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Abstract In this paper, we first prove that, for a non-zero function f∈D(Rn), its multi-Hilbert transform Hnf

is bounded and does not have compact support. In addition, a new distribution space D′
H

(Rn) is constructed and

the definition of the multi-Hilbert transform is extended to it. It is shown that D′
H

(Rn) is the biggest subspace

of D′(Rn) on which the extended multi-Hilbert transform is a homeomorphism.
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1 Introduction

For f ∈ Lp(R), 1 ≤ p <∞, the classical Hilbert transform is defined as

Hf(x) :=
1
π

p.v.
∫

R

f(t)
x− t

dt, (1.1)

where, p.v. is the Cauchy principal value (see [5]), that is

p.v.
∫

R

f(t)
x− t

dt = lim
ε→0+

∫
|x−t|>ε

f(t)
x− t

dt.

In [13], Lihua Yang proved that D(R) ∩H(D(R)) = {0}, where,

D(Rn) =
{
φ : φ ∈ C∞

c (Rn), ∀α ∈ N
n
0 , ρα(φ) = sup

x∈Rn

|Dαφ(x)| <∞
}

for n ∈ N. That is to say the function Hf does not have compact support for all non-zero
function f ∈ D(R).

Consider n-dimensional Euclidean space R
n (n ∈ N). For f ∈ Lp(Rn), 1 ≤ p < ∞,

x = (x1, x2, · · · , xn) ∈ R
n, t = (t1, t2, · · · , tn) ∈ R

n, the n-dimensional Hilbert transform Hn is
defined as

Hnf(x) :=
1
πn

p.v.
∫

Rn

f(t)
(x1 − t1)(x2 − t2) · · · (xn − tn)

dt. (1.2)

For n = 2, Xiaona Cui[3] obtained the following result:

D(R2) ∩H2(D(R2)) = {0}.
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It is natural for us to raise the following question: When n > 2, whether there holds

D(Rn) ∩Hn(D(Rn)) = {0}. (1.3)

In Section 3, we will give an affirmative answer for the above question.
Up till now, many achievements have been made to extend the classical Hilbert transform

to some generalized function spaces[1−9]. Most of them on this topic[1−6] is to extend the
Hilbert transform to a preexistent distribution space by using the analytic representation of
distributions. The notable one among them is [6] by Orton, in which, Hilbert transform is
extended to D′(R). Her extension depends on the analytic representation, which is unique
up to an entire analytic function, namely, the Hilbert transform of f ∈ D′(R) is essentially
an equivalent class. In [7], Hilbert transform is extended to D′(R) directly with conjugate
operator by introducing the topology on H(D(R)). With the extension, for any f ∈ D′(R), its
Hilbert transform Hf is in H ′(D(R)), which is called a space of ultradistributions[7]. It can be
verified that H ′(D(R)) is not a subspace of D′(R) since Hφ /∈ D(R) for φ ∈ D(R) unless φ = 0.
Let us recall that, the similar case occurs for Fourier transform since the Fourier transform
φ̂ of φ ∈ D(R) is not in D(R) unless φ = 0. To extend Fourier transform to distributions,
the Schwartz space S(R) of rapidly decreasing functions is considered. It is well known that
D(R) ↪→ S(R) (see Section 2 or [10] for the exact meaning of embedding ′ ↪→′) and the
Fourier transform is a homeomorphism on S(R). Therefore, the dual space of S(R) satisfies
S′(R) ↪→ D′(R) and the Fourier transform is extended to S′(R) successfully. Following this
idea, this paper will establish a new space of distributions and extend the n-dimensional Hilbert
transform to it such that n-dimensional Hilbert transform is a homeomorphism.

In our paper, a distribution space DH(Rn) is constructed and some characterizations are
given in Section 3. It is also shown in this section that DH(Rn) is the smallest space with our
desired properties and correspondingly its dual space D′

H(Rn) is the biggest distribution space
such that D′

H(Rn) ↪→ D′(Rn) and the extended multi-Hilbert transform is a homeomorphism
on D′

H(Rn). In Section 4, the classical Hilbert transform is extended to D′
H(Rn). The case

n = 1 was proved by Lihua Yang in [13] and Xiaona Cui[3] got the similar results for n = 2. So
we will mainly consider the case n ≥ 3.

2 Preliminaies

Before we formulate the main results, some useful lemmas and the definitions will be given first.
For clarification, let us denote some commonly used notations as follows: For a Lebesgue

measurable set E ∈ R
n, let Lp(E) be the space of p-power Lebesgue integrable functions with

the well-known Lp(E) norm for 1 ≤ p ≤ ∞, Lloc(Rn) be the space of all the locally integrable
functions on R

n, Ck(Rn) (k ∈ N) be that of all the k-times differentiable functions on R
n,

C(Rn) := C0(Rn), C∞(Rn) :=
⋂

k∈N

Ck(Rn).

