ)dt,

U1(x, t;λ) = λQ− i

4
Q2σ3, U2(x, t;λ) = 2λ3Q− iλ2Q2σ3 + λ

(1
2
Q3 − iQxσ3

)
+ P.

In order to formulate a Riemann-Hilbert problem for the solution of the inverse spectral
problem, we seek the solutions of the spectral problem which approaches the 2 × 2 identity
matrix as λ → ∞. We use Lenell’s method[22] to transform the solution ψ(x, t;λ) of (2.7) into
the desired asympotic behavior. Consider that a solution of (2.7) is of the form

ψ(x, t;λ) = D0 +
D1

λ
+
D2

λ2
+
D3

λ3
+ O

( 1
λ4

)
, λ −→ ∞,

where D0, D1, D2, D3 are independent of λ. Substituting the above expansion into the first
equation of (2.6), and comparing the same order of frequency of λ, we have

O(λ2) : i[σ3, D0] = 0,
O(λ) : i[σ3, D1] = QD0,

O(1) : D0x + i[σ3, D2] = QD1 − i

4
Q2σ3D0.

We know that D0 is a diagonal matrix form O(λ2), and let D0 =
(

D11
0 0

0 D22
0

)
. From O(λ) we

have

D
(o)
1 =

⎛
⎝ 0 − i

2
uD22

1

i

2
vD11

1 0

⎞
⎠ ,

where D(o)
1 being the off-diagonal part of D1. From O(1), we have

D0x =
i

4
uvσ3D0. (2.8)

On the other hand, substituting the above expansion into the second equation of (2.6), we have

O(λ4) : 2i[σ3, D0] = 0,
O(λ3) : 2i[σ3, D1] = 2QD0,

O(λ2) : 2i[σ3, D2] = 2QD1 − iQ2σ3D0,

O(λ1) : 2i[σ3, D3] =
(1

2
Q3 − iQxσ3

)
D0 + 2QD2 − iQ2σ3D1,

O(1) : D0t = 2QD3 − iQ2σ3D2 +
(1

2
Q3 − iQxσ3

)
D1 −

( i
8
Q4σ3 +

1
4
[Q,Qx]

)
D0.

From O(λ1), we obtain the relation

2QD(o)
3 − iQ2D

(d)
2 σ3 = −1

2
Q3D

(o)
1 +

i

4
Q4D0σ3 +

1
2
QQxD0, (2.9)
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where D(o)
3 denotes the off-diagonal part of D3, and D(d)

2 denotes the diagonal part of D2. By
using (2.9) and from O(1) we obtain

D0t =
( i

8
u2v2 +

1
4
(uvx − uxv)

)
σ3D0. (2.10)

The (1.1) admits the conservation law i(uv)t =
(

i
2u

2v2 + uvx − uxv
)

x
. Then the two (2.8) and

(2.10) for D0 are consistent and are both satisfied if we define

D0(x, t) = exp
(
i

∫ (x,t)

(x0,t0)

Δσ3

)
, (2.11)

where Δ is the closed real-valued one-form, and Δ(x, t) = Δ1(x, t)dx + Δ2(x, t)dt, Δ1(x, t) =
1
4uv, Δ2(x, t) = 1

8u
2v2 − i

4 (uvx − uxv), (x0, t0) ∈ D, simultaneity, for the convenience of
calculation we denote (x0, t0) = (0, 0).

Noting that the integral in (2.11) is independent of the path of integration and the Δ is
independent of λ, then we can introduce a new function μ(x, t;λ) as follows

ψ(x, t;λ) = e
i
∫ (x,t)

(0,0)
Δσ̂3

μ(x, t;λ)D0(x, t), −∞ < x < 0, 0 < t < T. (2.12)

Through direct calculation, the Lax pair of (2.7) becomes

d(ei(λ2x+2λ4t)σ̂3μ(x, t;λ)) = W (x, t;λ), λ ∈ C, (2.13)

where

W (x, t;λ) = ei(λ2x+2λ4t)σ̂3V (x, t;λ)μ(x, t;λ),

V (x, t;λ) = V1(x, t;λ)dx + V2(x, t;λ)dt = e
−i
∫ (x,t)

(0,0)
Δσ̂3(U(x, t;λ) − iΔσ3).

Taking into account the definition of U(x, t;λ) and Δ, we can get

V1(x, t;λ) =

⎛
⎜⎝

− i

2
uv λue

−2i
∫ (x,t)

(0,0)
Δ

λve
2i
∫ (x,t)

(0,0)
Δ i

2
uv

⎞
⎟⎠ ,

V2(x, t;λ) =

⎛
⎜⎝

−iλ2uv − i

4
u2v2 − 1

2
(uvx − uxv)

(
2λ3u+ λ

(1
2
u2v + iux

))
e
−2i
∫ (x,t)

(0,0)
Δ

(
2λ3v + λ

(1
2
uv2 − ivx

))
e
2i
∫ (x,t)

(0,0)
Δ

iλ2uv +
i

4
u2v2 +

1
2
(uvx − uxv)

⎞
⎟⎠ .

Then (2.13) for μ(x, t;λ) can be written as

μx + iλ2[σ3, μ] = V1μ, μt + 2iλ4[σ3, μ] = V2μ, (2.14)

where −∞ < x < 0, 0 < t < T, λ ∈ C.

2.3 Eigenfunctions and Their Relations

Assuming that u(x, t) exists and is sufficiently smooth in D = {−∞ < x < 0, 0 < t < T },
μj(x, t, λ) (j = 1, 2, 3) are the 2 × 2 matrix valued functions defined by

μj(x, t;λ) = I +
∫ (x,t)

(xj,tj)

e−i(λ2x+2λ4t)σ̂3W (ξ, τ, λ), −∞ < x < 0, 0 < t < T. (2.15)

The integral denotes a smooth curve from (xj , tj) to (x, t), and (x1, t1) = (0, T ), (x2, t2) =
(0, 0), (x3, t3) = (−∞, t), see Figure 1.
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Figure 1. The three points in the (x, t)-domaint

The fundamental theorem of calculus implies that the functions μj(x, t;λ) (j = 1, 2, 3.)
satisfy (2.13) and the one-form W (x, t;λ) is exact, then μj(x, t;λ)(j = 1, 2, 3.) are independent
on the path of integration. The functions μ1, μ2 and μ3 are defined from λ in some domain
of the complex λ-plane. Following the idea in [16], we choose the specific contours depicted in
Figure 2.

Figure 2. The Three Contours l1, l2, l3 in the (x, t)-domaint

therefore we have

μ1(x, t;λ) =I −
∫ 0

x

eiλ2(ξ−x)σ̂3(V1μ1)(ξ, t, λ)dξ

− e−iλ2xσ̂3

∫ T

t

e2iλ4(τ−t)σ̂3(V2μ1)(0, τ, λ)dτ,

μ2(x, t;λ) =I −
∫ 0

x

eiλ2(ξ−x)σ̂3(V1μ2)(ξ, t, λ)dξ

+ e−iλ2xσ̂3

∫ t

0

e2iλ4(τ−t)σ̂3(V2μ2)(0, τ, λ)dτ,

μ3(x, t;λ) =I +
∫ x

−∞
eiλ2(ξ−x)σ̂3(V1μ3)(ξ, t, λ)dξ.

