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Abstract In this paper we present an infeasible-interior-point algorithm, based on a new wide neighbourhood

N (τ1, τ2, η), for linear programming over symmetric cones. We treat the classical Newton direction as the sum

of two other directions. We prove that if these two directions are equipped with different and appropriate step

sizes, then the new algorithm has a polynomial convergence for the commutative class of search directions. In

particular, the complexity bound is O(r1.5 log ε−1) for the Nesterov-Todd (NT) direction, and O(r2 log ε−1) for

the xs and sx directions, where r is the rank of the associated Euclidean Jordan algebra and ε > 0 is the required

precision. If starting with a feasible point (x0, y0, s0) in N (τ1, τ2, η), the complexity bound is O(
√

r log ε−1)

for the NT direction, and O(r log ε−1) for the xs and sx directions. When the NT search direction is used,

we get the best complexity bound of wide neighborhood interior-point algorithm for linear programming over

symmetric cones.

Keywords symmetric cone; Euclidean Jordan algebra; interior-point methods; linear programming; polyno-

mial complexity
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Introduction

During the last two decades, major developments in convex programming were focusing on
conic programming, which optimizes a linear objective function subject to linear constraints
and over a pointed, closed, convex cone. [13] first led to a general theory of interior-point-
methods (IPMs) in convex programming. Their methods were primarily either primal or dual
based. Later, [14,15] provided a theoretical foundation of efficient primal-dual IPMs on a special
class of conic programming, where the associated cone is so-called self-scaled cone. [8] observed
that the self-scaled cones are precisely symmetric cones, which have been much studied in
other areas of mathematical sciences (see, for example, [4]). This special subclass of conic
programming includes linear programming (LP), semidefinite programming (SDP) and second
order cone programming (SOCP) as special cases. We denote this special subclass of conic
programming as K-LP, where K is the associated symmetric cone. In a more general context,
[5,6] analyzed the IPMs over symmetric cones characterized by Jordan algebras, where Jordan
algebras played a crucial role. [18] extended the analysis by [12] for SDP to K-LP problem.
They proved polynomial iteration complexities for variants of the short, semi-long, and long
step path following algorithms based on commutative class of search directions. For short
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step method, the iteration bound is O(κ
√

r log ε−1), and for semi-long and long step methods,
the iteration bound is O(κr log ε−1), where r is the rank of the associated Euclidean Jordan
algebra, ε > 0 is the required precision, and 0 < κ < ∞ will be defined in Section 6. Later,
based on the commutative class of search directions, [17] analyzed an infeasible-IPM(IIPM)
over symmetric cones using the wide neighbourhood N−

∞. This algorithm does not require the
iterates be feasible to the relevant linear systems, but only be in the interior of the cone K. The
complexity bound obtained there is O(κr2 log ε−1). Other IPMs over symmetric cones can be
found in [3,7,10,11,16,19,20], for example.

Based on Ai’s original idea[1], an important result was given by [2] for linear complementarity
problem (LCP). Their algorithm decomposes the classical Newton direction into two orthogonal
ones and proceeds in a new wide neighbourhood N (τ1, τ2, η). It is proved that their algorithm
stops after at most O(

√
nL) iterations, where n is the number of variables and L is the input

data length. This result yields the first wide neighbourhood path-following algorithm having
the same theoretical complexity as a small neighbourhood algorithm for monotone LCPs. Later,
[9] generalized the Ai-Zhang’s idea to SDP and showed O(

√
nL) iteration complexity of their

algorithm when using the NT direction. In addition, they proposed a question: whether Ai-
Zhang’s scheme can be applied to SOCP problems and further to general conic programming.
We answer this question in the affirmative. Recently, Liu et. al.[10] extend the neighborhood-
following algorithm of LP in [1] to symmetric cones. In the paper, the authors proved a key
property about the new wide neighbourhood, which plays a crucial role in the complexity
analysis. In this paper, we propose a new IIPM for LP over symmetric cones. This unifies
the analysis for linear, second-order cone and semidefinite programming. It is proved that the
new algorithm stops after at most O(κr1.5 log ε−1) iteration. The complexity bound obtained
here is better than that obtained by [17]. For the feasible case, the iteration complexity of the
algorithm was reduced to O(κ

√
r log ε−1), which is the same complexity as small neighbourhood

(short-step) IPMs over symmetric cones analyzed by [18].
In Section 2, we review the theory of Jordan algebras and symmetric cones. In Section

3, we introduce the K-LP problems and a new wide neighbourhood. In Section 4, we explain
the way to decompose the Newton direction and state the generic framework of our algorithm.
In Section 5, we first demonstrate several technical lemmas, and then establish the iteration
complexity of the proposed algorithm based on the commutative class of directions. We also
give the complexity bound for the case of feasible starting point. Finally, some conclusions are
given in Section 6.

2 Euclidean Jordan Algebras and Symmetric Cones

In this section, we introduce Jordan algebras and symmetric cones as well as some of their basic
properties. This theory serves as our basic toolbox for the analysis of IPMs. Our presentation
mostly follows[4,18].

Let J be an n-dimensional vector space over R, along with a bilinear map ◦ : J ×J �−→ J .
Then (J , ◦) is a Jordan algebra if for all x, y ∈ J , x ◦ y = y ◦ x and x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y)
where x2 = x ◦ x. A Jordan algebra J is called Euclidean if there exists a symmetric positive
definite quadratic form Q on J such that Q(x ◦ y, z) = Q(x, y ◦ z). An element e ∈ J is an
identity element if x ◦ e = e ◦ x = x for all x ∈ J . The cone of squares of a Euclidean Jordan
algebra J is the set K := {x2 : x ∈ J }.

Let G(K) denote the group of automorphisms of a cone K. K is a homogeneous cone if G(K)
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acts on it transitively. That is, if x, y ∈ intK, then there exists g ∈ G(K) such that g(x) = y.
Symmetric cones are also precisely the class of self-scaled cones introduced by [14] (see also [6]
and [8]). The relevance of the theory of Euclidean Jordan algebras for K-LP problem stems
from the following theorem, which can be found in [4, Theorems III.2.1 and III.3.1].

Theorem 2.1. A cone is symmetric if and only if it is the cone of squares of some Euclidean
Jordan algebra.

Since “◦” is bilinear for every x ∈ J , there exists a linear operator Lx such that x ◦ y =
Lxy for all y ∈ J . For each x ∈ J define Qx := 2L2

x − Lx2, which is called the quadratic
representation of x, and it plays an important role in our subsequent analysis.

For x ∈ J , let r be the smallest integer such that the set {e, x, x2, · · · , xr} is linearly
dependent. Then r is called the degree of x and denoted by deg(x). The rank of J , denoted
by rank(J ), is the maximum of deg(x) over all members x ∈ J . An idempotent c is a nonzero
element of J such that c2 = c. A complete system of orthogonal idempotents is a set {c1, · · · , ck}
of idempotents, where ci ◦ cj = 0 for all i �= j, and c1 + . . .+ ck = e. An idempotent is primitive
if it is not the sum of two other idempotents. A complete system of orthogonal primitive
idempotents is called a Jordan frame. We have the following spectral decomposition theorem.