Definition 2.1 (Space X(Rn)). The space X(Rn) is defined by

X(Rn) =
{
ϕ : ϕ(x) =

k∑
|μ|=0

ϕμ1(x1) · · ·ϕμn(xn), ϕμj (xj) ∈ D(R), ∀ k ∈ N

}
, (2.1)

where μ = (μ1, · · · , μn) ∈ N
n and x ∈ R

n and the topology of X(Rn) is induced by the topology
of the space D(R).

Definition 2.2 (Space DLp(Rn)). For 1 < p <∞, the space DLp(Rn) is defined by

DLp(Rn) =
{
ϕ ∈ C∞(Rn) : ∀α ∈ N

n, γα(ϕ) =
( ∫

Rn

|Dαϕ(x)|p dx
) 1

p

<∞
}
. (2.2)
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From the study of Hilbert transform on D(R), J.N. Pandey[4] extended the test space of
n-dimensional Hilbert transform to DLp(Rn) by the space X(Rn).

Lemma 2.1. The test space X(Rn) is dense in D(Rn).

Lemma 2.2. The space D(Rn) is dense in DLp(Rn).
From Lemma 2.1 and Lemma 2.2, we immediately derive:

Lemma 2.3. The test space X(Rn) is dense in DLp(Rn).

Lemma 2.4. The n-dimensional Hilbert transform Hn is a linear continuous map from
X(Rn) to DLp(Rn) and we have H2

n = (−1)nI.

Lemma 2.5. For all 1 < p <∞, the n-dimensional Hilbert transform Hn is a linear homeo-
morphism map from DLp(Rn) to itself and there holds H2

n = (−1)nI.
For the sake of convenience, we adopt the multi-index notation. A multi-index α =

(α1, · · · , αn) is a n-tuple of nonnegative integers, i.e. αi ∈ N, i = 1, 2, · · · , n. N
n
0 denotes the

set of multi-indices. For any multi-index α ∈ N
n
0 and any t ∈ R

n, we set tα = t1
α1t2

α2 · · · tnαn .
The length of α is defined as |α| = α1 + · · · + αn. Other related notations are as follows:

1 = (1, · · · , 1), α+ 1 = (α1 + 1, · · · , αn + 1), α1 = α1 · · ·αn,

α ≥ β i.e. αi ≥ βi, for i = 1, 2, · · · , n,
α > β i.e. αi > βi, for i = 1, 2, · · · , n,

Dα =
( ∂

∂ξ

)α

=
∂|α|

(∂ξ1)α1(∂ξ2)α2 · · · (∂ξn)αn
.

We sort the elements of N
n
0 according to Graded lexicographic order[12]. “Graded” refers to

the fact that the total degree |α| is the main criterion. Graded lexicographic ordering means
that the multi-indices are arranged as

(0, 0, · · · , 0), (0, 0, · · · , 0, 1), (0, 0, · · · , 1, 0), · · · , (1, 0, · · · , 0),
(0, 0, · · · , 2), (0, 0, · · · , 1, 1), (0, 0, · · · , 2, 0), · · · , (2, 0, · · · , 0), · · ·

Definition 2.3[12] (Graded lexicographic order). Graded lexicographic order <tdeg: for any
α = (α1, · · · , αn), β = (β1, · · · , βn) ∈ N

n
0 ,

(a) Suppose |α| < |β|. Then α <tdeg β;
(b) Suppose |α| = |β| and there exists a integer i (1 ≤ i ≤ n) such that αi < βi and

αj = βj (1 ≤ j < i). Then α <tdeg β.
At the same time, we endow every α ∈ N

n
0 an order number according to the “Graded

lexicographic order”.

Definition 2.4. For the multi-index α ∈ N
n
0 , the order number N(α) is a nonnegative integer

satisfy:
(1) For 0 = (0, · · · , 0), N(0) = 0;
(2) Suppose α, β ∈ N

n
0 and α <tdeg β. If there are no γ ∈ N

n
0 such that α <tdeg γ <tdeg β,

then N(β) = N(α) + 1.

Note 1. It is easy to check {N(α) : α ∈ N
n
0} is an one-to-one correspondence with N, and

furthermore, the expression of N(α) is appropriately as follow:

N(α) =
|α|−1∑
j=0

(
n+ j − 1
n− 1

)
+

n∑
j=1

αj−1∑
k=0

(
n− j +

∑n
i=j αi − k − 1

n− j − 1

)
,
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where, for a ≥ b ∈ N,
(
a
b

)
= a!

b!(a−b)! is the binomial coefficient.

Note 2. Let n = 3, we sort N
3
0 as follow:

N(α) α | 24 (0, 4, 0) | 32 (3, 0, 1)
. . | 25 (1, 0, 3) | 33 (3, 1, 0)
. . | 26 (1, 1, 2) | 34 (4, 0, 0)
. . | 27 (1, 2, 1) | 35 (0, 0, 5)

20 (0, 0, 4) | 28 (1, 3, 0) | 36 (0, 1, 4)
21 (0, 1, 3) | 29 (2, 0, 2) | . .

22 (0, 2, 2) | 30 (2, 1, 1) | . .