(2.16)

Assuming that the dependence of V1(x, t;λ), V2(x, t;λ) on λ is such that μj(x, t;λ) = I +
O( 1

λ)(j = 1, 2, 3.) as λ → ∞, it follows that the functions μj(x, t;λ)(j = 1, 2, 3.) are the
fundamental eigenfunctions needed for the formulation of a RHP in the complex λ-plane. And
we note that this choice implies the following inequalities

(x1, t1) → (x, t) : x < ξ < 0, t < τ < T,
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(x2, t2) → (x, t) : x < ξ < 0, 0 < τ < t,

(x3, t3) → (x, t) : −∞ < ξ < x.

We find that the first column of the matrix (2.15) involves e−2i(λ2(ξ−x)+2λ4(τ−t)), and using the
above inequalities implies that the exponential term of μj(x, t;λ) (j = 1, 2, 3.) is bounded in
the following regions of the complex λ-plane,

(x1, t1) → (x, t) :
{
Imλ2 ≤ 0} ∩ {Imλ4 ≤ 0

}
,

(x2, t2) → (x, t) :
{
Imλ2 ≤ 0} ∩ {Imλ4 ≥ 0

}
,

(x3, t3) → (x, t) :
{
Imλ2 ≥ 0

}
.

The second column of the matrix (2.15) involves the inverse of the above exponential, which is
bounded in

μ1(x, t;λ), (x1, t1) → (x, t) : {Imλ2 ≥ 0} ∩ {Imλ4 ≥ 0},
μ2(x, t;λ), (x2, t2) → (x, t) : {Imλ2 ≥ 0} ∩ {Imλ4 ≤ 0},
μ3(x, t;λ), (x3, t3) → (x, t) : {Imλ2 ≤ 0}.

Then, we obtain

μ1(x, t;λ) = (μD4
1 (x, t;λ), μD1

1 (x, t;λ)),

μ2(x, t;λ) = (μD3
2 (x, t;λ), μD2

2 (x, t;λ)), (2.17)

μ3(x, t;λ) = (μD1∪D2
3 (x, t;λ), μD3∪D4

3 (x, t;λ)),

where μDl
j denotes μj which is bounded and analytic for λ ∈ Dl and Dl = ωl ∪ (−ωl), ωl ={

z ∈ C|2kπ + l−1
4 π < Arg z < 2kπ + l

4π
}
, −ωl =

{
z ∈ C|2kπ + l+3

4 π < Arg z < 2kπ + l+4
4 π
}
,

j = 1, 2, 3, l = 1, 2, 3, 4, k = 0,±1,±2, · · · ,Arg z denotes the argument of the complex z, see
Figure 3.

Figure 3. The Sets Dj , j = 1, 2, 3, 4, which Decompose the Complex λ-plane

More specifically,

μ1(0, t;λ) = (μD2∪D4
1 (0, t;λ), μD1∪D3

1 (0, t;λ)),

μ2(0, t;λ) = (μD1∪D3
2 (0, t;λ), μD2∪D4

2 (0, t;λ)),

μ1(x, T ;λ) = (μD3∪D4
1 (x, T ;λ), μD1∪D2

1 (x, T ;λ)),

μ2(x, 0;λ) = (μD3∪D4
2 (x, 0;λ), μD1∪D2

2 (x, 0; ;λ)),

μ1(0, 0;λ) = (μD2∪D4
1 (0, 0;λ), μD1∪D3

1 (0, 0;λ)),

μ2(0, T ;λ) = (μD1∪D3
2 (0, T ;λ), μD2∪D4

2 (0, T ;λ)).

(2.18)
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For the purpose of deriving a RHP, we need to compute the jumps across the boundaries of the
Dj ’s (j = 1, 2, 3, 4.). It turns out that the relevant jump matrices can be uniquely defined in
terms of two 2 × 2 matrices valued spectral functions s(λ) and S(λ) defined as follows

μ3(x, t;λ) = μ2(x, t;λ)e−i(λ2x+2λ4t)σ̂3s(λ),

μ1(x, t;λ) = μ2(x, t;λ)e−i(λ2x+2λ4t)σ̂3S(λ).
(2.19)

Evaluating the first equation of (2.19) at (x, t) = (0, 0) and the second equation of (2.19) at
(x, t) = (0, T ), implies

s(λ) = μ3(0, 0;λ), (S(λ))−1 = e2iλ4T σ̂3μ2(0, T ;λ). (2.20)

From (2.18) and (2.19), we obtain

μ1(x, t;λ) = μ3(x, t;λ)e−i(λ2x+2λ4t)σ̂3(s(λ))−1S(λ) (2.21)

which will lead to the global relation.
Hence, the function s(λ) can be obtained from the evaluations at x = 0 of the function

μ3(x, 0, λ) and S(λ) can be obtained from the evaluations at t = T of the function μ2(0, t, λ).
And these functions about μj(x, t;λ) (j = 1, 2, 3.) satisfy the linear integral equations as follows

μ1(0, t;λ) = I −
∫ T

t

e2iλ4(τ−t)σ̂3(V2μ1)(0, τ, λ)dτ,

μ2(0, t;λ) = I +
∫ t

0

e2iλ4(τ−t)σ̂3(V2μ2)(0, τ, λ)dτ,

μ3(x, 0;λ) = I +
∫ x

−∞
eiλ2(ξ−x)σ̂3(V1μ3)(ξ, 0, λ)dξ,

μ2(x, 0;λ) = I −
∫ 0

x

eiλ2(ξ−x)σ̂3(V1μ2)(ξ, 0, λ)dξ.

(2.22)

Let u0(x) = u(x, 0), g0(t) = u(0, t), and g1(t) = ux(0, t) be the initial and boundary values of
u(x, t), then

V1(x, 0;λ) =

(
− i

2 |u0|2 λu0e
−
∫

x

0
i
2 |u0|2dξ

λu0e

∫ x

0
i
2 |u0|2dξ i

2 |u0|2

)
,

V2(0, t;λ) =

⎛
⎜⎝

−iλ2|g0|2− i
4 |g0|4− 1

2 (g0g1−g1g0)

(
2λ3g0+λ

(
1
2 |g0|2g0+ig1

))
e
−2i

∫ t

0
Δ2(0,τ)dτ

(
2λ3g0+λ

(
1
2 |g0|2g0−ig1

))
e
2i

∫
t

0
Δ2(0,τ)dτ

iλ2|g0|2+
i

4
|g0|4+ 1

2 (g0g1−g1g0)

⎞
⎟⎠ ,

and Δ2(0, τ) = 1
8 |g0|4 − i

4 (g0g1 − g1g0).
The analytic properties of (2 × 2) matrices μj(x, t;λ) (j = 1, 2, 3.) that come from (2.15)

are collected in the following propositions. We denote by μ(1)
j (x, t;λ) and μ(2)

j (x, t;λ) the first
and second columns of μj(x, t;λ), respectively. Setting

μj(x, t;λ) = (μ(1)
j (x, t;λ), μ(2)

j (x, t;λ)) =
(
μ11

j μ12
j

μ21
j μ22

j

)
, j = 1, 2, 3.