Theorem 2.2. ([4, Theorem III.1.2]). Let J be a Euclidean Jordan algebra with rank r.
Then for every x ∈ J , there exist a Jordan frame {c1, · · · , cr} and real numbers λ1, · · · , λr such
that x = λ1c1 + · · · + λrcr. The numbers λi are called the eigenvalues of x.

We define the following. The inverse x−1 := λ−1
1 c1 + . . . + λ−1

r cr, whenever all λi �= 0; The
square root x1/2 := λ

1/2
1 c1 + . . . + λ

1/2
r cr, whenever all λi ≥ 0; The trace tr(x) := λ1 + . . . + λr;

The determinant det(x) := λ1 · · ·λr. Denote the minimum (maximum) eigenvalues of x ∈ J
by λmin(x)(λmax(x)). If x−1 is well defined, we call x invertible. We call x ∈ J positive
semidefinite (positive definite), denoted by x 
 0 (x � 0), if all its eigenvalues are nonnegative
(positive). It is clear that an element is positive semidefinite (positive definite) if and only if it
belongs to (the interior of) the cone of squares.

Lemma 2.1. ([7, Lemma 2.15]). If x ◦ y ∈ intK, then det(x) �= 0.

Since tr(x ◦ y) is a bilinear function, the inner product can be defined as 〈x, y〉 := tr(x ◦ y).
Since tr(·) is associative, it follows that the inner product is associative, that is 〈x ◦ y, z〉 =
〈x, y ◦ z〉. The spectrum of x ∈ J is the multiset of its eigenvalues. For x ∈ J with spectrum
λ1, λ2, · · · , λr, the Frobenius norm and the spectral norm can be defined as ‖x‖F :=

√〈x, x〉 =√( ∑
λ2

i

)
, and ‖x‖2 := max

i
|λi|. Observe that ‖e‖F =

√
r and ‖e‖2 = 1, since identity

element e has eigenvalue 1, with multiplicity r. Since the inner product is associative, it
follows that Lx and L−1

x are symmetric with respect to 〈·, ·〉, that is 〈Lxy, z〉 = 〈y, Lxz〉, and
〈L−1

x y, z〉 = 〈y, L−1
x z〉.

Lemma 2.2 ([17, Lemma 2.9]). For x, y ∈ J , we have ‖x ◦ y‖F ≤ ‖x‖F ‖y‖F .

Let {c1, c2, . . . , cr} be a Jordan frame in J . For i, j ∈ {1, 2, · · · , r}, the Peirce spaces are
given by Jii := {x ∈ J : x ◦ ci = x} and when i �= j, Jij := {x ∈ J : x ◦ ci = 1

2x = x ◦ cj}.
Then we have the following.

Theorem 2.3 ([4, Theorem IV.2.1]). The space J is the orthogonal direct sum of spaces
Jij (i ≤ j).
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Thus, given a Jordan frame {c1, c2, · · · , cr}, we can write x ∈ J as

x =
r∑

i=1

xici +
∑

i<j

xij , (1)

where xi ∈ R and xij ∈ Jij . This expression is the Peirce decomposition of x with respect to
{c1, c2, · · · , cr}.

We state two useful propositions about the quadratic representation.

Proposition 2.1 ([4, Proposition III.2.2]). If x, y ∈ intK, then Qxy ∈ intK.

Proposition 2.2 ([18, Proposition 21]). Let x, y, p ∈ intK and define x̃ := Qpx and ỹ :=
Qp−1y. Then

1. Qx1/2y and Qy1/2x have the same spectrum.
2. Qx1/2y and Q

x̃1/2 ỹ have the same spectrum.
We say two elements x, y ∈ J operator commute if LxLy = LyLx. The tool of operator

commutativity is very useful in the analysis of algorithms.

Theorem 2.4 ([18, Theorem 27]). Let x and y be two elements of Euclidean Jordan algebra
J . Then x and y operator commute if and only if there is a Jordan frame c1, · · · , cr such that

x =
r∑

i=1

λici and y =
r∑

i=1

μici.

Lemma 2.3 ([18, Lemma 30]). Let x, y ∈ intK and define w := Qx1/2y, then tr(x ◦ y) =
tr(w), λmin(x ◦ y) ≤ λmin(w), and λmax(x ◦ y) ≥ λmax(w). Moreover, if x and y operator
commute then x ◦ y = w.

For any x ∈ J with spectral decomposition x = λ1c1 + . . . + λrcr, we define the positive
part and negative part of x by

x+ = λ+
1 c1 + · · · + λ+

r cr and x− = λ−
1 c1 + · · · + λ−

r cr,

where λ+
i = max(λi, 0) and λ−

i = min(λi, 0).

Lemma 2.4. ‖(x + y)+‖F ≤ ‖x+ + y+‖F ≤ ‖x+‖F + ‖y+‖F , ∀x, y ∈ J .

Proof. Let x+ y have the spectral decomposition x+ y = λ1c1 + · · ·+λrcr, where {c1, · · · , cr}
is a Jordan frame and the eigenvalues satisfy

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 ≥ λk+1 ≥ · · · ≥ λr .

By the definition of the positive part, we have (x + y)+ = λ1c1 + · · · + λkck. Thus

‖(x + y)+‖2
F = λ2

1 + · · · + λ2
k.

On the other hand, let the Peirce decomposition of a = x++y+ with respect to {c1, c2, · · · , cr}
be a =

r∑

i=1

aici +
∑

i<j

aij , where ai ∈ R and aij ∈ Jij . Then, for 1 ≤ i ≤ k, we have

ai = 〈x+ + y+, ci〉 ≥ 〈x + y, ci〉 = λi ≥ 0, where the first inequality follows from x+ + y+ =
x + y − (x− + y−) 
 x + y.

By the orthogonality of the spaces Jij , we have

‖a‖2
F = ‖

r∑

i=1

aici +
∑

i<j

aij‖2
F = ‖

r∑

i=1

aici‖2
F + ‖

∑

i<j

aij‖2
F ,
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which implies

‖x+ + y+‖2
F ≥ ‖

r∑

i=1

aici‖2
F =

r∑

i=1

a2
i ≥

k∑

i=1

a2
i ≥

k∑

i=1

λ2
i = ‖(x + y)+‖2

F ,

from which the first inequality follows. The second inequality follows the triangle inequality. �

3 K-LP Problems and Wide Neighbourhood

Let J be a Euclidean Jordan algebra with dimension n, rank r, and cone of squares K. Consider
the primal-dual pair of K-LP problems

(P) min 〈c, x〉,
s.t. Ax = b, x ∈ K,

(2)

and
(D) max 〈b, y〉,

s.t. A∗y + s = c, s ∈ K, y ∈ Rm,
(3)

where c ∈ J and b ∈ Rm. Here A is a linear operator that maps J into Rm and A∗ is its
adjoint operator. We call x and (y, s) primal and dual feasible solutions if they satisfy the
primal and dual constraints respectively. We denote the sets of optimal solutions of (P) and
(D) by P∗ and D∗ respectively. A problem (P) (resp. (D)) is called solvable if P∗ (resp. D∗)
is nonempty. For convenience of reference, we define the following two sets:

F := {(x, y, s) ∈ K ×Rm ×K : Ax = b, A∗y + s = c},
F0 := {(x, y, s) ∈ intK ×Rm × intK : Ax = b, A∗y + s = c}.