23 (0, 3, 1) | 31 (2, 2, 0) | . .

Definition 2.5 (Embedding). Assume X and Y are two topological vector spaces and X ⊂ Y.
We say X can be embedded into Y consistently if we can deduce xi → 0 in Y from xi → 0 in X
for all sequence {xi}∞i=1 ⊂ X.

In order to prove our results, we need the following two lemmas:

Lemma 2.6 (Decomposition Theorem). Let k, γ ∈ N
n
0 , γ = (|k| + 1, |k| + 1, · · · , |k| + 1).

Denoting Λ = {β : β ∈ N
n
0 , |β| = |k| + 1, ∃ i ∈ {1, 2, · · · , n}, s.t. βi = |k| + 1}, we have∑

N(α)>N(k)

Sα ≤
∑
β∈Λ

∑
α≥β

Sα +
∑

α<γ,N(α)>N(k)

Sα,

where Sα ≥ 0, α ∈ N
n
0 .

Proof. It is natural that∑
N(α)>N(k)

Sα =
∑

α<γ,N(α)>N(k)

Sα +
∑

α≥γ,N(α)>N(k)

Sα. (2.3)

When α ≥ γ, there exists an integer i such satisfies αi ≥ |k|+ 1, which means α ≥ β, where
β = (0, · · · , |k| + 1, · · · , 0) ∈ Λ, that is to say∑

α≥γ,N(α)>N(k)

Sα ≤
∑
β∈Λ

∑
α≥β

Sα. (2.4)

Then (2.3) and (2.4) implies∑
N(α)>N(k)

Sα ≤
∑
β∈Λ

∑
α≥β

Sα +
∑

α<γ,N(α)>N(k)

Sα.

�

Lemma 2.7 (Weight Theorem). Suppose δ, γ ∈ N
n
0 and N(δ) + 1 < N(γ), then for all

β ∈ N
n
0 which satisfy N(δ) ≤ N(β) < N(α) ≤ N(γ), there exists a vector Q ∈ R

n
+ which

satisfies Q · β < Q · α.

Proof. We only need to find Q satisfy Q · β < Q · α for all pairs (β, α) such that N(δ) ≤
N(β) < N(γ) and N(α) = N(β) + 1.

For convenience, let Qn = 1. Denote {Qi−1 −Qi} with Δ = {Δ1, · · · ,Δn−1} as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Qn−1 = 1 + Δ1,

Qn−2 = 1 + Δ1 + Δ2,

...
Q1 = 1 + Δ1 + · · · + Δn−1.

(2.5)
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Firstly we consider all the elements β ∈ N
n
0 such that |β| = k, where k is a positive integer

between |δ| and |γ|, i.e. |δ| ≤ k ≤ |γ|. We divide these β into n parts according to the first βi

that is not equal to 0:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

In = {(0, · · · , 0, k)},
In−1 = {(0, · · · , 0, 1, k − 1), · · · , (0, · · · , 0, k, 0)},

...
I1 = {(1, 0, · · · , 0, k − 1), · · · , (k, 0, · · · , 0)}.

Noting the last element of In and all the elements of In−1, we obtain k < (1 + Δ1) + (k − 1),
namely Δ1 > 0. Successively considering the last element of Ii and all the elements of Ii−1, we
get ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k(1 + Δ1) < (1 + Δ1 + Δ2) + (k − 1),
k(1 + Δ1 + Δ2) < (1 + Δ1 + Δ2 + Δ3) + (k − 1),

...

k
(
1 +

n−2∑
i=1

Δi

)
<

(
1 +

n−1∑
i=1

Δi

)
+ (k − 1).

(2.6)

It follows from (2.6) that ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δ2 > (k − 1)Δ1,

Δ3 > (k − 1)(Δ1 + Δ2),
...

Δn−1 > (k − 1)
n−2∑
i=1

Δi.

In addition, α = (k, 0, · · · , 0) and β = (0, · · · , 0, k + 1) should also satisfy Q · α < Q · β. So

k
(
1 +

n−1∑
i=1

Δi

)
< k + 1. (2.7)

In order to cover all the elements between δ and γ, we let k = |γ| and set
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δ2 = kΔ1 = |γ|Δ1,

Δ3 = k(Δ1 + Δ2) = |γ|(Δ1 + Δ2) = |γ|(|γ| + 1)Δ1,

...

Δn−1 = k

n−2∑
i=1

Δi = |γ|
n−2∑
i=1

Δi = |γ|(|γ| + 1)n−2Δ1.

(2.8)

Placing k = |γ| in (2.7) and noting the equations (2.8), we get

Δ1 <
|γ| + 1

|γ|((|γ| + 1)n−1|γ| + 1)
.

Let

Δ1 =
1
2
· |γ| + 1
|γ|((|γ| + 1)n−1|γ| + 1)

,

and then we find Q denoted by (2.5) and (2.8). �
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Definition 2.6 (High-dimension vanishing moments). Let f ∈ C(Rn). If there exists k ∈ N
n
0

such that, for any α ∈ {α ∈ N
n
0 : N(α) ≤ N(k)},

∫
Rn

tαf(t)dt = 0,

we call that f has k vanishing moments.