Proposition 2.3.1. The matrices μj(x, t;λ) = (μ(1)
j (x, t;λ), μ(2)

j (x, t;λ)) (j = 1, 2, 3.) have
the following properties
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• detμ1(x, t;λ) = detμ2(x, t;λ) = detμ3(x, t;λ) = 1;

• μ
(1)
1 (x, t;λ) is analytic, and lim

λ→∞
μ

(1)
1 (x, t;λ) = (1, 0)T , where λ ∈ {Imλ2 ≤ 0}∩{Imλ4 ≤

0};

• μ
(2)
1 (x, t;λ) is analytic, and lim

λ→∞
μ

(2)
1 (x, t;λ) = (0, 1)T , where λ ∈ {Imλ2 ≥ 0}∩{Imλ4 ≥

0};

• μ
(1)
2 (x, t;λ) is analytic, and lim

λ→∞
μ

(1)
2 (x, t;λ) = (1, 0)T , where λ ∈ {Imλ2 ≤ 0}∩{Imλ4 ≥

0};

• μ
(2)
2 (x, t;λ) is analytic, and lim

λ→∞
μ

(2)
2 (x, t;λ) = (0, 1)T , where λ ∈ {Imλ2 ≥ 0}∩{Imλ4 ≤

0};

• μ
(1)
3 (x, t;λ) is analytic, and lim

λ→∞
μ

(1)
3 (x, t;λ) = (1, 0)T , where λ ∈ {Imλ2 ≥ 0};

• μ
(2)
3 (x, t;λ) is analytic, and lim

λ→∞
μ

(2)
3 (x, t;λ) = (0, 1)T , where λ ∈ {Imλ2 ≤ 0}.

Proposition 2.3.2 (Symmetries). The matrices

μj(x, t;λ) =
(
μ11

j (x, t;λ) μ12
j (x, t;λ)

μ21
j (x, t;λ) μ22

j (x, t;λ)

)
, j = 1, 2, 3

have the following properties

• μ11
j (x, t;λ) = μ22

j (x, t;λ), μ12
j (x, t;λ) = μ21

j (x, t;λ);

• μ11
j (x, t;−λ) = μ11

j (x, t;λ), μ12
j (x, t;−λ) = −μ12

j (x, t;λ), μ21
j (x, t;−λ) = −μ21

j (x, t;λ),
μ22

j (x, t;−λ) = μ22
j (x, t;λ).

Proposition 2.3.3. The spectral function s(λ) and S(λ) are defined in (2.18) and (2.19)
imply that

s(λ) = I +
∫ 0

−∞
eiλ2(ξ−x)σ̂3(V1μ3)(ξ, 0;λ)dξ,

S−1(λ) = I +
∫ T

0

e2iλ4τσ̂3(V2μ2)(0, τ ;λ)dτ.

(2.23)

According to Proposition 2.3.2, we can construct the following matrix functions s(λ) and S(λ),

s(λ) =

(
a(λ) b(λ)
b(λ) a(λ)

)
, (λ) =

(
A(λ) B(λ)
B(λ) A(λ)

)
. (2.24)

By use of (2.19) and (2.23), we can obtain

•
(

b(λ)
a(λ)

)
= μ

(2)
3 (0, 0;λ) =

(
μ12

3 (0, 0;λ)
μ22

3 (0, 0;λ)

)

(
e−4iλ4TB(λ)

A(λ)

)
= μ

(2)
2 (0, T ;λ) =

(
μ12

2 (0, T ;λ)
μ22

2 (0, T ;λ)

)
.
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• ∂xμ
(2)
3 (x, 0;λ) + 2iλ2σμ

(2)
3 (x, 0;λ) = V1(x, 0;λ)μ(2)

3 (x, 0;λ), λ ∈ D3 ∪D4, −∞ < x < 0.
∂tμ

(2)
2 (0, t;λ) + 4iλ4σμ

(2)
2 (0, t;λ) = V2(0, t;λ)μ(2)

2 (x, 0;λ), λ ∈ D2 ∪D4, 0 < t < T. where
σ =

(
1 0

0 0

)
.

• a(−λ) = a(λ), b(−λ) = −b(λ), A(−λ) = A(λ), B(−λ) = −B(λ).

• det s(λ) = detS(λ) = 1.

• a(λ) = 1 + O( 1
λ), b(λ) = O( 1

λ), λ→ ∞, Imλ2 ≥ 0,
A(λ) = 1 + O( 1

λ), B(λ) = O( 1
λ), λ→ ∞, Imλ4 ≥ 0.

2.4 The Basic RHP

According to the paper [25], we can get that the Riemann-Hilbert problem of the C-L-L equa-
tion. (2.19) and (2.21), relating the various analytic eigenfunctions, can be rewritten in a form
that determines the jump conditions of a (2× 2) RHP, with unitary jump matrices on the real
and imaginary axis. This involves tedious but straightforward algebraic manipulations.

Setting

θ(λ) = λ2x+ 2λ4t;

α(λ) = a(λ)A(λ) − b(λ)B(λ);
β(λ) = a(λ)B(λ) − b(λ)A(λ);

δ(λ) = a(λ)β(λ) + b(λ)α(λ).

Let M(x, t;λ) be defined as below

M+(x, t;λ) = (
μD1∪D2

3 (x, t;λ)
α(λ)

, μD1
1 (x, t;λ)), λ ∈ D1;

M−(x, t;λ) = (
μD1∪D2

3 (x, t;λ)

a(λ)
, μD2

2 (x, t;λ)), λ ∈ D2;

M+(x, t;λ) = (μD3
2 (x, t;λ),

μD3∪D4
3 (x, t;λ)

a(λ)
), λ ∈ D3;

M−(x, t;λ) = (μD4
1 (x, t;λ),

μD3∪D4
3 (x, t;λ)

α(λ)
), λ ∈ D4.

(2.25)

These definitions imply that

detM(x, t;λ) = 1, M(x, t;λ) = I + O
( 1
λ

)
, λ→ ∞.

Theorem 2.4.1. Let u(x, t;λ) is a smooth function, μ1(x, t;λ), μ2(x, t;λ), μ3(x, t;λ) are de-
fined by (2.16), and M(x, t;λ) be defined by (2.25), then M(x, t;λ) satisfies the jump condition

M+(x, t;λ) = M−(x, t;λ)J(x, t;λ), λ4 ∈ R, (2.26)

where

J(x, t, λ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

J1(x, t;λ), Argλ2 = 0;

J2(x, t;λ), Argλ2 =
π

2
;

J3(x, t;λ), Argλ2 = π;

J4(x, t;λ), Argλ2 =
3π
2

.