We call F and F0, respectively, the (primal-dual) feasibility set and strictly feasibility set.
(x, y, s) is said to be feasible if it is in F and strictly feasible if it is in F0. In this paper, we
assume that A is surjective and F0 �= φ.

It has shown that [6,13], under the assumptions above, the sets of optimal solutions P∗ and
D∗ are nonempty and bounded, and moreover 〈x∗, s∗〉 = 0 for x∗ ∈ P∗ and (y∗, s∗) ∈ D∗. He
also proved that, for x, s ∈ K, 〈x, s〉 = 0 is equivalent to x ◦ s = 0. Therefore, x∗ and (y∗, s∗)
are optimal solutions if and only if they satisfy the following system

Ax = b, x ∈ K,

A∗y + s = c, s ∈ K, y ∈ Rm, (4)

x ◦ s = 0,

where the last equality is called the complementarity slackness condition. Replace x ◦ s = 0 in
(4) with the perturbed complementary slackness condition, x ◦ s = μe for μ > 0, we have the
relaxed system

Ax = b, x ∈ K,

A∗y + s = c, s ∈ K, y ∈ Rm, (5)

x ◦ s = μe.
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Primal-dual path-following interior-point algorithms follow the solutions of the relaxed Sys-
tem (5) as μ goes to zero. The relaxed system have unique solutions for all μ > 0, and these
solutions form the so-called central trajectory (central path), denoted by C. Moreover, the limit
of the trajectory as μ goes to 0 yields optimal solution for (P) and (D).

In the classical IPMs, the iterates are allowed to move in a neighbourhood of the central
path. The so-called negative infinity neighbourhood that is a wide neighbourhood, is defined
as

N−
∞(1 − γ) := {(x, y, s) ∈ intK ×Rm × intK : λmin(Qx1/2s) ≥ γμ},

where γ ∈ (0, 1) and μ = 〈x, s〉/r is the normalized duality gap. [2] introduced a new neigh-
bourhood of the central path for LCP. Later, [9] extended it to SDP problems. Analogously,
we define our neighbourhood as

N (τ1, τ2, η) := N−
∞(1 − τ2) ∩

{
(x, y, s) : ‖(τ1μe − Qx1/2s)+‖F ≤ η(τ1 − τ2)μ

}
, (6)

where η ≥ 1 and 0 < τ2 < τ1 < 1.
This neighbourhood is a wide neighbourhood since one can verify that

N−
∞(1 − τ1) ⊆ N (τ1, τ2, η) ⊆ N−

∞(1 − τ2), ∀ η ≥ 1, 0 < τ2 < τ1 < 1. (7)

Specially, if η = 1, it can be expressed more simply as follows:

N (τ1, τ2, 1) = {(x, y, s) ∈ intK ×Rm × intK : ‖(τ1μe − Qx1/2s)+‖F ≤ (τ1 − τ2)μ}.

For simplicity, we shall choose η = 1 in this paper, and we introduce a new notation N (τ1, β)
to indicate this neighbourhood, that is

N (τ1, β) := {(x, y, s) ∈ intK ×Rm × intK : ‖(τ1μe − Qx1/2s)+‖F ≤ βτ1μ}. (8)

where β = (τ1 − τ2)/τ1. Note that by part (i) of Proposition 2.2, Qx1/2s and Qs1/2x have the
same spectrum, and thus N−

∞(1 − γ) and N (τ1, τ2, η) are symmetric with respect to x and s.

4 Search Direction and Algorithm Framework

Most classic primal-dual path-following algorithms take Newton steps toward points on the
central path C, defined by System (5) for μ > 0, rather than pure Newton steps for the optimality
System (4), sometimes known as the affine-scaling direction. Since these steps are biased toward
the interior of K, it usually is possible to take longer steps along them than along the pure
Newton steps for (4) before violating the positive definite condition. To move from the current
point (x, y, s) towards the target on the central path corresponds to τμ leads us to the linear
system

A�x = b − Ax,

A∗�y + �s = c − s − A∗y, (9)

�x ◦ s + x ◦ �s = τμe − x ◦ s,

where (�x,�y,�s) ∈ J × Rm × J is the search direction, τ ∈ [0, 1] is called centering
parameter. [18, Lemma 28] show an equivalent way of writing the complementarity condition
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x ◦ s = μe. Let x, s ∈ intK and p invertible. Then x ◦ s = μe if and only if Qpx ◦ Qp−1s = μe.
Thus, the System (5) can be equivalently written as

Ãx̃ = b, x̃ ∈ K,

Ã∗y + s̃ = c̃, s̃ ∈ K, y ∈ Rm, (10)

x̃ ◦ s̃ = μe,

where Ã = AQp−1 , c̃ = Qp−1c, x̃ = Qpx, and s̃ = Qp−1s. Denote by C(x, s) the set of all
elements so that the scaled elements operator commute, i.e.

C(x, s) := {p : p ∈ intK such that Qpx and Qp−1s operator commute}.

This is a subclass of the Monteiro-Zhang family of search directions called the commutative
class. In particular, choosing p = s1/2 and p = x−1/2 we get the xs and sx search directions
respectively. For the choice of

p = [Qx1/2(Qx1/2s)−1/2]−1/2 = [Qs−1/2(Qs1/2x)1/2]−1/2, (11)

we obtain the NT search direction.
In this paper, we restrict the scaling p ∈ C(x, s). Corresponding to the scaling System (10),

the Newton System (9) becomes

Ã�x̃ = b − Ãx̃,

Ã∗�y + �s̃ = c̃ − Ã∗y − s̃, (12)

�x̃ ◦ s̃ + x̃ ◦ �s̃ = τμe − x̃ ◦ s̃.

In our new algorithm, we decompose the Newton System (12) into the following two systems:

Ã�x̃− = b − Ãx̃,

Ã∗�y− + �s̃− = c̃ − Ã∗y − s̃, (13)

�x̃− ◦ s̃ + x̃ ◦ �s̃− = (τμe − x̃ ◦ s̃)−.

and

Ã�x̃+ = 0,

Ã∗�y+ + �s̃+ = 0, (14)

�x̃+ ◦ s̃ + x̃ ◦ �s̃+ = (τμe − x̃ ◦ s̃)+.

As pointed in [2,9], the negative part (τμe − x̃ ◦ s̃)− is responsible for reducing the duality
gap, and the positive part (τμe − x̃ ◦ s̃)+ is used to control the centrality. [2] suggested to
treat the negative part and the positive part separately to obtain a better iteration complexity
bound for wide neighbourhood IPMs.

Let α := (α1, α2) ∈ [0, 1]2 be the step sizes taken along (�x̃−,�y−,�s̃−) and (�x̃+,�y+,
�s̃+) respectively. The new iterate is

(x̃(α), y(α), s̃(α)) := (x̃, y, s̃) + α1(�x̃−,�y−,�s̃−) + α2(�x̃+,�y+,�s̃+). (15)

The following proposition shows the scale-invariance of the neighbourhood.
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Proposition 4.1. The neighbourhood N (τ1, β) is scaling invariant, that is (x, y, s) is in the
neighbourhood if and only if (x̃, y, s̃) is.