Note 1. A function f is said to have exactly k vanishing moments if it has k vanishing
moments and for all α ∈ N

n with N(α) = N(k) + 1, there holds
∫

Rn t
αf(t)dt �= 0.

Note 2. In particular, let n = 2, the two-dimension vanishing moments defined here are more
general than that defined in [3] (see [3, Definition 1]). A function has α vanishing moments in
[3] implies that it has α vanishing moment here, however, the contrary is not true. That is to
say the two-dimension vanishing moments defined here need less conditions.

3 The Multi-Hilbert Transform on D(Rn)

Lemma 3.1. Let x, t ∈ R
n, α ∈ N

n
0 , and |xi| > |ti| for all i ∈ {1, 2, · · · , n}. Then

∞∑
N(α)=0

tα

xα+1
=

1
(x1 − t1)(x2 − t2) · · · (xn − tn)

. (3.1)

Proof. For all i ∈ {1, 2, · · · , n}, since |xi| > |ti|, we have

∞∑
αi=0

ti
αi

xi
αi

=
xi

xi − ti
. (3.2)

Then we derive from (3.2) that

∞∑
N(α)=0

tα

xα+1
=

1
x1

( ∞∑
α1=0

· · ·
∞∑

αn=0

tα1
1 · · · tαn

n

xα1
1 · · ·xαn

n

)

=
1
x1

x1 · · ·xn

(x1 − t1)(x2 − t2) · · · (xn − tn)

=
1

(x1 − t1)(x2 − t2) · · · (xn − tn)
.

�

Theorem 3.2. Suppose that f ∈ D(Rn). Then the n-dimensional Hilbert transform of f is
bounded on R

n.

Proof. We denote the support of the function f by D = [−a1, a1] × · · · × [−an, an], where
ai > 0, i = 1, · · · , n. Then the integral region in (1.2) is contained in D.

Considering the integral

p.v.
∫

R

1
xi − ti

= 0, i = 1, · · · , n, (3.3)
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for all x ∈ R
n, the Hilbert transform can be rewritten as

Hnf(x) =
1
πn

p.v.
∫

Rn

f(t)
(x1 − t1) · · · (xn − tn)

dt

=
1
πn

p.v.
∫

D

f(t)
(x1 − t1) · · · (xn − tn)

dt

=
1
πn

p.v.
∫

D

f(t1, t2, · · · , tn) − f(x1, t2, · · · , tn)
(x1 − t1) · · · (xn − tn)

dt, (3.4)

where

p.v.
∫

D

f(t1, t2, · · · , tn) − f(x1, t2, · · · , tn)
(x1 − t1) · · · (xn − tn)

dt

= lim
εi→0+

∫
|xi−ti|>εi>0,i=1,···,n;t∈D

f(t1, t2, · · · , tn) − f(x1, t2, · · · , tn)
(x1 − t1) · · · (xn − tn)

dt.

Obviously, there holds

f(t1, t2, · · · , tn) − f(x1, t2, · · · , tn) = (t1 − x1)
∫ 1

0

∂1f(x1 + θ1(t1 − x1), t2, · · · , tn)dθ1. (3.5)

Then we get from (3.4) and (3.5) that

Hnf(x) =
1
πn

p.v.
∫

D

F1(x1, t1, · · · , tn)
−(x2 − t2) · · · (xn − tn)

dt

=
1
πn

p.v.
∫

D

F1(x1, t1, · · · , tn) − F1(x1, t1, x2, t3, · · · , tn)
−(x2 − t2) · · · (xn − tn)

dt, (3.6)

where

F1(x1, t1, · · · , tn) =
∫ 1

0

∂1f(x1 + θ1(t1 − x1), t2, · · · , tn)dθ1. (3.7)

Similar to (3.5), we have

F1(x1, t1, · · · , tn) − F1(x1, t1, x2, t3, · · · , tn)

=(t2 − x2)
∫ 1

0

∂2F1(x1, t1, x2 + θ2(t2 − x2), t3, · · · , tn)dθ2. (3.8)

Combining (3.7) with (3.8), it yields

Hnf(x) =
1
πn

p.v.
∫

D

F1(x1, t1, · · · , tn)
−(x2 − t2) · · · (xn − tn)

dt

=
1
πn

p.v.
∫

D

F2(x1, t1, x2, t2, t3, · · · , tn)
(−1)2(x3 − t3) · · · (xn − tn)

dt, (3.9)

where

F2(x1, t1, x2, t2, t3, · · · , tn) =
∫ 1

0

∂2F1(x1, t1, x2 + θ2(t2 − x2), t3, · · · , tn)dθ2. (3.10)