(2.27)
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and

J1(x, t;λ) =

⎛
⎜⎜⎝

1

α(λ)α(λ)

β(λ)

α(λ)
e−2iθ(λ)

−β(λ)
α(λ)

e2iθ(λ) 1

⎞
⎟⎟⎠ ,

J2(x, t;λ) =

⎛
⎜⎜⎝

a(λ)
α(λ)

δ(λ)e−2iθ(λ)

0
α(λ)

a(λ)

⎞
⎟⎟⎠ ,

J3(x, t;λ) =

⎛
⎜⎜⎝

1
b(λ)
a(λ)

e−2iθ(λ)

− b(λ)

a(λ)
e2iθ(λ) 1

a(λ)a(λ)

⎞
⎟⎟⎠ ,

J4(x, t;λ) =

⎛
⎜⎜⎝

a(λ)

α(λ)
0

−δ(λ)e2iθ(λ) α(λ)
a(λ)

.

⎞
⎟⎟⎠ .

Proof. We can complete the proof as Proposition 2.2’s idea in [17]. In order to derive the
jump Condition (2.26) we write (2.19) and (2.21) in the following form

{
a(λ)μD3

2 + b(λ)e2iθ(λ)μD2
2 = μD1∪D2

3 ,

b(λ)e−2iθ(λ)μD3
2 + a(λ)μD2

2 = μD3∪D4
3 ,

(2.28)

{
A(λ)μD3

2 +B(λ)e2iθ(λ)μD2
2 = μD4

1 ,

B(λ)e−2iθ(λ)μD3
2 +A(λ)μD2

2 = μD1
1 ,

(2.29)

{
α(λ)μD1∪D2

3 + β(λ)e2iθ(λ)μD3∪D4
2 = μD4

1 ,

β(λ)e−2iθ(λ)μD1∪D2
3 + α(λ)μD3∪D4

2 = μD1
1 .

(2.30)

Using (2.28), (2.29) and (2.30), we can derive that the jump matrices Ji(x, t;λ) (i = 1, 2, 3, 4.)
satisfy

(μD1∪D2
3 (x, t;λ)

α(λ)
, μD1

1 (x, t;λ)
)

=
(
μD4

1 (x, t;λ),
μD3∪D4

3 (x, t;λ)

α(λ)

)
J1(x, t;λ);

(μD1∪D2
3 (x, t;λ)

α(λ)
, μD1

1 (x, t;λ)
)

=
(μD1∪D2

3 (x, t;λ)

a(λ)
, μD2

2 (x, t;λ)
)
J2(x, t;λ);

(
μD3

2 (x, t;λ),
μD3∪D4

3 (x, t;λ)
a(λ)

)
=
(μD1∪D2

3 (x, t;λ)

a(λ)
, μD2

2 (x, t, λ)
)
J3(x, t;λ);

(
μD3

2 (x, t;λ),
μD3∪D4

3 (x, t;λ)
a(λ)

)
=
(
μD4

1 (x, t;λ),
μD3∪D4

3 (x, t;λ)

α(λ)

)
J4(x, t;λ).

(2.31)

The matrixM(x, t;λ) of this RHP is a sectionally meromorphic function of λ in C\{λ4 ∈ R}.
The possible poles of M(x, t;λ) are generated by the zeros of a(λ), α(λ) and by the complex
conjugates of these zeros. Since a(λ), α(λ) are even functions, this means each zero λj of a(λ)
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is accompanied by another zero at −λj . Similarly, each zero λj of α(λ) is accompanied by a
zero at −λj . In particular, both a(λ) and α(λ) have even number of zeros. �

Hypothesis 2.4.2. We assume that

• a(λ) has 2n simple zeros {εj}2n
j=1, 2n = 2n1 + 2n2, such that εj (j = 1, 2, · · · , 2n1) lie in

D3

⋃
D4, and εj (j = 2n1 + 1, 2n1 + 2, · · · , 2n) lie in D1 ∪D2.

• α(λ) has 2N simple zeros {γj}2N
j=1 (2n = 2N1 + 2N2), such that γj (j = 1, 2, · · · , 2N1),

lie in D1

⋃
D2, and γj (j = 2N1 + 1, 2N1 + 2, · · · , 2N), lie in D3 ∪D4.

• None of the zeros of α(λ) coincides with any of the zeros of a(λ).

The residues of the function M(x, t;λ) at the corresponding poles can be computed using
(2.19) and (2.21). Using the notation [M(x, t;λ)]1 for the first column and [M(x, t;λ)]2 for the
second column of the solution M(x, t;λ) of the RHP, and we write ȧ(λ) = da

dλ , then we get the
following proposition.

Proposition 2.4.3.

(i) Res {[M(x, t;λ)]1, γj}= e2iθ(γj )

α̇(γj)β(γj)
[M(x, t; γj)]2, j = 1, 2, · · · , 2N1.

(ii) Res {[M(x, t;λ)]2, γj}= e−2iθ(γj)

α̇(γj)β(γj)
[M(x, t; γj)]1, j = 2N1 + 1, 2N1 + 2, · · · , 2N .

(iii) Res {[M(x, t;λ)]1, εj}= e2iθ(εj )b(εj)

ȧ(εj)
[M(x, t; εj)]2, j = 2n1 + 1, 2n1 + 2, · · · , 2n.

(iv) Res {[M(x, t;λ)]2, εj}= e−2iθ(εj )b(εj)
ȧ(εj)

[M(x, t; εj)]1, j = 1, 2, · · · , 2n1.

Proof. According to the idea in [17], we only need to prove (i), and another three relations also

have similar proof. ConsiderM(x, t;λ) = (μ
D1∪D2
3
α(λ) , μD1

1 ), the simple zeros γj (j = 1, 2, · · · , 2N1.)

of α(λ) are the simple poles of μ
D1∪D2
3
α(λ) . Then we have

Res
{μD1∪D2

3 (x, t;λ)
α(λ)

, γj

}
= lim

λ→γj

(λ− γj)
μD1∪D2

3 (x, t;λ)
α(λ)

=
μD1∪D2

3 (x, t; γj)
α̇(γj)

.

Taking λ = γj into the second equation of (2.30) we obtain

μD1∪D2
3 (x, t; γj) =

μD1
1 (x, t; γj)
β(γj)

e2iθ(γj).

Furthermore,

Res
{μD1∪D2

3 (x, t;λ)
α(λ)

, γj

}
=
e2iθ(γj)μD1

1 (x, t; γj)
α̇(γj)β(γj)

.