Proof. Let w̃ = Q
x̃1/2 s̃. Note that the neighbourhood N (τ1, β) can be defined in terms of

eigenvalues of w and by part (ii) of Proposition 2.2 w and w̃ have the same eigenvalues. The
required result follows. �

Having introduced the key elements for the new algorithm, we state the generic framework
of our algorithm.

Algorithm 4.1. Input parameters: an accuracy parameter ε > 0, neighbourhood parameters
0 < τ1, β < 1, a centering parameter 0 ≤ τ ≤ 1 and an initial point (x0, y0, s0) ∈ N (τ1, β). Set
μ0 = 〈x0, s0〉/r, k := 0.

Step 1 If μk ≤ εμ0, then stop.

Step 2 Choose a scaling element p ∈ C(xk, sk) and compute (x̃k, s̃k).

Step 3 Compute the directions (�x̃k−,�yk−,�s̃k−) and (�x̃k
+,�yk

+,�s̃k
+) by solving the scaled

Newton systems (13) and (14) respectively.

Step 4 Choose step size vector αk = (αk
1 , αk

2), such that the new iterates

(x̃k+1, yk+1, s̃k+1) := (x̃k, yk, s̃k) + αk
1(�x̃k

−,�yk
−,�s̃k

−) + αk
2(�x̃k

+,�yk
+,�s̃k

+),

remain in N (τ1, β).

Step 5 Let (xk+1, yk+1, sk+1) = (Qp−1 x̃k+1, yk+1, Qps̃
k+1) and μk+1 = 〈xk+1, sk+1〉/r. Set k :=

k + 1 and go to Step 1.

We note that in the practical implementations, the step sizes αk = (αk
1 , αk

2) are chosen to
be a large fraction, for example, 98% of α̂k = (α̂k

1 , α̂k
2), the sizes of the step to the boundary

of the symmetric cone K. This choice for αk may be adequate for practical purposes, but we
need more elaborated choices for theoretically guaranteed convergence. In next section, we
specify our choice for αk and present the convergency and iteration-complexity of Algorithm
4.1. Our choice is based on several factors, including keeping the centrality, improvement of
the infeasibility, and decreasing of the duality gap.

Using (13) and (14) the following proposition is readily verified.

Proposition 4.2. Let {(x̃k, yk, s̃k)} be generated by Algorithm 4.1. Then for k ≥ 0, one has

Ãx̃k+1 − b = νk+1(Ãx̃0 − b), Ã∗yk+1 + s̃k+1 − c̃ = νk+1(Ã∗y0 + s̃0 − c̃),

where ν0 = 1 and

νk+1 = (1 − αk
1)νk =

k∏

i=0

(1 − αi
1) ∈ [0, 1]. (16)

From Proposition 4.2, we have

νk =
‖Ãx̃k − b‖F

‖Ãx̃0 − b‖F

=
‖Ã∗yk + s̃k − c̃‖F

‖Ã∗y0 + s̃0 − c̃‖F

,

which implies νk represents the relative infeasibility at (x̃k, yk, s̃k). Hence at every iterate we
maintain the condition:

〈x̃k, s̃k〉 ≥ νk〈x̃0, s̃0〉, (17)
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which ensures that the infeasibility approaches to zero as the complementarity 〈x, s〉 approaches
to zero. Observe that 〈x̃k, s̃k〉 = 0 is possible only if νk = 0. In the case of 〈x̃k, s̃k〉 =
0, (Qp−1 x̃k, yk, Qps̃

k) is a solution to (4) and Algorithm 4.1 terminates. However, it seems
extremely unlikely for 〈x̃k, s̃k〉 = 0 to happen in practice. Thus, we will not consider this finite
termination case in our analysis of convergence.

We now specify a particular starting point for Algorithm 4.1. Let u0 and (r0, v0) be the
minimum-norm solutions to the linear systems Ax = b and A∗y + s = c respectively. That is

u0 = arg min{‖u‖F : Au = b}, (r0, v0) = arg min{‖v‖F : A∗r + v = c}. (18)

We choose (x0, y0, s0) such that

x0 = s0 = ρ0e, ρ0 ≥ max{‖u0‖2, ‖v0‖2}. (19)

This implies that x0, s0 ∈ intK, x0 − u0 ∈ K and s0 − v0 ∈ K.
Let

ρ∗ = min{max(‖x∗‖2, ‖s∗‖2) : x∗ ∈ P∗, (y∗, s∗) ∈ D∗}, (20)

and in addition, we assume that for some constant Ψ > 0, it has ρ0 ≥ ρ∗/Ψ. Note that we can
always increase ρ0.

We constructed an auxiliary sequence {(uk, rk, vk)} as follows:

(uk+1, rk+1, vk+1) = (xk+1, yk+1, sk+1) − (1 − αk
1)(xk − uk, yk − rk, sk − vk). (21)

The auxiliary sequence will be used in our analysis of complexity and need not be actually com-
puted in Algorithm 4.1. The following lemma gives useful properties of the auxiliary sequence
{(uk, rk, vk)}.
Lemma 4.1. Let {(xk, yk, sk)} be generated by Algorithm 4.1, {(uk, rk, vk)} be given by (21),
and {νk} be given by (16). Then for k ≥ 0

(1) Auk = b and A∗rk + vk = c;
(2) xk − uk = νk(x0 − u0) ∈ K and sk − vk = νk(s0 − v0) ∈ K.

Proof. The proof follows from direct substitution. �

5 Analysis of Polynomial Convergence for Algorithm

In this section, we first give the strategy of choice for step size αk. Then we develop several
technical lemmas. At the end of this section, we present our main result of polynomial con-
vergence. For simplicity, from now on we will suppress the superscript k, except for k = 0
whenever no confusion arises. However, we will denote αk by α̂ while using α as a free variable.

Our choice of α̂ is based on several considerations. We require that the step size vector
α̂ = (α̂1, α̂2) satisfies the following three conditions:

(x̃(α), y(α), s̃(α)) ∈ N (τ1, β), (22)

〈x̃(α), s̃(α)〉 ≥ (1 − α1)ν〈x̃0, s̃0〉, (23)

〈x̃(α), s̃(α)〉 ≤ (1 − (1 − δ)α1)〈x̃, s̃〉, (24)

where ν = νk is defined in (16), and δ ∈ (0, 1) is a constant independent of r. Condition (22) is a
centrality condition that prevents iterates from prematurely getting too close to the boundary
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of the symmetric cone K. Condition (23), as we see in (17), ensures that the infeasibility
approaches to zero as the complementarity approaches to zero. Condition (24) is needed in
order to make a comparable progress in the complementarity. From this point on, by Algorithm
4.1 we mean that the the step size α̂ satisfies (22)–(24). We note that Lemma 5.9, 5.10 and 5.11
guarantee the existence of α̂ that satisfies conditions (22)–(24) simultaneously. For example,
set α2 =

√
τ1/(

√
cond (G)ω2r) and α1 = α2

√
βτ1/r.