Repeating the process, we deduce

Hnf(x) =
1
πn

p.v.
∫

D

Fn−1(x1, t1, x2, t2, t3, · · · , tn)
(−1)n−1(xn − tn)

dt

=
1
πn

p.v.
∫

D

(−1)n∂nFn−1(x1, t1, x2, t2, · · · , xn−1, tn−1, xn

+ θn(tn − xn))dθndt. (3.11)
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Since f ∈ D(Rn) and the integral region is contained in the bounded region D, there exists a
constant M which satisfies

|∂n∂n−1 · · · ∂1f(x)| ≤M, (3.12)

for all x ∈ R
n. So we have

|Hnf(x)| ≤ 1
πn

∫ a1

−a1

· · ·
∫ a1

−a1

Mdt ≤ 2na1 · · · an

πn
M, (3.13)

which implies our conclusion. �

Theorem 3.2 tells us that the multi-Hilbert transform of functions in D(Rn) are bounded.
In fact, they also tend to 0 at the infinity.

Theorem 3.3. Suppose f ∈ D(Rn) and supp f ⊂ Ba := [−a1, a1] × · · · × [−ai, ai], ai > 0,
i = 1, · · · , n. Then for all x ∈ R

n with |xi| > ai, i = 1, · · · , n, we have

∣∣∣x1Hnf(x) − 1
πn

∫
Rn

f(t)dt
∣∣∣ ≤ I(|x1|, · · · , |xn|)‖f‖L1(Rn), (3.14)

where,
lim

|xi|→∞,i=1,···,n
I(|x1|, · · · , |xn|) = 0. (3.15)

Proof. From the definition of multi-Hilbert transform in (1.2) and that the support of f is
contained in D, we have

Hnf(x) =
1
πn

p.v.
∫

D

f(t)
(x1 − t1) · · · (xn − tn)

dt. (3.16)

For all x ∈ R
n with |xi| > ai, i = 1, · · · , n, we get from (3.16) and Lemma 3.1 that

Hnf(x) =
1
πn

p.v.
∫

D

∞∑
N(α)=0

tα

xα+1
f(t)dt. (3.17)

Evidently,

∞∑
N(α)=0

∣∣∣ tα

xα+1
f(t)

∣∣∣ =
|f(t)|

(|x1| − |t1|) · · · (|xn| − |tn|)

≤ |f(t)|
(|x1| − |a1|) · · · (|xn| − |an|) ∈ L1(D). (3.18)

Using Fubini-Tonelli’s Theorem (see [13]) and combining (3.17) with (3.18), we get

Hnf(x) =
1
πn

p.v.
∞∑

N(α)=0

1
xα+1

∫
D

tαf(t)dt. (3.19)

From the identity (3.19), we deduce

x1Hnf(x) − 1
πn

∫
Rn

f(t)dt =
1
πn

∑
α≥0,α�=0

1
xα

∫
D

tαf(t)dt. (3.20)
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Utilizing (3.20), we get for all x ∈ R
n with |xi| > ai, i = 1, · · · , n, there holds

∣∣∣x1Hnf(x) − 1
πn

∫
Rn

f(t)dt
∣∣∣

≤ 1
πn

∑
α≥0,α�=0

( a1

|x1|
)α1 · · ·

( an

|xn|
)αn

∫
D

|f(t)|dt

=
1
πn

∫
D

|f(t)|dt
{ ∞∑

α1=1

( a1

|x1|
)α1

∞∑
α2=0

( a2

|x2|
)α2 · · ·

∞∑
αn=0

( an

|xn|
)αn

+
∞∑

α2=1

( a2

|x2|
)α2

∞∑
α3=0

( a3

|x3|
)α3 · · ·

∞∑
αn=0

( an

|xn|
)αn

+ · · · +
∞∑

αn=1

( an

|xn|
)αn

}

=
1
πn

∫
D

|f(t)|dt
{ a1

|x1| − a1

x2

|x2| − a2
· · · xn

|xn| − an

+
a2

|x2| − a2

x3

|x3| − a3
· · · xn

|xn| − an
+ · · · + an

|xn| − an

}

=I(|x1|, · · · , |xn|)‖f‖L1(Rn), (3.21)

where

I(|x1|, · · · , |xn|) =
1
πn

{ a1

|x1| − a1

x2

|x2| − a2
· · · xn

|xn| − an

+
a2

|x2| − a2

x3

|x3| − a3
· · · xn

|xn| − an
+ · · · + an

|xn| − an

}
.

(3.22)

Since the summation in (3.22) is finite, we have

lim
|xi|→∞,i=1,···,n

I(|x1|, · · · , |xn|) = 0.

�

Note 3. It is notable that the limitation in (3.14) is taken from |xi| → ∞ for all i = 1, · · · , n,
but not |x| → ∞. Taking |xi| → ∞ for all i = 1, · · · , n on the left side of (3.14), it is obvious
that

lim
|xi|→∞, i=1,···,n

Hf(x) = 0.

Using the same method as in the proof of Theorem 3.3, we can get the following corollary.