It is equivalent to Proposition 2.4.3(i). �

2.5 The Inverse Problem

Rewriting the jump condition

M+(x, t;λ) −M−(x, t;λ) = M−(x, t;λ)J(x, t;λ) −M−(x, t;λ),
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then
M+(x, t;λ) −M−(x, t;λ) = M−J̃(x, t;λ), (2.32)

where J̃(x, t;λ) = J(x, t;λ)− I. The asymptotic conditions of (2.16) and the Proposition 2.3.1
imply

M(x, t;λ) = I +
M(x, t;λ)

λ
+ O

( 1
λ

)
, λ→ ∞, λ ∈ C \ Γ, (2.33)

where Γ = {λ4 = R}. (2.32) and the condition (2.33) yield the following integral representation
for the function M(x, t;λ)

M(x, t;λ) = I +
1

2πi

∫

Γ

M+(x, t;λ′)J̃(x, t;λ′)
λ− λ′

dλ′, λ ∈ C \ Γ, (2.34)

then
M(x, t;λ) = − 1

2πi

∫

Γ

M+(x, t;λ′)J̃(x, t;λ′)dλ′. (2.35)

Using (2.33) in the first ODE of the Lax pair (2.6), we find

− i

4
[σ3,M(x, t;λ)] = i

ux(x, t) − iut(x, t)
4

σ1, (2.36)

ux(x, t) − iut(x, t) = 2(M(x, t;λ))21 = 2 lim
λ→∞

(λM(x, t;λ))21, (2.37)

where σ1, σ3 denote the usual Pauli matrices.
The inverse problem involves reconstructing the potential u(x, t) from the spectral functions

μj , j = 1, 2, 3. That means we will reconstruct the potential u(x, t). We show in Section 2.2
that

D
(o)
1 =

⎛
⎝ 0 − i

2
uD22

1

i

2
vD11

1 0

⎞
⎠ ,

when ψ(x, t;λ) = D0 + D1
λ + D2

λ2 + D3
λ3 + O( 1

λ4 ) (λ → ∞) is a solution of (2.7). This implies
that

u(x, t) = 2im(x, t)e
2i
∫

x,t

(0,0)
Δ
, (2.38)

where

μ(x, t;λ) = I +
m(1)(x, t;λ)

λ
+
m(2)(x, t;λ)

λ2
+
m(3)(x, t;λ)

λ3
+ O

( 1
λ4

)
(λ→ ∞)

is the corresponding solution of (2.13) related to ψ(x, t;λ) via (2.12), and we write m(x, t) for
m

(1)
12 (x, t). From (2.38) and its complex conjugate, we obtain

uv = 4|m|2, uvx − uxv = 4(mxm−mxm) − 32i|m|4.
Thus, we are able to express the one-form Δ defined in (2.10) in terms of m(x, t;λ) as

Δ = |m|2dx− (6|m|4 + i(mxm−mxm))dt. (2.39)

Then we can solve the inverse problem as follows

(i) Use any one of the three spectral functions μj (j = 1, 2, 3.) to compute m(x, t) according
to

m(x, t) = lim
λ→∞

(λμj(x, t;λ))12.
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(ii) Determine Δ(x, t) from (2.39).

(iii) Finally, u(x, t) is given by (2.38).

3 The Spectral Functions and the Principal RHP

3.1 The Definition of Spectral Functions

The analysis of Section 2 motivates the following definitions for the spectral functions.

Definition 3.1.1 (The spectral functions a(λ) and b(λ)). Given the smooth function u0(x) =
u(x, 0), we define the map

S : {u0(x)} −→ {a(λ), b(λ)}
by (

b(λ)
a(λ)

)
= μ

(2)
3 (x, 0;λ) =

(
μ12

3 (x, 0;λ)
μ22

3 (x, 0;λ)

)
, Imλ2 ≤ 0.

where μ3(x, 0;λ) is the unique solution of the Volterra linear integral equation

μ3(x, 0;λ) = I +
∫ x

−∞
eiλ2(ξ−x)σ̂3(V1μ3)(ξ, 0;λ)dξ

and V1(x, 0;λ) is given in terms of u(x, 0;λ) by

V1(x, 0;λ) =

⎛
⎝ − i

2 |u0|2 λu0e
−
∫ 0

x

i
2 |u0|2dξ

λu0e

∫ 0

x

i
2 |u0|2dξ i

2 |u0|2

⎞
⎠ .

Proposition 3.1.2. The spectral functions a(λ) and b(λ) have the following properties

(i) a(λ) and b(λ) are analytic for Imλ2 < 0, continuous and bounded for Imλ2 ≤ 0.

(ii) a(λ) = 1 + O( 1
λ), b(λ) = O( 1

λ) as λ→ ∞, Imλ2 ≤ 0;

(iii) a(λ)a(λ) − b(λ)b(λ) = 1, λ2 ∈ R;

(iv) a(−λ) = a(λ), b(−λ) = −b(λ), Imλ2 ≤ 0;

(v) The map Q : {a(λ), b(λ)} → {u0(x)}, the inverse map S of Q is defined by

u0(x) = 2im(x)e4i
∫ 0

x
|m(x′)|dx′

, m(x) = lim
λ→∞

(λM (x)(x, λ))12

where, M (x)(x, λ) is the unique solution of the following RHP (see Remark 3.1.3);

(vi) S
−1 = Q.

Remark 3.1.3. The Definition 3.1.1 gives rise to the map

S : {u0(x)} → {a(λ), b(λ)}.

The inverse of this map
Q : {a(λ), b(λ)} → {u0(x)}
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can be defined as follows

u0(x) = 2im(x)e4i
∫ 0

x
|m(x′)|dx′

, m(x) = lim
λ→∞

(λM (x)(x, λ))12,

where M (x)(x, λ) is the unique solution of the following RHP

• M (x)(x, λ) =

{
M

(x)
− (x, λ), Imλ2 ≤ 0

M
(x)
+ (x, λ), Imλ2 ≥ 0

is a sectionally meromorphic function.

• M
(x)
+ (x, λ) = M

(x)
− (x, λ)(J (x)(x, λ))−1, λ2 ∈ R, and

J (x)(x, λ) =

⎛
⎜⎜⎝

1
b(λ)
a(λ)

e−2iλ2x

− b(λ)

a(λ)
e2iλ2x 1

⎞
⎟⎟⎠ , λ2 ∈ R. (3.1)

• M (x)(x, λ) = I + O( 1
λ

)
, λ→ ∞.

• a(λ) has 2n simple zeros {εj}2n
1 , 2n = 2n1 + 2n2, such that, εj (j = 1, 2, · · · , 2n1) lie in

D3 ∪D4, εj (j = 2n1 + 1, 2n1 + 2, · · · , 2n) lie in D1 ∪D2.

• The first column of M (x)
− (x, λ) has simple poles at λ = εj (j = 1, 2, · · · , 2n), the second

column of M (x)
+ (x, λ) has simple poles at λ = εj (j = 1, 2, · · · , 2n).

The associated residues are given by

Res {[M (x)(x, λ)]1, εj} =
e2iεj

2xb(εj)
ȧ(εj)

[
M (x)(x, εj)

]
2
, j = 1, 2, · · · , 2n,

(3.2)

Res {[M (x)(x, λ)]2, εj} =
e−2iε2

j xb(εj)
ȧ(εj)

[
M (x)(x, εj)

]
1
, j = 1, 2, · · · , 2n.