5.1 Technical Lemmas

In this part, we let the centering parameter τ = τ1. We will use the notation: (�x̃(α),�y(α),
�s̃(α)) = α1(�x̃−,�y−,�s̃−) + α2(�x̃+,�y+,�s̃+), and χ(α) = x̃ ◦ s̃ + α1(τ1μe− x̃ ◦ s̃)− +
α2(τ1μe− x̃ ◦ s̃)+. It can be easily verified that 〈�x̃+,�s̃+〉 = 0, x̃(α) ◦ s̃(α) = χ(α) +�x̃(α) ◦
�s̃(α),

�x̃(α) ◦ �s̃(α) = α2
1�x̃− ◦ �s̃− + α1α2(�x̃− ◦ �s̃+ + �s̃− ◦ �x̃+) + α2

2�x̃+ ◦ �s̃+, (25)

and

〈x̃(α), s̃(α)〉 = tr (χ(α)) + α2
1〈�x̃−,�s̃−〉 + α1α2(〈�x̃−,�s̃+〉 + 〈�s̃−,�x̃+〉). (26)

By using tr ((τ1μe − x̃ ◦ s̃)−) + tr ((τ1μe − x̃ ◦ s̃)+) = tr (τ1μe − x̃ ◦ s̃) = −(1 − τ1)rμ we have

tr ((τ1μe − x̃ ◦ s̃)−) ≤ −(1 − τ1)rμ. (27)

When (x̃, y, s̃) ∈ N (τ1, β), we have

tr ((τ1μe − x̃ ◦ s̃)+) ≤ √
r‖(τ1μe − x̃ ◦ s̃)+‖F ≤ √

rβτ1μ. (28)

The following lemma will be used frequently during the analysis.

Lemma 5.1 ([18, Lemma 33]). Let p, q ∈ J and G a positive definite matrix which is
symmetric with respect to the inner product 〈·, ·〉. Then

‖p‖F‖q‖F ≤
√

cond (G)‖G−1/2p‖F‖G1/2q‖F

≤1
2

√
cond (G)

(‖G−1/2p‖2
F + ‖G1/2q‖2

F

)
,

where cond (G) = λmax (G)/λmin(G).
We note that ‖ · ‖G, defined by ‖(u, v)‖G = (‖G−1/2u‖2

F + ‖G1/2v‖2
F )1/2, u, v ∈ J , is a

norm on J × J .

Lemma 5.2. Let G = L−1

s̃
L

x̃
. If β ≤ 1/2, then ‖(�x̃+,�s̃+)‖2

G ≤ βτ1μ.

Proof. Since x̃ and s̃ operator commute, there is a Jordan frame c1, . . . , cr such that x̃ =
r∑

i=1

λici and s̃ =
r∑

i=1

μici. Then, x̃ ◦ s̃ =
r∑

i=1

λiμici, and for i = 1, · · · , r, L
x̃
L

s̃
ci = x̃ ◦ (s̃ ◦ ci) =

λiμici, which implies
(L

x̃
L

s̃
)−1ci = ci/(λiμi). (29)

Multiplying the last equation of (14) by (L
x̃
L

s̃
)−1/2, we obtain

G−1/2�x̃+ + G1/2�s̃+ = (L
x̃
L

s̃
)−1/2(τ1μe − x̃ ◦ s̃)+.
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Taking norm-squared on both sides, together with the fact 〈Δx̃+, Δs̃+〉 = 0, we have

‖G−1/2�x̃+‖2
F + ‖G1/2�s̃+‖2

F

=‖(L
x̃
L

s̃
)−1/2(τ1μe − x̃ ◦ s̃)+‖2

F

=〈(L
x̃
L

s̃
)−1/2(τ1μe − x̃ ◦ s̃)+, (L

x̃
L

s̃
)−1/2(τ1μe − x̃ ◦ s̃)+〉

=〈(τ1μe − x̃ ◦ s̃)+, (L
x̃
L

s̃
)−1(τ1μe − x̃ ◦ s̃)+〉

=
〈∑

(τ1μ − λiμi)+ci, (Lx̃
L

s̃
)−1

∑
(τ1μ − λiμi)+ci

〉

=
〈∑

(τ1μ − λiμi)+ci,
∑

(τ1μ − λiμi)+ci/(λiμi)
〉

=
∑[

(τ1μ − λiμi)+
]2

/(λiμi)

≤(βτ1μ)2/(τ2μ)

≤βτ1μ,

Here, the fifth equality follows from (29), the first inequality follows from (x̃, y, s̃) ∈ N (τ1, β),
and the last inequality holds due to τ2 = (1 − β)τ1 and β ≤ 1/2. �

Lemma 5.3. Let G = L−1

s̃
L

x̃
. Then ‖(�x̃−,�s̃−)‖G ≤ √

rμ + (1 +
√

2)ξ, where ξ :=

min{‖(ū, v̄)‖G : Ãū = b − Ãx̃, Ã∗r̄ + v̄ = c̃ − Ã∗y − s̃}.
Proof. Let (ū, r̄, v̄) ∈ J ×Rm×J satisfy the equations Ãū = b−Ãx̃ and Ã∗r̄+ v̄ = c̃−Ã∗y− s̃,
then by System (13) we have

Ã(�x̃− − ū) = 0,

Ã∗(�y− − r̄) + (�s̃− − v̄) = 0,

L
s̃
(�x̃− − ū) + L

x̃
(�s̃− − v̄) = (τμe − x̃ ◦ s̃)− − (L

s̃
ū + L

x̃
v̄).

Multiplying the last equation by (L
x̃
L

s̃
)−1/2, we obtain

G−1/2(�x̃− − ū) + G1/2(�s̃− − v̄) = (L
x̃
L

s̃
)−1/2(τ1μe − x̃ ◦ s̃)− − (G−1/2ū + G1/2v̄).

Therefore

‖(�x̃−,�s̃−)‖G

≤‖(�x̃− − ū,�s̃− − v̄)‖G + ‖(ū, v̄)‖G

=‖(L
x̃
L

s̃
)−1/2(τ1μe − x̃ ◦ s̃)− − (G−1/2ū + G1/2v̄)‖F + ‖(ū, v̄)‖G

≤‖(L
x̃
L

s̃
)−1/2(τ1μe − x̃ ◦ s̃)−‖F + ‖G−1/2ū‖F + ‖G1/2v̄‖F + ‖(ū, v̄)‖G

where the equality holds due to 〈�x̃− − ū,�s̃− − v̄〉 = 0.
Similar to the proof of Lemma 5.2,

‖(L
x̃
L

s̃
)−1/2(τ1μe − x̃ ◦ s̃)−‖2

F =
r∑

i=1

[(τ1μ − λiμi)−]2/(λiμi) ≤
r∑

i=1

λiμi = rμ.

By the definition of ‖ · ‖G, we have ‖G−1/2ū‖F + ‖G1/2v̄‖F ≤ √
2‖(ū, v̄)‖G. Hence the

required result follows. �

Lemma 5.4. Let (u0, r0, v0) and (x0, y0, s0) satisfy (18) and (19) respectively. Then ξ ≤
(5 + 4Ψ)r

√
μ/

√
τ2.
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Proof. Let ũ = Qpu and ṽ = Qp−1v. Then by Lemma 4.1 we have Ãũ = b and Ã∗r + ṽ = c̃.
Moreover, x̃ − ũ ∈ K and s̃ − ṽ ∈ K. Let (ū, r̄, v̄) := (x̃ − ũ, y − r, s̃ − ṽ), then, one has
Ã(−ū) = b − Ãx̃, Ã∗(−r̄) + (−v̄) = c̃ − Ã∗y − s̃. Hence,

ξ ≤ ‖(−ū,−v̄)‖G ≤ ‖G−1/2ū‖F + ‖G1/2v̄‖F .