Corollary 3.4. Suppose f ∈ D(Rn), supp f ⊂ Ba := [−a1, a1] × · · · × [−ai, ai], ai > 0,
i = 1, · · · , n. Then for all x ∈ R

n with |xi| > ai, i = 1, · · · , n, we have

∣∣∣x1

x1
Hnf(x) − 1

πn

1
x1

∫
Rn

f(t)dt
∣∣∣ ≤ I1(|x1|, · · · , |xn|)‖f‖L1(Rn). (3.24)

Moreover,
lim

|x1|→∞
I1(|x1|, · · · , |xn|) = 0. (3.25)

Proof. We just need to choose

I1(|x1|, · · · , |xn|) =
1

|x1|I(|x1|, · · · , |xn|).
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�

Note 4. Similarly, for fixed x2, · · · , xn, taking |x1| → ∞ in (3.24), we get lim
|x1|→∞

Hnf(x) = 0,

which means Hnf(x) tends to 0 when |x| → ∞ and x parallel to the x1-axe.

Theorem 3.5. Let f ∈ D(Rn), supp f ⊂ Ba := [−a, a]n, a > 0 and suppose f has k
(k ∈ N

n
0 ) vanishing moments with k′ ∈ N

n
0 and N(k′) = N(k) + 1. Then there exists a

unbounded route Γ ⊆ {x ∈ R
n : |xi| > a, i = 1, 2, · · · , n} which satisfies the following property:

lim
x→∞,x∈Γ

∣∣∣xk′+1Hnf(x) − 1
πn

∫
Rn

tk
′
f(t)dt

∣∣∣ = 0. (3.26)

Proof. We just consider a > 1 for convenience.
Using the definition of n-dimensional Hilbert transform (1,2) and the assumption supp f ⊂

Ba, we have

Hnf(x) =
1
πn

p.v.
∫ a

−a

· · ·
∫ a

−a

f(t)
(x1 − t1) · · · (xn − tn)

dt. (3.27)

For x ∈ R
n and |xi| > a (i = 1, 2, · · · , n), the Cauchy principle value in (3.27) can be wiped

off.
Using (3.1), the identity (3.27) can be rewritten as

Hnf(x) =
1
πn

∫ a

−a

· · ·
∫ a

−a

∞∑
N(α)=0

tα

xα+1
f(t)dt. (3.28)

Since
∞∑

N(α)=0

∣∣∣ tα

xα+1
f(t)

∣∣∣ ≤ |f(t)|
(|x1| − |t1|)(|x2| − |t2|) · · · (|xn| − |tn|)

≤ |f(t)|
(|x1| − a)(|x2| − a) · · · (|xn| − a)

∈ L1(Ba),

we conclude form Fubini-Tonelli’s theorem (see [4]) that (3.28) can be written as

Hnf(x) =
1
πn

∞∑
N(α)=0

1
xα+1

∫ a

−a

· · ·
∫ a

−a

tαf(t)dt.

By the assumption that f has k vanishing moments, we have

Hnf(x) =
1
πn

∞∑
N(α)=N(k′)

1
xα+1

∫ a

−a

· · ·
∫ a

−a

tαf(t)dt.

Consequently,

xk′+1Hnf(x) − 1
πn

∫ a

−a

· · ·
∫ a

−a

tk
′
f(t)dt =

1
πn

∞∑
N(α)=N(k′)+1

xk′

xα

∫ a

−a

· · ·
∫ a

−a

tαf(t)dt,

and then
∣∣∣xk′+1Hnf(x) − 1

πn

∫ a

−a

· · ·
∫ a

−a

tk
′
f(t)dt

∣∣∣ ≤ 1
πn

∞∑
N(α)=N(k′)+1

|xk′ |
|xα|

∫ a

−a

· · ·
∫ a

−a

|tα||f(t)|dt.
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Denoting a set Λ as Λ = {β : β ∈ N
n
0 , |β| = |k′|+ 1, ∃ i ∈ {1, 2, · · · , n}, s.t. βi = |k′|+ 1},

where γ = (|k′| + 1, |k′| + 1, · · · , |k′| + 1). Using Lemma 2.6, we get

∣∣∣xk′+1Hnf(x) − 1
πn

∫ a

−a

· · ·
∫ a

−a

tk
′
f(t)dt

∣∣∣

≤ 1
πn

( ∑
β∈Λ

∑
α≥β

+
∑

α<γ, N(α)>N(k′)

) |xk′ |
|xα|

∫ a

−a

· · ·
∫ a

−a

|tα||f(t)|dt

=S1 + S2,

where

S1 =
1
πn

∑
β∈Λ

∑
α≥β

|xk′ |
|xα|

∫ a

−a

· · ·
∫ a

−a

|tα||f(t)|dt,

and

S2 =
1
πn

∑
α<γ,N(α)>N(k′)

|xk′ |
|xα|

∫ a

−a

· · ·
∫ a

−a

|tα||f(t)|dt.

For k′ and γ, using Lemma 2.7, there exists a vector Q which satisfies Q · β < Q · α if
N(k′) ≤ N(β) < N(α) < N(γ).