(3.3)

Definition 3.1.4. (The spectral functions A(λ) and B(λ)). Let g0(t), g1(t) be smooth
functions, we define the map

S̃ : {g0(t), g1(t)} → {A(λ), B(λ)}
by (

B(λ)
A(λ)

)
= μ

(2)
1 (0, λ) =

(
μ12

1 (0, λ)
μ22

1 (0, λ)

)
Imλ2 ≤ 0,

where μ1(0, λ) is the unique solution of the Volterra linear integral equation

μ1(0, λ) = I −
∫ T

t

e2iλ4(τ−T )σ̂3(V2μ1)(τ, λ)dτ

and V2(0, T ;λ) is given by

V2(0, t;λ) =

⎛
⎝ −iλ2|g0|2− i

4 |g0|4− 1
2 (g0g1−g1g0) (2λ3g0+λ( 1

2 |g0|2g0+ig1))e
−2i

∫ t

0
Δ2(0,τ)dτ

(2λ3g0+λ( 1
2 |g0|2g0−ig1))e

2i

∫ t

0
Δ2(0,τ)dτ

iλ2|g0|2+ i
4 |g0|4+ 1

2 (g0g1−g1g0)

⎞
⎠ ,

where Δ2(0, τ) = 1
8 |g0|4 − i

4 (g0g1 − g1g0).

Proposition 3.1.5. The spectral functions A(λ) and B(λ) have the following properties
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(i) A(λ) and B(λ) are analytic for Imλ4 > 0 and continuous and bounded for Imλ4 ≥ 0;

(ii) A(λ) = 1 + O( 1
λ ), B(λ) = O( 1

λ ) as λ→ ∞, Imλ4 ≥ 0;

(iii) A(λ)A(λ) −B(λ)B(λ) = 1, λ4 ∈ R;

(iv) A(−λ) = A(λ), B(−λ) = −B(λ), Im λ4 ≥ 0;

(v) The Map Q̃ : {A(λ), B(λ)} → {g0(t), g1(t)}, the inverse map S̃ of Q̃ is defined by

g0(t) = 2im(1)
12 (t)e2i

∫ t

0
Δ2(τ)dτ

, (3.4)

g1(t) = (4m(3)
12 (t) + |g0(t)|2m(1)

12 (t))e2i
∫

t

0
Δ2(τ)dτ + ig0(t)(2m

(2)
22 (t) + |g0(t)|2),

(3.5)

where Δ2(t) = 4|m(1)
12 |4 + 8(Re [m(1)

12 m
(3)
12 ] − |m(1)

12 |2Re [m(2)
22 ]), and the functions m(1)(t),

m(2)(t), m(3)(t) are determined by the asymptotic expansion M (t)(t, λ) = I + m(1)(t,λ)
λ +

m(2)(t,λ)
λ2 + m(3)(t,λ)

λ3 + O( 1
λ4 ) (λ → ∞), where M (t)(t, λ) is the unique solution of the

following RHP (see Remark 3.1.6);

(vi) S̃−1 = Q̃.

Remark 3.1.6. Let

M
(t)
+ (t, λ) =

(μD1∪D3
2 (t, λ)
A(λ)

, μD1∪D3
1 (t, λ)

)
, Imλ4 ≥ 0,

M
(t)
− (t, λ) =

(
μD2∪D4

1 (t, λ),
μD2∪D4

2 (t, λ)

A(λ)

)
, Imλ4 ≤ 0. (3.6)

M (t)(t, λ) is the unique solution of the following RHP

• M (t)(t, λ) =

{
M

(t)
+ (t, λ), Imλ4 ≥ 0

M
(t)
+ (t, λ), Imλ4 ≤ 0

is a sectionally meromorphic function.

• M
(t)
+ (t, λ) = M

(t)
− (t, λ)J (t)(t, λ), λ4 ∈ R, and

J (t)(t, λ) =

⎛
⎜⎜⎝

1

A(λ)A(λ)

B(λ)

A(λ)
e−4iλ4t

−B(λ)
A(λ)

e4iλ4t 1

⎞
⎟⎟⎠ λ4 ∈ R. (3.7)

• M (t)(T, λ) = I + O( 1
λ ) (λ→ ∞).

• A(λ) has 2k simple zeros {ζj}2k
1 , 2k = 2k1 + 2k2, such that, ζj (j = 1, 2, · · · , 2k1) lie in

D1 ∪D3, ζj (j = 2k1 + 1, 2k1 + 2, · · · , 2k) lie in D2 ∪D4.

• The first column of M (t)
+ (t, λ) has simple poles at λ = ζj (j = 1, 2, · · · , 2k), the second

column of M (t)
− (t, λ) has simple poles at λ = ζj , j = 1, 2, · · · , 2k.
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The associated residues are given by

Res {[M (t)(t, λ)]1, ζj} =
e4iζ4

j t

Ȧ(ζj)B(ζj)
[M (t)(t, ζj)]2, j = 1, 2, · · · , 2k, (3.8)

Res {[M (t)(t, λ)]2, ζj} =
e−4iζ4

j t

Ȧ(ζj)B(ζj)
[M (t)(t, ζj)]1, j = 1, 2, · · · , 2k.

(3.9)

Definition 3.1.7 (The spectral functions α(λ) and β(λ)). Given the spectral functions

α(λ) = a(λ)A(λ) − b(λ)B(λ), β(λ) = a(λ)B(λ) − b(λ)A(λ)

and the smooth functions hT (x) = u(x, T ). We define the map

˜̃
S : {hT (x)} → {α(λ), β(λ)}

by (
β(λ)
α(λ)

)
= μ

(2)
1 (0, λ) =

(
μ12

1 (0, λ)
μ22

1 (0, λ)

)
, Imλ2 ≥ 0,

where μ1(x, T ;λ) is the unique solution of the Volterra linear integral equation

μ1(x, T ;λ) = I −
∫ 0

x

eiλ2(ξ−x)σ̂3(V1μ1)(ξ, T ;λ)dξ

and V2(x, T ;λ) is given by

V2(x, t;λ) =

(
− i

2 |hT |2 λhT e
−
∫ 0

x

i
2 |hT |2dξ

λhT e

∫ 0

x

i
2 |hT |2dξ i

2 |hT |2

)
.

Proposition 3.1.8. The spectral functions α(λ) and β(λ) have the following properties

(i) α(λ) and β(λ) are analytic for Im λ2 > 0 and continuous and bounded for Im λ2 ≥ 0;

(ii) α(λ) = 1 + O( 1
λ), β(λ) = O( 1

λ) as λ→ ∞, Imλ2 ≥ 0;

(iii) α(λ)α(λ) − β(λ)β(λ) = 1, λ2 ∈ R;

(iv) α(−λ) = α(λ), β(−λ) = −β(λ), Imλ2 ≥ 0;

(v) The Map ˜̃Q : {α(λ), β(λ)} → {hT (x)}, the inverse Map ˜̃S of ˜̃Q is defined by

hT (x) = 2imt(x)e
4i
∫ 0

x
|mT (x′)|dx′

, (3.10)

mt(x) = lim
λ→∞

(λM (T )(x, λ))12, (3.11)

where M (T )(x, λ) is the unique solution of the following RHP;

(vi) ˜̃S
−1

= ˜̃
Q.
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Remark 3.1.9. Let

M
(T )
+ (x, λ) =

(μD1∪D2
3 (x, λ)
α(λ)

, μD1∪D2
1 (x, λ)

)
, Imλ2 ≥ 0,

M
(T )
− (x, λ) =

(
μD3∪D4

1 (x, λ),
μD3∪D4

3 (x, λ)

α(λ)

)
, Imλ2 ≤ 0.