Since x̃ and s̃ operator commute, then G and Q
x̃

commute, and we have

‖G1/2v̄‖2
F = 〈v̄, Gv̄〉 = 〈Q1/2

x̃
v̄, Q−1

x̃
GQ

1/2

x̃
v̄〉 ≤ λmax(Q−1

x̃
G)‖Q1/2

x̃
v̄‖2

F .

Then, by using [17, Lemma 4.1] we have

‖G1/2v̄‖2
F ≤ 〈x̃, v̄〉2

λmin(w̃)
=

〈x̃, ṽ − s̃〉2
λmin(w̃)

≤ 〈x̃, ṽ − s̃〉2
τ2μ

=
〈x, v − s〉2

τ2μ
.

Similarly it can be shown that ‖G−1/2ū‖2
F ≤ 〈s,u−x〉2

τ2μ . Therefore,

ξ ≤ 〈x, s − v〉 + 〈x − u, s〉√
τ2μ

. (30)

For x∗ ∈ P∗, and (y∗, s∗) ∈ D∗, we have A(x∗ − u) = 0 and A∗(y∗ − r) + (s∗ − v) = 0 by
using part one of Lemma 4.1. Hence,

0 =〈x∗ − u, s∗ − v〉 = 〈x∗ − x + x − u, s∗ − s + s − v〉
=〈x∗, s∗〉 + 〈x, s〉 + 〈x∗, s − v〉 + 〈x − u, s∗〉 + 〈x − u, s − v〉
− 〈x∗, s〉 − 〈x, s∗〉 − 〈x, s − v〉 − 〈x − u, s〉.

It follows that

〈x, s − v〉 + 〈x − u, s〉 =〈x∗, s∗〉 + 〈x, s〉 + 〈x∗, s − v〉 + 〈x − u, s∗〉
+ 〈x − u, s − v〉 − 〈x∗, s〉 − 〈x, s∗〉

≤〈x, s〉 + 〈x∗, s − v〉 + 〈x − u, s∗〉 + 〈x − u, s − v〉
=

(
1 +

〈x∗, s − v〉 + 〈x − u, s∗〉 + 〈x − u, s − v〉
〈x, s〉

)
〈x, s〉

=
(
1 +

ν〈x∗, s0 − v0〉 + ν〈x0 − u0, s∗〉 + ν2〈x0 − u0, s0 − v0〉
〈x, s〉

)
rμ

≤
(
1 +

〈x∗, s0 − v0〉 + 〈x0 − u0, s∗〉 + 〈x0 − u0, s0 − v0〉
〈x0, s0〉

)
rμ, (31)

where the third equation follows from part two of Lemma 4.1, and the last inequality follows
from (17), (19) and 0 < ν < 1. For the initial points choice as in Section 4, it hold that

〈x∗, s0 − v0〉 + 〈x0 − u0, s∗〉 + 〈x0 − u0, s0 − v0〉
〈x0, s0〉

≤2rρ∗ρ0 + 2rρ∗ρ0 + 4r(ρ0)2

r(ρ0)2
= 4 + 4ρ∗/ρ0 ≤ 4 + 4Ψ, (32)

where first inequality follows from (18)–(20), and the facts: ‖p‖F ≤ √
r‖p‖2, 〈p, q〉 ≤ ‖p‖F‖q‖F ≤

r‖p‖2‖q‖2.
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By substituting (31) and (32) into (30), we obtain the required result. �

Lemma 5.5. Let G = L−1

s̃
L

x̃
. Then ‖(�x̃−,�s̃−)‖2

G ≤ ω2r2μ, where

ω =
(
1 + (1 +

√
2)(5 + 4Ψ)

)/√
τ2 ≥ 13. (33)

By Lemma 5.1, 5.2 and 5.5, we have the following corollary.

Corollary 5.1. Let G = L−1

s̃
L

x̃
. If β ≤ 1/2, then

(1) ‖�x̃+‖F ‖�s̃+‖F ≤ √
cond (G)βτ1μ/2;

(2) ‖�x̃−‖F ‖�s̃−‖F ≤ √
cond (G)ω2r2μ/2;

(3) ‖�x̃−‖F ‖�s̃+‖F ≤ √
cond (G)

√
βτ1ωrμ;

(4) ‖�s̃−‖F ‖�x̃+‖F ≤ √
cond (G)

√
βτ1ωrμ,

where cond(G) = λmax (G)/λmin(G).

Lemma 5.6. Let τ1 ≤ 1/8, β ≤ 1/2 and (x̃, y, s̃) ∈ N (τ1, β). If α1 = α2

√
βτ1/r and α2 ≤

√
τ1/(

√
cond (G)ω2r), then we have μ(α) ≤ (

1 − α2

√
βτ1

2
√

r

)
μ.

Proof. By using (27) and (28), one has tr (χ(α)) ≤ rμ−α1(1− τ1)rμ+α2
√

rβτ1μ. Then from
(26), we have

〈x̃(α), s̃(α)〉 =tr (χ(α)) + α2
1〈�x̃−,�s̃−〉 + α1α2(〈�x̃−,�s̃+〉 + 〈�s̃−,�x̃+〉)

≤rμ − α1(1 − τ1)rμ + α2

√
rβτ1μ + α2

1‖�x̃−‖F ‖�s̃−‖F

+ α1α2(‖�x̃−‖F ‖�s̃+‖F + ‖�s̃−‖F ‖�x̃+‖F ).

From Corollary 5.1,

〈x̃(α), s̃(α)〉 ≤rμ − α1(1 − τ1)rμ + α2

√
rβτ1μ + α2

1

√
cond (G)ω2r2μ/2

+ 2α1α2

√
cond (G)

√
βτ1ωrμ

=rμ − α2(1 − τ1)
√

βτ1rμ + α2

√
rβτ1μ + α2

2

√
cond (G)ω2βτ1rμ/2

+ 2α2
2

√
cond (G)ωβτ1

√
rμ

=
[
1 − α2

√
βτ1/r

(
1 − τ1 −

√
βτ1 − α2

√
cond (G)ω2

√
βτ1r/2

− 2α2

√
cond (G)ω

√
βτ1

)]
rμ

≤[
1 − α2

√
βτ1/r

(
1 − τ1 −

√
βτ1 −

√
βτ1/2 − 2

√
βτ1/ω

)]
rμ

≤
[
1 − α2

√
βτ1

2
√

r

]
rμ, (34)

where, the last inequality follows from the fact τ1 ≤ 1/8, β ≤ 1/2 and ω ≥ 13. Then, by using
μ(α) = 〈x̃(α), s̃(α)〉/r, we obtain the required result. �

Lemma 5.7. If (x̃, y, s̃) ∈ N (τ1, β) and μ(α) ≤ μ, then

‖(τ1μ(α)e − χ(α))+‖F ≤ (1 − α2)βτ1μ(α).
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Proof. Let x̃ ◦ s̃ = λ1c1 + · · · + λrcr, where {c1, · · · , cr} is a Jordan frame and the spectral
eigenvalues satisfy

τ1μ − λ1 ≤ τ1μ − λ2 ≤ · · · ≤ τ1μ − λk ≤ 0 ≤ τ1μ − λk+1 ≤ · · · ≤ τ1μ − λr.