Taking a special route Γ = {x ∈ R
n : xn > a, xi = xn

Qi}, we will prove

lim
xn→∞, x∈Γ

(S1 + S2) = 0. (3.29)

Let x ∈ Γ and denote Zi = (0, · · · , |k′| + 1, 0, · · · , 0), where Zi
i = |k′| + 1.

For S1, we get the following estimates:

S1 ≤|xk′ |
πn

∑
β∈Λ

∑
α≥β

aα1 · aα2 · · · aαn

|xα| ‖f‖L1

=
|xk′ |
πn

n∑
i=1

( a|k
′|+1

(|xi| − a)|xi||k′| ·
|x1|

|x1| − a
· · · |xn|

|xn| − a
· |xi| − a

|xi|
)
‖f‖L1

=
1
πn

n∑
i=1

( xn
Q·k′

a|k
′|+1

xn
Q·Zi(1 − a

|xi| )
· |x1|
|x1| − a

· · · |xn|
|xn| − a

· |xi| − a

|xi|
)
‖f‖L1

=
a|k

′|+1

πn

n∑
i=1

( xn
Q·k′

xn
Q·Zi · |x1|

|x1| − a
· · · |xn|

|xn| − a

)
‖f‖L1.

Since N(k′) < N(Zi), we conclude from Lemma 2.7 that Q · k′ < Q · Zi, which deduces that

lim
xn→∞, x∈Γ

S1 = 0. (3.30)

Similarly, for S2, we have

S2 ≤ an(|k′|+1)

πn

∑
α<γ, N(α)>N(k′)

xn
Q·k′

xn
Q·α ‖f(t)‖L1 ,

since a > 1.
Hence

lim
xn→∞, x∈Γ

S2 = 0. (3.31)
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Combining (3.30) with (3.31), it yields that (3.29) and (3.26) hold. �

The following theorem shows that a function f in Hn(D(Rn)) doesn’t have a compact
support unless f = 0.

Theorem 3.6. D(Rn) ∩Hn(D(Rn)) = {0}.
Proof. If D(Rn) ∩Hn(D(Rn)) �= {0}, there exists μ ∈ D(Rn) ∩Hn(D(Rn)) such that μ �≡ 0.
Let ν ∈ D(Rn), ν �≡ 0 satisfy μ = Hnν.

We assert that there exists k ∈ N
n
0 such that ν has exactly k vanishing moments. Otherwise,

ν has arbitrary vanishing moments.
Indeed, let supp ν ⊂ Ba for some a > 0, then for any multivariate polynomial p(t), we have

∫ a

−a

· · ·
∫ a

−a

p(t)ν(t)dt = 0.

Due to the density of multivariate polynomials in C(Ba), we obtain ν ≡ 0, which leads to a
contradiction.

For k, using Theorem 3.5, we have

lim
xn→∞, x∈Γ

xk′+1μ(x) = lim
xn→∞, x∈Γ

xk′+1Hnν(x) =
1
πn

∫
Rn

tk
′
ν(t)dt �= 0,

which contradicts with μ ∈ D(Rn). Thus we finish our proof. �

4 The Spaces DH(Rn) and D′
H(Rn)

The space DH(Rn) is defined as

DH(Rn) := D(Rn) +Hn(D(Rn)). (4.1)

Since D(Rn) ∩Hn(D(Rn)) = {0} in Theorem 3.6, we get DH(Rn) := D(Rn)+̇H(D(Rn)). This
is a direct sum. We define the convergence in DH(Rn) as follows.

For all φn + Hnψn ⊂ DH(Rn), we say φn + Hnψn → 0 (in DH(Rn)) if φn, ψn → 0 (in
D(Rn)). Endowed with this topology, DH(Rn) becomes a topological vector space.

From Lemma 2.5, the operator Hn is a homeomorphism from DLp(Rn) to itself. Since
D(Rn) ⊂ DLp(Rn), we have Hn(D(Rn)) ⊂ DLp(Rn) and thus the direct sum space DH(Rn) ⊂
DLp(Rn) obviously.

Since there holds H2
n = (−1)nI on DH(Rn) by Lemma 2.5, we immediately obtain the

following theorem.

Theorem 4.1. The n-dimensional Hilbert transform Hn is a homeomorphism from DH(Rn)
to itself.

With the topology DH(Rn) defined above, it is easy to see that D(Rn) ↪→ DH(Rn). There-
fore D′

H(Rn) ↪→ D′(Rn). Moreover, the following theorem shows that DH(Rn) is the smallest
space that D(Rn) ↪→ DH(Rn) and Hn is a homeomorphism from DH(Rn) to itself.

Theorem 4.2. Let X(Rn) be a topological vector space such that D(Rn) ↪→ X(Rn) ⊂ L2(Rn),
and the n-dimensional Hilbert transform Hn : X(Rn) → X(Rn) be a continuous linear operator.
Then DH(Rn) ↪→ X(Rn), and consequently X′(Rn) ↪→ D′(Rn).