(3.12)

M (T )(x, λ) is the unique solution of the following RHP

• M (T )(t, λ) =

{
M

(T )
+ (x, λ), Imλ2 ≥ 0

M
(T )
+ (x, λ), Imλ2 ≤ 0

is a sectionally meromorphic function.

• M
(T )
+ (x, λ) = M

(T )
− (x, λ)J (T )(x, λ), λ2 ∈ R, and

J (T )(x, λ) =

⎛
⎜⎜⎝

1

α(λ)α(λ)

β(λ)

α(λ)
e−2i(λ2x+2λ4T )

−β(λ)
α(λ)

e2i(λ2x+2λ4T ) 1

⎞
⎟⎟⎠ , λ2 ∈ R. (3.13)

• M (T )(x, λ) = I + O( 1
λ), λ→ ∞.

• α(λ) has 2N simple zeros {γj}2N
1 , 2N = 2N1 + 2N2, such that, γj (j = 1, 2, · · · , 2N1)

lie in D1 ∪D2), γj (j = 2N1 + 1, 2N1 + 2, · · · , 2N) lie in D3 ∪D4.

• The first column of M (T )
+ (x, λ) has simple poles at λ = γj (j = 1, 2, · · · , 2N), the second

column of M (T )
− (x, λ) has simple poles at λ = γj (j = 1, 2, · · · , 2N). The associated

residues are given by

Res {[M (T )(x, λ)]1, γj}

=
e2i(γ2

j x+2γ4
j t)

α̇(γj)β(γj)
[M (T )(x, γj)]2, j = 1, 2, · · · , 2N, (3.14)

Res {[M (T )(x, λ)]2, γj}

=
e−2i(γ2

j x+2γ4
j t)

α̇(γj)β(γj)
[M (T )(x, γj)]1, j = 1, 2, · · · , 2N. (3.15)

3.2 The Principal RHP

Theorem 3.2.1. Let u0(x) ∈ S(R−) a smooth function. Suppose that the function g0(t), g1(t)
are compatible with the function u0(t). Define the spectral function a(λ), b(λ), A(λ) and B(λ),
in terms of u0(x), g0(t), and g1(t) of Definition 3.1.1 and Definition 3.1.4. Suppose that a(λ),
b(λ), A(λ) and B(λ) satisfy the global relation

a(λ)B(λ) − b(λ)A(λ) = e4iλ4T c+(λ), Imλ2 ≥ 0,

where s(λ) = μ3(0, 0;λ), S(λ) = S(T, λ) = (e2iλ4Tμ2(0, T ;λ))−1, if λ→ ∞ the global relation is
replaced by a(λ)B(λ) − b(λ)A(λ) = 0. Assume that the possible zeros of {εj}2n

j=1 are a(λ) and
{γj}2N

j=1 of α(λ), then define the M(x, t, λ) as the solution of the following RHP
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• M(x, t;λ) is sectionally meromorphic in C \ {λ4 ∈ R}.
• The first column of M(x, t;λ) has simple poles at λ = εj, j = 1, 2, · · · , 2n, and λ = γj,
j = 1, 2, · · · , 2N . The second column of M(x, t;λ) has simple poles at λ = εj, j =
1, 2, · · · , 2n and λ = γj, j = 1, 2, · · · , 2N .

• M(x, t;λ) satisfies the jump condition

M+(x, t;λ) = M−(x, t;λ)J(x, t;λ), λ4 ∈ R. (3.16)

• M(x, t;λ) = I + O( 1
λ

)
, λ→ ∞.

• M(x, t;λ) satisfies the residue conditions of Proposition 2.4.3.

Then M(x, t;λ) exists and is unique, we define u(x, t) in terms of M(x, t;λ) by

u(x, t) = 2im(x, t)e
2i
∫ (x,t)

(0,0)
Δ
,

m(x, t) = lim
λ→∞

(λM(x, t;λ))12, (3.17)

Δ = |m|2dx− (6|m|4 + i(mxm−mxm))dt.

Furthermore u(x, t) is the solution of the C-L-L Equation (1.1), and u(x, 0) = f0(x), u(0, t) =
g0(t), qx(0, t) = g1(t).

Proof. In fact, if we assume that a(λ) and α(λ) have no zeroes, then the (2 × 2) function
M(x, t;λ) satisfies a non-sigular RHP. Using the fact that the jump matrix J(x, t;λ) matches
with the symmetry conditions, we can show that this problem has a unique global solution[1].
The case that a(λ) and α(λ) have a finite number of zeros can be mapped to the case of no
zeros supplemented by an algebraic system of equations which is always uniquely solvable. �

Theorem 3.2.2. The RHP in Theorem 3.2.1 with the vanishing boundary condition M(x, t;λ)
→ 0(λ→ ∞), has only the zero solution.

Proof. Assume that M(x, t;λ) is a solution of the RHP in Theorem 3.2.1 such thatM±(x, t;λ)
→ ∞(λ→ ∞). A is a (2 × 2) matrix, A† denotes the complex conjugate transpose of A.

Define
H+(λ) = M+(λ)M †

−(−λ), Imλ4 ≥ 0,

H−(λ) = M−(λ)M †
+(−λ), Imλ4 ≤ 0,

(3.18)

where the x and t are dependence. H+(λ) and H+(λ) are analytic in {λ ∈ C \ Imλ4 > 0} and
{λ ∈ C \ Imλ4 < 0} respectively. By the symmetry relations a(−λ) = a(λ), b(−λ) = −b(λ) and
A(−λ) = A(λ), B(−λ) = −B(λ), we infer that

J†
1 (−λ) = J1(λ), J†

3 (−λ) = J3(λ), J†
2(−λ) = J4(λ). (3.19)

Then
H+(λ) = M−(λ)J(λ)M †

−(−λ), Imλ4 ∈ R,

H−(λ) = M−(λ)J†(−λ)M †
−(−λ), Imλ4 ∈ R.

(3.20)

(3.19) and (3.20) mean that H+(λ) = H−(λ) for Imλ4 ∈ R. Therefore, H+(λ) and H−(λ)
define an entire function vanishing at infinity, so H+(λ) and H−(λ) are identically zero. Noting
J3(iκ)(κ ∈ R) is a Hermitian matrix with unit determinant and (2, 2) entry 1 for any κ ∈ R.
Therefore, J3(iκ)(κ ∈ R) is a positive definite matrix. Since H−(κ) vanishes identically for
κ ∈ iR, i.e.,

M+(iκ)J3(iκ)M
†
+(iκ) = 0, κ ∈ R. (3.21)
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We can deduce that M+(iκ) = 0 as κ ∈ R. It follows that M+(λ) and M−(λ) vanish identically.
�

Proposition 3.2.3. u(x, t) satisfies the C-L-L equation.