Then, one has (τ1μe − x̃ ◦ s̃)+ = (τ1μ − λk+1)ck+1 + · · · + (τ1μ − λr)cr, and

χ(α) =
r∑

i=1

λici + α1

k∑

i=1

(τ1μ − λi)ci + α2

r∑

i=k+1

(τ1μ − λi)ci

=
k∑

i=1

((1 − α1)λi + α1τ1μ)ci +
r∑

i=k+1

((1 − α2)λi + α2τ1μ)ci, (35)

which implies λi(χ(α)) ≥ 0, i = 1, · · · , r. Using (35), we have

‖(τ1μ(α)e − χ(α))+‖2
F =

∑ (
[τ1μ(α) − λi(χ(α))]+

)2

≤
∑ ([

τ1μ(α) − μ(α)
μ

λi(χ(α))
]+)2

=(1 − α2)2
(μ(α)

μ

)2 r∑

i=k+1

(
[τ1μ − λi]+

)2
,

where the inequality holds due to μ(α) ≤ μ and χ(α) 
 0. Hence,

‖(τ1μ(α)e − χ(α))+‖F ≤ (1 − α2)
μ(α)

μ
‖(τ1μe − x̃ ◦ s̃)+‖F ≤ (1 − α2)βτ1μ(α).

�

Lemma 5.8. Let τ1 ≤ 1/8, β ≤ 1/2 and (x̃, y, s̃) ∈ N (τ1, β). If α1 = α2

√
βτ1/r and α2 ≤√

τ1/(
√

cond (G)ω2r), then we have ‖�x̃(α) ◦ �s̃(α)‖F ≤ α2βτ1μ(α).

Proof. Let

η1 = ‖�x̃−‖F ‖�s̃−‖F ,

η2 = ‖�x̃+‖F ‖�s̃+‖F ,

η3 = ‖�x̃−‖F ‖�s̃+‖F + ‖�s̃−‖F‖�x̃+‖F .

Then, from Corollary 5.1,

η1 ≤ 1
2

√
cond (G)ω2r2μ, η2 ≤ 1

2

√
cond (G)βτ1μ, η3 ≤ 2

√
cond (G)

√
βτ1ωrμ. (36)

By (25) and Lemma 2.2, we have

‖�x̃(α) ◦ �s̃(α)‖F ≤α2
1‖�x̃− ◦ �s̃−‖F + α1α2(‖�x̃− ◦ �s̃+‖F

+ ‖�s̃− ◦ �x̃+‖F ) + α2
2‖�x̃+ ◦ �s̃+‖F

≤α2
1η1 + α2

2η2 + α1α2η3.

On the other hand, by using α1 ≤ α2, we have

tr (χ(α)) =tr (x̃ ◦ s̃) + α1tr (τ1μe − x̃ ◦ s̃) + (α2 − α1)tr ((τ1μe − x̃ ◦ s̃)+)

≥rμ − α1(1 − τ1)rμ

≥rμ − α1rμ. (37)
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Then, using Cauchy-Schwarz inequality, we have

〈x̃(α), s̃(α)〉 =tr (χ(α)) + α2
1〈�x̃−,�s̃−〉 + α1α2(〈�x̃−,�s̃+〉 + 〈�s̃−,�x̃+〉)

≥rμ − α1rμ − α2
1η1 − α1α2η3.

A straightforward calculation shows that

‖�x̃(α) ◦ �s̃(α)‖F − α2βτ1μ(α)

≤α2
1η1 + α2

2η2 + α1α2η3 − α2βτ1(rμ − α1rμ − α2
1η1 − α1α2η3)/r

=α2
2η2 + (1 + α2βτ1/r)(α2

2βτ1η1/r + α2
2

√
βτ1/rη3) − α2βτ1(1 − α2

√
βτ1/r)μ

≤α2

[
α2η2 + (1 + α2βτ1)(α2βτ1η1/r + α2

√
βτ1/rη3) − βτ1(1 − α2

√
βτ1)μ

]

≤α2βτ1μ
[ √

τ1

2ω2r
+

(
1 +

βτ
3/2
1

ω2r

)(√
τ1

2
+

2
√

τ1

ω
√

r

)
−

(
1 −

√
βτ1

ω2r

)]

≤0.

Here, the third inequality follows from (36) and α2 ≤ √
τ1/(

√
cond (G)ω2r), the last inequality

holds due to the facts τ1 ≤ 1/8, β ≤ 1/2, r ≥ 1, and ω ≥ 13 by (33). �

The following lemma gives a sufficient condition which guarantees all the iterates in the
neighbourhood N (τ1, β).

Lemma 5.9. Let τ1 ≤ 1/8, β ≤ 1/2 and (x̃, y, s̃) ∈ N (τ1, β). If α1 = α2

√
βτ1/r and α2 ≤√

τ1/(
√

cond (G)ω2r), then (x̃(α), y(α), s̃(α)) ∈ N (τ1, β).

Proof. By Lemma 5.6, it holds that μ(α) ≤ μ. Furthermore, by using Lemma 5.7 and Lemma
5.8, we have

‖(τ1μ(α)e − x̃(α) ◦ s̃(α))+‖F

=‖(τ1μ(α)e − χ(α) −�x̃(α) ◦ �s̃(α))+‖F

≤‖(τ1μ(α)e − χ(α))+‖F + ‖(−�x̃(α) ◦ �s̃(α))+‖F

≤‖(τ1μ(α)e − χ(α))+‖F + ‖�x̃(α) ◦ �s̃(α)‖F

≤(1 − α2)βτ1μ(α) + α2βτ1μ(α)

=βτ1μ(α),

where, the first inequality follows from Lemma 2.4. Then, one has λ(x̃(α) ◦ s̃(α)) ≥ (1 −
β)τ1μ(α) > 0. Thus, by Lemma 2.1 we have det(x̃(α)) �= 0 and det(s̃(α)) �= 0. Then, since
x̃, s̃ � 0, by continuity it follows that x̃(α) � 0 and s̃(α) � 0. Moreover, by [10, Theorem 3.1],
we have

‖(τ1μ(α)e − w̃(α))+‖F ≤ ‖(τ1μ(α)e − x̃(α) ◦ s̃(α))+‖F ≤ βτ1μ(α).

where w̃(α) = Q
x̃(α)1/2 s̃(α).