Proof. Embedding D(Rn) ↪→ X(Rn) implies Hn(D(Rn)) ⊂ Hn(X(Rn)) ⊂ X. Therefore
D(Rn) +Hn(D(Rn)) ⊂ X, i.e., DH(Rn) ⊂ X.

For any φn + Hnψn ⊂ DH(Rn), φn + Hnψn → 0 (in DH(Rn)), we have φn, ψn → 0
(in D(Rn)). Then φn, ψn → 0 (in X(Rn)) and consequently Hnψn → 0 (in X(Rn)). Hence
φn +Hnψn → 0 (in X(Rn)), which shows that DH(Rn) ↪→ X. �



342 M.Q. WEI, F. SHEN, D.Y. YAN

The classical multi-Hilbert transformHn can be extended to D′
H(Rn) by using the conjugate

operator. Before doing this, let us recall the following equality[11]:∫
R

(Hf)(x)φ(x)dx = −
∫

R

f(x)(Hφ)(x)dx, ∀ f, φ ∈ L2(R). (4.2)

Repeating (4.2), it is not hard for us to get
∫

Rn

(Hnf)(x)φ(x)dx = (−1)n

∫
Rn

f(x)(Hnφ)(x)dx, ∀ f, φ ∈ L2(Rn). (4.3)

Considering the constraint of Hn on DH(Rn), we know that: Hn : DH(Rn) → DH(Rn) is
a continuous and linear operator, which implies that its conjugate operator H∗

n : D′
H(Rn) →

D′
H(Rn), which is defined as 〈H∗

nf, φ〉 := 〈f, Hnφ〉 (∀ f ∈ D′
H(Rn), φ ∈ DH(Rn)), is a

continuous and linear operator. For any f ∈ DH(Rn), by (4.3), we have

〈Hnf, φ〉 :=
∫

Rn

(Hnf)(x)φ(x)dx = (−1)n

∫
Rn

f(x)(Hnφ)(x)dx

=(−1)n 〈f,Hnφ〉 = 〈(−1)nH∗
nf, φ〉 , ∀ f ∈ DH(Rn)). (4.4)

The identity (4.4) yields that

Hnf = (−1)nH∗f, in D′
H(Rn). (4.5)

Moreover, if S : DH(Rn) → DH(Rn) is also a continuous and linear operator satisfying Hnf =
S∗f (∀ f ∈ DH(Rn)), then

∫
Rn

f(x)(Hnφ)(x)dx = (−1)n

∫
Rn

f(x)(Sφ)(x)dx, ∀ f, φ ∈ DH(Rn),

which yields that Sφ = (−1)nHnφ. Therefore, (−1)nH∗
n can be defined as the extension of Hn

to the distribution space D′
H(Rn), namely, we have

Definition 4.1. Let H∗ : D′
H(Rn) → D′

H(Rn) be the conjugate operator of the n-dimensional
Hilbert transform Hn : DH(Rn) → DH(Rn). Then (−1)nH∗

n : D′
H(Rn) → D′

H(Rn) is defined as
the extension of Hn to the distribution space D′

H(Rn), and denoted as Hn still if no confusion
occurs.

It is easy to see that the extended n-dimensional Hilbert transform is a homeomorphism
from D′

H(Rn) to itself.

Theorem 4.3. Hn : D′
H(Rn) → D′

H(Rn) satisfies H2
n = (−1)nI.

Proof. For any f ∈ D′
H(Rn), we have

〈
H2

nf, φ
〉

= (−1)n 〈Hnf,Hnφ〉 =
〈
f,H2

nφ
〉

= (−1)n 〈f, φ〉 , ∀φ ∈ DH(Rn)

which concludes that H2
n = (−1)nI. �

From Theorem 4.2 and Theorem 4.3, we deduce that D′
H(Rn) is the biggest subspace of

D′(Rn) on which the extended multi-Hilbert transform is a homeomorphism.

Theorem 4.4. Let f ∈ Lp(Rn) with 1 < p < ∞. Then, Hnf , as the n-dimensional Hilbert
transform, coincides with the extended one defined in (4.3).

Proof. The n-dimensional Hilbert transformHnf can be regarded as a distribution on DH(Rn),
whose function on φ ∈ DH(Rn) is

〈Hnf, φ〉 =
∫

Rn

(Hnf)(x)φ(x)dx. (4.6)
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On the other hand, as the extended n-dimensional Hilbert transform, Hnf is also a distribution
on DH(Rn), whose function on φ ∈ DH(Rn) is

〈Hnf, φ〉 = (−1)n 〈H∗f, φ〉 = (−1)n 〈f,Hnφ〉 = (−1)n

∫
Rn

f(x)(Hnφ)(x)dx. (4.7)

It can be verified from (4.6) and (4.7) that
∫

Rn

(Hnf)(x)φ(x)dx

=(−1)n 〈f,Hnφ〉 = (−1)n

∫
Rn

f(x)(Hnφ)(x)dx, ∀ f ∈ Lp(Rn), φ ∈ DH(Rn),

which is our desired conclusion. �
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