Proof. Using arguments of the dressing method[26], it can be verified directly that if M(x, t;λ)
is defined as the unique solution of the above RHP, and if u(x, t) is defined in terms of M(x, t;λ)
by (3.17), then u(x, t) and M(x, t;λ) satisfy two parts of the Lax pair, hence u(x, t) is solvable
on C-L-L equation. �

Proposition 3.2.4. u(x, 0) = u0(x).

Proof. Noting the (2.27) at t = 0 we can divide the jump matrix into product of (2×2) matrix

J1(x, 0;λ) =

⎛
⎜⎜⎝

1

α(λ)α(λ)

β(λ)

α(λ)
e−2iλ2x

−β(λ)
α(λ)

e2iλ2x 1

⎞
⎟⎟⎠ ,

J2(x, 0;λ) =

⎛
⎜⎜⎝

a(λ)
α(λ)

δ(λ)e−2iλ2x

0
α(λ)

a(λ)

⎞
⎟⎟⎠ ,

J3(x, 0;λ) =

⎛
⎜⎜⎝

1
b(λ)
a(λ)

e−2iλ2x

− b(λ)

a(λ)
eλ2x 1

a(λ)a(λ)

⎞
⎟⎟⎠ ,

J4(x, 0;λ) =

⎛
⎜⎜⎝

a(λ)

α(λ)
0

−δ(λ)e2iλ2x α(λ)
a(λ)

⎞
⎟⎟⎠ .

(3.22)

Define

M (x)(x, λ) = M(x, 0;λ), λ ∈ D1 ∪D4,

M (x)(x, λ) = M(x, 0;λ)(J2(x, 0;λ))−1, λ ∈ D2, (3.23)

M (x)(x, λ) = M(x, 0;λ)J4(x, 0;λ), λ ∈ D3,

then we set

M
(x)
+ (x, λ) =

(μD1∪D2
3 (x, λ)
α(λ)

, μD1∪D2
1 (x, λ)

)
, λ ∈ D1 ∪D2,

M
(x)
− (x, λ) =

(
μD3∪D4

1 (x, λ),
μD3∪D4

3 (x, λ)

α(λ)
), λ ∈ D3 ∪D4,

M
(x)
− (x, λ) =

(
μD3∪D4

2 (x, λ),
μD3∪D4

3 (x, λ)
a(λ)

)
, λ ∈ D3 ∪D4,

M
(x)
+ (x, λ) =

(μD1∪D2
3 (x, λ)

a(λ)
, μD1∪D2

2 (x, λ)
)
, λ ∈ D1 ∪D2,

(3.24)



A Riemann-Hilbert Approach to the Chen-Lee-Liu Equation on the Half Line 513

where M (x)(x, λ) satisfies

M
(x)
+ (x, λ) = M

(x)
− (x, λ)J (x)

1 (x, λ), λ ∈ R;

M
(x)
+ (x, λ) = M

(x)
− (x, λ)(J (x)

3 (x, λ))−1, λ2 ∈ R.
(3.25)

M (x)(x, λ) = I + O( 1
λ

)
(λ→ ∞). According to Proposition 3.1.2,

u0(x) = 2im(x)e4i
∫ 0

x
|m(x′)|dx′

, m(x) = lim
λ→∞

(λM (x)(x, λ))12,

comparing this with (3.17) evaluated at t = 0, we conclude that u0 = u(x, 0). �

Proposition 3.2.5. The sets {εj}2n
j=1 and {γj}2N

j=1 are not empty.

Proof. The first column of M(x, t;λ) has poles at {εj}2n
2n1+1 for λ ∈ D2 and has poles {γj}2N1

1

for λ ∈ D1. On the other hand, the first column of M (x)(x, λ) should have poles at {γj}2N
j=1 or

have poles at {εj}2n
j=1. We will now show that the transformation defined by (3.23) maps the

former poles to the latter ones.
Setting M(x, 0;λ) = (M (1)(x, 0;λ),M (2)(x, 0;λ)), (3.23) can be written as

M (x)(x, λ) =
( a(λ)

α(λ)
M (1) − δ(λ)e−2iλ2xM (2),

α(λ)
a(λ)

M (2)
)
, λ ∈ D3. (3.26)

The residue condition of Proposition 2.4.3, (iii) at εj implies that M (x)(x, λ) has no poles at εj

on the other hand, (3.26) shows that M (x)(x, λ) has poles at {εj}2N
2N1+1 with residues given by

Res {[M (x)(x, λ)]1, γj} = −Res {δ(λ), γj}e−2iγ2
jxM (x)(x, γj),

j = 2N1 + 1, 2N1 + 2, · · · , 2N. (3.27)

Similar considerations apply to εj and γj . �

Proposition 3.2.6. u(0, t) = g0(t), ux(0, t) = g1(t).

Proof. Define

M (t)(t, λ) = M(0, t;λ)G(t, λ), (3.28)

where G(t, λ) is given by G(j)(t, λ) for λ ∈ Dj, j = 1, 2, 3, 4. Noting that M(0, t;λ) satisfies
Theorem 2.4.1 on the respective parts of the boundary separating the D′

js, then M (t)(t, λ)
satisfies the RHP defined in Remark 3.1.6. Suppose we can find matrices G(1) and G(2) holo-
morphic for Im λ2 > 0 (and continuous for Imλ2 > 0), matrices G(3) and G(4) holomorphic for
Imλ2 < 0 (continuous for Imλ2 < 0), which tend to I as λ→ ∞, and which satisfy

J2(0, t;λ)G(1)(t, λ) = G(2)(t, λ)J (t)(t, λ),

J1(0, t;λ)G(1)(t, λ) = G(4)(t, λ)J (t)(t, λ),

J3(0, t;λ)G(3)(t, λ) = G(2)(t, λ)J (t)(t, λ),

J4(0, t;λ)G(3)(t, λ) = G(4)(t, λ)J (t)(t, λ),

(3.29)

where J (t)(t, λ) is the jump matrix defined in (3.7).
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We can obtain that such G(j)(t, λ) (j = 1, 2, 3, 4.) matrices are

G(1)(t, λ) =

⎛
⎜⎝
α(λ)
A(λ)

c+(λ)e4iλ4(T−t)

0
A(λ)
α(λ)

⎞
⎟⎠ ,

G(2)(t, λ) =

⎛
⎜⎜⎝
δ(λ) − b(λ)

A(λ)
e−4iλ4t

0
1

δ(λ)

⎞
⎟⎟⎠ ,

G(3)(t, λ) =

⎛
⎜⎜⎝

1

δ(λ)
0

− b(λ)
A(λ)

e4iλ4t δ(λ)

⎞
⎟⎟⎠ ,

G(4)(t, λ) =

⎛
⎜⎜⎜⎜⎝

A(λ)

α(λ)
0

c+(λ)e−4iλ4(T−t) α(λ)

A(λ)

⎞
⎟⎟⎟⎟⎠
.

(3.30)

By using directly calculation, we can verify these G(j)(t, λ) (j = 1, 2, 3, 4.) matrices satisfy the
conditions (3.29). As for the proof of the equation q(x, 0) = q0(x), it can be verified that
the transformation (3.28) replaces the residue conditions of Proposition 2.4.3 by the residue
conditions of Remark 3.1.6.
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