Consequently, we have (x̃(α), y(α), s̃(α)) ∈ N (τ1, β). �

Lemma 5.10. Let (x̃, y, s̃) ∈ N (τ1, β) and β ≤ 1/2. If

α1 = α2

√
βτ1/r, α2 ≤ √

τ1/(
√

cond (G)ω2r),

then
〈x̃(α), s̃(α)〉 ≥ (1 − α1)ν〈x̃0, s̃0〉.
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Proof. Firstly, by (37), we have tr (χ(α)) ≥ rμ − α1(1 − τ1)rμ. Thus, using Cauchy-Schwarz
inequality,

〈x̃(α), x̃(α)〉 ≥rμ − α1(1 − τ1)rμ − α2
1η1 − α1α2η3

=(1 − α1)rμ + α1τ1rμ − α2
1η1 − α1α2η3

≥(1 − α1)ν〈x̃0, s̃0〉 + α1(τ1rμ − α1η1 − α2η3),

where in the last inequality we used (17).
Therefore, to complete the proof, it is sufficient to show that

τ1rμ − α1η1 − α2η3 ≥τ1rμ − α1

√
cond (G)ω2r2μ/2 − 2α2

√
cond (G)

√
βτ1ωrμ

=τ1rμ − α2

√
cond (G)

√
βτ1ω

2r2μ[1/(2
√

r) + 2/(ωr)]

≥τ1rμ −
√

βτ1rμ[1/2 + 2/ω] ≥ 0.

Here, the last inequality inequality holds due to β ≤ 1/2 and ω ≥ 13. �

For the Condition (24), we let τ1 +
√

τ1 ≤ δ < 1.

Lemma 5.11. Let τ1 ≤ 1/8, β ≤ 1/2 and (x̃, y, s̃) ∈ N (τ1, β). If α1 = α2

√
βτ1/r and

α2 ≤ √
τ1/(

√
cond (G)ω2r), then we have 〈x̃(α), s̃(α)〉 ≤ (1 − (1 − δ)α1)〈x̃, s̃〉.

Proof. From (34), it holds that

〈x̃(α), s̃(α)〉 ≤[
1 − α2

√
βτ1/r

(
1 − τ1 −

√
βτ1 −

√
βτ1/2 − 2

√
βτ1/ω

)]
rμ

=
[
1 − α1

(
1 − τ1 −√

τ1(
√

β +
√

βτ1/2 + 2
√

βτ1/ω)
)]〈x̃, s̃〉

≤[
1 − α1(1 − τ1 −√

τ1)
]〈x̃, s̃〉

≤[
1 − α1(1 − δ)

]〈x̃, s̃〉,
where, the second inequality follows from the fact τ1 ≤ 1/8, β ≤ 1/2. �

In view of Lemma 5.9–5.11, we may find step size in the following way. First, set α2 =√
τ1/(

√
cond (G)ω2r). Second, find the greatest α1 ∈ [0, 1] such that conditions (22)–(24) hold.

Lemma 5.9–5.11 guarantee that α1 ≥ α2

√
βτ1/r.

5.2 Polynomial Complexity

The following theorem gives an upper bound for the number of iterations in which Algorithm
4.1 stops with an ε-approximate solution.

Theorem 5.1. Suppose that
√

cond (G) ≤ κ < ∞ for all iterations. Then Algorithm 4.1
terminates in at most O(κr1.5 log ε−1) iterations.

Proof. At each iteration, if we let α2 =
√

τ1/(
√

cond (G)ω2r) and α1 = α2

√
βτ1/r, then by

using (34) we have

μ(α) = 〈x(α), s(α)〉/r = 〈x̃(α), s̃(α)〉/r ≤
[
1 − α2

√
βτ1

2
√

r

]
μ =

[
1 − α1

2

]
μ.

Therefore,

μ(α) ≤
[
1 − α2

√
βτ1/r

2

]
μ =

[
1 −

√
βτ1

2
√

cond (G)ω2r3/2

]
μ ≤

[
1 −

√
βτ1

2κω2r3/2

]
μ,
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from which the statement of the theorem follows. �

By (7) and [18, Lemma 36], we have cond (G) = 1 for the NT direction, and cond (G) ≤ r/τ2

for the xs and sx directions.

Corollary 5.2. If the NT search direction is used, the iteration complexity of Algorithm 4.1
is O(r1.5 log ε−1). If the xs and sx search directions are used, the iteration complexities of
Algorithm 4.1 are O(r2 log ε−1).

5.3 Complexity for Feasible Staring Points

In this subsection, we demonstrate that if strictly feasible starting points are used, then the
complexity bounds for Algorithm 4.1 can be lowered. Since the proof techniques are exactly
the same as those used in the infeasible starting point case, we will only give a brief outline of
the proof, omitting the details.

We start with the observation that for feasible interior-point method, we always have Ãx̃ = b

and Ã∗y + s̃ = c̃, which imply that 〈�x̃−,�s̃−〉 = 0, 〈�x̃+,�s̃+〉 = 0. Therefore, one has
〈�x̃(α),�s̃(α)〉 = 0, and

〈x̃(α), s̃(α)〉 = tr (x̃ ◦ s̃) + α1tr ((τ1μe − x̃ ◦ s̃)−) + α2tr ((τ1μe − x̃ ◦ s̃)+). (38)

As a key result, one has ξ = 0 and ‖(�x̃−,�s̃−)‖G ≤ √
rμ in Lemma 5.3. Therefore, in

place of Lemma 5.8, we have the following lemma.

Lemma 5.12. Let τ1 ≤ 1/8, β ≤ 1/2 and feasible point (x̃, y, s̃) ∈ N (τ1, β). If α1 =
0.2α2

√
βτ1/r and α2 ≤ 1/

√
cond (G), then we have ‖�x̃(α) ◦ �s̃(α)‖F ≤ α2βτ1μ(α).

Under the condition of Lemma 5.12, by using (27), (28) and (38) one has

〈x̃(α), s̃(α)〉 ≤rμ − α1(1 − τ1)rμ + α2

√
rβτ1μ

=
(
1 − 0.2α2(1 − τ1)

√
βτ1/r + α2βτ1/

√
r
)
rμ

≤
(
1 − α23

√
βτ1

40
√

r

)
rμ.

As the proof of Lemma 5.9, we have (x̃(α), y(α), s̃(α)) ∈ N (τ1, β). Therefore, we have the
following iteration complexity bound for the feasible interior-point algorithm.

Theorem 5.2. Let a feasible point (x0, y0, s0) ∈ N (τ1, β), and suppose
√

cond (G) ≤ κ < ∞
for all iterations. Then the feasible algorithm terminates in at most O(κ

√
r log ε−1) iterations.

Hence, for NT direction the algorithm takes O(
√

r log ε−1) iterations, and for xs and sx direc-
tions the algorithm takes O(r log ε−1) iterations.

We note that, when the NT search direction is used, the feasible interior-point algorithm
achieves its best complexity bound which coincides with the best known complexity of interior-
point methods.

6 Conclusions

We have established complexity bound of an infeasible-interior-point algorithm, based on a
new wide neighbourhood, for linear programming over symmetric cones. We summarize the
obtained complexity results in Table 1, where r is the rank of the associated Euclidean Jordan
algebra and ε > 0 is the required precision. For comparison, we also include the complexity
bounds for the IIPM in [17].
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Table 1. Summary of Complexity Bounds

Infeasible initial point Feasible initial point

xs/sx NT xs/sx NT

New-IIPM O(r2 log ε−1) O(r1.5 log ε−1) O(r log ε−1) O(
√

r log ε−1)

IIPM O(r2.5 log ε−1) O(r2 log ε−1) O(r1.5 log ε−1) O(r log ε−1)
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